1
|
Saito Y, Keino D, Kuroda Y, Enomoto Y, Naruto T, Tanaka Y, Tanaka M, Usui H, Kitagawa N, Yanagimachi M, Kurosawa K. Two-hit mutation causes Wilms tumor in an individual with FBXW7-related neurodevelopmental syndrome. J Hum Genet 2025; 70:121-123. [PMID: 39414990 DOI: 10.1038/s10038-024-01299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024]
Abstract
FBXW7 (F-box and WD-repeat domain-containing 7) is a tumor suppressor gene, and its germline variants have been causally linked to Wilms tumors. Furthermore, germline variants of FBXW7 have also been implicated in a neurodevelopmental syndrome. However, little is known regarding the occurrence of Wilms tumor in patients with FBXW7-related neurodevelopmental syndrome. We identified a novel constitutional pathogenic variant of FBXW7 in a patient with intellectual disability, who also developed Wilms tumor. The variant was derived from his apparently normal mother, and was also detected in his sister who exhibited developmental delay. Furthermore, we detected a somatic nonsense variant on the paternal allele of FBXW7 in the tumor DNA. These results suggest that the development of Wilms tumor along with FBXW7-related neurodevelopmental syndrome follows the two-hit model, which needs to be validated to establish appropriate follow-up management and tumor surveillance.
Collapse
Affiliation(s)
- Yoko Saito
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Dai Keino
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hidehito Usui
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Norihiko Kitagawa
- Department of Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masakatsu Yanagimachi
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan.
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan.
| |
Collapse
|
2
|
Stephenson SE, Costain G, Blok LE, Silk MA, Nguyen TB, Dong X, Alhuzaimi DE, Dowling JJ, Walker S, Amburgey K, Hayeems RZ, Rodan LH, Schwartz MA, Picker J, Lynch SA, Gupta A, Rasmussen KJ, Schimmenti LA, Klee EW, Niu Z, Agre KE, Chilton I, Chung WK, Revah-Politi A, Au PB, Griffith C, Racobaldo M, Raas-Rothschild A, Ben Zeev B, Barel O, Moutton S, Morice-Picard F, Carmignac V, Cornaton J, Marle N, Devinsky O, Stimach C, Wechsler SB, Hainline BE, Sapp K, Willems M, Bruel AL, Dias KR, Evans CA, Roscioli T, Sachdev R, Temple SE, Zhu Y, Baker JJ, Scheffer IE, Gardiner FJ, Schneider AL, Muir AM, Mefford HC, Crunk A, Heise EM, Millan F, Monaghan KG, Person R, Rhodes L, Richards S, Wentzensen IM, Cogné B, Isidor B, Nizon M, Vincent M, Besnard T, Piton A, Marcelis C, Kato K, Koyama N, Ogi T, Goh ESY, Richmond C, Amor DJ, Boyce JO, Morgan AT, Hildebrand MS, Kaspi A, Bahlo M, Friðriksdóttir R, Katrínardóttir H, Sulem P, Stefánsson K, Björnsson HT, Mandelstam S, Morleo M, Mariani M, Scala M, Accogli A, Torella A, Capra V, Wallis M, Jansen S, Waisfisz Q, de Haan H, Sadedin S, Lim SC, White SM, Ascher DB, et alStephenson SE, Costain G, Blok LE, Silk MA, Nguyen TB, Dong X, Alhuzaimi DE, Dowling JJ, Walker S, Amburgey K, Hayeems RZ, Rodan LH, Schwartz MA, Picker J, Lynch SA, Gupta A, Rasmussen KJ, Schimmenti LA, Klee EW, Niu Z, Agre KE, Chilton I, Chung WK, Revah-Politi A, Au PB, Griffith C, Racobaldo M, Raas-Rothschild A, Ben Zeev B, Barel O, Moutton S, Morice-Picard F, Carmignac V, Cornaton J, Marle N, Devinsky O, Stimach C, Wechsler SB, Hainline BE, Sapp K, Willems M, Bruel AL, Dias KR, Evans CA, Roscioli T, Sachdev R, Temple SE, Zhu Y, Baker JJ, Scheffer IE, Gardiner FJ, Schneider AL, Muir AM, Mefford HC, Crunk A, Heise EM, Millan F, Monaghan KG, Person R, Rhodes L, Richards S, Wentzensen IM, Cogné B, Isidor B, Nizon M, Vincent M, Besnard T, Piton A, Marcelis C, Kato K, Koyama N, Ogi T, Goh ESY, Richmond C, Amor DJ, Boyce JO, Morgan AT, Hildebrand MS, Kaspi A, Bahlo M, Friðriksdóttir R, Katrínardóttir H, Sulem P, Stefánsson K, Björnsson HT, Mandelstam S, Morleo M, Mariani M, Scala M, Accogli A, Torella A, Capra V, Wallis M, Jansen S, Waisfisz Q, de Haan H, Sadedin S, Lim SC, White SM, Ascher DB, Schenck A, Lockhart PJ, Christodoulou J, Tan TY, Christodoulou J, Tan TY. Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. Am J Hum Genet 2022; 109:601-617. [PMID: 35395208 DOI: 10.1016/j.ajhg.2022.03.002] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/28/2022] [Indexed: 11/01/2022] Open
Abstract
Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Melbourne, VIC 3052, Australia
| | - Tiong Yang Tan
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Melbourne, VIC 3052, Australia.
| |
Collapse
|
3
|
Hol JA, Jewell R, Chowdhury T, Duncan C, Nakata K, Oue T, Gauthier-Villars M, Littooij AS, Kaneko Y, Graf N, Bourdeaut F, van den Heuvel-Eibrink MM, Pritchard-Jones K, Maher ER, Kratz CP, Jongmans MCJ. Wilms tumour surveillance in at-risk children: Literature review and recommendations from the SIOP-Europe Host Genome Working Group and SIOP Renal Tumour Study Group. Eur J Cancer 2021; 153:51-63. [PMID: 34134020 DOI: 10.1016/j.ejca.2021.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Since previous consensus-based Wilms tumour (WT) surveillance guidelines were published, novel genes and syndromes associated with WT risk have been identified, and diagnostic molecular tests for previously known syndromes have improved. In view of this, the International Society of Pediatric Oncology (SIOP)-Europe Host Genome Working Group and SIOP Renal Tumour Study Group hereby present updated WT surveillance guidelines after an extensive literature review and international consensus meetings. These guidelines are for use by clinical geneticists, pediatricians, pediatric oncologists and radiologists involved in the care of children at risk of WT. Additionally, we emphasise the need to register all patients with a cancer predisposition syndrome in national or international databases, to enable the development of better tumour risk estimates and tumour surveillance programs in the future.
Collapse
Affiliation(s)
- Janna A Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Tanzina Chowdhury
- Great Ormond Street Hospital for Children, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Catriona Duncan
- Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | - Takaharu Oue
- Department of Pediatric Surgery, Hyōgo College of Medicine, Nishinomiya, Hyōgo, Japan
| | | | - Annemieke S Littooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yasuhiko Kaneko
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Norbert Graf
- Department of Pediatric Oncology & Hematology, Saarland University, Homburg, Germany
| | - Franck Bourdeaut
- SIREDO Pediatric Oncology Center, Institut Curie Hospital, Paris, France
| | | | - Kathy Pritchard-Jones
- Great Ormond Street Hospital for Children, London, United Kingdom; University College London Great Ormond Street Institute of Child Health, University College London, United Kingdom
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology & Rare Disease Program, Hannover Medical School, Center for Pediatrics and Adolescent Medicine, Hannover, Germany
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht / Wilhelmina Children's Hospital, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Buckley RM, Davis BW, Brashear WA, Farias FHG, Kuroki K, Graves T, Hillier LW, Kremitzki M, Li G, Middleton RP, Minx P, Tomlinson C, Lyons LA, Murphy WJ, Warren WC. A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism. PLoS Genet 2020; 16:e1008926. [PMID: 33090996 PMCID: PMC7581003 DOI: 10.1371/journal.pgen.1008926] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models. The practice of genomic medicine is predicated on the availability of a high quality reference genome and an understanding of the impact of genome variation. Such resources have lead to countless discoveries in humans, however by working exclusively within the framework of human genetics, our potential for understanding diseases biology is limited, as similar analyses in other species have often lead to novel insights. The generation of Felis_catus_9.0, a new high quality reference genome for the domestic cat, helps facilitate the expansion of genomic medicine into the Felis lineage. Using Felis_catus_9.0 we analyze the landscape of genomic variation from a collection of 54 cats within the context of human gene constraint. The distribution of variant impacts in cats is correlated with patterns of gene constraint in humans, indicating the utility of this reference for identifying novel mutations that cause phenotypes relevant to human and cat health. Moreover, structural variant analysis revealed a novel variant for feline dwarfism in UGDH, a gene that has not been associated with dwarfism in any other species, suggesting a role for UGDH in cases of undiagnosed dwarfism in humans.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley A. Brashear
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Fabiana H. G. Farias
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- NeuroGenomics and Informatics, Washington University, St. Louis, Missouri, United States of America
| | - Kei Kuroki
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Tina Graves
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - LaDeana W. Hillier
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gang Li
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | | | - Patrick Minx
- Donald Danforth Plant Science, St Louis, Missouri, United States of America
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Interdisciplinary Program in Genetics, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Wesley C. Warren
- Division of Animal Sciences, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
5
|
MiR-155 and MiR-665 Role as Potential Non-invasive Biomarkers for Hepatocellular Carcinoma in Egyptian Patients with Chronic Hepatitis C Virus Infection. J Transl Int Med 2020; 8:32-40. [PMID: 32435610 PMCID: PMC7227164 DOI: 10.2478/jtim-2020-0006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background and Objectives Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer associated death globally. Serum micro RNAs are full of potential as noninvasive biomarkers. Here, we aim to assess the performance of serum MicroRNA-155 and MicroRNA-665 as diagnostic biomarker for HCC comparing to AFP. Methods Serum samples were collected from 200 subjects (40 healthy control, 80 chronic hepatitis C patients with cirrhosis and without HCC (LC) and 80 HCC patients currently infected by hepatitis C infection and didn’t start the treatment). The HCC patients didn’t include alcoholic liver disease, nonalcoholic fatty liver disease nor autoimmune liver disease. MicroRNA-155 and MicroRNA-665 expression were measured by real-time quantitative PCR (RT-qPCR), while AFP level was assessed by ELISA method. Results Both miR-155 and miR-665 were significantly elevated in HCC group as compared to both control and LC groups. The comparison between LC and HCC patients revealed that the serum level of miR-155 was a significant increase in HCC patients compared to LC patients; however, the serum level of miR-665 didn’t show any significant difference between the same two groups. MiR-665 expression level showed a direct correlation with tumor size in HCC patients. Conclusions Using measurement against AFP level in serum, miR-665 is considered a promising serum biomarker for the diagnosis of HCC patients among the LC patients without HCC. MiR-155 didn’t provide a better performance than serum AFP as a diagnostic biomarker among the same group. MiR-665 may serve as a good indicator for HCC prognosis.
Collapse
|
6
|
Mahamdallie S, Yost S, Poyastro-Pearson E, Holt E, Zachariou A, Seal S, Elliott A, Clarke M, Warren-Perry M, Hanks S, Anderson J, Bomken S, Cole T, Farah R, Furtwaengler R, Glaser A, Grundy R, Hayden J, Lowis S, Millot F, Nicholson J, Ronghe M, Skeen J, Williams D, Yeomanson D, Ruark E, Rahman N. Identification of new Wilms tumour predisposition genes: an exome sequencing study. THE LANCET. CHILD & ADOLESCENT HEALTH 2019; 3:322-331. [PMID: 30885698 PMCID: PMC6472290 DOI: 10.1016/s2352-4642(19)30018-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Wilms tumour is the most common childhood renal cancer and is genetically heterogeneous. While several Wilms tumour predisposition genes have been identified, there is strong evidence that further predisposition genes are likely to exist. Our study aim was to identify new predisposition genes for Wilms tumour. METHODS In this exome sequencing study, we analysed lymphocyte DNA from 890 individuals with Wilms tumour, including 91 affected individuals from 49 familial Wilms tumour pedigrees. We used the protein-truncating variant prioritisation method to prioritise potential disease-associated genes for further assessment. We evaluated new predisposition genes in exome sequencing data that we generated in 334 individuals with 27 other childhood cancers and in exome data from The Cancer Genome Atlas obtained from 7632 individuals with 28 adult cancers. FINDINGS We identified constitutional cancer-predisposing mutations in 33 individuals with childhood cancer. The three identified genes with the strongest signal in the protein-truncating variant prioritisation analyses were TRIM28, FBXW7, and NYNRIN. 21 of 33 individuals had a mutation in TRIM28; there was a strong parent-of-origin effect, with all ten inherited mutations being maternally transmitted (p=0·00098). We also found a strong association with the rare epithelial subtype of Wilms tumour, with 14 of 16 tumours being epithelial or epithelial predominant. There were no TRIM28 mutations in individuals with other childhood or adult cancers. We identified truncating FBXW7 mutations in four individuals with Wilms tumour and a de-novo non-synonymous FBXW7 mutation in a child with a rhabdoid tumour. Biallelic truncating mutations in NYNRIN were identified in three individuals with Wilms tumour, which is highly unlikely to have occurred by chance (p<0·0001). Finally, we identified two de-novo KDM3B mutations, supporting the role of KDM3B as a childhood cancer predisposition gene. INTERPRETATION The four new Wilms tumour predisposition genes identified-TRIM28, FBXW7, NYNRIN, and KDM3B-are involved in diverse biological processes and, together with the other 17 known Wilms tumour predisposition genes, account for about 10% of Wilms tumour cases. The overlap between these 21 constitutionally mutated predisposition genes and 20 genes somatically mutated in Wilms tumour is limited, consisting of only four genes. We recommend that all individuals with Wilms tumour should be offered genetic testing and particularly, those with epithelial Wilms tumour should be offered TRIM28 genetic testing. Only a third of the familial Wilms tumour clusters we analysed were attributable to known genes, indicating that further Wilms tumour predisposition factors await discovery. FUNDING Wellcome Trust.
Collapse
Affiliation(s)
- Shazia Mahamdallie
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Shawn Yost
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Esty Holt
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Anna Zachariou
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Sheila Seal
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Anna Elliott
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Matthew Clarke
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Sandra Hanks
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - John Anderson
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Simon Bomken
- The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Trevor Cole
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Roula Farah
- Department of Paediatrics, Saint George Hospital University Medical Centre, Beirut, Lebanon
| | - Rhoikos Furtwaengler
- Department of Paediatric Hematology and Oncology, Saarland University Hospital, Homburg, Germany
| | - Adam Glaser
- School of Medicine, University of Leeds, Leeds Institute of Data Analytics, Leeds, UK
| | - Richard Grundy
- Children's Brain Tumour Research Centre, University of Nottingham, Queen's Medical Centre Nottingham, Nottingham, UK
| | - James Hayden
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Steve Lowis
- Department of Paediatric Oncology and Haematology, Bristol Royal Hospital for Children, Bristol, UK
| | - Frédéric Millot
- CIC 1402, Paediatric Oncology and Heamatology, Centre of Clinical Investigation, Poitiers, France
| | - James Nicholson
- Paediatric Oncology and Haematology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Milind Ronghe
- Department of Paediatric Oncology, Royal Hospital for Children, Queen Elizabeth University Hospital, Glasgow, UK
| | - Jane Skeen
- Starship Children's Hospital, Auckland, New Zealand
| | - Denise Williams
- Paediatric Oncology and Haematology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Daniel Yeomanson
- Department of Haematology and Oncology, Sheffield Children's Hospital, Sheffield, UK
| | - Elise Ruark
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Nazneen Rahman
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK; Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Cao S, Wang Y, Li J, Lv M, Niu H, Tian Y. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. Am J Cancer Res 2016; 6:2561-2574. [PMID: 27904771 PMCID: PMC5126273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023] Open
Abstract
The human metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA associated with metastasis, and is a favorable prognostic factor for lung cancer. Recent studies have shown that MALAT1 plays an important role in many malignancies. However, little is known about the role of MALAT1 in glioma. In this study, we determined the expression of MALAT1 and explored its prognostic value in glioma. Further, we investigated the regulatory mechanism of MALAT1 in glioma progression. Our results showed that the expression of MALAT1 was significantly decreased in glioma specimens than in noncancerous brain tissues. In addition, MALAT1 expression was significantly correlated with tumor size, WHO grade and Karnofsky Performance Status (KPS), and was an independent prognostic factor for survival of glioma patients. The gain- and loss-of-function experiments revealed miR-155 down-regulation by MALAT1, resulting in reciprocal effects. Further, MALAT1 suppresses cell viability by down-regulating miR-155. FBXW7 mRNA was identified as a direct target of miR-155 in glioma. The miR-155-induced tumorigenesis is mediated through FBXW7 function. Finally, we found that MALAT1 positively regulated FBXW7 expression, which was responsible for glioma progression mediated by MALAT1-miR-155 pathway. In conclusion, our data demonstrated that MALAT1 may be a novel prognostic biomarker and therapeutic target in glioma. Restoration of MALAT1 levels represents a novel therapeutic strategy against glioma.
Collapse
Affiliation(s)
- Shuanzhu Cao
- Department of The Fourth Neurosurgery, Central Hospital Cangzhou CityCangzhou 061000, Hebei Province, China
| | - Yanzhou Wang
- Department of The Fourth Neurosurgery, Central Hospital Cangzhou CityCangzhou 061000, Hebei Province, China
| | - Jinquan Li
- Department of Neurosurgery, Botou HospitalCangzhou 061000, Hebei Province, China
| | - Mingliang Lv
- Department of Neurosurgery, Botou HospitalCangzhou 061000, Hebei Province, China
| | - Haitao Niu
- Department of The Fourth Neurosurgery, Central Hospital Cangzhou CityCangzhou 061000, Hebei Province, China
| | - Yong Tian
- Department of The Fourth Neurosurgery, Central Hospital Cangzhou CityCangzhou 061000, Hebei Province, China
| |
Collapse
|
8
|
The expanding phenotypic spectra of kidney diseases: insights from genetic studies. Nat Rev Nephrol 2016; 12:472-83. [PMID: 27374918 DOI: 10.1038/nrneph.2016.87] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) has led to the identification of previously unrecognized phenotypes associated with classic kidney disease genes. In addition to improving diagnostics for genetically heterogeneous diseases and enabling a faster rate of gene discovery, NGS has enabled an expansion and redefinition of nephrogenetic disease categories. Findings from these studies raise the question of whether disease diagnoses should be made on clinical grounds, on genetic evidence or a combination thereof. Here, we discuss the major kidney disease-associated genes and gene categories for which NGS has expanded the phenotypic spectrum. For example, COL4A3-5 genes, which are classically associated with Alport syndrome, are now understood to also be involved in the aetiology of focal segmental glomerulosclerosis. DGKE, which is associated with nephrotic syndrome, is also mutated in patients with atypical haemolytic uraemic syndrome. We examine how a shared genetic background between diverse clinical phenotypes can provide insight into the function of genes and novel links with essential pathophysiological mechanisms. In addition, we consider genetic and epigenetic factors that contribute to the observed phenotypic heterogeneity of kidney diseases and discuss the challenges in the interpretation of genetic data. Finally, we discuss the implications of the expanding phenotypic spectra associated with kidney disease genes for clinical practice, genetic counselling and personalized care, and present our recommendations for the use of NGS-based tests in routine nephrology practice.
Collapse
|
9
|
Tang B, Lei B, Qi G, Liang X, Tang F, Yuan S, Wang Z, Yu S, He S. MicroRNA-155-3p promotes hepatocellular carcinoma formation by suppressing FBXW7 expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:93. [PMID: 27306418 PMCID: PMC4910248 DOI: 10.1186/s13046-016-0371-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs frequently dysregulated in human malignant tumors. In the present study, we analyzed the role miR-155-3p plays in Hepatocellular carcinoma (HCC), which has been reported participation in some other types of cancer. METHODS qRT-PCR was used to measure the levels of miR-155-3p in HCC specimens and HCC cell lines. Overexpression of miR-155-3p and miR-155-3p inhibitor were transfected into HCC cell lines to investigate its role in HCC. Colony formation assay and 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assays were used to analyses cell proliferation in vitro. In vivo tumor formation assays were performed in BALB/c nude mice. Luciferase reporter assay was carried out to measure the translation of F-Box and WD repeat romain containing 7 (FBXW7). RESULTS We found that miR-155-3p was remarkably upregulated both in HCC tissue and cell lines. Overexpression of miR-155-3p enhanced HCC cell proliferation in vitro and tumorigenesis in vivo. In addition, overexpression of miR-155-3p is correlated with decreased levels FBXW7 mainly through inhibiting the expression of FBXW7. CONCLUSIONS Our studies suggest that miR-155-3p plays an important role in the pathogenesis of HCC and implicates its potential applications in the treatment of HCC cancer.
Collapse
Affiliation(s)
- Bo Tang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Biao Lei
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Guangying Qi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, 541004, Guangxi, People's Republic of China
| | - Xingsi Liang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Fang Tang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Shengguang Yuan
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Zhenran Wang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Shuiping Yu
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China.,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Songqing He
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, Guangxi, People's Republic of China. .,Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
| |
Collapse
|