1
|
Powell ME, McCoy SJ. Divide and conquer: Spatial and temporal resource partitioning structures benthic cyanobacterial mats. JOURNAL OF PHYCOLOGY 2024; 60:254-272. [PMID: 38467467 DOI: 10.1111/jpy.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Benthic cyanobacterial mats are increasing in abundance worldwide with the potential to degrade ecosystem structure and function. Understanding mat community dynamics is thus critical for predicting mat growth and proliferation and for mitigating any associated negative effects. Carbon, nitrogen, and sulfur cycling are the predominant forms of nutrient cycling discussed within the literature, while metabolic cooperation and viral interactions are understudied. Although many forms of nutrient cycling in mats have been assessed, the links between niche dynamics, microbial interactions, and nutrient cycling are not well described. Here, we present an updated review on how nutrient cycling and microbial community interactions in mats are structured by resource partitioning via spatial and temporal heterogeneity and succession. We assess community interactions and nutrient cycling at both intramat and metacommunity scales. Additionally, we present ideas and recommendations for research in this area, highlighting top-down control, boundary layers, and metabolic cooperation as important future directions.
Collapse
Affiliation(s)
- Maya E Powell
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophie J McCoy
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Yadav P, Das J, Sundharam SS, Krishnamurthi S. Analysis of Culturable Bacterial Diversity of Pangong Tso Lake via a 16S rRNA Tag Sequencing Approach. Microorganisms 2024; 12:397. [PMID: 38399801 PMCID: PMC10892101 DOI: 10.3390/microorganisms12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
The Pangong Tso lake is a high-altitude freshwater habitat wherein the resident microbes experience unique selective pressures, i.e., high radiation, low nutrient content, desiccation, and temperature extremes. Our study attempts to analyze the diversity of culturable bacteria by applying a high-throughput amplicon sequencing approach based on long read technology to determine the spectrum of bacterial diversity supported by axenic media. The phyla Pseudomonadota, Bacteriodetes, and Actinomycetota were retrieved as the predominant taxa in both water and sediment samples. The genera Hydrogenophaga and Rheinheimera, Pseudomonas, Loktanella, Marinomonas, and Flavobacterium were abundantly present in the sediment and water samples, respectively. Low nutrient conditions supported the growth of taxa within the phyla Bacteriodetes, Actinomycetota, and Cyanobacteria and were biased towards the selection of Pseudomonas, Hydrogenophaga, Bacillus, and Enterococcus spp. Our study recommends that media formulations can be finalized after analyzing culturable diversity through a high-throughput sequencing effort to retrieve maximum species diversity targeting novel/relevant taxa.
Collapse
Affiliation(s)
- Pooja Yadav
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Joyasree Das
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Shiva S. Sundharam
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
3
|
Ota Y, Iguchi A, Nishijima M, Mukai R, Suzumura M, Yoshioka H, Suzuki A, Tsukasaki A, Aoyagi T, Hori T. Methane diffusion affects characteristics of benthic communities in and around microbial mat-covered sediments in the northeastern Japan sea. CHEMOSPHERE 2024; 349:140964. [PMID: 38128741 DOI: 10.1016/j.chemosphere.2023.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
We investigated relationships between features of benthic macrofaunal communities and geochemical parameters in and around microbial mat-covered sediments associated with a methane seepage on Sakata Knoll in the eastern Japan Sea. A depression on top of the knoll corresponds to a gas-hydrate-bearing area with seepage of methane-rich fluid, and microbial mats cover the seafloor sediments. Sediment cores were collected at three sites for this study: one within a microbial mat, a second a few meters outside of the microbial mat, and a third from a reference site outside the gas-hydrate-bearing areas. Morphological analysis showed that the site inside the microbial mat had higher macrofaunal density and biomass compared with the other sites. 18S rRNA gene analysis showed that annelids were dominant in the surface sediment inside the microbial mat with the possible occurrence of microbial anaerobic oxidation of methane (AOM), whereas in the surface sediments outside the microbial mat and at the reference site the predominant species belonged to phylum Cercozoa. Morphological analysis also showed that the surface sediment inside the microbial mat noticeably favored annelids, with dorvilleid Ophryotrocha sp. and ampharetid Neosabellides sp. identified as major constituents. Statistical analysis showed that sulfidic sediment conditions with concentrations of H2S up to 121 μM resulting from AOM likely resulted in the predominance of annelids with tolerance to sulfide. Both the 18S rRNA genes and macrofaunal characteristics showed that benthic biodiversity among the three sites was greatest outside the microbial mat. The site outside the microbial mat may represent geochemical transition conditions, including a lower rate of upward methane gas-flow compared with the site inside the microbial mat. The high biodiversity there might result from the presence of species specifically suited to the transition zone as well as species also found in photosynthesis-based communities of the background environment.
Collapse
Affiliation(s)
- Yuki Ota
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan.
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan; Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Ryo Mukai
- Marine Biological Research Institute of Japan Co., Ltd, Yutaka-cho 4-3-16, Shinagawa, Tokyo, 142-0042, Japan
| | - Masahiro Suzumura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| | - Hideyoshi Yoshioka
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan; Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Ayumi Tsukasaki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| |
Collapse
|
4
|
Reid RP, Suosaari EP, Oehlert AM, Pollier CGL, Dupraz C. Microbialite Accretion and Growth: Lessons from Shark Bay and the Bahamas. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:487-511. [PMID: 38231736 DOI: 10.1146/annurev-marine-021423-124637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Microbialites provide geological evidence of one of Earth's oldest ecosystems, potentially recording long-standing interactions between coevolving life and the environment. Here, we focus on microbialite accretion and growth and consider how environmental and microbial forces that characterize living ecosystems in Shark Bay and the Bahamas interact to form an initial microbialite architecture, which in turn establishes distinct evolutionary pathways. A conceptual three-dimensional model is developed for microbialite accretion that emphasizes the importance of a dynamic balance between extrinsic and intrinsic factors in determining the initial architecture. We then explore how early taphonomic and diagenetic processes modify the initial architecture, culminating in various styles of preservation in the rock record. The timing of lithification of microbial products is critical in determining growth patterns and preservation potential. Study results have shown that all microbialites are not created equal; the unique evolutionary history of an individual microbialite matters.
Collapse
Affiliation(s)
- R Pamela Reid
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
- Bahamas Marine EcoCentre, Miami, Florida, USA;
| | - Erica P Suosaari
- Bahamas Marine EcoCentre, Miami, Florida, USA;
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Bush Heritage Australia, Melbourne, Victoria, Australia
| | - Amanda M Oehlert
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
| | - Clément G L Pollier
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
| | - Christophe Dupraz
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden;
| |
Collapse
|
5
|
Rodriguez MN, Campetella DM, Carmona NB, Ponce JJ, Parada MN. Microbial mats and their palaeoenvironmental analysis in offshore - shelf facies of the Los Molles Formation (Toarcian - Lower Callovian) in the Chacay Melehue area, Neuquén Basin, Argentina. GEOBIOLOGY 2024; 22:e12580. [PMID: 37990865 DOI: 10.1111/gbi.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/11/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
This contribution presents the first study focused on the analysis of microbial mats in the Los Molles Formation (Toarcian - Early Callovian), Neuquén Basin, Argentina. This unit mainly represents offshore-to-shelf environments affected by storms and density currents. The Los Molles Formation is one of the oldest source rocks in the Neuquén Basin and constitutes an unconventional shale gas reservoir of great economic importance. The aim of this work was to identify the microbial activity from the description and interpretation of microbially induced sedimentary structures (MISS), to determine the paleoenvironmental and paleoecological conditions under which they formed, and to establish a possible relationship between these structures and the trace fossil Trichichnus. Samples from the levels with MISS were analyzed and described from macroscopic and binocular observations, petrographic microscope thin sections, and SEM samples with EDS analyses. The results showed several levels of microbial mats presenting diverse MISS, including biolaminations and Kinneyia-like wrinkles structures that were described at the macroscopic level. In thin sections, biolaminations, filament-like microstructures with different degrees of development, oriented grains and pyrite were observed. SEM images and EDS analyses showed different types of filaments, coccoids and EPS with high concentrations of carbon. These results revealed that the studied levels fulfill the established biogenicity criteria, guaranteeing that they have a bacterial origin. The abundance of the trace fossil Trichichnus sp. throughout the section and the proximity to some Kinneyia-like wrinkle structures levels suggests that the same organisms may have generated them. Furthermore, they revealed that the Los Molles Formation, at the time of its deposition, experienced paleoecological and paleoenvironmental conditions appropriate for the establishment and development of microbial mats. The extensive levels of microbial mats in the study area suggest that they may have been a source of organic matter for the generation of hydrocarbons from the Los Molles Formation.
Collapse
Affiliation(s)
- Maximiliano Nicolás Rodriguez
- Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
| | - Débora Mical Campetella
- Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
| | - Noelia Beatriz Carmona
- Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
| | - Juan José Ponce
- Universidad Nacional de Río Negro (UNRN), Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Negro, Argentina
- Servicio Geológico Minero Argentino (SEGEMAR), Centro General Roca, Río Negro, Argentina
| | - Martín Nazareno Parada
- Universidad Nacional de Río Negro, Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Paleobiología y Geología, Río Negro, Argentina
| |
Collapse
|
6
|
Skoog EJ, Fournier GP, Bosak T. Assessing the Influence of HGT on the Evolution of Stress Responses in Microbial Communities from Shark Bay, Western Australia. Genes (Basel) 2023; 14:2168. [PMID: 38136990 PMCID: PMC10742547 DOI: 10.3390/genes14122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat. Phylogenies of several stress-related genes-including those involved in response to osmotic stress, oxidative stress and arsenic toxicity-indicate a potentially long history of HGT events and are consistent with these transfers occurring outside of modern pustular mats. The phylogeny of a particular osmoprotectant transport gene reveals relatively recent adaptations and suggests interactions between Planctomycetota and Myxococcota within these pustular mats. Overall, HGT phylogenies support a potentially broad distribution in the relative timing of the HGT events of stress-related genes and demonstrate ongoing microbial adaptations and evolution in these pustular mat communities.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| |
Collapse
|
7
|
Cissell EC, McCoy SJ. Top-heavy trophic structure within benthic viral dark matter. Environ Microbiol 2023; 25:2303-2320. [PMID: 37381050 DOI: 10.1111/1462-2920.16457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
A better understanding of system-specific viral ecology in diverse environments is needed to predict patterns of virus-host trophic structure in the Anthropocene. This study characterised viral-host trophic structure within coral reef benthic cyanobacterial mats-a globally proliferating cause and consequence of coral reef degradation. We employed deep longitudinal multi-omic sequencing to characterise the viral assemblage (ssDNA, dsDNA, and dsRNA viruses) and profile lineage-specific host-virus interactions within benthic cyanobacterial mats sampled from Bonaire, Caribbean Netherlands. We recovered 11,012 unique viral populations spanning at least 10 viral families across the orders Caudovirales, Petitvirales, and Mindivirales. Gene-sharing network analyses provided evidence for extensive genomic novelty of mat viruses from reference and environmental viral sequences. Analysis of coverage ratios of viral sequences and computationally predicted hosts spanning 15 phyla and 21 classes revealed virus-host abundance (from DNA) and activity (from RNA) ratios consistently exceeding 1:1, suggesting a top-heavy intra-mat trophic structure with respect to virus-host interactions. Overall, our article contributes a curated database of viral sequences found in Caribbean coral reef benthic cyanobacterial mats (vMAT database) and provides multiple lines of field-based evidence demonstrating that viruses are active members of mat communities, with broader implications for mat functional ecology and demography.
Collapse
Affiliation(s)
- Ethan C Cissell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophie J McCoy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Moran JJ, Bernstein HC, Mobberley JM, Thompson AM, Kim YM, Dana KL, Cory AB, Courtney S, Renslow RS, Fredrickson JK, Kreuzer HW, Lipton MS. Daylight-driven carbon exchange through a vertically structured microbial community. Front Microbiol 2023; 14:1139213. [PMID: 37303779 PMCID: PMC10251406 DOI: 10.3389/fmicb.2023.1139213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Interactions between autotrophs and heterotrophs are central to carbon (C) exchange across trophic levels in essentially all ecosystems and metabolite exchange is a frequent mechanism for distributing C within spatially structured ecosystems. Yet, despite the importance of C exchange, the timescales at which fixed C is transferred in microbial communities is poorly understood. We employed a stable isotope tracer combined with spatially resolved isotope analysis to quantify photoautotrophic uptake of bicarbonate and track subsequent exchanges across a vertical depth gradient in a stratified microbial mat over a light-driven diel cycle. We observed that C mobility, both across the vertical strata and between taxa, was highest during periods of active photoautotrophy. Parallel experiments with 13C-labeled organic substrates (acetate and glucose) showed comparably less exchange of C within the mat. Metabolite analysis showed rapid incorporation of 13C into molecules that can both comprise a portion of the extracellular polymeric substances in the system and serve to transport C between photoautotrophs and heterotrophs. Stable isotope proteomic analysis revealed rapid C exchange between cyanobacterial and associated heterotrophic community members during the day with decreased exchange at night. We observed strong diel control on the spatial exchange of freshly fixed C within tightly interacting mat communities suggesting a rapid redistribution, both spatially and taxonomically, primarily during daylight periods.
Collapse
Affiliation(s)
- James J. Moran
- Pacific Northwest National Laboratory, Richland, WA, United States
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Hans C. Bernstein
- Pacific Northwest National Laboratory, Richland, WA, United States
- Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
- ARC – The Arctic Centre for Sustainable Energy, UiT The Arctic University of Norway, Tromsø, Norway
| | | | | | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Karl L. Dana
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Steph Courtney
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Ryan S. Renslow
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | | - Helen W. Kreuzer
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Mary S. Lipton
- Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
9
|
Cremin K, Duxbury SJN, Rosko J, Soyer OS. Formation and emergent dynamics of spatially organized microbial systems. Interface Focus 2023; 13:20220062. [PMID: 36789239 PMCID: PMC9912014 DOI: 10.1098/rsfs.2022.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Spatial organization is the norm rather than the exception in the microbial world. While the study of microbial physiology has been dominated by studies in well-mixed cultures, there is now increasing interest in understanding the role of spatial organization in microbial physiology, coexistence and evolution. Where studied, spatial organization has been shown to influence all three of these aspects. In this mini review and perspective article, we emphasize that the dynamics within spatially organized microbial systems (SOMS) are governed by feedbacks between local physico-chemical conditions, cell physiology and movement, and evolution. These feedbacks can give rise to emergent dynamics, which need to be studied through a combination of spatio-temporal measurements and mathematical models. We highlight the initial formation of SOMS and their emergent dynamics as two open areas of investigation for future studies. These studies will benefit from the development of model systems that can mimic natural ones in terms of species composition and spatial structure.
Collapse
Affiliation(s)
- Kelsey Cremin
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Jerko Rosko
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
10
|
Sandzewicz M, Khomutovska N, Łach Ł, Kwiatowski J, Niyatbekov T, Suska-Malawska M, Jasser I. Salinity matters the most: How environmental factors shape the diversity and structure of cyanobacterial mat communities in high altitude arid ecosystems. Front Microbiol 2023; 14:1108694. [PMID: 37125173 PMCID: PMC10136773 DOI: 10.3389/fmicb.2023.1108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Microbial mats are complex communities of benthic microorganisms that occur at the soil-water interphase in lakes' shores, streams, and ponds. In the cold, mountainous desert of Eastern Pamir (Tajikistan), where scarce water bodies are influenced by extreme environmental conditions, photosynthetic cyanobacteria form diverse mats. The mats are characterized by different morphology and thickness. Their habitats exhibit a wide range of conditions; from oligosaline to hypersaline, oligotrophic to hypertrophic, and from cold ponds to hot springs. The aim of the present study was to reveal the taxonomic composition and structure of these mats and to examine which environmental factors influence them. Methods Fifty-one mats were collected from small water bodies around Bulunkul, Karakul, and Rangkul Lakes in 2015 and 2017. The physical and chemical properties of the water were measured in situ, while the concentration of nutrients was analyzed ex-situ. To reveal the taxonomic composition of the mats, the hypervariable V3-V4 region of the 16S rRNA gene was examined using NGS technology. Results The results of bioinformatic analyses were compared with microscopic observations. They showed that Cyanobacteria was the dominant phylum, constituting on average 35% of bacterial ASVs, followed by Proteobacteria (28%), Bacteroidota (11%), and Firmicutes (9%). Synechococcales, Oscillatoriales, and Nostocales orders prevailed in Oxyphotobacteria, with a low contribution of Chroococcales, Gloeobacterales, and Chroococcidiopsidales. Occasionally the non-photosynthetic Vampirivibrionia (Melainabacteria) and Sericytochromatia from sister clades to Oxyphotobacteria were noted in the samples. Moreover, there was a high percentage of unidentified cyanobacterial sequences, as well as the recently described Hillbrichtia pamiria gen. et sp. nov., present in one of the samples. Salinity, followed by Na and K concentrations, correlated positively with the composition and structure of Oxyphotobacteria on different taxonomic levels and the abundance of all bacterial ASVs. Discussion The study suggests that the investigated communities possibly host more novel and endemic species. Among the environmental factors, salinity influenced the Oxyphotobacteria communities the most. Overall, the microenvironmental factors, i.e. the conditions in each of the reservoirs seemed to have a larger impact on the diversity of microbial mats in Pamir than the "subregional" factors, related to altitude, mean annual air temperature and distance between these subregions.
Collapse
Affiliation(s)
- Małgorzata Sandzewicz
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Nataliia Khomutovska
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Łukasz Łach
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Kwiatowski
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Toirbek Niyatbekov
- Institute of Botany, Plant Physiology and Genetics, Academy Science Republic of Tajikistan, Dushanbe, Tajikistan
| | - Małgorzata Suska-Malawska
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Iwona Jasser
- Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- *Correspondence: Iwona Jasser,
| |
Collapse
|
11
|
Moore KR, Daye M, Gong J, Williford K, Konhauser K, Bosak T. A review of microbial-environmental interactions recorded in Proterozoic carbonate-hosted chert. GEOBIOLOGY 2023; 21:3-27. [PMID: 36268586 PMCID: PMC10092529 DOI: 10.1111/gbi.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The record of life during the Proterozoic is preserved by several different lithologies, but two in particular are linked both spatially and temporally: chert and carbonate. These lithologies capture a snapshot of dominantly peritidal environments during the Proterozoic. Early diagenetic chert preserves some of the most exceptional Proterozoic biosignatures in the form of microbial body fossils and mat textures. This fossiliferous and kerogenous chert formed in shallow marine environments, where chert nodules, layers, and lenses are often surrounded by and encased within carbonate deposits that themselves often contain kerogen and evidence of former microbial mats. Here, we review the record of biosignatures preserved in peritidal Proterozoic chert and chert-hosting carbonate and discuss this record in the context of experimental and environmental studies that have begun to shed light on the roles that microbes and organic compounds may have played in the formation of these deposits. Insights gained from these studies suggest temporal trends in microbial-environmental interactions and place new constraints on past environmental conditions, such as the concentration of silica in Proterozoic seawater, interactions among organic compounds and cations in seawater, and the influence of microbial physiology and biochemistry on selective preservation by silicification.
Collapse
Affiliation(s)
- Kelsey R. Moore
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Mirna Daye
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jian Gong
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Kurt Konhauser
- Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
12
|
Alonso-Reyes DG, Galván FS, Irazoqui JM, Amadio A, Tschoeke D, Thompson F, Albarracín VH, Farias ME. Dissecting Light Sensing and Metabolic Pathways on the Millimeter Scale in High-Altitude Modern Stromatolites. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02112-7. [PMID: 36161499 DOI: 10.1007/s00248-022-02112-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Modern non-lithifying stromatolites on the shore of the volcanic lake Socompa (SST) in the Puna are affected by several extreme conditions. The present study assesses for the first time light utilization and functional metabolic stratification of SST on a millimeter scale through shotgun metagenomics. In addition, a scanning-electron-microscopy approach was used to explore the community. The analysis on SST unveiled the profile of a photosynthetic mat, with cyanobacteria not directly exposed to light, but placed just below a high-UV-resistant community. Calvin-Benson and 3-hydroxypropinate cycles for carbon fixation were abundant in upper, oxic layers, while the Wood-Ljungdahl pathway was dominant in the deeper anoxic strata. The high abundance of genes for UV-screening and oxidant-quenching pigments and CPF (photoreactivation) in the UV-stressed layers could indicate that the zone itself works as a UV shield. There is a remarkable density of sequences associated with photoreceptors in the first two layers. Also, genetic evidence of photosynthesis split in eukaryotic (layer 1) and prokaryotic (layer 2). Photoheterotrophic bacteria, aerobic photoautotrophic bacteria, and anaerobic photoautotrophic bacteria coexist by selectively absorbing different parts of the light spectrum (blue, red, and IR respectively) at different positions of the mat. Genes for oxygen, nitrogen, and sulfur metabolism account for the microelectrode chemical data and pigment measurements performed in previous publications. We also provide here an explanation for the vertical microbial mobility within the SST described previously. Finally, our study points to SST as ideal modern analogues of ancient ST.
Collapse
Affiliation(s)
- Daniel Gonzalo Alonso-Reyes
- Laboratorio de Microbiología Ultraestructural Y Molecular, Centro Integral de Microscopía Electrónica (CIME,), CONICET-Universidad Nacional de Tucumán, Camino de Sirga s/n, Finca El Manantial, Yerba Buena (4107), San Miguel de Tucumán, Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| | - Fátima Silvina Galván
- Laboratorio de Microbiología Ultraestructural Y Molecular, Centro Integral de Microscopía Electrónica (CIME,), CONICET-Universidad Nacional de Tucumán, Camino de Sirga s/n, Finca El Manantial, Yerba Buena (4107), San Miguel de Tucumán, Tucumán, Argentina
| | - José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Rafaela, Argentina
| | - Ariel Amadio
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Rafaela, Argentina
| | - Diogo Tschoeke
- Institute of Biology and Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Institute of Biology and Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Virginia Helena Albarracín
- Laboratorio de Microbiología Ultraestructural Y Molecular, Centro Integral de Microscopía Electrónica (CIME,), CONICET-Universidad Nacional de Tucumán, Camino de Sirga s/n, Finca El Manantial, Yerba Buena (4107), San Miguel de Tucumán, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina.
| | - María Eugenia Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| |
Collapse
|
13
|
Tu D, Ke J, Luo Y, Hong T, Sun S, Han J, Chen S. Microbial community structure and shift pattern of industry brine after a long-term static storage in closed tank. Front Microbiol 2022; 13:975271. [PMID: 36118215 PMCID: PMC9478951 DOI: 10.3389/fmicb.2022.975271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Brine from Dingyuan Salt Mine (Anhui, China), an athalassohaline hypersaline environment formed in the early tertiary Oligocene, is used to produce table salt for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. Here, we employed cultivation and high-throughput sequencing strategies to uncover the microbial community and its shift after a long-term storage in the brine collected from Dingyuan Salt Mine. High-throughput sequencing showed (1) in the fresh brine (2021), Cyanobium_stocktickerPCC-6307 spp. (8.46%), Aeromonas spp. (6.91%) and Pseudomonas spp. (4.71%) are the dominant species in bacteria while Natronomonas spp. (18.89%), Halapricum spp. (13.73%), and Halomicrobium spp. (12.35%) in archaea; (2) after a 3-year-storage, Salinibacter spp. (30.01%) and Alcanivorax spp. (14.96%) surpassed Cyanobium_stocktickerPCC-6307 spp. (8.46%) becoming the dominant species in bacteria; Natronomonas spp. are still the dominant species, while Halorientalis spp. (14.80%) outnumbered Halapricum spp. becoming the dominant species in archaea; (3) Alcanivorax spp. and Halorientalis spp. two hydrocarbons degrading microorganisms were enriched in the brine containing hydrocarbons. Cultivation using hypersaline nutrient medium (20% NaCl) combined with high-throughput 16S rRNA gene sequencing showed that (1) the biomass significantly increased while the species diversity sharply declined after a 3-year-storage; (2) Halorubrum spp. scarcely detected from the environment total stocktickerDNA were flourishing after cultivation using AS-168 or NOM medium; (3) twelve possible new species were revealed based on almost full-length 16S rRNA gene sequence similarity search. This study generally uncovered the microbial community and the dominant halophiles in this inland athalassohaline salt mine, and provided a new insight on the shift pattern of dominant halophiles during a long-term storage, which illustrated the shaping of microorganisms in the unique environment, and the adaptation of microbe to the specific environment.
Collapse
Affiliation(s)
- Demei Tu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Siqi Sun
- Anhui Jiaotianxiang Biological Technology Co., Ltd., Xuancheng, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Community Vertical Composition of the Laguna Negra Hypersaline Microbial Mat, Puna Region (Argentinean Andes). BIOLOGY 2022; 11:biology11060831. [PMID: 35741352 PMCID: PMC9220024 DOI: 10.3390/biology11060831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The Altiplano-Puna region is a high-altitude plateau in South America characterized by extreme conditions, including the highest UV incidence on Earth. The Laguna Negra is a hypersaline lake located in the Catamarca Province, northwestern Argentina, where stromatolites and other microbialites are found, and where life is mostly restricted to microbial mats. In this study, a particular microbial mat that covers the shore of the lake was explored, to unravel its layer-by-layer vertical structure in response to the environmental stressors therein. Microbial community composition was assessed by high-throughput 16S rRNA gene sequencing and pigment content analyses, complemented with microscopy tools to characterize its spatial arrangement within the mat. The top layer of the mat has a remarkable UV-tolerance feature, characterized by the presence of Deinococcus-Thermus and deinoxanthin, which might reflect a shielding strategy to cope with high UV radiation. Chloroflexi and Deltaproteobacteria were abundant in the second and third underlying layers, respectively. The bottom layer harbors copious Halanaerobiaeota. Subspherical aggregates composed of calcite, extracellular polymeric substances, abundant diatoms, and other microorganisms were observed all along the mat as the main structural component. This detailed study provides insights into the strategies of microbial communities to thrive under high UV radiation and hypersalinity in high-altitude lakes in the Altiplano-Puna region.
Collapse
|
15
|
Lingappa UF, Stein NT, Metcalfe KS, Present TM, Orphan VJ, Grotzinger JP, Knoll AH, Trower EJ, Gomes ML, Fischer WW. Early impacts of climate change on a coastal marine microbial mat ecosystem. SCIENCE ADVANCES 2022; 8:eabm7826. [PMID: 35622915 PMCID: PMC9140962 DOI: 10.1126/sciadv.abm7826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Among the earliest consequences of climate change are extreme weather and rising sea levels-two challenges to which coastal environments are particularly vulnerable. Often found in coastal settings are microbial mats-complex, stratified microbial ecosystems that drive massive nutrient fluxes through biogeochemical cycles and have been important constituents of Earth's biosphere for eons. Little Ambergris Cay, in the Turks and Caicos Islands, supports extensive mats that vary sharply with relative water level. We characterized the microbial communities across this variation to understand better the emerging threat of sea level rise. In September 2017, the eyewall of category 5 Hurricane Irma transited the island. We monitored the impact and recovery from this devastating storm event. New mat growth proceeded rapidly, with patterns suggesting that storm perturbation may facilitate the adaptation of these ecosystems to changing sea level. Sulfur cycling, however, displayed hysteresis, stalling for >10 months after the hurricane and likely altering carbon storage potential.
Collapse
Affiliation(s)
- Usha F. Lingappa
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathaniel T. Stein
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kyle S. Metcalfe
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Theodore M. Present
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elizabeth J. Trower
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Maya L. Gomes
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Woodward W. Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Skoog EJ, Moore KR, Gong J, Ciccarese D, Momper L, Cutts EM, Bosak T. Metagenomic, (bio)chemical, and microscopic analyses reveal the potential for the cycling of sulfated EPS in Shark Bay pustular mats. ISME COMMUNICATIONS 2022; 2:43. [PMID: 37938726 PMCID: PMC9723792 DOI: 10.1038/s43705-022-00128-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 05/24/2023]
Abstract
Cyanobacteria and extracellular polymeric substances (EPS) in peritidal pustular microbial mats have a two-billion-year-old fossil record. To understand the composition, production, degradation, and potential role of EPS in modern analogous communities, we sampled pustular mats from Shark Bay, Australia and analyzed their EPS matrix. Biochemical and microscopic analyses identified sulfated organic compounds as major components of mat EPS. Sulfur was more abundant in the unmineralized regions with cyanobacteria and less prevalent in areas that contained fewer cyanobacteria and more carbonate precipitates. Sequencing and assembly of the pustular mat sample resulted in 83 high-quality metagenome-assembled genomes (MAGs). Metagenomic analyses confirmed cyanobacteria as the primary sources of these sulfated polysaccharides. Genes encoding for sulfatases, glycosyl hydrolases, and other enzymes with predicted roles in the degradation of sulfated polysaccharides were detected in the MAGs of numerous clades including Bacteroidetes, Chloroflexi, Hydrogenedentes, Myxococcota, Verrucomicrobia, and Planctomycetes. Measurable sulfatase activity in pustular mats and fresh cyanobacterial EPS confirmed the role of sulfatases in the degradation of sulfated EPS. These findings suggest that the synthesis, modification, and degradation of sulfated polysaccharides influence microbial interactions, carbon cycling, and biomineralization processes within peritidal pustular microbial mats.
Collapse
Affiliation(s)
- Emilie J Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Kelsey R Moore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA, 91125, USA
| | - Jian Gong
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Davide Ciccarese
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lily Momper
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Exponent, Inc., Pasadena, CA, 91106, USA
| | - Elise M Cutts
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
A Cyanobacteria Enriched Layer of Shark Bay Stromatolites Reveals a New Acaryochloris Strain Living in Near Infrared Light. Microorganisms 2022; 10:microorganisms10051035. [PMID: 35630477 PMCID: PMC9144716 DOI: 10.3390/microorganisms10051035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
The genus Acaryochloris is unique among phototrophic organisms due to the dominance of chlorophyll d in its photosynthetic reaction centres and light-harvesting proteins. This allows Acaryochloris to capture light energy for photosynthesis over an extended spectrum of up to ~760 nm in the near infra-red (NIR) spectrum. Acaryochloris sp. has been reported in a variety of ecological niches, ranging from polar to tropical shallow aquatic sites. Here, we report a new Acarychloris strain isolated from an NIR-enriched stratified microbial layer 4–6 mm under the surface of stromatolite mats located in the Hamelin Pool of Shark Bay, Western Australia. Pigment analysis by spectrometry/fluorometry, flow cytometry and spectral confocal microscopy identifies unique patterns in pigment content that likely reflect niche adaption. For example, unlike the original A. marina species (type strain MBIC11017), this new strain, Acarychloris LARK001, shows little change in the chlorophyll d/a ratio in response to changes in light wavelength, displays a different Fv/Fm response and lacks detectable levels of phycocyanin. Indeed, 16S rRNA analysis supports the identity of the A. marina LARK001 strain as close to but distinct from from the A. marina HICR111A strain first isolated from Heron Island and previously found on the Great Barrier Reef under coral rubble on the reef flat. Taken together, A. marina LARK001 is a new cyanobacterial strain adapted to the stromatolite mats in Shark Bay.
Collapse
|
18
|
Abstract
Here we review the application of molecular biological approaches to mineral precipitation in modern marine microbialites. The review focuses on the nearly two decades of nucleotide sequencing studies of the microbialites of Shark Bay, Australia; and The Bahamas. Molecular methods have successfully characterized the overall community composition of mats, pinpointed microbes involved in key metabolisms, and revealed patterns in the distributions of microbial groups and functional genes. Molecular tools have become widely accessible, and we can now aim to establish firmer links between microbes and mineralization. Two promising future directions include “zooming in” to assess the roles of specific organisms, microbial groups, and surfaces in carbonate biomineralization and “zooming out” to consider broader spans of space and time. A middle ground between the two can include model systems that contain representatives of important microbial groups, processes, and metabolisms in mats and simplify hypothesis testing. These directions will benefit from expanding reference datasets of marine microbes and enzymes and enrichments of representative microbes from mats. Such applications of molecular tools should improve our ability to interpret ancient and modern microbialites and increase the utility of these rocks as long-term recorders of microbial processes and environmental chemistry.
Collapse
|
19
|
DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment porewater dynamics on the Aldabra Atoll. Sci Rep 2022; 12:4257. [PMID: 35277525 PMCID: PMC8917147 DOI: 10.1038/s41598-022-07980-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
The remote Aldabra Atoll, Seychelles, provides the rare opportunity to study bacterial communities in pristine carbonate sediments across an entire biome. The four sampled sites cover sand with high porewater exchange, bioturbated silt and mud with intermediate exchange, as well as a seasonally and episodically desiccated landlocked pool. As sediments harbour dead cells and environmental DNA alongside live cells, we used bacterial 16S rRNA gene and transcript analysis to distinguish between past and present inhabitants. Previously described laminated sediments mirroring past conditions in the Cerin, France could not be retrieved. Thus, the aim was adjusted to determine whether bacterial community composition and diversity follow typical geochemical zonation patterns at different locations of the atoll. Our data confirm previous observations that diversity decreases with depth. In the lagoon, the bacterial community composition changed from Pseudomonas dominating in the sand to diverse mixed surface and sulphate reduction zones in the anaerobic mud with strongly negative Eh. The latter correlated with high total alkalinity, ammonia, and total sulphide, alongside a decrease in SO42−/Cl− and high relative abundances of sulphate reducing (Halo-) Desulfovibrio, sulphur oxidizing Arcobacteraceae, photo(hetero)troph Cyanobacteria, Alphaproteobacteria, and fermenting Propionigenium. In contrast to expectations, deeper mud and pool sediments harboured high abundances of Halomonas or Alphaproteobacteria alongside high C/N and increased salinity. We believe that this atypical community shift may be driven by a change in the complexity of available organic matter.
Collapse
|
20
|
Berlanga M, Palau M, Guerrero R. Community homeostasis of coastal microbial mats from the Camargue during winter (cold) and summer (hot) seasons. Ecosphere 2022. [DOI: 10.1002/ecs2.3922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mercedes Berlanga
- Department of Biology, Environment and Health, Section Microbiology, Faculty of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
| | - Montserrat Palau
- Department of Biology, Environment and Health, Section Microbiology, Faculty of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
| | - Ricardo Guerrero
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine University of Barcelona Barcelona Spain
| |
Collapse
|
21
|
Kindler GS, Wong HL, Larkum AWD, Johnson M, MacLeod FI, Burns BP. Genome-resolved metagenomics provides insights into the functional complexity of microbial mats in Blue Holes, Shark Bay. FEMS Microbiol Ecol 2021; 98:6448473. [PMID: 34865013 DOI: 10.1093/femsec/fiab158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The present study describes for the first time the community composition and functional potential of the microbial mats found in the supratidal, gypsum-rich, and hypersaline region of Blue Holes, Shark Bay. This was achieved via high throughput metagenomic sequencing of total mat community DNA and complementary analyses using hyperspectral confocal microscopy. Mat communities were dominated by Proteobacteria (29%), followed by Bacteroidetes/Chlorobi Group (11%), and Planctomycetes (10%). These mats were found to also harbor a diverse community of potentially novel microorganisms including members from the DPANN, Asgard archaea, and Candidate Phyla Radiation, with highest diversity found in the lower regions (∼14-20 mm depth) of the mat. In addition to pathways for major metabolic cycles, a range of putative rhodopsins with previously uncharacterized motifs and functions were identified along with heliorhodopsins and putative schizorhodopsins. Critical microbial interactions were also inferred, and from 117 medium-to-high quality metagenome-assembled genomes (MAGs), viral defense mechanisms (CRISPR, BREX, and DISARM), elemental transport, osmoprotection, heavy metal and UV resistance were also detected. These analyses have provided a greater understanding of these distinct mat systems in Shark Bay, including key insights into adaptive responses and proposing that photoheterotrophy may be an important lifestyle in Blue Holes.
Collapse
Affiliation(s)
- Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Michael Johnson
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Zhang IH, Mullen S, Ciccarese D, Dumit D, Martocello DE, Toyofuku M, Nomura N, Smriga S, Babbin AR. Ratio of Electron Donor to Acceptor Influences Metabolic Specialization and Denitrification Dynamics in Pseudomonas aeruginosa in a Mixed Carbon Medium. Front Microbiol 2021; 12:711073. [PMID: 34566916 PMCID: PMC8461185 DOI: 10.3389/fmicb.2021.711073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Denitrifying microbes sequentially reduce nitrate (NO3 -) to nitrite (NO2 -), NO, N2O, and N2 through enzymes encoded by nar, nir, nor, and nos. Some denitrifiers maintain the whole four-gene pathway, but others possess partial pathways. Partial denitrifiers may evolve through metabolic specialization whereas complete denitrifiers may adapt toward greater metabolic flexibility in nitrogen oxide (NOx -) utilization. Both exist within natural environments, but we lack an understanding of selective pressures driving the evolution toward each lifestyle. Here we investigate differences in growth rate, growth yield, denitrification dynamics, and the extent of intermediate metabolite accumulation under varying nutrient conditions between the model complete denitrifier Pseudomonas aeruginosa and a community of engineered specialists with deletions in the denitrification genes nar or nir. Our results in a mixed carbon medium indicate a growth rate vs. yield tradeoff between complete and partial denitrifiers, which varies with total nutrient availability and ratios of organic carbon to NOx -. We found that the cultures of both complete and partial denitrifiers accumulated nitrite and that the metabolic lifestyle coupled with nutrient conditions are responsible for the extent of nitrite accumulation.
Collapse
Affiliation(s)
- Irene H. Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susan Mullen
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Davide Ciccarese
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Diana Dumit
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Donald E. Martocello
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Steven Smriga
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andrew R. Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
23
|
Lite C, Sridhar VV, Sriram S, Juliet M, Arshad A, Arockiaraj J. Functional role of piRNAs in animal models and its prospects in aquaculture. REVIEWS IN AQUACULTURE 2021; 13:2038-2052. [DOI: 10.1111/raq.12557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/01/2021] [Indexed: 10/16/2023]
Abstract
AbstractThe recent advances in the field of aquaculture over the last decade has helped the cultured‐fish industry production sector to identify problems and choose the best approaches to achieve high‐volume production. Understanding the emerging roles of non‐coding RNA (ncRNA) in the regulation of fish physiology and health will assist in gaining knowledge on the possible applications of ncRNAs for the advancement of aquaculture. There is information available on the practical considerations of epigenetic mechanisms like DNA methylation, histone modification and ncRNAs, such as microRNA in aquaculture, for both fish and shellfish. Among the non‐coding RNAs, PIWI‐interacting RNA (piRNA) is 24–31 bp long transcripts, which is primarily involved in silencing the germline transposons. Besides, the burgeoning reports and studies establish piRNAs' role in various aspects of biology. Till date, there are no reviews that summarize the recent findings available on piRNAs in animal models, especially on piRNAs biogenesis and biological action. To gain a better understanding and get an overview on the process of piRNA genesis among the different animals, this work reviews the literature available on the processes of piRNA biogenesis in animal models with special reference to aquatic animal model zebrafish. This review also presents a short discussion and prospects of piRNA’s application in relevance to the aquaculture industry.
Collapse
Affiliation(s)
- Christy Lite
- Endocrine and Exposome (E2) Laboratory Department of Zoology Madras Christian College Chennai India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Swati Sriram
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery SRM Dental College and Hospital, SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
- Department of Biotechnology, Faculty of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
24
|
Mazière C, Agogué H, Cravo-Laureau C, Cagnon C, Lanneluc I, Sablé S, Fruitier-Arnaudin I, Dupuy C, Duran R. New insights in bacterial and eukaryotic diversity of microbial mats inhabiting exploited and abandoned salterns at the Ré Island (France). Microbiol Res 2021; 252:126854. [PMID: 34454310 DOI: 10.1016/j.micres.2021.126854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
In order to understand the effect of human practices on microbial mats organisation, the study aimed to investigate the biodiversity within microbial mats from exploited and abandoned salterns. Despite several attempts, archaeal 16S rRNA gene fragment sequences were not obtained, indicating that microbial mats were probably dominated by Bacteria with very low abundance of Archaea (< 1%). Thus, the study compared the bacterial and meiofaunal diversity of microbial mats from abandoned and exploited salterns. The higher salinity (101 ± 3.7 psu vs. 51.1 ± 0.7 psu; Welch t-test p < 0.05) of the exploited site maintained lower bacterial diversity in comparison to the abandoned site where the salinity gradient was no longer maintained. However, the microbial mats exhibited similar bacterial class composition while the eukaryotic diversity was significantly higher in the exploited saltern. The abandoned saltern was dominated by sulfate-reducing bacteria and Nematoda, while the exploited saltern was characterized by the presence of halophilic bacteria belonging to Marinobacter, Salinivibrio and Rhodohalobacter genera, and the larger abundance of Hypotrichia (ciliates). Such bacterial and eukaryotic diversity difference might be explained by human actions for salt recovery in exploited salterns such as scraping the surface of microbial mat and increasing salinity renewing the microbial mat each year. Such action decreases the bacterial diversity changing the food web structure that favour the presence of a larger diversity of eukaryotic organisms. Our study provides new insights on microbial mat communities inhabiting salterns, especially the consequences of abandoning saltern exploitation.
Collapse
Affiliation(s)
- Camille Mazière
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France; UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université - 2, Rue Olympe de Gouges, 17000, LA ROCHELLE, France
| | - Hélène Agogué
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université - 2, Rue Olympe de Gouges, 17000, LA ROCHELLE, France
| | | | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Isabelle Lanneluc
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université - 2, Rue Olympe de Gouges, 17000, LA ROCHELLE, France
| | - Sophie Sablé
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université - 2, Rue Olympe de Gouges, 17000, LA ROCHELLE, France
| | - Ingrid Fruitier-Arnaudin
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université - 2, Rue Olympe de Gouges, 17000, LA ROCHELLE, France
| | - Christine Dupuy
- UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université - 2, Rue Olympe de Gouges, 17000, LA ROCHELLE, France
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
25
|
Hoffman SK, Seitz KW, Havird JC, Weese DA, Santos SR. Phenotypic Comparability from Genotypic Variability among Physically Structured Microbial Consortia. Integr Comp Biol 2021; 60:288-303. [PMID: 32353148 DOI: 10.1093/icb/icaa022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microbiomes represent the collective bacteria, archaea, protist, fungi, and virus communities living in or on individual organisms that are typically multicellular eukaryotes. Such consortia have become recognized as having significant impacts on the development, health, and disease status of their hosts. Since understanding the mechanistic connections between an individual's genetic makeup and their complete set of traits (i.e., genome to phenome) requires consideration at different levels of biological organization, this should include interactions with, and the organization of, microbial consortia. To understand microbial consortia organization, we elucidated the genetic constituents among phenotypically similar (and hypothesized functionally-analogous) layers (i.e., top orange, second orange, pink, and green layers) in the unique laminated orange cyanobacterial-bacterial crusts endemic to Hawaii's anchialine ecosystem. High-throughput amplicon sequencing of ribosomal RNA hypervariable regions (i.e., Bacteria-specific V6 and Eukarya-biased V9) revealed microbial richness increasing by crust layer depth, with samples of a given layer more similar to different layers from the same geographic site than to their phenotypically-analogous layer from different sites. Furthermore, samples from sites on the same island were more similar to each other, regardless of which layer they originated from, than to analogous layers from another island. However, cyanobacterial and algal taxa were abundant in all surface and bottom layers, with anaerobic and chemoautotrophic taxa concentrated in the middle two layers, suggesting crust oxygenation from both above and below. Thus, the arrangement of oxygenated vs. anoxygenated niches in these orange crusts is functionally distinct relative to other laminated cyanobacterial-bacterial communities examined to date, with convergent evolution due to similar environmental conditions a likely driver for these phenotypically comparable but genetically distinct microbial consortia.
Collapse
Affiliation(s)
- Stephanie K Hoffman
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, Auburn, AL 36849, USA.,Department of Biological Sciences, Green River College, Auburn, WA 98092, USA
| | - Kiley W Seitz
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, Auburn, AL 36849, USA.,Strutural and Computational Biology Unit, European Molecular Biological Laboratory, 69117 Heidelberg, Germany
| | - Justin C Havird
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, Auburn, AL 36849, USA.,Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - David A Weese
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, Auburn, AL 36849, USA.,Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA 31061, USA
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
26
|
Lau JWL, Khoo MJW, Leong XH, Lim TZ, Shabbir A, Yeoh KG, Koh CJ, So JBY. Opportunistic upper endoscopy during colonoscopy as a screening strategy for countries with intermediate gastric cancer risk. J Gastroenterol Hepatol 2021; 36:1081-1087. [PMID: 33037826 PMCID: PMC8247052 DOI: 10.1111/jgh.15290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Screening upper endoscopy can detect esophagogastric (OG) cancers early with improved outcomes. Recent cost-utility studies suggest that opportunistic upper endoscopy at the same setting of colonoscopy might be a useful strategy for screening of OG cancers, and it may be more acceptable to the patients due to cost-saving and convenience. We aim to study the diagnostic performance of this screening strategy in a country with intermediate gastric cancer risk. METHODS A retrospective cohort study using a prospective endoscopy database from 2015 to 2017 was performed. Patients included were individuals age > 40 who underwent opportunistic upper endoscopy at the same setting of colonoscopy without any OG symptoms. Neoplastic OG lesions are defined as cancer and high-grade dysplasia. Pre-neoplastic lesions include Barrett's esophagus (BE), intestinal metaplasia (IM), and atrophic gastritis (AG). RESULTS The study population involved 1414 patients. Neoplastic OG lesions were detected in five patients (0.35%). Pre-neoplastic lesions were identified in 174 (12.3%) patients. IM was found in 146 (10.3%) patients with 21 (1.4%) having extensive IM. The number needed to scope to detect a neoplastic OG lesion is 282.8 with an estimated cost of USD$141 400 per lesion detected. On multivariate regression, age ≥ 60 (RR: 1.84, 95% CI: 1.29-2.63) and first-degree relatives with gastric cancer (RR: 1.64, 95% CI: 1.06-2.55) were independent risk factors for neoplastic or pre-neoplastic OG lesion. CONCLUSION For countries with intermediate gastric cancer risk, opportunistic upper endoscopy may be an alternative screening strategy in a selected patient population. Prospective trials are warranted to validate its performance.
Collapse
Affiliation(s)
| | - Mark Junn Wei Khoo
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Xue Hao Leong
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Tian Zhi Lim
- Department of SurgeryNational University HospitalSingapore
| | - Asim Shabbir
- Division of General Surgery (Upper Gastrointestinal Surgery), Department of SurgeryNational University HospitalSingapore
| | - Khay Guan Yeoh
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore,Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingapore
| | - Calvin Jianyi Koh
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingapore
| | - Jimmy Bok Yan So
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore,Division of General Surgery (Upper Gastrointestinal Surgery), Department of SurgeryNational University HospitalSingapore
| |
Collapse
|
27
|
The Abundance and Diversity of Fungi in a Hypersaline Microbial Mat from Guerrero Negro, Baja California, México. J Fungi (Basel) 2021; 7:jof7030210. [PMID: 33809206 PMCID: PMC7999539 DOI: 10.3390/jof7030210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
The abundance and diversity of fungi were evaluated in a hypersaline microbial mat from Guerrero Negro, México, using a combination of quantitative polymerase chain reaction (qPCR) amplification of domain-specific primers, and metagenomic sequencing. Seven different layers were analyzed in the mat (Layers 1–7) at single millimeter resolution (from the surface to 7 mm in depth). The number of copies of the 18S rRNA gene of fungi ranged between 106 and 107 copies per g mat, being two logarithmic units lower than of the 16S rRNA gene of bacteria. The abundance of 18S rRNA genes of fungi varied significantly among the layers with layers 2–5 mm from surface contained the highest numbers of copies. Fifty-six fungal taxa were identified by metagenomic sequencing, classified into three different phyla: Ascomycota, Basidiomycota and Microsporidia. The prevalent genera of fungi were Thermothelomyces, Pyricularia, Fusarium, Colletotrichum, Aspergillus, Botrytis, Candida and Neurospora. Genera of fungi identified in the mat were closely related to genera known to have saprotrophic and parasitic lifestyles, as well as genera related to human and plant pathogens and fungi able to perform denitrification. This research suggests that fungi in the mat may participate in nutrient recycling, modification of community composition through parasitic activities, and denitrification.
Collapse
|
28
|
Schnaars V, Wöhlbrand L, Scheve S, Hinrichs C, Reinhardt R, Rabus R. Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum. Microb Physiol 2021; 31:1-20. [PMID: 33611323 PMCID: PMC8315694 DOI: 10.1159/000513383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022]
Abstract
The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.
Collapse
Affiliation(s)
- Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
29
|
Braissant O, Astasov-Frauenhoffer M, Waltimo T, Bonkat G. A Review of Methods to Determine Viability, Vitality, and Metabolic Rates in Microbiology. Front Microbiol 2020; 11:547458. [PMID: 33281753 PMCID: PMC7705206 DOI: 10.3389/fmicb.2020.547458] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Viability and metabolic assays are commonly used as proxies to assess the overall metabolism of microorganisms. The variety of these assays combined with little information provided by some assay kits or online protocols often leads to mistakes or poor interpretation of the results. In addition, the use of some of these assays is restricted to simple systems (mostly pure cultures), and care must be taken in their application to environmental samples. In this review, the necessary data are compiled to understand the reactions or measurements performed in many of the assays commonly used in various aspects of microbiology. Also, their relationships to each other, as metabolism links many of these assays, resulting in correlations between measured values and parameters, are discussed. Finally, the limitations of these assays are discussed.
Collapse
Affiliation(s)
- Olivier Braissant
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland
| | | | - Tuomas Waltimo
- Department Research, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
30
|
Campbell MA, Grice K, Visscher PT, Morris T, Wong HL, White RA, Burns BP, Coolen MJL. Functional Gene Expression in Shark Bay Hypersaline Microbial Mats: Adaptive Responses. Front Microbiol 2020; 11:560336. [PMID: 33312167 PMCID: PMC7702295 DOI: 10.3389/fmicb.2020.560336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Microbial mat communities possess extensive taxonomic and functional diversity, which drive high metabolic rates and rapid cycling of major elements. Modern microbial mats occurring in hypersaline environments are considered as analogs to extinct geobiological formations dating back to ∼ 3.5 Gyr ago. Despite efforts to understand the diversity and metabolic potential of hypersaline microbial mats in Shark Bay, Western Australia, there has yet to be molecular analyses at the transcriptional level in these microbial communities. In this study, we generated metatranscriptomes for the first time from actively growing mats comparing the type of mat, as well as the influence of diel and seasonal cycles. We observed that the overall gene transcription is strongly influenced by microbial community structure and seasonality. The most transcribed genes were associated with tackling the low nutrient conditions by the uptake of fatty acids, phosphorus, iron, and nickel from the environment as well as with protective mechanisms against elevated salinity conditions and to prevent build-up of ammonium produced by nitrate reducing microorganisms. A range of pathways involved in carbon, nitrogen, and sulfur cycles were identified in mat metatranscriptomes, with anoxygenic photosynthesis and chemoautotrophy using the Arnon–Buchanan cycle inferred as major pathways involved in the carbon cycle. Furthermore, enrichment of active anaerobic pathways (e.g., sulfate reduction, methanogenesis, Wood–Ljungdahl) in smooth mats corroborates previous metagenomic studies and further advocates the potential of these communities as modern analogs of ancient microbialites.
Collapse
Affiliation(s)
- Matthew A Campbell
- WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| | - Kliti Grice
- WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| | - Pieter T Visscher
- Departments of Marine Sciences and Geoscience, University of Connecticut, Storrs, CT, United States.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Therese Morris
- Applied Geology, Curtin University, Perth, WA, Australia
| | - Hon Lun Wong
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard Allen White
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,Plant Pathology, Washington State University, Pullman, WA, United States.,RAW Molecular Systems (RMS) LLC, Spokane, WA, United States
| | - Brendan P Burns
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Marco J L Coolen
- WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
31
|
Bischoff K, Sirantoine E, Wilson MEJ, George AD, Mendes Monteiro J, Saunders M. Spherulitic microbialites from modern hypersaline lakes, Rottnest Island, Western Australia. GEOBIOLOGY 2020; 18:725-741. [PMID: 32463178 DOI: 10.1111/gbi.12400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Fibrous-radiating carbonate spherulites spatially associated with poorly crystalline Mg-Si substances have formed within conical microbialites in modern hypersaline lakes on Rottnest Island, Western Australia. Two spherulitic fabrics can be distinguished based on compositional and textural differences. The oldest (lowermost) fabric comprises variably intergrown aragonitic spherulites 100-500 μm wide, containing micritic nuclei with coccoid cell molds in various stages of cell division. Spherulite matrices contain aggregates of individual nanospheres 150-200 nm wide, composed of a poorly crystalline Mg-Si phase, locally containing cell molds with similar dimensions to those within spherulite nuclei. The younger (upper) fabric comprises sub-polyhedral networks of mineralized EPS composed of an Mg-Si substance. The polyhedrons contain aragonite-replaced coccoid cells, voids, and polyhedral spherulites 8-12 μm wide with a morphology determined by fossil EPS, interpreted to have been produced by coccoid cyanobacteria. These spherulites are composed of high-Mg calcite, inferred to have formed in association with heterotrophic bacteria. Stable isotope data, textural relationships, and geochemical modeling are consistent with cyanobacterial oxygenic photosynthesis influencing the precipitation of Mg-Si substances and aragonitic spherulites by locally increasing the pH. The morphology of the polyhedral spherulites suggests the former presence of EPS and that faceted spherulites with similar dimensions in the geological record may represent biosignatures. The Rottnest Island conical microbialites demonstrate an intimate association between microbial features and processes and spherulitic fabrics, potentially providing insights into texturally and compositionally similar features in the geological record.
Collapse
Affiliation(s)
- Karl Bischoff
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
| | - Eva Sirantoine
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Moyra E J Wilson
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
| | - Annette D George
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
| | - Juliana Mendes Monteiro
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Martin Saunders
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
32
|
Bacterial Communities Associated with the Biofilms Formed in High-Altitude Brackish Water Pangong Tso Located in the Himalayan Plateau. Curr Microbiol 2020; 77:4072-4084. [PMID: 33079205 DOI: 10.1007/s00284-020-02244-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Pangong Tso is a long and narrow lake situated at an altitude of ~ 4266 m amsl in the Himalayan Plateau on the side of the India/China border. Biofilm has been observed in a small area near the shore of Pangong Tso. Bacterial communities of the lake sediment, water and biofilms were studied using amplicon sequencing of V3-V4 region of the 16S rRNA gene. The standard QIIME pipeline was used for analysis. The metabolic potential of the community was predicted using functional prediction tool Tax4Fun. Bacterial phyla Proteobacteria, followed by Bacteroidetes, Acidobacteria, Planctomycetes, Actinobacteria, and Firmicutes, were found to be dominant across these samples. Shannon's and Simpson's alpha diversity analysis revealed that sediment communities are the most diverse, and water communities are the least diverse. Principal Coordinates based beta diversity analysis showed significant variation in the bacterial communities of the water, sediment and biofilm samples. Bacterial phyla Verrucomicrobia, Deinococcus-Thermus and Cyanobacteria were explicitly enriched in the biofilm samples. Predictive functional profiling of these bacterial communities showed a higher abundance of genes involved in photosynthesis, biosynthesis of secondary metabolites, carbon fixation in photosynthetic organisms and glyoxylate and dicarboxylate metabolism in the biofilm sample. In conclusion, the Pangong Tso bacterial communities are quite similar to other saline and low-temperature lakes in the Tibetan Plateau. Bacterial community structure of the biofilm samples was significantly different from that of the water and sediment samples and enrichment of saprophytic communities was observed in the biofilm samples, indicating an important succession event in this high-altitude lake.
Collapse
|
33
|
Lam TJ, Stamboulian M, Han W, Ye Y. Model-based and phylogenetically adjusted quantification of metabolic interaction between microbial species. PLoS Comput Biol 2020; 16:e1007951. [PMID: 33125363 PMCID: PMC7657538 DOI: 10.1371/journal.pcbi.1007951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/11/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022] Open
Abstract
Microbial community members exhibit various forms of interactions. Taking advantage of the increasing availability of microbiome data, many computational approaches have been developed to infer bacterial interactions from the co-occurrence of microbes across diverse microbial communities. Additionally, the introduction of genome-scale metabolic models have also enabled the inference of cooperative and competitive metabolic interactions between bacterial species. By nature, phylogenetically similar microbial species are more likely to share common functional profiles or biological pathways due to their genomic similarity. Without properly factoring out the phylogenetic relationship, any estimation of the competition and cooperation between species based on functional/pathway profiles may bias downstream applications. To address these challenges, we developed a novel approach for estimating the competition and complementarity indices for a pair of microbial species, adjusted by their phylogenetic distance. An automated pipeline, PhyloMint, was implemented to construct competition and complementarity indices from genome scale metabolic models derived from microbial genomes. Application of our pipeline to 2,815 human-gut associated bacteria showed high correlation between phylogenetic distance and metabolic competition/cooperation indices among bacteria. Using a discretization approach, we were able to detect pairs of bacterial species with cooperation scores significantly higher than the average pairs of bacterial species with similar phylogenetic distances. A network community analysis of high metabolic cooperation but low competition reveals distinct modules of bacterial interactions. Our results suggest that niche differentiation plays a dominant role in microbial interactions, while habitat filtering also plays a role among certain clades of bacterial species.
Collapse
Affiliation(s)
- Tony J. Lam
- Luddy School of Informatics, Computing and Engineering Indiana University, Bloomington, IN, USA
| | - Moses Stamboulian
- Luddy School of Informatics, Computing and Engineering Indiana University, Bloomington, IN, USA
| | - Wontack Han
- Luddy School of Informatics, Computing and Engineering Indiana University, Bloomington, IN, USA
| | - Yuzhen Ye
- Luddy School of Informatics, Computing and Engineering Indiana University, Bloomington, IN, USA
| |
Collapse
|
34
|
Wong HL, MacLeod FI, White RA, Visscher PT, Burns BP. Microbial dark matter filling the niche in hypersaline microbial mats. MICROBIOME 2020; 8:135. [PMID: 32938503 PMCID: PMC7495880 DOI: 10.1186/s40168-020-00910-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Shark Bay, Australia, harbours one of the most extensive and diverse systems of living microbial mats that are proposed to be analogs of some of the earliest ecosystems on Earth. These ecosystems have been shown to possess a substantial abundance of uncultivable microorganisms. These enigmatic microbes, jointly coined as 'microbial dark matter' (MDM), are hypothesised to play key roles in modern microbial mats. RESULTS We reconstructed 115 metagenome-assembled genomes (MAGs) affiliated to MDM, spanning 42 phyla. This study reports for the first time novel microorganisms (Zixibacterial order GN15) putatively taking part in dissimilatory sulfate reduction in surface hypersaline settings, as well as novel eukaryote signature proteins in the Asgard archaea. Despite possessing reduced-size genomes, the MDM MAGs are capable of fermenting and degrading organic carbon, suggesting a role in recycling organic carbon. Several forms of RuBisCo were identified, allowing putative CO2 incorporation into nucleotide salvaging pathways, which may act as an alternative carbon and phosphorus source. High capacity of hydrogen production was found among Shark Bay MDM. Putative schizorhodopsins were also identified in Parcubacteria, Asgard archaea, DPANN archaea, and Bathyarchaeota, allowing these members to potentially capture light energy. Diversity-generating retroelements were prominent in DPANN archaea that likely facilitate the adaptation to a dynamic, host-dependent lifestyle. CONCLUSIONS This is the first study to reconstruct and describe in detail metagenome-assembled genomes (MAGs) affiliated with microbial dark matter in hypersaline microbial mats. Our data suggests that these microbial groups are major players in these systems. In light of our findings, we propose H2, ribose and CO/CO2 as the main energy currencies of the MDM community in these mat systems. Video Abstract.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Richard Allen White
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
- RAW Molecular Systems LLC, Spokane, WA, USA
- Department of Bioinformatics and Genomics, The University of North Carolina, Charlotte, NC, USA
| | - Pieter T Visscher
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
- Department of Marine Sciences, University of Connecticut, Mansfield, USA
- Biogeosciences, the Université de Bourgogne Franche-Comté, Dijon, France
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
35
|
Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N, Ferrari BC, Burns BP. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front Microbiol 2020; 11:1950. [PMID: 32973707 PMCID: PMC7472256 DOI: 10.3389/fmicb.2020.01950] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Fraser Iain MacLeod
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
36
|
Zilius M, Bonaglia S, Broman E, Chiozzini VG, Samuiloviene A, Nascimento FJA, Cardini U, Bartoli M. N 2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont. Sci Rep 2020; 10:13966. [PMID: 32811860 PMCID: PMC7435186 DOI: 10.1038/s41598-020-70834-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Mangrove forests are among the most productive and diverse ecosystems on the planet, despite limited nitrogen (N) availability. Under such conditions, animal-microbe associations (holobionts) are often key to ecosystem functioning. Here, we investigated the role of fiddler crabs and their carapace-associated microbial biofilm as hotspots of microbial N transformations and sources of N within the mangrove ecosystem. 16S rRNA gene and metagenomic sequencing provided evidence of a microbial biofilm dominated by Cyanobacteria, Alphaproteobacteria, Actinobacteria, and Bacteroidota with a community encoding both aerobic and anaerobic pathways of the N cycle. Dinitrogen (N2) fixation was among the most commonly predicted process. Net N fluxes between the biofilm-covered crabs and the water and microbial N transformation rates in suspended biofilm slurries portray these holobionts as a net N2 sink, with N2 fixation exceeding N losses, and as a significant source of ammonium and dissolved organic N to the surrounding environment. N stable isotope natural abundances of fiddler crab carapace-associated biofilms were within the range expected for fixed N, further suggesting active microbial N2 fixation. These results extend our knowledge on the diversity of invertebrate-microbe associations, and provide a clear example of how animal microbiota can mediate a plethora of essential biogeochemical processes in mangrove ecosystems.
Collapse
Affiliation(s)
- Mindaugas Zilius
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania. .,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Stefano Bonaglia
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania.,Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | | | | | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Ulisse Cardini
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania.,Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Napoli, Italy
| | - Marco Bartoli
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania.,Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
37
|
White RA, Visscher PT, Burns BP. Between a Rock and a Soft Place: The Role of Viruses in Lithification of Modern Microbial Mats. Trends Microbiol 2020; 29:204-213. [PMID: 32654857 DOI: 10.1016/j.tim.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Abstract
Stromatolites are geobiological systems formed by complex microbial communities, and fossilized stromatolites provide a record of some of the oldest life on Earth. Microbial mats are precursors of extant stromatolites; however, the mechanisms of transition from mat to stromatolite are controversial and are still not well understood. To fully recognize the profound impact that these ecosystems have had on the evolution of the biosphere requires an understanding of modern lithification mechanisms and how they relate to the geological record. We propose here viral mechanisms in carbonate precipitation, leading to stromatolite formation, whereby viruses directly or indirectly impact microbial metabolisms that govern the transition from microbial mat to stromatolite. Finding a tangible link between host-virus interactions and changes in biogeochemical processes will provide tools to interpret mineral biosignatures through geologic time, including those on Earth and beyond.
Collapse
Affiliation(s)
- Richard Allen White
- Plant Pathology, Washington State University, Pullman, WA, USA; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia; RAW Molecular Systems (RMS) LLC, Spokane, WA, USA
| | - Pieter T Visscher
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia; Departments of Marine Sciences and Geosciences, University of Connecticut, CT, USA; Biogeosciences, the Université de Bourgogne Franche-Comté, Dijon, France
| | - Brendan P Burns
- Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia; School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
38
|
Abed RMM, Shanti M, Muthukrishnan T, Al-Riyami Z, Pracejus B, Moraetis D. The Role of Microbial Mats in the Removal of Hexavalent Chromium and Associated Shifts in Their Bacterial Community Composition. Front Microbiol 2020; 11:12. [PMID: 32082277 PMCID: PMC7001535 DOI: 10.3389/fmicb.2020.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022] Open
Abstract
Microbial mats are rarely reported for chromium-polluted ecosystems, hence information on their bacterial diversity and role in chromium removal are very scarce. We investigated the role of nine microbial mats, collected from three quarry sumps of chromium mining sites, in the removal of hexavalent chromium [Cr(VI)]. Bacterial diversity in these mats and community shifts after incubation with Cr(VI) have been investigated using MiSeq sequencing. In nature, a chromium content of 1,911 ± 100 mg kg–1 was measured in the microbial mats, constituting the third highest source of environmentally available chromium. The mats were able to remove 1 mg l–1 of Cr(VI) in 7 days under aerobic conditions. MiSeq sequencing of the original mats yielded 46–99% of the sequences affiliated to Proteobacteria, Firmicutes and Actinobacteria. When the mats were incubated with Cr(VI), the bacterial community shifted in the favor of Alphaproteobacteria and Verrucomicrobiae. We conclude that microbial mats in the quarry sumps harbor diverse microorganisms with the ability to remove toxic Cr(VI), hence these mats can be potentially used to remove chromium from polluted waters.
Collapse
Affiliation(s)
- Raeid M M Abed
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Mary Shanti
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | | | - Zayana Al-Riyami
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Bernhard Pracejus
- Earth Science Department, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Daniel Moraetis
- Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
39
|
Zhang Y, Ma Y, Zhang R, Zhang B, Zhai X, Li W, Xu L, Jiang Q, Duan J, Hou B. Metagenomic Resolution of Functional Diversity in Copper Surface-Associated Marine Biofilms. Front Microbiol 2019; 10:2863. [PMID: 31921043 PMCID: PMC6917582 DOI: 10.3389/fmicb.2019.02863] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 01/16/2023] Open
Abstract
We used metagenomic sequencing combined with morphological and chemical analyses to investigate microbial taxa and functions related to copper-resistance and microbiologically influenced corrosion in mature copper-associated biofilms in coastal seawater for 44 months. Facultative anaerobic microbes such as Woeseia sp. were found to be the dominant groups on the copper surface. Genes related to stress response and possible heavy metal transport systems, especially RNA polymerase sigma factors (rpoE) and putative ATP-binding cassette (ABC) transport system permease protein (ABC.CD.P) were observed to be highly enriched in copper-associated biofilms, while genes encoding DNA-methyltransferase and RNA polymerase subunit were highly enriched in aluminum-associated biofilms and seawater planktonic cells, respectively. Moreover, copper-associated biofilms harbored abundant copper-resistance genes including cus, cop and pco, as well as abundant genes related to extracellular polymeric substances, indicating the presence of diverse copper-resistance patterns. The proportion of dsr in copper-associated biofilms, key genes related to sulfide production, was as low as that in aluminum biofilm and seawater, which ruled out the possibility of microbial sulfide-induced copper-corrosion under field conditions. These results may fill knowledge gaps about the in situ microbial functions of marine biofilms and their effects on toxic-metal corrosion.
Collapse
Affiliation(s)
- Yimeng Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yan Ma
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources, Hanover, Germany
| | - Binbin Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wangqiang Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Liting Xu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Quantong Jiang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
40
|
Duchinski K, Moyer CL, Hager K, Fullerton H. Fine-Scale Biogeography and the Inference of Ecological Interactions Among Neutrophilic Iron-Oxidizing Zetaproteobacteria as Determined by a Rule-Based Microbial Network. Front Microbiol 2019; 10:2389. [PMID: 31708884 PMCID: PMC6823593 DOI: 10.3389/fmicb.2019.02389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Hydrothermal vents, such as those at Lō‘ihi Seamount and the Mariana Arc and back-arc, release iron required to support life from the Earth’s crust. In these ecosystems, bacteria and archaea can oxidize the released iron and therefore play an important role in the biogeochemical cycles of essential nutrients. These organisms often form microbial mats, and the primary producers in these communities can support diverse higher trophic levels. One such class of bacteria are the Zetaproteobacteria. This class of bacteria oxidize iron and commonly produce extracellular iron oxyhydroxide matrices that provide architecture to the microbial mats, so they are considered foundational members of the community and ecosystem engineers. Zetaproteobacteria are responsible for the majority of iron-oxidation in circumneutral, marine, low-oxygen environments. To study the composition of these communities, microbial mats were collected using a biomat sampler, which allows for fine-scale collection of microbial mats. DNA was then extracted and amplified for analysis of the SSU rRNA gene. After quality control and filtering, the SSU rRNA genes from Mariana Arc and Lō‘ihi Seamount microbial mat communities were compared pairwise to determine which site exhibits a greater microbial diversity and how much community overlap exists between the two sites. In-depth analysis was performed with the rule-based microbial network (RMN) algorithm, which identified a possible competitive relationship across oligotypes of a cosmopolitan Zetaproteobacteria operational taxonomic unit (OTU). This result demonstrated the ecological relevance of oligotypes, or fine-scale OTU variants. The oligotype distributions of the cosmopolitan ZetaOTUs varied greatly across the Pacific Ocean. The competitive relationship between dominant oligotypes at Lō‘ihi Seamount and the Mariana Arc and back-arc may be driving their differential distributions across the two regions and may result in species divergence within a cosmopolitan ZetaOTU. This implementation of the RMN algorithm can both predict directional relationships within a community and provide insight to the level at which evolution is occurring across ecosystems.
Collapse
Affiliation(s)
| | - Craig L Moyer
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Kevin Hager
- Department of Biology, Western Washington University, Bellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| |
Collapse
|
41
|
Fisher A, Wangpraseurt D, Larkum AWD, Johnson M, Kühl M, Chen M, Wong HL, Burns BP. Correlation of bio-optical properties with photosynthetic pigment and microorganism distribution in microbial mats from Hamelin Pool, Australia. FEMS Microbiol Ecol 2019; 95:5151331. [PMID: 30380056 DOI: 10.1093/femsec/fiy219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 11/14/2022] Open
Abstract
Microbial mats and stromatolites are widespread in Hamelin Pool, Shark Bay, however the phototrophic capacity of these systems is unknown. This study has determined the optical properties and light-harvesting potential of these mats with light microsensors. These characteristics were linked via a combination of 16S rDNA sequencing, pigment analyses and hyperspectral imaging. Local scalar irradiance was elevated over the incident downwelling irradiance by 1.5-fold, suggesting light trapping and strong scattering by the mats. Visible light (400-700 nm) penetrated to a depth of 2 mm, whereas near-infrared light (700-800 nm) penetrated to at least 6 mm. Chlorophyll a and bacteriochlorophyll a (Bchl a) were found to be the dominant photosynthetic pigments present, with BChl a peaking at the subsurface (2-4 mm). Detailed 16S rDNA analyses revealed the presence of putative Chl f-containing Halomicronema sp. and photosynthetic members primarily decreased from the mat surface down to a depth of 6 mm. Data indicated high abundances of some pigments and phototrophic organisms in deeper layers of the mats (6-16 mm). It is proposed that the photosynthetic bacteria present in this system undergo unique adaptations to lower light conditions below the mat surface, and that phototrophic metabolisms are major contributors to ecosystem function.
Collapse
Affiliation(s)
- Amy Fisher
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia
| | - Daniel Wangpraseurt
- Marine Biological Section, University of Copenhagen, Copenhagen 1017, Denmark.,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,Scripps Institution of Oceanography, University of California, San Diego 92037, CA, USA
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology, Sydney 2007, Australia
| | - Michael Johnson
- Climate Change Cluster, University of Technology, Sydney 2007, Australia
| | - Michael Kühl
- Marine Biological Section, University of Copenhagen, Copenhagen 1017, Denmark.,Climate Change Cluster, University of Technology, Sydney 2007, Australia
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
42
|
Reinold M, Wong HL, MacLeod FI, Meltzer J, Thompson A, Burns BP. The Vulnerability of Microbial Ecosystems in A Changing Climate: Potential Impact in Shark Bay. Life (Basel) 2019; 9:life9030071. [PMID: 31480795 PMCID: PMC6789446 DOI: 10.3390/life9030071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022] Open
Abstract
The potential impact of climate change on eukaryotes, including humans, has been relatively well described. In contrast, the contribution and susceptibility of microorganisms to a changing climate have, until recently, received relatively less attention. In this review, the importance of microorganisms in the climate change discourse is highlighted. Microorganisms are responsible for approximately half of all primary production on earth, support all forms of macroscopic life whether directly or indirectly, and often persist in “extreme” environments where most other life are excluded. In short, microorganisms are the life support system of the biosphere and therefore must be included in decision making regarding climate change. Any effects climate change will have on microorganisms will inevitably impact higher eukaryotes and the activity of microbial communities in turn can contribute to or alleviate the severity of the changing climate. It is of vital importance that unique, fragile, microbial ecosystems are a focus of research efforts so that their resilience to extreme weather events and climate change are thoroughly understood and that conservation efforts can be implemented as a response. One such ecosystem under threat are the evolutionarily significant microbial mats and stromatolites, such as those present in Shark Bay, Western Australia. Climate change models have suggested the duration and severity of extreme weather events in this region will increase, along with rising temperatures, sea levels, and ocean acidification. These changes could upset the delicate balance that fosters the development of microbial mats and stromatolites in Shark Bay. Thus, the challenges facing Shark Bay microbial communities will be presented here as a specific case study.
Collapse
Affiliation(s)
- Max Reinold
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
- Australian Centre for Astrobiology; The University of New South Wales Sydney 2052, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
- Australian Centre for Astrobiology; The University of New South Wales Sydney 2052, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
- Australian Centre for Astrobiology; The University of New South Wales Sydney 2052, Australia
| | - Julia Meltzer
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
- Australian Centre for Astrobiology; The University of New South Wales Sydney 2052, Australia
| | - April Thompson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
- Australian Centre for Astrobiology; The University of New South Wales Sydney 2052, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology; The University of New South Wales Sydney 2052, Australia.
| |
Collapse
|
43
|
Charlesworth JC, Watters C, Wong HL, Visscher PT, Burns BP. Isolation of novel quorum-sensing active bacteria from microbial mats in Shark Bay Australia. FEMS Microbiol Ecol 2019; 95:5382036. [PMID: 30877766 DOI: 10.1093/femsec/fiz035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing is a potent system of genetic control allowing phenotypes to be coordinated across localized communities. In this study, quorum sensing systems in Shark Bay microbial mats were delineated using a targeted approach analyzing whole mat extractions as well as the creation of an isolate library. A library of 165 isolates from different mat types were screened using the AHL biosensor E. coli MT102. Based on sequence identity 30 unique isolates belonging to Proteobacteria, Actinobacteria and Firmicutes were found to activate the AHL biosensor, suggesting AHLs or analogous compounds were potentially present. Several of the isolates have not been shown previously to produce signal molecules, particularly the members of the Actinobacteria and Firmicutes phyla including Virgibacillus, Halobacillius, Microbacterium and Brevibacterium. These active isolates were further screened using thin-layer chromatography (TLC) providing putative identities of AHL molecules present within the mat communities. Nine isolates were capable of producing several spots of varying sizes after TLC separation, suggesting the presence of multiple signalling molecules. This study is the first to delineate AHL-based signalling in the microbial mats of Shark Bay, and suggests quorum sensing may play a role in the ecosphysiological coordination of complex phenotypes across microbial mat communities.
Collapse
Affiliation(s)
- James C Charlesworth
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| | - Cara Watters
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| | - Pieter T Visscher
- Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia.,Department of Marine Sciences, University of Connecticut, Storrs, 06269, CT, USA
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
44
|
Watanabe M, Kojima H, Umezawa K, Fukui M. Genomic Characteristics of Desulfonema ishimotonii Tokyo 01 T Implying Horizontal Gene Transfer Among Phylogenetically Dispersed Filamentous Gliding Bacteria. Front Microbiol 2019; 10:227. [PMID: 30837965 PMCID: PMC6390638 DOI: 10.3389/fmicb.2019.00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Desulfonema ishimotonii strain Tokyo 01T is a filamentous sulfate-reducing bacterium isolated from a marine sediment. In this study, the genome of this strain was sequenced and analyzed with a focus on gene transfer from phylogenetically distant organisms. While the strain belongs to the class Deltaproteobacteria, hundreds of proteins encoded in the genome showed the highest sequence similarities to those of organisms outside of the class Deltaproteobacteria, suggesting that more than 20% of the genome is putatively of foreign origins. Many of these proteins had the highest sequence identities with proteins encoded in the genomes of filamentous bacteria, including giant sulfur oxidizers of the orders Thiotrichales, cyanobacteria of various genera, and uncultured bacteria of the candidate phylum KSB3. As mobile genetic elements transferred from phylogenetically distant organisms, putative inteins were identified in the GyrB and DnaE proteins encoded in the genome of strain Tokyo 01T. Genes involved in DNA recombination and repair were enriched in comparison to the closest relatives in the same family. Some of these genes were also related to those of organisms outside of the class Deltaproteobacteria, suggesting that they were acquired by horizontal gene transfer from diverse bacteria. The genomic data suggested significant genetic transfer among filamentous gliding bacteria in phylogenetically dispersed lineages including filamentous sulfate reducers. This study provides insights into the genomic evolution of filamentous bacteria belonging to diverse lineages, characterized by various physiological functions and different ecological roles.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
D'Agostino PM, Woodhouse JN, Liew HT, Sehnal L, Pickford R, Wong HL, Burns BP, Neilan BA. Bioinformatic, phylogenetic and chemical analysis of the UV‐absorbing compounds scytonemin and mycosporine‐like amino acids from the microbial mat communities of Shark Bay, Australia. Environ Microbiol 2019; 21:702-715. [DOI: 10.1111/1462-2920.14517] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Paul M. D'Agostino
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM) Technische Universität München Garching Germany
| | - Jason N. Woodhouse
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
- Department of Experimental Limnology Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Stechlin Germany
| | - Heng Tai Liew
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
- School of Biological Sciences Nanyang Technological University 60 Nanyang Drive Singapore
| | - Luděk Sehnal
- Research Centre for Toxic Compounds in the Environment, Faculty of Science Masaryk University Kamenice 5, 625 00, Brno Czech Republic
| | - Russel Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre University of New South Wales Sydney New South Wales Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
| | - Brendan P. Burns
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney New South Wales Australia
- School of Environmental and Life Sciences University of Newcastle Newcastle New South Wales Australia
| |
Collapse
|
46
|
White RA, Soles SA, Gavelis G, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Eurythermal Firmicute Exiguobacterium chiriqhucha Strain RW2 Isolated From a Freshwater Microbialite, Widely Adaptable to Broad Thermal, pH, and Salinity Ranges. Front Microbiol 2019; 9:3189. [PMID: 30671032 PMCID: PMC6331483 DOI: 10.3389/fmicb.2018.03189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] Open
Abstract
Members of the genus Exiguobacterium are found in diverse environments from marine, freshwaters, permafrost to hot springs. Exiguobacterium can grow in a wide range of temperature, pH, salinity, and heavy-metal concentrations. We characterized Exiguobacterium chiriqhucha strain RW2 isolated from a permanently cold freshwater microbialite in Pavilion Lake, British Columbia using metabolic assays, genomics, comparative genomics, phylogenetics, and fatty acid composition. Strain RW2 has the most extensive growth range for temperature (4–50°C) and pH (5–11) of known Exiguobacterium isolates. Strain RW2 genome predicts pathways for wide differential thermal, cold and osmotic stress using cold and heat shock cascades (e.g., csp and dnaK), choline and betaine uptake/biosynthesis (e.g., opu and proU), antiporters (e.g., arcD and nhaC Na+/K+), membrane fatty acid unsaturation and saturation. Here, we provide the first complete genome from Exiguobacterium chiriqhucha strain RW2, which was isolated from a freshwater microbialite. Its genome consists of a single 3,019,018 bp circular chromosome encoding over 3,000 predicted proteins, with a GC% content of 52.1%, and no plasmids. In addition to growing at a wide range of temperatures and salinities, our findings indicate that RW2 is resistant to sulfisoxazole and has the genomic potential for detoxification of heavy metals (via mercuric reductases, arsenic resistance pumps, chromate transporters, and cadmium-cobalt-zinc resistance genes), which may contribute to the metabolic potential of Pavilion Lake microbialites. Strain RW2 could also contribute to microbialite formation, as it is a robust biofilm former and encodes genes involved in the deamination of amino acids to ammonia (i.e., L-asparaginase/urease), which could potentially boost carbonate precipitation by lowering the local pH and increasing alkalinity. We also used comparative genomic analysis to predict the pathway for orange pigmentation that is conserved across the entire Exiguobacterium genus, specifically, a C30 carotenoid biosynthesis pathway is predicted to yield diaponeurosporene-4-oic acid as its final product. Carotenoids have been found to protect against ultraviolet radiation by quenching reactive oxygen, releasing excessive light energy, radical scavenging, and sunscreening. Together these results provide further insight into the potential of Exiguobacterium to exploit a wide range of environmental conditions, its potential roles in ecosystems (e.g., microbialites/microbial mats), and a blueprint model for diverse metabolic processes.
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Souza V, Moreno-Letelier A, Travisano M, Alcaraz LD, Olmedo G, Eguiarte LE. The lost world of Cuatro Ciénegas Basin, a relictual bacterial niche in a desert oasis. eLife 2018; 7:38278. [PMID: 30457104 PMCID: PMC6245727 DOI: 10.7554/elife.38278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022] Open
Abstract
Barriers to microbial migrations can lead adaptive radiations and increased endemism. We propose that extreme unbalanced nutrient stoichiometry of essential nutrients can be a barrier to microbial immigration over geological timescales. At the oasis in the Cuatro Ciénegas Basin in Mexico, nutrient stoichiometric proportions are skewed given the low phosphorus availability in the ecosystem. We show that this endangered oasis can be a model for a lost world. The ancient niche of extreme unbalanced nutrient stoichiometry favoured survival of ancestral microorganisms. This extreme nutrient imbalance persisted due to environmental stability and low extinction rates, generating a diverse and unique bacterial community. Several endemic clades of Bacillus invaded the Cuatro Cienegas region in two geological times, the late Precambrian and the Jurassic. Other lineages of Bacillus, Clostridium and Bacteroidetes migrated into the basin in isolated events. Cuatro Ciénegas Basin conservation is vital to the understanding of early evolutionary and ecological processes. Water is a rare sight in a barren land, but there are many more reasons that make the Cuatro Cienegas Basin, an oasis in the North Mexican desert, a puzzling environment. With little phosphorous and nutrients but plenty of sulphur and magnesium, the conditions in the turquoise blue lagoons of the Basin mimic the ones found in the ancient seas of the end of the Precambrian. In fact, Cuatro Cienegas is one of the rare sites where we can still find live stromatolites, a bacterial form of life that once dominated the oceans. Many bacteria of marine origin exist alongside these living fossils, prompting scientists to wonder if the Basin could be a true lost world, a safe haven where ancient microorganisms found refuge and have kept evolving until this day. But to confirm whether this is the case would require scientists to hunt for clues within the genetic information of local bacteria. Souza, Moreno-Letelier et al. came across these hints after sampling for bacteria in a small (about 1km2) lagoon named Churince, and analysing the DNA collected. The results yielded an astonishing amount of biodiversity: 5,167 species representing at least two-third of all known major groups of bacteria were identified, nearly as much as what was found in over 2,000 kilometres in the Pearl River in China. This is unusual, as most other extreme environments with little nutrients have low levels of diversity. Closer investigation into the genomes of 2,500 species of Bacillus bacteria revealed that the sample increased by nearly 21% the number of previously known species in the group. Most of these bacteria were only found in the Basin. These native or ‘endemic’ species have evolved from ancestors that came to the area in two waves. The oldest colonization event happened 680 million years ago, as the first animal forms just started to emerge. The most recent one took place while dinosaurs roamed the Earth about 160 million years ago, when geological events opened again the Basin to the ancient Pacific Ocean. Previous experiments have shown that different species of bacteria in the Churince have evolved to form a close-knit community which ferociously competes with microbes from the outside world. Paired with the extreme conditions found in the lagoon, this may have prevented other microorganisms from proliferating in the environment and replacing the ancient lineages. The days of this lost world may now be numbered. Drained by local farming, the wetlands of the Basin have shrunk by 90% over the past five decades. The Churince lagoon, the most diverse and fragile site where the samples were collected, is now completely dry. Human activities also disrupt the delicate and unique balance of nutrients in the oasis. But all may not be lost – yet. Local high school students have become involved in the research effort to describe and protect these unique microbial communities, and to change agricultural traditions in the area. Closing the canals that export spring water out of the Basin could give the site a chance to recover, and the microbes that are now seeking refuge in underground waters could re-emerge. Maybe there will still be time to celebrate, rather than mourn, the unique life forms of the Cuatro Cienegas Basin.
Collapse
Affiliation(s)
- Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | | | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, United States
| | - Luis David Alcaraz
- Laboratorio Nacional de la Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Gabriela Olmedo
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato Centro de Investigación y Estudios Avanzados, Guanajuato, Mexico
| | - Luis Enrique Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| |
Collapse
|
48
|
White RA, Gavelis G, Soles SA, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Microbialite-Dwelling Agrococcus pavilionensis sp. nov; Reveals Genetic Promiscuity and Predicted Adaptations to Environmental Stress. Front Microbiol 2018; 9:2180. [PMID: 30374333 PMCID: PMC6196244 DOI: 10.3389/fmicb.2018.02180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the bacterial genus Agrococcus are globally distributed and found across environments so highly diverse that they include forests, deserts, and coal mines, as well as in potatoes and cheese. Despite how widely Agrococcus occurs, the extent of its physiology, genomes, and potential roles in the environment are poorly understood. Here we use whole-genome analysis, chemotaxonomic markers, morphology, and 16S rRNA gene phylogeny to describe a new isolate of the genus Agrococcus from freshwater microbialites in Pavilion Lake, British Columbia, Canada. We characterize this isolate as a new species Agrococcus pavilionensis strain RW1 and provide the first complete genome from a member of the genus Agrococcus. The A. pavilionensis genome consists of one chromosome (2,627,177 bp) as well as two plasmids (HC-CG1 1,427 bp, and LC-RRW783 31,795 bp). The genome reveals considerable genetic promiscuity via mobile elements, including a prophage and plasmids involved in integration, transposition, and heavy-metal stress. A. pavilionensis strain RW1 differs from other members of the Agrococcus genus by having a novel phospholipid fatty acid iso-C15:1Δ4, β-galactosidase activity and amygdalin utilization. Carotenoid biosynthesis is predicted by genomic metabolic reconstruction, which explains the characteristic yellow pigmentation of A. pavilionensis. Metabolic reconstructions of strain RW1 genome predicts a pathway for releasing ammonia via ammonification amino acids, which could increase the saturation index leading to carbonate precipitation. Our genomic analyses suggest signatures of environmental adaption to the relatively cold and oligotrophic conditions of Pavilion Lake microbialites. A. pavilionensis strain RW1 in modern microbialites has an ecological significance in Pavilion Lake microbialites, which include potential roles in heavy-metal cycling and carbonate precipitation (e.g., ammonification of amino acids and filamentation which many trap carbonate minerals).
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Research Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Bay Area Environmental Research Institute, Petaluma, CA, United States
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
49
|
Benaiges-Fernandez R, Urmeneta J. Use of specific PCR primers for the study of sulfate-reducing bacteria diversity in microbial mats of Ebro Delta, Spain. Int Microbiol 2018; 21:231-235. [PMID: 30810897 DOI: 10.1007/s10123-018-0020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 11/27/2022]
Abstract
Microbial mats are prokaryotic communities that provide model systems to analyze microbial diversity and ecophysiological interactions. Sulfate-reducing bacteria (SRB) play a key role in sulfur and nutrient recycling in these ecosystems. In this work, specific primers for 16S rRNA encoding gene, previously described, were used to study the diversity of SRB in microbial mats of the Ebro Delta. We confirm that this method is reliable to identify the diversity of SRB in these ecosystems. However, some mismatches in obtained sequences had been observed in our system and must be taken under consideration. Various genera of SRB in Ebro Delta microbial mats were identified, such as Desulfonema, Desulfatitalea, Desulfosalsimonas, Desulfoccocus, and Desulfovibrio. The diversity observed in our samples is very similar to previously reported in other microbial mats communities.
Collapse
Affiliation(s)
- Robert Benaiges-Fernandez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
- Institute of Environmental Assessment and Water Research (IDAEA, CSIC), 08034, Barcelona, Catalonia, Spain
| | - Jordi Urmeneta
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain.
- Biodiversity Research Institute (IRBio), Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
50
|
Wong HL, White RA, Visscher PT, Charlesworth JC, Vázquez-Campos X, Burns BP. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME JOURNAL 2018; 12:2619-2639. [PMID: 29980796 DOI: 10.1038/s41396-018-0208-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/27/2018] [Accepted: 06/01/2018] [Indexed: 11/09/2022]
Abstract
The functional metagenomic potential of Shark Bay microbial mats was examined for the first time at a millimeter scale, employing shotgun sequencing of communities via the Illumina NextSeq 500 platform in conjunction with defined chemical analyses. A detailed functional metagenomic profile has elucidated key pathways and facilitated inference of critical microbial interactions. In addition, 87 medium-to-high-quality metagenome-assembled genomes (MAG) were assembled, including potentially novel bins under the deep-branching archaeal Asgard group (Thorarchaetoa and Lokiarchaeota). A range of pathways involved in carbon, nitrogen, sulfur, and phosphorus cycles were identified in mat metagenomes, with the Wood-Ljungdahl pathway over-represented and inferred as a major carbon fixation mode. The top five sets of genes were affiliated to sulfate assimilation (cysNC cysNCD, sat), methanogenesis (hdrABC), Wood-Ljungdahl pathways (cooS, coxSML), phosphate transport (pstB), and copper efflux (copA). Polyhydroxyalkanoate (PHA) synthase genes were over-represented at the surface, with PHA serving as a potential storage of fixed carbon. Sulfur metabolism genes were highly represented, in particular complete sets of genes responsible for both assimilatory and dissimilatory sulfate reduction. Pathways of environmental adaptation (UV, hypersalinity, oxidative stress, and heavy metal resistance) were also delineated, as well as putative viral defensive mechanisms (core genes of the CRISPR, BREX, and DISARM systems). This study provides new metagenome-based models of how biogeochemical cycles and adaptive responses may be partitioned in the microbial mats of Shark Bay.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Richard Allen White
- Institute of Biological Chemistry, Washington State University, Pullman, USA
| | - Pieter T Visscher
- Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia.,Department of Marine Sciences, University of Connecticut, Storrs, CT, USA
| | - James C Charlesworth
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia. .,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia.
| |
Collapse
|