1
|
Barbosa RC, Godoy RSM, Ferreira PG, Mendes TAO, Ramalho-Ortigão M, Ribeiro JMC, Martins GF. Exploring the midgut physiology of the non-haematophagous mosquito Toxorhynchites theobaldi. Open Biol 2024; 14:230437. [PMID: 38955221 DOI: 10.1098/rsob.230437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Toxorhynchites mosquitoes have an exclusively phytophagous feeding habit as adults, which leads to significant differences in their morphophysiology compared with haematophagous mosquitoes. However, the molecular mechanisms of digestion in this mosquito are not well understood. In this study, RNA sequencing of the posterior midgut (PMG) of the mosquito Toxorhynchites theobaldi was undertaken, highlighting its significance in mosquito digestion. Subsequently, a comparison was made between the differential gene expression of the PMG and that of the anterior midgut. It was found that the most abundant proteases in the PMG were trypsin and chymotrypsin, and the level of gene expression for enzymes essential for digestion (such as serine protease, α-amylase and pancreatic triacylglycerol lipase) and innate immune response (including catalase, cecropin-A2 and superoxide dismutase) was like that of haematophagous mosquitoes. Peritrophin-1 was detected in the entire midgut, with an elevated expression level in the PMG. Based on our findings, it is hypothesized that a non-haematophagic habit might have been exhibited by the ancestor of Tx. theobaldi, and this trait may have been retained. This study represents a pioneering investigation at the molecular level of midgut contents in a non-haematophagous mosquito. The findings offer valuable insights into the evolutionary aspects of feeding habits in culicids.
Collapse
Affiliation(s)
- Renata C Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Raquel S M Godoy
- Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Priscila G Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais 50670-900, Brazil
| | - Tiago A O Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais 50670-900, Brazil
| | | | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Gustavo F Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
2
|
Farder-Gomes CF, Miranda FR, Fernandes KM, Bernardes RC, Sena Bastos DS, Licursi de Oliveira L, Martins GF, Serrão JE. Exposure to low-concentration fipronil impairs survival, behavior, midgut morphology and physiology of Aedes aegypti larvae. CHEMOSPHERE 2024; 358:142240. [PMID: 38705417 DOI: 10.1016/j.chemosphere.2024.142240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The Aedes aegypti mosquito is a vector for various arboviruses, including dengue and yellow fever. Insecticides, such as pyrethroids and organophosphates, are widely used to manage and control these insects. However, mosquitoes have developed resistance to these chemicals. Therefore, this study aimed to investigate the effects of the commercial formulation of fipronil (Tuit® Florestal; 80% purity) on the survival, behavior, morphology, and proteins related to signaling pathways of the midgut in A. aegypti larvae under controlled laboratory conditions. Significant reductions in immature survival were observed in all concentrations of fipronil tested. Low insecticide concentration (0.5 ppb) led to decreased locomotor activity in the larvae and caused disorganization of the epithelial tissue in the midgut. Moreover, exposure to the insecticide decreased the activity of detoxifying enzymes such as catalase, superoxide dismutase, and glutathione-S-transferase. On the other hand, the insecticide increased protein oxidation and nitric oxide levels. The detection of LC3, caspase-3, and JNK proteins, related to autophagy and apoptosis, increased after exposure. However, there was a decrease in the positive cells for ERK 1/2. Furthermore, the treatment with fipronil decreased the number of positive cells for the proteins FMRF, Prospero, PH3, Wg, Armadillo, Notch, and Delta, which are related to cell proliferation and differentiation. These findings demonstrate that even at low concentrations, fipronil exerts larvicidal effects on A. aegypti by affecting behavior and enzymatic detoxification, inducing protein oxidation, free radical generation, midgut damage and cell death, and inhibiting cell proliferation and differentiation. Thus, this insecticide may represent a viable alternative for controlling the spread of this vector.
Collapse
Affiliation(s)
| | - Franciane Rosa Miranda
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | | | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
3
|
Godoy RSM, Barbosa RC, Huang W, Secundino NFC, Pimenta PFP, Jacobs-Lorena M, Martins GF. The larval midgut of Anopheles, Aedes, and Toxorhynchites mosquitoes (Diptera, Culicidae): a comparative approach in morphophysiology and evolution. Cell Tissue Res 2023:10.1007/s00441-023-03783-5. [PMID: 37272999 DOI: 10.1007/s00441-023-03783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/08/2023] [Indexed: 06/06/2023]
Abstract
The mosquito larval midgut is responsible for acquiring and storing most of the nutrients that will sustain the events of metamorphosis and the insect's adult life. Despite its importance, the basic biology of this larval organ is poorly understood. To help fill this gap, we carried out a comparative morphophysiological investigation of three larval midgut regions (gastric caeca, anterior midgut, and posterior midgut) of phylogenetically distant mosquitoes: Anopheles gambiae (Anopheles albimanus was occasionally used as an alternate), Aedes aegypti, and Toxorhynchites theobaldi. Larvae of Toxorhynchites mosquitoes are predacious, in contrast to the other two species, that are detritivorous. In this work, we show that the larval gut of the three species shares basic histological characteristics, but differ in other aspects. The lipid and carbohydrate metabolism of the An. gambiae larval midgut is different compared with that of Ae. aegypti and Tx. theobaldi. The gastric caecum is the most variable region, with differences probably related to the chemical composition of the diet. The peritrophic matrix is morphologically similar in the three species, and processes involved in the post-embryonic development of the organ, such as cell differentiation and proliferation, were also similar. FMRF-positive enteroendocrine cells are grouped in the posterior midgut of Tx. theobaldi, but individualized in An. gambiae and Ae. aegypti. We hypothesize that Tx. theobaldi larval predation is an ancestral condition in mosquito evolution.
Collapse
Affiliation(s)
- Raquel Soares Maia Godoy
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Current affiliation: Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, 30190-002, Brazil.
| | - Renata Cristina Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wei Huang
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | | | | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
4
|
Godoy RSM, Barbosa RC, Procópio TF, Costa BA, Jacobs-Lorena M, Martins GF. FMRF-related peptides in Aedes aegypti midgut: neuromuscular connections and enteric nervous system. Cell Tissue Res 2021; 385:585-602. [PMID: 33961128 PMCID: PMC9841599 DOI: 10.1007/s00441-021-03462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/11/2021] [Indexed: 01/19/2023]
Abstract
FMRFamide-related peptides (FaRPs) are a class of neuropeptides that participate in a variety of physiological processes in invertebrates. They occur in nerves of stomatogastric ganglia and enteroendocrine cells of the insect digestive tract, where they may control muscle functions. However, their direct involvement in muscle function has never been shown in situ. We studied the relationship between FaRPs and midgut muscle during larval-pupal transition of the mosquito Aedes aegypti. In late L4, FaRP-positive neuronal extensions attach to the bundles of the external circular muscle layer, and muscle stem cells start to undergo mitosis in the internal circular layer. Thereafter, the external muscle layer degenerates, disappearing during early pupal development, and is completely absent in the adult mosquito. Our results indicate that FaRP-based neural signals are involved in the reorganization of the muscle fibers of the mosquito midgut during the larval-pupal transition. In addition to confirming FaRP involvement in muscle function, we show that the mosquito midgut muscles are largely innervated, and that circular and longitudinal muscle have specific neuron bodies associated with them.
Collapse
Affiliation(s)
- Raquel S. M. Godoy
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil,Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Renata C. Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Thamara F. Procópio
- Departamento de Bioquímica e Fisiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-420, Brazil
| | - Breno A. Costa
- Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gustavo F. Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
5
|
Maya-Maldonado K, Cardoso-Jaime V, Hernández-Martínez S, Vázquez-Calzada C, Hernández-Hernández FDLC, Lanz-Mendoza H. DNA synthesis increases during the first hours post-emergence in Anopheles albimanus mosquito midgut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103753. [PMID: 32526289 DOI: 10.1016/j.dci.2020.103753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In hematophagous insects, the midgut is a fundamental barrier against infections and limits the development and transmission of pathogens. However, in mosquitoes, cell differentiation, proliferation, and cell cycle process in the midgut have not been characterized. Here we provide evidence of how cell cycle progression occurs in the newly emerged Anopheles albimanus mosquito midgut and describing cyclins expression as mediators of the cell cycle. The cell cycle at different post-emergence times was evaluated in disaggregated cells from midgut tissue using flow cytometry. Also, cyclins A, B, and E were identified by bioinformatics tools. These cyclins were used to analyze cell cycle progression. Flow cytometry data and the expression-pattern of the cyclins by qRT-PCR supported a polyploidy process, besides mitosis marker was marginally detected and only in newly emerged mosquitoes. Our results suggest that DNA increment in midguts occurs by polyploidy during the first hours post-emergence.
Collapse
Affiliation(s)
- Krystal Maya-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Infectómica y Patogénesis Molecular. Av. Instituto Politécnico Nacional 2508, CP 07360, Ciudad de México, Mexico; Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública. Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Victor Cardoso-Jaime
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Infectómica y Patogénesis Molecular. Av. Instituto Politécnico Nacional 2508, CP 07360, Ciudad de México, Mexico; Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública. Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Salvador Hernández-Martínez
- Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública. Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Carlos Vázquez-Calzada
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Infectómica y Patogénesis Molecular. Av. Instituto Politécnico Nacional 2508, CP 07360, Ciudad de México, Mexico
| | - Fidel de la Cruz Hernández-Hernández
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Infectómica y Patogénesis Molecular. Av. Instituto Politécnico Nacional 2508, CP 07360, Ciudad de México, Mexico.
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas. Instituto Nacional de Salud Pública. Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
6
|
Toxorhynchites Species: A Review of Current Knowledge. INSECTS 2020; 11:insects11110747. [PMID: 33143104 PMCID: PMC7693308 DOI: 10.3390/insects11110747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Mosquitoes are well known to spread diseases when they take a blood meal. However, not all species feed on blood but instead get their nourishment from other sources. One such species is Toxorhynchites, which are a paradox among mosquitoes. These mosquitoes are entirely non-blood feeding and, as a result, are not considered to be harmful to human health. Indeed, since their larvae feed on the larvae of pest species and other aquatic insects, they are a potential counter measure against the spread of mosquito-transmitted diseases. Their effective application has been hampered due to a lack of understanding and inconsistencies in their descriptions. This review aims to build upon previously published information and summarize recent findings to support their use in combating mosquito-transmitted infections. Abstract The increasing global incidence of mosquito-borne infections is driving a need for effective control methods. Vector populations have expanded their geographical ranges, while increasing resistance to chemical insecticides and a lack of effective treatments or vaccines has meant that the development of vector control methods is essential in the fight against mosquito-transmitted diseases. This review will focus on Toxorhynchites, a non-hematophagous mosquito genus which is a natural predator of vector species and may be exploited as a biological control agent. Their effectiveness in this role has been strongly debated for many years and early trials have been marred by misinformation and incomplete descriptions. Here, we draw together current knowledge of the general biology of Toxorhynchites and discuss how this updated information will benefit their role in an integrated vector management program.
Collapse
|
7
|
Baia-da-Silva DC, Orfanó AS, Nacif-Pimenta R, de Melo FF, Guerra MGVB, Lacerda MVG, Monteiro WM, Pimenta PFP. Microanatomy of the American Malaria Vector Anopheles aquasalis (Diptera: Culicidae: Anophelinae) Midgut: Ultrastructural and Histochemical Observations. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1636-1649. [PMID: 31321415 PMCID: PMC6821279 DOI: 10.1093/jme/tjz114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 06/10/2023]
Abstract
The mosquito gut is divided into foregut, midgut, and hindgut. The midgut functions in storage and digestion of the bloodmeal. This study used light, scanning (SEM), and transmission (TEM) electron microscopy to analyze in detail the microanatomy and morphology of the midgut of nonblood-fed Anopheles aquasalis females. The midgut epithelium is a monolayer of columnar epithelial cells that is composed of two populations: microvillar epithelial cells and basal cells. The microvillar epithelial cells can be further subdivided into light and dark cells, based on their affinities to toluidine blue and their electron density. FITC-labeling of the anterior midgut and posterior midgut with lectins resulted in different fluorescence intensities, indicating differences in carbohydrate residues. SEM revealed a complex muscle network composed of circular and longitudinal fibers that surround the entire midgut. In summary, the use of a diverse set of morphological methods revealed the general microanatomy of the midgut and associated tissues of An. aquasalis, which is a major vector of Plasmodium spp. (Haemosporida: Plasmodiidae) in America.
Collapse
Affiliation(s)
- Djane C Baia-da-Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
| | - Alessandra S Orfanó
- Instituto Leônidas and Maria Deane, Fundação Oswaldo Cruz-Manaus, Rua Terezina, Adrianópolis, CEP, Manaus, AM, Brazil
| | - Rafael Nacif-Pimenta
- Instituto Leônidas and Maria Deane, Fundação Oswaldo Cruz-Manaus, Rua Terezina, Adrianópolis, CEP, Manaus, AM, Brazil
| | - Fabricio F de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Rua Hormindo Barros, Candeias, CEP, Vitória da Conquista, BA, Brazil
| | - Maria G V B Guerra
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz-Minas Gerais, Av. Augusto de Lima, Barro Preto, CEP, Belo Horizonte, MG, Brazil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
| | - Paulo F P Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus CEP, Manaus, AM, Brazil
- Instituto Leônidas and Maria Deane, Fundação Oswaldo Cruz-Manaus, Rua Terezina, Adrianópolis, CEP, Manaus, AM, Brazil
| |
Collapse
|
8
|
Caccia S, Casartelli M, Tettamanti G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 2019; 377:505-525. [DOI: 10.1007/s00441-019-03076-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|
9
|
Fernandes KM, Tomé HVV, Miranda FR, Gonçalves WG, Pascini TV, Serrão JE, Martins GF. Aedes aegypti larvae treated with spinosad produce adults with damaged midgut and reduced fecundity. CHEMOSPHERE 2019; 221:464-470. [PMID: 30654260 DOI: 10.1016/j.chemosphere.2019.01.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
The mosquito Aedes aegypti is the main vector of Dengue, Chikungunya, Zika, and yellow fever viruses, which are responsible for high human morbidity and mortality. The fight against these pathogens is mainly based on the control of the insect vector with the use of insecticides. Among insecticides, spinosad bioinsecticide is efficient against A. aegypti larvae and may be an alternative for vector control. Here, we investigate the sublethal effects of spinosad during midgut metamorphosis of A. aegypti females and its cumulative effects on blood acquisition capacity and fecundity in adults. We studied the midgut because it is an important model organ directly related to blood acquisition and digestion. Treatment of larvae with spinosad induced oxidative stress, apoptosis, and damage to the midgut cells at all stages of development and in adults. There was a reduction in the number of proliferating cells and the number of enteroendocrine cells in treated individuals. In addition, damage caused by spinosad led to a reduction in oviposition and egg viability of A. aegypti females. Finally, the exposure of mosquito larvae to sublethal concentrations of spinosad interfered with the development of the midgut, arresting the blood digestion and reproduction of adult females with blood digestion and reproduction difficulties.
Collapse
Affiliation(s)
- Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil; Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | | | - Franciane Rosa Miranda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | | | - Tales Vicari Pascini
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | | |
Collapse
|
10
|
Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, Liu H, Liu Q, Zhao T, Chen X, Zhou H, Wang P, Cheng G. A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host Microbe 2018; 25:101-112.e5. [PMID: 30595552 DOI: 10.1016/j.chom.2018.11.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/15/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
Mosquitoes are hematophagous vectors that can acquire human viruses in their intestinal tract. Here, we define a mosquito gut commensal bacterium that promotes permissiveness to arboviruses. Antibiotic depletion of gut bacteria impaired arboviral infection of a lab-adapted Aedes aegypti mosquito strain. Reconstitution of individual cultivable gut bacteria in antibiotic-treated mosquitoes identified Serratia marcescens as a commensal bacterium critical for efficient arboviral acquisition. S. marcescens facilitates arboviral infection through a secreted protein named SmEnhancin, which digests membrane-bound mucins on the mosquito gut epithelia, thereby enhancing viral dissemination. Field Aedes mosquitoes positive for S. marcescens were more permissive to dengue virus infection than those free of S. marcescens. Oral introduction of S. marcescens into field mosquitoes that lack this bacterium rendered these mosquitoes highly susceptible to arboviruses. This study defines a commensal-driven mechanism that contributes to vector competence, and extends our understanding of multipartite interactions among hosts, the gut microbiome, and viruses.
Collapse
Affiliation(s)
- Pa Wu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Peng Sun
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Kaixiao Nie
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China; School of Life Science, Tsinghua University, Beijing 100084, China
| | - Mingyu Shi
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Changguang Xiao
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Han Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, CCID, ICDC, China CDC, Beijing 102206, China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoguang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Pu'er, Yunnan Province 650034, PR China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Sugier K, Vacherie B, Cornils A, Wincker P, Jamet JL, Madoui MA. Chitin distribution in the Oithona digestive and reproductive systems revealed by fluorescence microscopy. PeerJ 2018; 6:e4685. [PMID: 29780666 PMCID: PMC5957050 DOI: 10.7717/peerj.4685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 11/20/2022] Open
Abstract
Among copepods, which are the most abundant animals on Earth, the genus Oithona is described as one of the most numerous and plays a major role in the marine food chain and biogeochemical cycles, particularly through the excretion of chitin-coated fecal pellets. Despite the morphology of several Oithona species is well known, knowledge of its internal anatomy and chitin distribution is still limited. To answer this problem, Oithona nana and O. similis individuals were stained by Wheat Germ Agglutinin-Fluorescein IsoThioCyanate (WGA-FITC) and DiAmidino-2-PhenylIndole (DAPI) for fluorescence microscopy observations. The image analyses allowed a new description of the organization and chitin content of the digestive and reproductive systems of Oithona male and female. Chitin microfibrils were found all along the digestive system from the stomach to the hindgut with a higher concentration at the peritrophic membrane of the anterior midgut. Several midgut shrinkages were observed and proposed to be involved in faecal pellet shaping and motion. Amorphous chitin structures were also found to be a major component of the ducts and seminal vesicles and receptacles. The rapid staining protocol we proposed allowed a new insight into the Oithona internal anatomy and highlighted the role of chitin in the digestion and reproduction. This method could be applied to a wide range of copepods in order to perform comparative anatomy analyses.
Collapse
Affiliation(s)
- Kevin Sugier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Benoit Vacherie
- Commissariat à l'Energie Atomique (CEA), Institut François Jacob, Genoscope, Evry, France
| | - Astrid Cornils
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Polar Biological Oceanography, Bremerhaven, Germany
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Louis Jamet
- Université de Toulon, Aix Marseille Université, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
12
|
Whitehill JGA, Henderson H, Strong W, Jaquish B, Bohlmann J. Function of Sitka spruce stone cells as a physical defence against white pine weevil. PLANT, CELL & ENVIRONMENT 2016; 39:2545-2556. [PMID: 27478980 DOI: 10.1111/pce.12810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Stone cells are a physical defence of conifers against stem feeding insects such as weevils and bark beetles. In Sitka spruce, abundance of stone cells in the cortex of apical shoot tips is associated with resistance to white pine weevil. However, the mode of action by which stone cells interfere with growth and development of weevil larvae is unknown. We developed a bioassay system for testing potential effects of stone cells, which were isolated from resistant trees, on weevil larvae. Bioassays using artificial diet and controlled amounts of stone cells focused on physical defence. We evaluated the effects of stone cells on establishment of neonate larvae, mandible wear and changes in relative growth rates of third instar larvae. Establishment of neonates and relative growth rates of third instars were significantly reduced by stone cells. Stone cells appeared to be indigestible by weevil larvae. Our results suggest that stone cells affect weevil establishment and development by forming a physical feeding barrier against neonate larvae at the site of oviposition, and by reducing access to nutrients in the cortex of resistant trees, which contain an abundance of stone cells in place of a more nutrient rich tissue in susceptible trees.
Collapse
Affiliation(s)
- Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Ward Strong
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, Tree Improvement Branch, Kalamalka Forestry Centre, 3401 Reservoir Road, Vernon, British Columbia, Canada, V1B 2C7
| | - Barry Jaquish
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, Tree Improvement Branch, Kalamalka Forestry Centre, 3401 Reservoir Road, Vernon, British Columbia, Canada, V1B 2C7
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, British Columbia, Canada, V6T 1Z4.
| |
Collapse
|