1
|
Bozkurt EB, Baysal Ö, Marzec-Grządziel A, Silme RS, Can A, Belen İN, Çapar Ü, Korkut A. Genomic Characterization of Serratia fonticola (EBS19) as a Biocontrol Agent against Botrytis cinerea. Curr Microbiol 2025; 82:252. [PMID: 40252089 DOI: 10.1007/s00284-025-04224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/01/2025] [Indexed: 04/21/2025]
Abstract
Botrytis cinerea (Bc), a plant pathogenic fungus, is the causative agent of gray mold disease, which rapidly develops resistance to fungicides in cultivation areas. This study explores the biocontrol potential of various bacterial isolates collected from the rhizosphere of tomato plants (Solanum lycopersicum). Bacterial isolates were purified and neutralized through phenol vaporization for 2 days. Colonies that inhibited pathogen spore growth were confirmed via antibiosis effect using in vitro bioassays. Bacterial colonies demonstrated up to 84% inhibition of pathogen growth at 7-day post-inoculation (dpi) with a one-layer agar diffusion test and up to 70% inhibition with a double-layer agar diffusion test, compared to control plates. Both bacterial suspension and filtrate significantly suppressed pathogen mycelium growth at 11 and 14 dpi. The isolate used in further studies was identified as Serratia fonticola (EBS19) through whole-genome sequencing. Annotated genome data revealed the presence of genes encoding enzymes crucial for pathogen inhibition. Carbon preference analyses identified specific carbon sources unique to the bacterial strain. These findings are advantageous for developing effective biopreparations that ensure bacterial strain stability in practical applications. In addition, the primary focus was on the interaction between the pathogen's major stress regulator protein (BAG1) and the bacterial glycoside hydrolase. Protein-protein docking analyses elucidated strong interaction between BAG1 and bacterial glycoside hydrolase. In conclusion, this study provides a knowledge for further research using recombinant DNA and gene cloning techniques on the bacterium's mapped genome.
Collapse
Affiliation(s)
- Efe Berk Bozkurt
- Molecular Microbiology Unit in Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48121, Kötekli-Muğla, Turkey
| | - Ömür Baysal
- Molecular Microbiology Unit in Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48121, Kötekli-Muğla, Turkey.
- Molecular Plant and Microbial Biosciences Research Unit (MPMB-RU), University of Worcester, Henwick Grove, Worcester, WR2 6AJ, UK.
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation, Puławy, Poland
| | - Ragıp Soner Silme
- Centre for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Fatih, 3400, Istanbul, Turkey
| | - Ahmet Can
- Molecular Microbiology Unit in Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48121, Kötekli-Muğla, Turkey
| | - İlayda Nur Belen
- Molecular Microbiology Unit in Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48121, Kötekli-Muğla, Turkey
| | - Ümran Çapar
- Molecular Microbiology Unit in Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48121, Kötekli-Muğla, Turkey
| | - Ahmet Korkut
- Molecular Microbiology Unit in Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, 48121, Kötekli-Muğla, Turkey
| |
Collapse
|
2
|
Rani TS, Takahashi D, Mukherjee S, Uemura M, Madhuprakash J, Podile AR. Secretome analysis of the chitinolytic machinery of Chitiniphilus shinanonensis and its implication in chitooligosaccharide production. Carbohydr Polym 2025; 353:123272. [PMID: 39914980 DOI: 10.1016/j.carbpol.2025.123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/14/2024] [Accepted: 01/13/2025] [Indexed: 05/07/2025]
Abstract
Chitin's robust structure poses significant challenges for degradation, necessitating the study of microbial processes in chitin-rich environments. We assessed the chitinolytic bacterium Chitiniphilus shinanonensis DSM 23277T (SAY3T) for converting chitin biomass into valuable saccharides using various substrates (chitin flakes, α-chitin, and β-chitin) in shake flask cultures. The bacterium successfully grew on all substrates, achieving complete degradation, although chitin flakes required more time. Maximum growth was observed on β-chitin, followed by α-chitin and chitin flakes. Scanning electron microscopy confirmed bacterial colonization and potential hydrolytic activity on chitin flakes. Proteomic analysis via nanoLC-MS/MS identified 32 chitin-degrading enzymes distributed across secretome, periplasmic, and intracellular fractions, with a notable expression of glycoside hydrolases (families 18, 19, and 20), carbohydrate esterases (family 4), and auxiliary activity proteins (family 10). Among the family 18 chitinases, ChiM, ChiI, and ChiL were significantly upregulated on all chitinous substrates compared to glucose. The chitin-active-secretome exhibited optimal activity at pH 8.0 and 45 °C in 50 mM Tris-HCl. Moreover, the chitin-active-secretome effectively degraded chitin flakes, α-chitin, and β-chitin into chitobiose and GlcNAc, with β-chitin yielding the highest chitobiose levels. The diverse chitin-degrading enzymes of C. shinanonensis efficiently utilize recalcitrant chitin as a carbon and energy source, underscoring its industrial potential for chitin degradation.
Collapse
Affiliation(s)
- T Swaroopa Rani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India; GITAM School of Science, GITAM deemed (to be) University, Rudrarum, Sangareddy District, 502329, Telangana, India.
| | - Daisuke Takahashi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakuraku, Saitama 338-8570, Japan
| | - Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Matsuo Uemura
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India.
| |
Collapse
|
3
|
Zhang Y, Pan D, Xiao P, Xu Q, Geng F, Zhang X, Zhou X, Xu H. A novel lytic polysaccharide monooxygenase from enrichment microbiota and its application for shrimp shell powder biodegradation. Front Microbiol 2023; 14:1097492. [PMID: 37007517 PMCID: PMC10057547 DOI: 10.3389/fmicb.2023.1097492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMO) are expected to change the current status of chitin resource utilization. This study reports that targeted enrichment of the microbiota was performed with chitin by the selective gradient culture technique, and a novel LPMO (M2822) was identified from the enrichment microbiota metagenome. First, soil samples were screened based on soil bacterial species and chitinase biodiversity. Then gradient enrichment culture with different chitin concentrations was carried out. The efficiency of chitin powder degradation was increased by 10.67 times through enrichment, and chitin degradation species Chitiniphilus and Chitinolyticbacter were enriched significantly. A novel LPMO (M2822) was found in the metagenome of the enriched microbiota. Phylogenetic analysis showed that M2822 had a unique phylogenetic position in auxiliary activity (AA) 10 family. The analysis of enzymatic hydrolysate showed that M2822 had chitin activity. When M2822 synergized with commercial chitinase to degrade chitin, the yield of N-acetyl glycosamine was 83.6% higher than chitinase alone. The optimum temperature and pH for M2822 activity were 35°C and 6.0. The synergistic action of M2822 and chitin-degrading enzymes secreted by Chitiniphilus sp. LZ32 could efficiently hydrolyze shrimp shell powder. After 12 h of enzymatic hydrolysis, chitin oligosaccharides (COS) yield reached 4,724 μg/mL. To our knowledge, this work is the first study to mine chitin activity LPMO in the metagenome of enriched microbiota. The obtained M2822 showed application prospects in the efficient production of COS.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Qianqian Xu
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Fan Geng
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Xinyu Zhang
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- *Correspondence: Xiuling Zhou,
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Umemoto N, Saito N, Noguchi M, Shoda SI, Ohnuma T, Watanabe T, Sakuda S, Fukamizo T. Plant Chitinase Mutants as the Catalysts for Chitooligosaccharide Synthesis Using the Sugar Oxazoline Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12897-12906. [PMID: 36184795 DOI: 10.1021/acs.jafc.2c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sugar oxazolines, (GlcNAc)n-oxa (n = 2, 3, 4, and 5), were synthesized from a mixture of chitooligosaccharides, (GlcNAc)n (n = 2, 3, 4, and 5), and utilized for synthesis of (GlcNAc)7 with higher elicitor activity using plant chitinase mutants as the catalysts. From isothermal titration calorimetry, the binding affinity of (GlcNAc)2-oxa toward an inactive mutant obtained from Arabidopsis thaliana GH18 chitinase was found to be higher than those of the other (GlcNAc)n-oxa (n = 3, 4, and 5). To synthesize (GlcNAc)7, the donor/acceptor substrates with different size combinations, (GlcNAc)2-oxa/(GlcNAc)5 (1), (GlcNAc)3-oxa/(GlcNAc)4 (2), (GlcNAc)4-oxa/(GlcNAc)3 (3), and (GlcNAc)5-oxa/(GlcNAc)2 (4), were incubated with hypertransglycosylating mutants of GH18 chitinases from A. thaliana and Cycas revoluta. The synthetic activities of these plant chitinase mutants were lower than that of a mutant of Bacillus circulans chitinase A1. Nevertheless, in the plant chitinase mutants, the synthetic efficiency of combination (1) was higher than those of the other combinations (2), (3), and (4), suggesting that the synthetic reaction is mostly dominated by the binding affinities of (GlcNAc)n-oxa. In contrast, the Bacillus enzyme mutant with a different subsite arrangement synthesized (GlcNAc)7 from combination (1) in the lowest efficiency. Donor/acceptor-size dependency of the enzymatic synthesis appeared to be strongly related to the subsite arrangement of the enzyme used as the catalyst. The A. thaliana chitinase mutant was found to be useful when combination (1) is employed for the substrates.
Collapse
Affiliation(s)
- Naoyuki Umemoto
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Natsuki Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Masato Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Shin-Ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Takayuki Ohnuma
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Takeshi Watanabe
- Department of Agro-Food Science, Niigata Agro-Food University, Tainai-shi, Niigata 959-2702, Japan
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
5
|
Su H, Sun J, Guo C, Jia Z, Mao X. New Insights into Bifunctional Chitosanases with Hydrolysis Activity toward Chito- and Cello-Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6168-6176. [PMID: 35549271 DOI: 10.1021/acs.jafc.2c01577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present study, we carried out a comprehensive investigation of glycoside hydrolase (GH) 46 model-chitosanases based on cleavage specificity classification to understand their unknown bifunctional activity. We for the first time show that GH46 chitosanase CsnMHK1 from Bacillus circulans MH-K1, which was previously thought to be strictly exclusive to chitosan, can hydrolyze both chito- and cello-substrates. We determined the digestion direction of bifunctional chitosanase CsnMHK1 from class III and compared it with class II chitosanase belonging to GH8, providing insight into unique substrate specificities and a new perspective on its reclassification. The results lead us to challenge the current understanding of chitosanase substrate specificity based on GH taxonomy classification and suggest that the prevalence from the common bifunctional activity may have occurred. Altogether, these data contribute to the understanding of chitosanase recognition and hydrolysis toward chito- and cello-substrates, which is valuable for future studies on chitosanases.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chaoran Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
6
|
Ramakrishna B, Sarma PVSRN, Ankati S, Bhuvanachandra B, Podile AR. Elicitation of defense response by transglycosylated chitooligosaccharides in rice seedlings. Carbohydr Res 2021; 510:108459. [PMID: 34700217 DOI: 10.1016/j.carres.2021.108459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022]
Abstract
Long-chain chitooligosaccharides (COS) with degree of polymerization (DP) more than 4 are known to have potential biological activities. A hyper-transglycosylating mutant of an endo-chitinase from Serratia proteamaculans (SpChiD-Y28A) was used to synthesize COS with DP6 and DP7 using COS DP5 as substrate. Purified COS with DP5-7 were tested to elicit the defense response in rice seedlings. Among the COS used, DP7 strongly induced oxidative burst response as well as peroxidase, and phenylalanine ammonia lyase activites. A few selected marker genes in salicylic acid (SA)- and jasmonic acid-dependent pathways were evaluated by real-time PCR. The expression levels of pathogenesis-related (PR) genes PR1a and PR10 and defense response genes (chitinase1, peroxidase and β -1,3-glucanase) were up regulated upon COS treatment in rice seedlings. The DP7 induced Phenylalanine ammonia lyase and Isochorismate synthase 1 genes, with concomitant increase of Mitogen-activated protein kinase 6 and WRKY45 transcription factor genes indicated the possible role of phosphorylation in the transmission of a signal to induce SA-mediated defense response in rice.
Collapse
Affiliation(s)
- Bellamkonda Ramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - P V S R N Sarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Sravani Ankati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
7
|
Bhuvanachandra B, Sivaramakrishna D, Alim S, Preethiba G, Rambabu S, Swamy MJ, Podile AR. New Class of Chitosanase from Bacillus amyloliquefaciens for the Generation of Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:78-87. [PMID: 33393308 DOI: 10.1021/acs.jafc.0c05078] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chitooligosaccharides (COS) generated from either chitin (chitin oligosaccharides) or chitosan (chitosan oligosaccharides) have a wide range of applications in agriculture, medicine, and other fields. Here, we report the characterization of a chitosanase from Bacillus amyloliquefaciens (BamCsn) and the importance of a tryptophan (Trp), W204, for BamCsn activity. BamCsn hydrolyzed the chitosan polymer by an endo mode. It also hydrolyzed chitin oligosaccharides and interestingly exhibited transglycosylation activity on chitotetraose and chitopentaose. Mutation of W204, a nonconserved amino acid in chitosanases, to W204A abolished the hydrolytic activity of BamCsn, with a change in the structure that resulted in a decreased affinity for the substrate and impaired the catalytic ability. Phylogenetic analysis revealed that BamCsn could belong to a new class of chitosanases that showed unique properties like transglycosylation, cleavage of chitin oligosaccharides, and the presence of W204 residues, which is important for activity. Chitosanases belonging to the BamCsn class showed a high potential to generate COS from chitinous substrates.
Collapse
Affiliation(s)
- Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Dokku Sivaramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Sk Alim
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Gopi Preethiba
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Samudrala Rambabu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| |
Collapse
|
8
|
Selection and mutational analyses of the substrate interacting residues of a chitinase from Enterobacter cloacae subsp. cloacae (EcChi2) to improve transglycosylation. Int J Biol Macromol 2020; 165:2432-2441. [PMID: 33096170 DOI: 10.1016/j.ijbiomac.2020.10.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023]
Abstract
Transglycosylation (TG) by Enterobacter cloacae subsp. cloacae chitinase 2 (EcChi2) has been deciphered by site-directed mutagenesis. EcChi2 originally displayed feeble TG with chitin oligomer with a degree of polymerization (DP4), for a short duration. Based on the 3D modelling and molecular docking analyses, we altered the substrate interactions at the substrate-binding cleft, catalytic center, and catalytic groove of EcChi2 by mutational approach to improve TG. The mutation of W166A and T277A increased TG by EcChi2 and also affected its catalytic efficiency on the polymeric substrates. Whereas, R171A had a drastically decreased hydrolytic activity but, retained TG activity. In the increased hydrolytic activity of the T277A, altered interactions with the substrates played an indirect role in the catalysis. Mutation of the central Asp, in the conserved DxDxE motif, to Ala (D314A) and Asn (D314N) conversion yielded DP5-DP8 TG products. The quantifiable TG products (DP5 and DP6) increased to 8% (D314A) and 7% (D314N), resulting in a hyper-transglycosylating mutant. Mutation of W276A and W398A resulted in the loss of TG activity, indicating that the aromatic residues (W276 and W398) at +1 and +2 subsites are essential for the TG activity of EcChi2.
Collapse
|
9
|
Mukherjee S, Behera PK, Madhuprakash J. Efficient conversion of crystalline chitin to N-acetylglucosamine and N,N'-diacetylchitobiose by the enzyme cocktail produced by Paenibacillus sp. LS1. Carbohydr Polym 2020; 250:116889. [DOI: 10.1016/j.carbpol.2020.116889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
|
10
|
Harmsen RAG, Aam BB, Madhuprakash J, Hamre AG, Goddard-Borger ED, Withers SG, Eijsink VGH, Sørlie M. Chemoenzymatic Synthesis of Chito-oligosaccharides with Alternating N-d-Acetylglucosamine and d-Glucosamine. Biochemistry 2020; 59:4581-4590. [DOI: 10.1021/acs.biochem.0c00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rianne A. G. Harmsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Berit Bjugan Aam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Jogi Madhuprakash
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Anne Grethe Hamre
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Ethan D. Goddard-Borger
- Walter & Eliza Hall, Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry, University of British Colombia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G. Withers
- Department of Chemistry, University of British Colombia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO 5003, N-1432 Ås, Norway
| |
Collapse
|
11
|
Rani TS, Madhuprakash J, Podile AR. Chitinase-E from Chitiniphilus shinanonensis generates chitobiose from chitin flakes. Int J Biol Macromol 2020; 163:1037-1043. [DOI: 10.1016/j.ijbiomac.2020.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
|
12
|
Whittingham JL, Hanai S, Brannigan JA, Ferreira WT, Dodson EJ, Turkenburg JP, Cartwright J, Cutting SM, Wilkinson AJ. Crystal structures of the GH18 domain of the bifunctional peroxiredoxin-chitinase CotE from Clostridium difficile. Acta Crystallogr F Struct Biol Commun 2020; 76:241-249. [PMID: 32510464 PMCID: PMC7278498 DOI: 10.1107/s2053230x20006147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
CotE is a coat protein that is present in the spores of Clostridium difficile, an obligate anaerobic bacterium and a pathogen that is a leading cause of antibiotic-associated diarrhoea in hospital patients. Spores serve as the agents of disease transmission, and CotE has been implicated in their attachment to the gut epithelium and subsequent colonization of the host. CotE consists of an N-terminal peroxiredoxin domain and a C-terminal chitinase domain. Here, a C-terminal fragment of CotE comprising residues 349-712 has been crystallized and its structure has been determined to reveal a core eight-stranded β-barrel fold with a neighbouring subdomain containing a five-stranded β-sheet. A prominent groove running across the top of the barrel is lined by residues that are conserved in family 18 glycosyl hydrolases and which participate in catalysis. Electron density identified in the groove defines the pentapeptide Gly-Pro-Ala-Met-Lys derived from the N-terminus of the protein following proteolytic cleavage to remove an affinity-purification tag. These observations suggest the possibility of designing peptidomimetics to block C. difficile transmission.
Collapse
Affiliation(s)
- Jean L. Whittingham
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Shumpei Hanai
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - James A. Brannigan
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - William T. Ferreira
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Eleanor J. Dodson
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Johan P. Turkenburg
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Jared Cartwright
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Simon M. Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Anthony J. Wilkinson
- Structural Biology Laboratory, York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
13
|
Bhuvanachandra B, Podile AR. A transglycosylating chitinase from Chitiniphilus shinanonensis (CsChiL) hydrolyzes chitin in a processive manner. Int J Biol Macromol 2020; 145:1-10. [DOI: 10.1016/j.ijbiomac.2019.12.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/30/2019] [Accepted: 12/15/2019] [Indexed: 12/14/2022]
|
14
|
Madhuprakash J, Dalhus B, Vaaje-Kolstad G, Sakuda S, Podile AR, Eijsink VGH, Sørlie M. Structural and Thermodynamic Signatures of Ligand Binding to the Enigmatic Chitinase D of Serratia proteamaculans. J Phys Chem B 2019; 123:2270-2279. [PMID: 30789732 DOI: 10.1021/acs.jpcb.8b11448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Gram-negative bacteria Serratia marcescens and Serratia proteamaculans have efficient chitinolytic machineries that degrade chitin into N-acetylglucosamine (GlcNAc), which is used as a carbon and energy source. The enzymatic degradation of chitin in these bacteria occurs through the synergistic action of glycoside hydrolases (GHs) that have complementary activities; an endo-acting GH (ChiC) making random scissions on the polysaccharide chains and two exo-acting GHs mainly targeting single reducing (ChiA) and nonreducing (ChiB) chain ends. Both bacteria produce low amounts of a fourth GH18 (ChiD) with an unclear role in chitin degradation. Here, we have determined the thermodynamic signatures for binding of (GlcNAc)6 and the inhibitor allosamidin to SpChiD as well as the crystal structure of SpChiD in complex with allosamidin. The binding free energies for the two ligands are similar (Δ Gr° = -8.9 ± 0.1 and -8.4 ± 0.1 kcal/mol, respectively) with clear enthalpic penalties (Δ Hr° = 3.2 ± 0.1 and 1.8 ± 0.1 kcal/mol, respectively). Binding of (GlcNAc)6 is dominated by solvation entropy change (- TΔ Ssolv° = -17.4 ± 0.4 kcal/mol) and the conformational entropy change dominates for allosamidin binding (- TΔ Sconf° = -9.0 ± 0.2 kcal/mol). These signatures as well as the interactions with allosamidin are very similar to those of SmChiB suggesting that both enzymes are nonreducing end-specific.
Collapse
Affiliation(s)
- Jogi Madhuprakash
- Department of Chemistry, Biotechnology and Food Science , NMBU-Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway.,Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Gachibowli, 500046 Hyderabad , India
| | - Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine , University of Oslo , P.O. Box 4950, Nydalen, N-0424 Oslo , Norway.,Department of Microbiology, Clinic for Laboratory Medicine , Oslo University Hospital, Rikshospitalet , P.O. Box 4950, Nydalen, N-0424 Oslo , Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science , NMBU-Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway
| | - Shohei Sakuda
- Department of Applied Biological Chemistry , University of Tokyo , Bunkyo-Ku, 113 Tokyo , Japan
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Gachibowli, 500046 Hyderabad , India
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science , NMBU-Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science , NMBU-Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway
| |
Collapse
|
15
|
Zhou J, Dai R, Wang Y, Li M, Zhu Y, Chen L, Kang L, Liu Z, Yang Y, Yuan S. A novel thermophilic exochitinase ChiEn3 from Coprinopsis cinerea exhibits a hyperhydrolytic activity toward 85% deacetylated chitosan and a significant application to preparation of chitooligosaccharides from the chitosan. Carbohydr Polym 2018; 207:729-736. [PMID: 30600059 DOI: 10.1016/j.carbpol.2018.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/13/2023]
Abstract
ChiEn3 from Coprinopsis cinerea was characterized as an exo-acting chitinase with a processivity. ChiEn3 hydrolyzed only soluble chitin and exhibited a hyperhydrolytic activity toward 85% deacetylated chitosan which was 33.6-fold higher than its hydrolytic activity toward glycol chitin. Its maximum hydrolytic activity was observed at 60 °C and retained 66.2% of hydrolytic activity after 60 min incubation at 60 °C. Commercial 85% deacetylated chitosan was degraded by ChiEn3 to a series of COSs with a DP of 2-20 in which COSs with a DP of 3-6 were dominant, whereas, lab-prepared chitosan (FA = 0.65) was degraded by ChiEn3 to COSs with a DP of 2-10 in which the AA dimer was dominant. DPPH-radical-scavenging activity of ChiEn3-digested products of 85% deacetylated chitosan was 3.32-fold higher than that of undigested 85% deacetylated chitosan. Therefore, ChiEn3 shows a valuable advantage for application to the preparation of COSs from commercial 85% deacetylated chitosan.
Collapse
Affiliation(s)
- Jiangsheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Rujuan Dai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yanxin Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Maomao Li
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yiting Zhu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Lingling Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Liqin Kang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yao Yang
- Ginling College, Nanjing Normal University, 122 Ninghai Road, Nanjing, 210097, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China.
| |
Collapse
|
16
|
Ramakrishna B, Vaikuntapu P, Mallakuntla MK, Bhuvanachandra B, Sivaramakrishna D, Uikey S, Podile AR. Carboxy-terminal glycosyl hydrolase 18 domain of a carbohydrate active protein of Chitinophaga pinensis is a non-processive exochitinase. Int J Biol Macromol 2018; 115:1225-1232. [DOI: 10.1016/j.ijbiomac.2018.04.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/07/2018] [Accepted: 04/29/2018] [Indexed: 01/12/2023]
|
17
|
Madhuprakash J, Dalhus B, Rani TS, Podile AR, Eijsink VGH, Sørlie M. Key Residues Affecting Transglycosylation Activity in Family 18 Chitinases: Insights into Donor and Acceptor Subsites. Biochemistry 2018; 57:4325-4337. [DOI: 10.1021/acs.biochem.8b00381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jogi Madhuprakash
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, P.O.
Box 4950, Nydalen, N-0424 Oslo, Norway
- Department of Microbiology, Clinic for Laboratory Medicine, Oslo University Hospital, Rikshospitalet, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway
| | - T. Swaroopa Rani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
18
|
Bhuvanachandra B, Madhuprakash J, Podile AR. Active-site mutations improved the transglycosylation activity of Stenotrophomonas maltophilia chitinase A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:407-414. [DOI: 10.1016/j.bbapap.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/09/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
19
|
Niu X, Zhou JS, Wang YX, Liu CC, Liu ZH, Yuan S. Heterologous Expression and Characterization of a Novel Chitinase (ChiEn1) from Coprinopsis cinerea and its Synergism in the Degradation of Chitin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6943-6956. [PMID: 28721730 DOI: 10.1021/acs.jafc.7b02278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chitinase ChiEn1 did not hydrolyze insoluble chitin but showed hydrolysis and transglycosylation activities toward chitin-oligosaccharides. Interestingly, the addition of ChiEn1 increased the amount of reducing sugars released from chitin powder by endochitinase ChiIII by 105.0%, and among the released reducing sugars the amount of (GlcNAc)2 was increased by 149.5%, whereas the amount of GlcNAc was decreased by 10.3%. The percentage of GlcNAc in the products of chitin powder with the combined ChiIII and ChiEn1 was close to that in the products of chitin-oligosaccharides with ChiEn1, rather than that with ChiIII. These results indicate that chitin polymers are first degraded into chitin oligosaccharides by ChiIII and the latter are further degraded to monomers and dimers by ChiEn1, and the synergistic action of ChiEn1 and ChiIII is involved in the efficient degradation of chitin in cell walls during pileus autolysis. The structure modeling explores the molecular base of ChiEn1 action.
Collapse
Affiliation(s)
- Xin Niu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Jiang-Sheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Yan-Xin Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Cui-Cui Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Zhong-Hua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing, PR China 210023
| |
Collapse
|
20
|
Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides. Sci Rep 2017; 7:5113. [PMID: 28698589 PMCID: PMC5505975 DOI: 10.1038/s41598-017-05140-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/11/2017] [Indexed: 12/21/2022] Open
Abstract
Humans have exploited natural resources for a variety of applications. Chitin and its derivative chitin oligosaccharides (CHOS) have potential biomedical and agricultural applications. Availability of CHOS with the desired length has been a major limitation in the optimum use of such natural resources. Here, we report a single domain hyper-transglycosylating chitinase, which generates longer CHOS, from Enterobacter cloacae subsp. cloacae 13047 (EcChi1). EcChi1 was optimally active at pH 5.0 and 40 °C with a Km of 15.2 mg ml−1, and kcat/Km of 0.011× 102 mg−1 ml min−1 on colloidal chitin. The profile of the hydrolytic products, major product being chitobiose, released from CHOS indicated that EcChi1 was an endo-acting enzyme. Transglycosylation (TG) by EcChi1 on trimeric to hexameric CHOS resulted in the formation of longer CHOS for a prolonged duration. EcChi1 showed both chitobiase and TG activities, in addition to hydrolytic activity. The TG by EcChi1 was dependent, to some extent, on the length of the CHOS substrate and concentration of the enzyme. Homology modeling and docking with CHOS suggested that EcChi1 has a deep substrate-binding groove lined with aromatic amino acids, which is a characteristic feature of a processive enzyme.
Collapse
|
21
|
Slámová K, Bojarová P. Engineered N-acetylhexosamine-active enzymes in glycoscience. Biochim Biophys Acta Gen Subj 2017; 1861:2070-2087. [PMID: 28347843 DOI: 10.1016/j.bbagen.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND In recent years, enzymes modifying N-acetylhexosamine substrates have emerged in numerous theoretical studies as well as practical applications from biology, biomedicine, and biotechnology. Advanced enzyme engineering techniques converted them into potent synthetic instruments affording a variety of valuable glycosides. SCOPE OF REVIEW This review presents the diversity of engineered enzymes active with N-acetylhexosamine carbohydrates: from popular glycoside hydrolases and glycosyltransferases to less known oxidases, epimerases, kinases, sulfotransferases, and acetylases. Though hydrolases in natura, engineered chitinases, β-N-acetylhexosaminidases, and endo-β-N-acetylglucosaminidases were successfully employed in the synthesis of defined natural and derivatized chitooligomers and in the remodeling of N-glycosylation patterns of therapeutic antibodies. The genes of various N-acetylhexosaminyltransferases were cloned into metabolically engineered microorganisms for producing human milk oligosaccharides, Lewis X structures, and human-like glycoproteins. Moreover, mutant N-acetylhexosamine-active glycosyltransferases were applied, e.g., in the construction of glycomimetics and complex glycostructures, industrial production of low-lactose milk, and metabolic labeling of glycans. In the synthesis of biotechnologically important compounds, several innovative glycoengineered systems are presented for an efficient bioproduction of GlcNAc, UDP-GlcNAc, N-acetylneuraminic acid, and of defined glycosaminoglycans. MAJOR CONCLUSIONS The above examples demonstrate that engineering of N-acetylhexosamine-active enzymes was able to solve complex issues such as synthesis of tailored human-like glycoproteins or industrial-scale production of desired oligosaccharides. Due to the specific catalytic mechanism, mutagenesis of these catalysts was often realized through rational solutions. GENERAL SIGNIFICANCE Specific N-acetylhexosamine glycosylation is crucial in biological, biomedical and biotechnological applications and a good understanding of its details opens new possibilities in this fast developing area of glycoscience.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
22
|
Liu T, Chen L, Zhou Y, Jiang X, Duan Y, Yang Q. Structure, Catalysis, and Inhibition of OfChi-h, the Lepidoptera-exclusive Insect Chitinase. J Biol Chem 2017; 292:2080-2088. [PMID: 28053084 DOI: 10.1074/jbc.m116.755330] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
Chitinase-h (Chi-h) is of special interest among insect chitinases due to its exclusive distribution in lepidopteran insects and high sequence identity with bacterial and baculovirus homologs. Here OfChi-h, a Chi-h from Ostrinia furnacalis, was investigated. Crystal structures of both OfChi-h and its complex with chitoheptaose ((GlcN)7) reveal that OfChi-h possesses a long and asymmetric substrate binding cleft, which is a typical characteristics of a processive exo-chitinase. The structural comparison between OfChi-h and its bacterial homolog SmChiA uncovered two phenylalanine-to-tryptophan site variants in OfChi-h at subsites +2 and possibly -7. The F232W/F396W double mutant endowed SmChiA with higher hydrolytic activities toward insoluble substrates, such as insect cuticle, α-chitin, and chitin nanowhisker. An enzymatic assay demonstrated that OfChi-h outperformed OfChtI, an insect endo-chitinase, toward the insoluble substrates, but showed lower activity toward the soluble substrate ethylene glycol chitin. Furthermore, OfChi-h was found to be inhibited by N,N',N″-trimethylglucosamine-N,N',N″,N″'-tetraacetylchitotetraose (TMG-(GlcNAc)4), a substrate analog which can be degraded into TMG-(GlcNAc)1-2 Injection of TMG-(GlcNAc)4 into 5th-instar O. furnacalis larvae led to severe defects in pupation. This work provides insights into a molting-indispensable insect chitinase that is phylogenetically closer to bacterial chitinases than insect chitinases.
Collapse
Affiliation(s)
- Tian Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Lei Chen
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Yong Zhou
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Xi Jiang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Yanwei Duan
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and
| | - Qing Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and .,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
23
|
Vaikuntapu PR, Rambabu S, Madhuprakash J, Podile AR. A new chitinase-D from a plant growth promoting Serratia marcescens GPS5 for enzymatic conversion of chitin. BIORESOURCE TECHNOLOGY 2016; 220:200-207. [PMID: 27567481 DOI: 10.1016/j.biortech.2016.08.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
The current study describes heterologous expression and biochemical characterization of single-modular chitinase-D from Serratia marcescens (SmChiD) with unprecedented catalytic properties which include chitobiase and transglycosylation (TG) activities besides hydrolytic activity. Without accessory domains, SmChiD, hydrolyzed insoluble polymeric chitin substrates like colloidal, α- and β-chitin. Activity studies on CHOS with degree of polymerization (DP) 2-6 as substrate revealed that SmChiD hydrolyzed DP2 with a chitobiase activity and showed TG activity on CHOS with DP3-6, producing longer chain CHOS. But, the TG products were further hydrolyzed to shorter chain CHOS with DP1-2 products. SmChiD with its unique catalytic properties, could be a potential enzyme for the production of long chain CHOS and also for the preparation of efficient enzyme cocktails for chitin degradation.
Collapse
Affiliation(s)
- Papa Rao Vaikuntapu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Samudrala Rambabu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India.
| |
Collapse
|