1
|
Paoli M, Haase A. In Vivo Two-Photon Imaging of the Olfactory System in Insects. Methods Mol Biol 2025; 2915:1-48. [PMID: 40249481 DOI: 10.1007/978-1-0716-4466-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, together with practical examples of pioneering applications of this imaging modality.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France.
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France.
| | - Albrecht Haase
- Center for Mind/Brain Sciences and Department of Physics, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Varghese B, González-Navarro JA, Guerra VLP, Faizulina M, Artemieva D, Chum T, Ramakrishna TRB, Cebecauer M, Kovaříček P. Cell surface morphology mimicking nano-bio platform for immune cell stimulation. iScience 2024; 27:111033. [PMID: 39498306 PMCID: PMC11532961 DOI: 10.1016/j.isci.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Studying the complex realm of cellular communication and interactions by fluorescence microscopy requires sample fixation on a transparent substrate. To activate T cells, which are pivotal in controlling the immune system, it is important to present the activating antigen in a spatial arrangement similar to the nature of the antigen-presenting cell, including the presence of ligands on microvilli. Similar arrangement is predicted for some other immune cells. In this work, immune cell-stimulating platform based on nanoparticle-ligand conjugates have been developed using a scalable, affordable, and broadly applicable technology, which can be readily deployed without the need for state-of-the-art nanofabrication instruments. The validation of surface biofunctionalization was performed by combination of fluorescence and atomic force microscopy techniques. We demonstrate that the targeted system serves as a biomimetic scaffold on which immune cells make primary contact with the microvilli-mimicking substrate and exhibit stimulus-specific activation.
Collapse
Affiliation(s)
- Beena Varghese
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czechia
| | - José Alfredo González-Navarro
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czechia
| | - Valentino Libero Pio Guerra
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czechia
| | - Margarita Faizulina
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czechia
| | - Daria Artemieva
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czechia
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czechia
| | - Tomáš Chum
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czechia
| | - Tejaswini Rama Bangalore Ramakrishna
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czechia
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czechia
| | - Petr Kovaříček
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czechia
| |
Collapse
|
3
|
Hou L, Wang L, Deng C, Jin P, Wen C, Zhang W, Liang W. Sensitive Detection and Cell Imaging of Ca 2+ Based on a "Turn-On" Schiff Base Fluorescent Probe. LUMINESCENCE 2024; 39:e4914. [PMID: 39350644 DOI: 10.1002/bio.4914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Ca2+ ion as a second messenger in signaling pathway plays many vital roles in many biological phenomena. Thus, it is of significance for developing effective probes to detect Ca2+ ion specifically. Herein, a new Schiff base fluorescent probe FPH, fluorescein monoaldehyde (2-aminomethylpyridine) hydrazone, was designed and synthesized to identify Ca2+ in DMSO aqueous solution. The probe FPH revealed significant responses to Ca2+ with a fluorescence enhancement at 540 nm, exhibiting an evident fluorescence change from ultraweak luminescence to bright green. Otherwise, the FPH displayed a good linear range of 0.67 × 10-6 to 3.33 × 10-6 mol/L with a lower detection limit at 7.02 × 10-8 mol/L. The probe FPH were further successfully utilized to detect Ca2+ in living cells by an increased bright green fluorescence.
Collapse
Affiliation(s)
- Lingjie Hou
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, China
- Institute of Environmental Science, Shanxi University, Taiyuan, China
- Humic Acid Engineering and Technology Research Center of Shanxi Province, Jinzhong, China
| | - Linlin Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chenhua Deng
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong, China
| | - Pengyue Jin
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chaochao Wen
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Wenjia Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Wenting Liang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Paoli M, Wystrach A, Ronsin B, Giurfa M. Analysis of fast calcium dynamics of honey bee olfactory coding. eLife 2024; 13:RP93789. [PMID: 39235447 PMCID: PMC11377060 DOI: 10.7554/elife.93789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Odour processing exhibits multiple parallels between vertebrate and invertebrate olfactory systems. Insects, in particular, have emerged as relevant models for olfactory studies because of the tractability of their olfactory circuits. Here, we used fast calcium imaging to track the activity of projection neurons in the honey bee antennal lobe (AL) during olfactory stimulation at high temporal resolution. We observed a heterogeneity of response profiles and an abundance of inhibitory activities, resulting in various response latencies and stimulus-specific post-odour neural signatures. Recorded calcium signals were fed to a mushroom body (MB) model constructed implementing the fundamental features of connectivity between olfactory projection neurons, Kenyon cells (KC), and MB output neurons (MBON). The model accounts for the increase of odorant discrimination in the MB compared to the AL and reveals the recruitment of two distinct KC populations that represent odorants and their aftersmell as two separate but temporally coherent neural objects. Finally, we showed that the learning-induced modulation of KC-to-MBON synapses can explain both the variations in associative learning scores across different conditioning protocols used in bees and the bees' response latency. Thus, it provides a simple explanation of how the time contingency between the stimulus and the reward can be encoded without the need for time tracking. This study broadens our understanding of olfactory coding and learning in honey bees. It demonstrates that a model based on simple MB connectivity rules and fed with real physiological data can explain fundamental aspects of odour processing and associative learning.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine - Institut de biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, Toulouse, France
| | - Antoine Wystrach
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, Toulouse, France
| | - Brice Ronsin
- Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, Toulouse, France
| | - Martin Giurfa
- Neuroscience Paris-Seine - Institut de biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université Paul Sabatier, CNRS, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Zhang Y, Looger LL. Fast and sensitive GCaMP calcium indicators for neuronal imaging. J Physiol 2024; 602:1595-1604. [PMID: 36811153 DOI: 10.1113/jp283832] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
We review the principles of development and deployment of genetically encoded calcium indicators (GECIs) for the detection of neural activity. Our focus is on the popular GCaMP family of green GECIs, culminating in the recent release of the jGCaMP8 sensors, with dramatically improved kinetics relative to previous generations. We summarize the properties of GECIs in multiple colour channels (blue, cyan, green, yellow, red, far-red) and highlight areas for further improvement. With their low-millisecond rise-times, the jGCaMP8 indicators allow new classes of experiments following neural activity in time frames approaching the underlying computations.
Collapse
Affiliation(s)
- Yan Zhang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Jin Z, Lakshmanan A, Zhang R, Tran TA, Rabut C, Dutka P, Duan M, Hurt RC, Malounda D, Yao Y, Shapiro MG. Ultrasonic reporters of calcium for deep tissue imaging of cellular signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566364. [PMID: 37986929 PMCID: PMC10659314 DOI: 10.1101/2023.11.09.566364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Calcium imaging has enabled major biological discoveries. However, the scattering of light by tissue limits the use of standard fluorescent calcium indicators in living animals. To address this limitation, we introduce the first genetically encoded ultrasonic reporter of calcium (URoC). Based on a unique class of air-filled protein nanostructures called gas vesicles, we engineered URoC to produce elevated nonlinear ultrasound signal upon binding to calcium ions. With URoC expressed in mammalian cells, we demonstrate noninvasive ultrasound imaging of calcium signaling in vivo during drug-induced receptor activation. URoC brings the depth and resolution advantages of ultrasound to the in vivo imaging of dynamic cellular function and paves the way for acoustic biosensing of a broader variety of biological signals.
Collapse
|
7
|
Wang J, Xue N, Pan W, Tu R, Li S, Zhang Y, Mao Y, Liu Y, Cheng H, Guo Y, Yuan W, Ni X, Wang M. Repurposing conformational changes in ANL superfamily enzymes to rapidly generate biosensors for organic and amino acids. Nat Commun 2023; 14:6680. [PMID: 37865661 PMCID: PMC10590383 DOI: 10.1038/s41467-023-42431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Biosensors are powerful tools for detecting, real-time imaging, and quantifying molecules, but rapidly constructing diverse genetically encoded biosensors remains challenging. Here, we report a method to rapidly convert enzymes into genetically encoded circularly permuted fluorescent protein-based indicators to detect organic acids (GECFINDER). ANL superfamily enzymes undergo hinge-mediated ligand-coupling domain movement during catalysis. We introduce a circularly permuted fluorescent protein into enzymes hinges, converting ligand-induced conformational changes into significant fluorescence signal changes. We obtain 11 GECFINDERs for detecting phenylalanine, glutamic acid and other acids. GECFINDER-Phe3 and GECFINDER-Glu can efficiently and accurately quantify target molecules in biological samples in vitro. This method simplifies amino acid quantification without requiring complex equipment, potentially serving as point-of-care testing tools for clinical applications in low-resource environments. We also develop a GECFINDER-enabled droplet-based microfluidic high-throughput screening method for obtaining high-yield industrial strains. Our method provides a foundation for using enzymes as untapped blueprint resources for biosensor design, creation, and application.
Collapse
Affiliation(s)
- Jin Wang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Ning Xue
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Haihe Laboratory of Synthetic Biology, 300308, Tianjin, China
- Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Wenjia Pan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- College of Environmental and Resources, Chongqing Technology and Business University, 400067, Chongqing, China
| | - Shixin Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Yufeng Mao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Ye Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Haijiao Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Yanmei Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Wei Yuan
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China
| | - Xiaomeng Ni
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Meng Wang
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, 300308, Tianjin, China.
| |
Collapse
|
8
|
Durbin RJ, Heredia DJ, Gould TW, Renden RB. Postsynaptic Calcium Extrusion at the Mouse Neuromuscular Junction Alkalinizes the Synaptic Cleft. J Neurosci 2023; 43:5741-5752. [PMID: 37474311 PMCID: PMC10423045 DOI: 10.1523/jneurosci.0815-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Neurotransmission is shaped by extracellular pH. Alkalization enhances pH-sensitive transmitter release and receptor activation, whereas acidification inhibits these processes and can activate acid-sensitive conductances in the synaptic cleft. Previous work has shown that the synaptic cleft can either acidify because of synaptic vesicular release and/or alkalize because of Ca2+ extrusion by the plasma membrane ATPase (PMCA). The direction of change differs across synapse types. At the mammalian neuromuscular junction (NMJ), the direction and magnitude of pH transients in the synaptic cleft during transmission remain ambiguous. We set out to elucidate the extracellular pH transients that occur at this cholinergic synapse under near-physiological conditions and identify their sources. We monitored pH-dependent changes in the synaptic cleft of the mouse levator auris longus using viral expression of the pseudoratiometric probe pHusion-Ex in the muscle. Using mice from both sexes, a significant and prolonged alkalization occurred when stimulating the connected nerve for 5 s at 50 Hz, which was dependent on postsynaptic intracellular Ca2+ release. Sustained stimulation for a longer duration (20 s at 50 Hz) caused additional prolonged net acidification at the cleft. To investigate the mechanism underlying cleft alkalization, we used muscle-expressed GCaMP3 to monitor the contribution of postsynaptic Ca2+ Activity-induced liberation of intracellular Ca2+ in muscle positively correlated with alkalization of the synaptic cleft, whereas inhibiting PMCA significantly decreased the extent of cleft alkalization. Thus, cholinergic synapses of the mouse NMJ typically alkalize because of cytosolic Ca2+ liberated in muscle during activity, unless under highly strenuous conditions where acidification predominates.SIGNIFICANCE STATEMENT Changes in synaptic cleft pH alter neurotransmission, acting on receptors and channels on both sides of the synapse. Synaptic acidification has been associated with a myriad of diseases in the central and peripheral nervous system. Here, we report that in near-physiological recording conditions the cholinergic neuromuscular junction shows use-dependent bidirectional changes in synaptic cleft pH-immediate alkalinization and a long-lasting acidification under prolonged stimulation. These results provide further insight into physiologically relevant changes at cholinergic synapses that have not been defined previously. Understanding and identifying synaptic pH transients during and after neuronal activity provides insight into short-term synaptic plasticity synapses and may identify therapeutic targets for diseases.
Collapse
Affiliation(s)
- Ryan J Durbin
- Integrative Neuroscience Graduate Program, University of Nevada, Reno, Reno, Nevada 89557
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Dante J Heredia
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Thomas W Gould
- Integrative Neuroscience Graduate Program, University of Nevada, Reno, Reno, Nevada 89557
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| | - Robert B Renden
- Integrative Neuroscience Graduate Program, University of Nevada, Reno, Reno, Nevada 89557
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada 89557
| |
Collapse
|
9
|
Tran O, Hughes HJ, Carter T, Török K. Development and characterization of novel jGCaMP8f calcium sensor variants with improved kinetics and fluorescence response range. Front Cell Neurosci 2023; 17:1155406. [PMID: 37275778 PMCID: PMC10234427 DOI: 10.3389/fncel.2023.1155406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Genetically encoded biosensors for monitoring intracellular calcium changes have advanced our understanding of cell signaling and neuronal activity patterns in health and disease. Successful application of GCaMP biosensors to a wide range of biological questions requires that sensor properties such as brightness and dynamic range, ligand affinity and response kinetics be tuned to the specific conditions or phenomena to be investigated. Random as well as rational targeted mutations of such sensor molecules have led to a number of important breakthroughs in this field, including the calcium sensors GCaMP6f and GCaMP6fu. jGCaMP8f of the most recently developed generation is promising a step-change in in vivo imaging with further increased fluorescence dynamic range. Here, we critically examine the biophysical properties of jGCaMP8f and report development by rational design of two novel variants of jGCaMP8f. Methods We determined the in vitro biophysical properties of jGCaMP8f and selected variants by fluorescence spectroscopies and compared their performance monitoring intracellular Ca2+ transients with previously developed fast and bright GCaMP sensors by live cell imaging. Results We demonstrate that the physiologically highly relevant Mg2+ not only majorly affects the kinetic responses of GCaMPs but also their brightness and fluorescence dynamic range. We developed novel variants jGCaMP8f L27A which has threefold faster off-kinetics and jGCaMP8f F366H which shows a ∼3-fold greater dynamic range than jGCaMP8f, in vitro as well as in HEK293T cells and endothelial cell line HUVEC in response to ATP stimulation. Discussion We discuss the importance of optimization of biosensors for studying neurobiology in the context of the novel variants of jGCaMP8f. The jGCaMP8f F366H variant with a large dynamic range has the potential to improve in vivo imaging outcomes with increased signal-to-noise ratio. The L27A variant with faster kinetics than jGCaMP8f has larger cellular responses than previous fast GCaMP variants. The jGCaMP8f generation and novel improved variants presented here will further increase the application potential of GECIs in health and disease.
Collapse
|
10
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Hu S, Yang J, Liao A, Lin Y, Liang S. Fluorescent indicators for live-cell and in vitro detection of inorganic cadmium dynamics. J Fluoresc 2022; 32:1397-1404. [PMID: 35438371 DOI: 10.1007/s10895-022-02919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Cadmium contamination is a severe threat to the environment and food safety. Thus, there is an urgent need to develop highly sensitive and selective cadmium detection tools. The engineered fluorescent indicator is a powerful tool for the rapid detection of inorganic cadmium in the environment. In this study, the development of yellow fluorescent indicators of cadmium chloride by inserting a fluorescent protein at different positions of the high cadmium-specific repressor and optimizing the flexible linker between the connection points is reported. These indicators provide a fast, sensitive, specific, high dynamic range, and real-time readout of cadmium ion dynamics in solution. The excitation and emission wavelength of this indicator used in this work are 420/485 and 528 nm, respectively. Fluorescent indicators N0C0/N1C1 showed a linear response to cadmium concentration within the range from 10/30 to 50/100 nM and with a detection limit of 10/33 nM under optimal condition. Escherichia coli cells containing the indicator were used to further study the response of cadmium ion concentration in living cells. E. coli N1C1 could respond to different concentrations of cadmium ions. This study provides a rapid and straightforward method for cadmium ion detection in vitro and the potential for biological imaging.
Collapse
Affiliation(s)
- Shulin Hu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Jun Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Anqi Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China. .,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.
| |
Collapse
|
12
|
Sosa-Peinado A, León-Cruz E, Velázquez-López I, Matuz-Mares D, Cano-Sánchez P, González-Andrade M. Theoretical-experimental studies of calmodulin-peptide interactions at different calcium equivalents. J Biomol Struct Dyn 2022; 40:2689-2700. [DOI: 10.1080/07391102.2020.1841679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Erika León-Cruz
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Deyamira Matuz-Mares
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | |
Collapse
|
13
|
Cohen R, Mukai C, Nelson JL, Zenilman SS, Sosnicki DM, Travis AJ. A genetically targeted sensor reveals spatial and temporal dynamics of acrosomal calcium and sperm acrosome exocytosis. J Biol Chem 2022; 298:101868. [PMID: 35346690 PMCID: PMC9046242 DOI: 10.1016/j.jbc.2022.101868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Secretion of the acrosome, a single vesicle located rostrally in the head of a mammalian sperm, through a process known as "acrosome exocytosis" (AE), is essential for fertilization. However, the mechanisms leading to and regulating this complex process are controversial. In particular, poor understanding of Ca2+ dynamics between sperm subcellular compartments and regulation of membrane fusion mechanisms have led to competing models of AE. Here, we developed a transgenic mouse expressing an Acrosome-targeted Sensor for Exocytosis (AcroSensE) to investigate the spatial and temporal Ca2+ dynamics in AE in live sperm. AcroSensE combines a genetically encoded Ca2+ indicator (GCaMP) fused with an mCherry indicator to spatiotemporally resolve acrosomal Ca2+ rise (ACR) and membrane fusion events, enabling real-time study of AE. We found that ACR is dependent on extracellular Ca2+ and that ACR precedes AE. In addition, we show that there are intermediate steps in ACR and that AE correlates better with the ACR rate rather than absolute Ca2+ amount. Finally, we demonstrate that ACR and membrane fusion progression kinetics and spatial patterns differ with different stimuli and that sites of initiation of ACR and sites of membrane fusion do not always correspond. These findings support a model involving functionally redundant pathways that enable a highly regulated, multistep AE in heterogeneous sperm populations, unlike the previously proposed "acrosome reaction" model.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | - Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jacquelyn L Nelson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Shoshana S Zenilman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Danielle M Sosnicki
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Wang Y, Gong Q, Huang F, He L, Liu Y. Live imaging and quantitation of insect feeding-induced Ca 2+ signal using GCaMP3-based system in Nicotiana benthamiana. STAR Protoc 2022; 3:101040. [PMID: 34977683 PMCID: PMC8689350 DOI: 10.1016/j.xpro.2021.101040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Wounding evokes transient increases in cytosolic calcium (Ca2+) concentration. Visualizing real-time Ca2+ flux provides new insights into Ca2+-signaling pathways. Here, we outline a protocol to detect insect feeding-induced Ca2+ flux elevation in Nicotiana benthamiana leaves based on the GCaMP3 reporter system by Leica fluorescence stereo microscopes (LFSM). LFSM combines super-fast manual screening with high-end imaging capabilities. Through this protocol, we can clearly observe the calcium flow after aphid's piercing-sucking. Additionally, we describe a protocol to quantify Ca2+ level using LFSM. For complete details on the use and execution of this protocol, please refer to Wang et al. (2021).
Collapse
Affiliation(s)
- Yunjing Wang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Qian Gong
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Fan Huang
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Linfang He
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
15
|
Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nat Biotechnol 2022; 40:598-605. [PMID: 34845372 PMCID: PMC9005348 DOI: 10.1038/s41587-021-01100-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Reversibly photo-switchable proteins are essential for many super-resolution fluorescence microscopic and optoacoustic imaging methods. However, they have yet to be used as sensors that measure the distribution of specific analytes at the nanoscale or in the tissues of live animals. Here we constructed the prototype of a photo-switchable Ca2+ sensor based on GCaMP5G that can be switched with 405/488-nm light and describe its molecular mechanisms at the structural level, including the importance of the interaction of the core barrel structure of the fluorescent protein with the Ca2+ receptor moiety. We demonstrate super-resolution imaging of Ca2+ concentration in cultured cells and optoacoustic Ca2+ imaging in implanted tumor cells in mice under controlled Ca2+ conditions. Finally, we show the generalizability of the concept by constructing examples of photo-switching maltose and dopamine sensors based on periplasmatic binding protein and G-protein-coupled receptor-based sensors.
Collapse
|
16
|
Narcisse D, Mustafi SM, Carlson M, Batabyal S, Kim S, Wright W, Kumar Mohanty S. Bioluminescent Multi-Characteristic Opsin for Simultaneous Optical Stimulation and Continuous Monitoring of Cortical Activities. Front Cell Neurosci 2021; 15:750663. [PMID: 34759801 PMCID: PMC8573050 DOI: 10.3389/fncel.2021.750663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 12/02/2022] Open
Abstract
Stimulation and continuous monitoring of neural activities at cellular resolution are required for the understanding of the sensory processing of stimuli and development of effective neuromodulation therapies. We present bioluminescence multi-characteristic opsin (bMCOII), a hybrid optogenetic actuator, and a bioluminescence Ca2+ sensor for excitation-free, continuous monitoring of neural activities in the visual cortex, with high spatiotemporal resolution. An exceptionally low intensity (10 μW/mm2) of light could elicit neural activation that could be detected by Ca2+ bioluminescence imaging. An uninterrupted (>14 h) recording of visually evoked neural activities in the cortex of mice enabled the determination of strength of sensory activation. Furthermore, an artificial intelligence-based neural activation parameter transformed Ca2+ bioluminescence signals to network activity patterns. During continuous Ca2+-bioluminescence recordings, visual cortical activity peaked at the seventh to eighth hour of anesthesia, coinciding with circadian rhythm. For both direct optogenetic stimulation in cortical slices and visually evoked activities in the visual cortex, we observed secondary delayed Ca2+-bioluminescence responses, suggesting the involvement of neuron-astrocyte-neuron pathway. Our approach will enable the development of a modular and scalable interface system capable of serving a multiplicity of applications to modulate and monitor large-scale activities in the brain.
Collapse
|
17
|
Bearham J, Krutrök N, Lindberg B, Woodall M, Astrand A, Taylor JD, Biggart M, Vasiljevs S, Tarran R, Baines DL. A modified fluorescent sensor for reporting glucose concentration in the airway lumen. PLoS One 2021; 16:e0254248. [PMID: 34242292 PMCID: PMC8270177 DOI: 10.1371/journal.pone.0254248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
We have modified the periplasmic Escherichia coli glucose/galactose binding protein (GBP) and labelled with environmentally sensitive fluorophores to further explore its potential as a sensor for the evaluation of glucose concentration in airway surface liquid (ASL). We identified E149C/A213R GBP labelled with N,N'-Dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD, emission wavelength maximum 536nm) with a Kd for D-glucose of 1.02mM and a fluorescence dynamic range of 5.8. This sensor was specific for D-glucose and exhibited fluorescence stability in experiments for several hours. The use of E149C/A213R GBP-IANBD in the ASL of airway cells grown at air-liquid-interface (ALI) detected an increase in glucose concentration 10 minutes after raising basolateral glucose from 5 to 15mM. This sensor also reported a greater change in ASL glucose concentration in response to increased basolateral glucose in H441 airway cells compared to human bronchial epithelial cells (HBEC) and there was less variability with HBEC data than that of H441 indicating that HBEC more effectively regulate glucose movement into the ASL. The sensor detected glucose in bronchoalveolar lavage fluid (BALf) from diabetic db/db mice but not normoglycaemic wildtype mice, indicating limited sensitivity of the sensor at glucose concentrations <50μM. Using nasal inhalation of the sensor and spectral unmixing to generate images, E149C/A213R GBP-IANBD fluorescence was detected in luminal regions of cryosections of the murine distal lung that was greater in db/db than wildtype mice. In conclusion, this sensor provides a useful tool for further development to measure luminal glucose concentration in models of lung/airway to explore how this may change in disease.
Collapse
Affiliation(s)
- Jade Bearham
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Nina Krutrök
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Botilda Lindberg
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maximillian Woodall
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Annika Astrand
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - John D. Taylor
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Matthew Biggart
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Deborah L. Baines
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| |
Collapse
|
18
|
Chen Y, Matveev V. Stationary Ca 2+ nanodomains in the presence of buffers with two binding sites. Biophys J 2021; 120:1942-1956. [PMID: 33771472 DOI: 10.1016/j.bpj.2021.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
Abstract
We examine closed-form approximations for the equilibrium Ca2+ and buffer concentrations near a point Ca2+ source representing a Ca2+ channel, in the presence of a mobile buffer with two Ca2+ binding sites activated sequentially and possessing distinct binding affinities and kinetics. This allows us to model the impact on Ca2+ nanodomains of realistic endogenous Ca2+ buffers characterized by cooperative Ca2+ binding, such as calretinin. The approximations we present involve a combination or rational and exponential functions, whose parameters are constrained using the series interpolation method that we recently introduced for the case of simpler Ca2+ buffers with a single Ca2+ binding site. We conduct extensive parameter sensitivity analysis and show that the obtained closed-form approximations achieve reasonable qualitative accuracy for a wide range of buffer's Ca2+ binding properties and other relevant model parameters. In particular, the accuracy of the derived approximants exceeds that of the rapid buffering approximation in large portions of the relevant parameter space.
Collapse
Affiliation(s)
- Yinbo Chen
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Victor Matveev
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey.
| |
Collapse
|
19
|
Li ES, Saha MS. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021; 11:343. [PMID: 33668387 PMCID: PMC7996158 DOI: 10.3390/biom11030343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.
Collapse
Affiliation(s)
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA;
| |
Collapse
|
20
|
Sanchez C, Berthier C, Tourneur Y, Monteiro L, Allard B, Csernoch L, Jacquemond V. Detection of Ca2+ transients near ryanodine receptors by targeting fluorescent Ca2+ sensors to the triad. J Gen Physiol 2021; 153:211757. [PMID: 33538764 PMCID: PMC7868779 DOI: 10.1085/jgp.202012592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022] Open
Abstract
In intact muscle fibers, functional properties of ryanodine receptor (RYR)–mediated sarcoplasmic reticulum (SR) Ca2+ release triggered by activation of the voltage sensor CaV1.1 have so far essentially been addressed with diffusible Ca2+-sensitive dyes. Here, we used a domain (T306) of the protein triadin to target the Ca2+-sensitive probe GCaMP6f to the junctional SR membrane, in the immediate vicinity of RYR channels, within the triad region. Fluorescence of untargeted GCaMP6f was distributed throughout the muscle fibers and experienced large Ca2+-dependent changes, with obvious kinetic delays, upon application of voltage-clamp depolarizing pulses. Conversely, T306-GCaMP6f localized to the triad and generated Ca2+-dependent fluorescence transients of lower amplitude and faster kinetics for low and intermediate levels of Ca2+ release than those of untargeted GCaMP6f. By contrast, model simulation of the spatial gradients of Ca2+ following Ca2+ release predicted limited kinetic differences under the assumptions that the two probes were present at the same concentration and suffered from identical kinetic limitations. At the spatial level, T306-GCaMP6f transients within distinct regions of a same fiber yielded a uniform time course, even at low levels of Ca2+ release activation. Similar observations were made using GCaMP6f fused to the γ1 auxiliary subunit of CaV1.1. Despite the probe's limitations, our results point out the remarkable synchronicity of voltage-dependent Ca2+ release activation and termination among individual triads and highlight the potential of the approach to visualize activation or closure of single groups of RYR channels. We anticipate targeting of improved Ca2+ sensors to the triad will provide illuminating insights into physiological normal RYR function and its dysfunction under stress or pathological conditions.
Collapse
Affiliation(s)
- Colline Sanchez
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Christine Berthier
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Yves Tourneur
- Departamento Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - Laloé Monteiro
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Bruno Allard
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| | - Laszlo Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vincent Jacquemond
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR-5310, Institut National de la Santé et de la Recherche Médicale U-1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
21
|
Tang S, Deng X, Jiang J, Kirberger M, Yang JJ. Design of Calcium-Binding Proteins to Sense Calcium. Molecules 2020; 25:molecules25092148. [PMID: 32375353 PMCID: PMC7248937 DOI: 10.3390/molecules25092148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023] Open
Abstract
Calcium controls numerous biological processes by interacting with different classes of calcium binding proteins (CaBP’s), with different affinities, metal selectivities, kinetics, and calcium dependent conformational changes. Due to the diverse coordination chemistry of calcium, and complexity associated with protein folding and binding cooperativity, the rational design of CaBP’s was anticipated to present multiple challenges. In this paper we will first discuss applications of statistical analysis of calcium binding sites in proteins and subsequent development of algorithms to predict and identify calcium binding proteins. Next, we report efforts to identify key determinants for calcium binding affinity, cooperativity and calcium dependent conformational changes using grafting and protein design. Finally, we report recent advances in designing protein calcium sensors to capture calcium dynamics in various cellular environments.
Collapse
Affiliation(s)
- Shen Tang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Xiaonan Deng
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Jie Jiang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Michael Kirberger
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
- Correspondence: ; Tel.: +1-404-413-5520
| |
Collapse
|
22
|
Zhao W, Cao L, Ying H, Zhang W, Li D, Zhu X, Xue W, Wu S, Cao M, Fu C, Qi H, Hao Y, Tang YC, Qin J, Zhong TP, Lin X, Yu L, Li X, Li L, Wu D, Pan W. Endothelial CDS2 deficiency causes VEGFA-mediated vascular regression and tumor inhibition. Cell Res 2019; 29:895-910. [PMID: 31501519 PMCID: PMC6889172 DOI: 10.1038/s41422-019-0229-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/23/2019] [Indexed: 01/06/2023] Open
Abstract
The response of endothelial cells to signaling stimulation is critical for vascular morphogenesis, homeostasis and function. Vascular endothelial growth factor-a (VEGFA) has been commonly recognized as a pro-angiogenic factor in vertebrate developmental, physiological and pathological conditions for decades. Here we report a novel finding that genetic ablation of CDP-diacylglycerol synthetase-2 (CDS2), a metabolic enzyme that controls phosphoinositide recycling, switches the output of VEGFA signaling from promoting angiogenesis to unexpectedly inducing vessel regression. Live imaging analysis uncovered the presence of reverse migration of the angiogenic endothelium in cds2 mutant zebrafish upon VEGFA stimulation, and endothelium regression also occurred in postnatal retina and implanted tumor models in mice. In tumor models, CDS2 deficiency enhanced the level of tumor-secreted VEGFA, which in-turn trapped tumors into a VEGFA-induced vessel regression situation, leading to suppression of tumor growth. Mechanistically, VEGFA stimulation reduced phosphatidylinositol (4,5)-bisphosphate (PIP2) availability in the absence of CDS2-controlled-phosphoinositide metabolism, subsequently causing phosphatidylinositol (3,4,5)-triphosphate (PIP3) deficiency and FOXO1 activation to trigger regression of CDS2-null endothelium. Thus, our data indicate that the effect of VEGFA on vasculature is context-dependent and can be converted from angiogenesis to vascular regression.
Collapse
Affiliation(s)
- Wencao Zhao
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Le Cao
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hanru Ying
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Wenjuan Zhang
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Dantong Li
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xiaolong Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai, China
| | - Wenzhi Xue
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shuang Wu
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Mengye Cao
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Cong Fu
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Haonan Qi
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yimei Hao
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yun-Chi Tang
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jun Qin
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai, China
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.,Innovative Research Team of High-level Local University in Shanghai, Shanghai, China
| | - Luyang Yu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai, China
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, School of Medicine, Yale University, New Haven, CT, USA
| | - Weijun Pan
- Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China. .,Innovative Research Team of High-level Local University in Shanghai, Shanghai, China.
| |
Collapse
|
23
|
Oh J, Lee C, Kaang BK. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:237-249. [PMID: 31297008 PMCID: PMC6609268 DOI: 10.4196/kjpp.2019.23.4.237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.
Collapse
Affiliation(s)
- Jihae Oh
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chiwoo Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
24
|
Li P, Geng X, Jiang H, Caccavano A, Vicini S, Wu JY. Measuring Sharp Waves and Oscillatory Population Activity With the Genetically Encoded Calcium Indicator GCaMP6f. Front Cell Neurosci 2019; 13:274. [PMID: 31275115 PMCID: PMC6593119 DOI: 10.3389/fncel.2019.00274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
GCaMP6f is among the most widely used genetically encoded calcium indicators for monitoring neuronal activity. Applications are at both the cellular and population levels. Here, we explore two important and under-explored issues. First, we have tested if GCaMP6f is sensitive enough for the detection of population activity with sparse firing, similar to the sensitivity of the local field potential (LFP). Second, we have tested if GCaMP6f is fast enough for the detection of fast network oscillations critical for the encoding and consolidation of memory. We have focused this study on the activity of the hippocampal network including sharp waves (SWs), carbachol-induced theta oscillations, and interictal-like spikes. We compare simultaneous LFP and optical GCaMP6f fluorescent recordings in Thy1-GCaMP6f mouse hippocampal slices. We observe that SWs produce a clear population GCaMP6f signal above noise with an average magnitude of 0.3% ΔF/F. This population signal is highly correlated with the LFP, albeit with a delay of 40.3 ms (SD 10.8 ms). The population GCaMP6f signal follows the LFP evoked by 20 Hz stimulation with high fidelity, while electrically evoked oscillations up to 40 Hz were detectable with reduced amplitude. GCaMP6f and LFP signals showed a large amplitude discrepancy. The amplitude of GCaMP6f fluorescence increased by a factor of 28.9 (SD 13.5) between spontaneous SWs and carbachol-induced theta bursts, while the LFP amplitude increased by a factor of 2.4 (SD 1.0). Our results suggest that GCaMP6f is a useful tool for applications commonly considered beyond the scope of genetically encoded calcium indicators. In particular, population GCaMP6f signals are sensitive enough for detecting synchronous network events with sparse firing and sub-threshold activity, as well as asynchronous events with only a nominal LFP. In addition, population GCaMP6f signals are fast enough for monitoring theta and beta oscillations (<25 Hz). Faster calcium indicators (e.g., GCaMP7) will further improve the frequency response for the detection of gamma band oscillations. The advantage of population optical over LFP recordings are that they are non-contact and free from stimulation artifacts. These features may be particularly useful for high-throughput recordings and applications sensitive to stimulus artifact, such as monitoring responses during continuous stimulation.
Collapse
Affiliation(s)
- Pinggan Li
- Department of Pediatric Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - Xinling Geng
- Department of Neuroscience, Georgetown University, Washington, DC, United States
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Huiyi Jiang
- Department of Neuroscience, Georgetown University, Washington, DC, United States
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Adam Caccavano
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Jian-young Wu
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
25
|
Kerruth S, Coates C, Dürst CD, Oertner TG, Török K. The kinetic mechanisms of fast-decay red-fluorescent genetically encoded calcium indicators. J Biol Chem 2019; 294:3934-3946. [PMID: 30651353 PMCID: PMC6422079 DOI: 10.1074/jbc.ra118.004543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Genetically encoded calcium indicators (GECIs) are useful reporters of cell-signaling, neuronal, and network activities. We have generated novel fast variants and investigated the kinetic mechanisms of two recently developed red-fluorescent GECIs (RGECIs), mApple-based jRGECO1a and mRuby-based jRCaMP1a. In the formation of fluorescent jRGECO1a and jRCaMP1a complexes, calcium binding is followed by rate-limiting isomerization. However, fluorescence decay of calcium-bound jRGECO1a follows a different pathway from its formation: dissociation of calcium occurs first, followed by the peptide, similarly to GCaMP-s. In contrast, fluorescence decay of calcium-bound jRCaMP1a occurs by the reversal of the on-pathway: peptide dissociation is followed by calcium. The mechanistic differences explain the generally slower off-kinetics of jRCaMP1a-type indicators compared with GCaMP-s and jRGECO1a-type GECI: the fluorescence decay rate of f-RCaMP1 was 21 s-1, compared with 109 s-1 for f-RGECO1 and f-RGECO2 (37 °C). Thus, the CaM-peptide interface is an important determinant of the kinetic responses of GECIs; however, the topology of the structural link to the fluorescent protein demonstrably affects the internal dynamics of the CaM-peptide complex. In the dendrites of hippocampal CA3 neurons, f-RGECO1 indicates calcium elevation in response to a 100 action potential train in a linear fashion, making the probe particularly useful for monitoring large-amplitude, fast signals, e.g. those in dendrites, muscle cells, and immune cells.
Collapse
Affiliation(s)
- Silke Kerruth
- From the Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, United Kingdom and
| | - Catherine Coates
- From the Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, United Kingdom and
| | - Céline D Dürst
- the Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, 20251 Hamburg, Germany
| | - Thomas G Oertner
- the Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, 20251 Hamburg, Germany
| | - Katalin Török
- From the Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, United Kingdom and
| |
Collapse
|
26
|
Anderson HE, Weir RFF. On the development of optical peripheral nerve interfaces. Neural Regen Res 2019; 14:425-436. [PMID: 30539808 PMCID: PMC6334609 DOI: 10.4103/1673-5374.245461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/19/2018] [Indexed: 11/04/2022] Open
Abstract
Limb loss and spinal cord injury are two debilitating conditions that continue to grow in prevalence. Prosthetic limbs and limb reanimation present two ways of providing affected individuals with means to interact in the world. These techniques are both dependent on a robust interface with the peripheral nerve. Current methods for interfacing with the peripheral nerve tend to suffer from low specificity, high latency and insufficient robustness for a chronic implant. An optical peripheral nerve interface may solve some of these problems by decreasing invasiveness and providing single axon specificity. In order to implement such an interface three elements are required: (1) a transducer capable of translating light into a neural stimulus or translating neural activity into changes in fluorescence, (2) a means for delivering said transducer and (3) a microscope for providing the stimulus light and detecting the fluorescence change. There are continued improvements in both genetically encoded calcium and voltage indicators as well as new optogenetic actuators for stimulation. Similarly, improvements in specificity of viral vectors continue to improve expression in the axons of the peripheral nerve. Our work has recently shown that it is possible to virally transduce axons of the peripheral nerve for recording from small fibers. The improvements of these components make an optical peripheral nerve interface a rapidly approaching alternative to current methods.
Collapse
Affiliation(s)
- Hans E. Anderson
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Richard F. ff. Weir
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
27
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
28
|
Ricard C, Arroyo ED, He CX, Portera-Cailliau C, Lepousez G, Canepari M, Fiole D. Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells. Brain Struct Funct 2018; 223:3011-3043. [PMID: 29748872 PMCID: PMC6119111 DOI: 10.1007/s00429-018-1678-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Imaging the brain of living laboratory animals at a microscopic scale can be achieved by two-photon microscopy thanks to the high penetrability and low phototoxicity of the excitation wavelengths used. However, knowledge of the two-photon spectral properties of the myriad fluorescent probes is generally scarce and, for many, non-existent. In addition, the use of different measurement units in published reports further hinders the design of a comprehensive imaging experiment. In this review, we compile and homogenize the two-photon spectral properties of 280 fluorescent probes. We provide practical data, including the wavelengths for optimal two-photon excitation, the peak values of two-photon action cross section or molecular brightness, and the emission ranges. Beyond the spectroscopic description of these fluorophores, we discuss their binding to biological targets. This specificity allows in vivo imaging of cells, their processes, and even organelles and other subcellular structures in the brain. In addition to probes that monitor endogenous cell metabolism, studies of healthy and diseased brain benefit from the specific binding of certain probes to pathology-specific features, ranging from amyloid-β plaques to the autofluorescence of certain antibiotics. A special focus is placed on functional in vivo imaging using two-photon probes that sense specific ions or membrane potential, and that may be combined with optogenetic actuators. Being closely linked to their use, we examine the different routes of intravital delivery of these fluorescent probes according to the target. Finally, we discuss different approaches, strategies, and prerequisites for two-photon multicolor experiments in the brains of living laboratory animals.
Collapse
Affiliation(s)
- Clément Ricard
- Brain Physiology Laboratory, CNRS UMR 8118, 75006, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, 75006, Paris, France
- Fédération de Recherche en Neurosciences FR 3636, Paris, 75006, France
| | - Erica D Arroyo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Cynthia X He
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Gabriel Lepousez
- Unité Perception et Mémoire, Département de Neuroscience, Institut Pasteur, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marco Canepari
- Laboratory for Interdisciplinary Physics, UMR 5588 CNRS and Université Grenoble Alpes, 38402, Saint Martin d'Hères, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France
- Institut National de la Santé et Recherche Médicale (INSERM), Grenoble, France
| | - Daniel Fiole
- Unité Biothérapies anti-Infectieuses et Immunité, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge cedex, France.
- Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, 28 rue du docteur Roux, 75725, Paris Cedex 15, France.
- ESRF-The European Synchrotron, 38043, Grenoble cedex, France.
| |
Collapse
|
29
|
An improved inverse-type Ca2+ indicator can detect putative neuronal inhibition in Caenorhabditis elegans by increasing signal intensity upon Ca2+ decrease. PLoS One 2018; 13:e0194707. [PMID: 29694380 PMCID: PMC5918796 DOI: 10.1371/journal.pone.0194707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
Sensory processing is regulated by the coordinated excitation and inhibition of neurons in neuronal circuits. The analysis of neuronal activities has greatly benefited from the recent development of genetically encoded Ca2+ indicators (GECIs). These molecules change their fluorescence intensities or colours in response to changing levels of Ca2+ and can, therefore, be used to sensitively monitor intracellular Ca2+ concentration, which enables the detection of neuronal excitation, including action potentials. These GECIs were developed to monitor increases in Ca2+ concentration; therefore, neuronal inhibition cannot be sensitively detected by these GECIs. To overcome this difficulty, we hypothesised that an inverse-type of GECI, whose fluorescence intensity increases as Ca2+ levels decrease, could sensitively monitor reducing intracellular Ca2+ concentrations. We, therefore, developed a Ca2+ indicator named inverse-pericam 2.0 (IP2.0) whose fluorescent intensity decreases 25-fold upon Ca2+ binding in vitro. Using IP2.0, we successfully detected putative neuronal inhibition by monitoring the decrease in intracellular Ca2+ concentration in AWCON and ASEL neurons in Caenorhabditis elegans. Therefore, IP2.0 is a useful tool for studying neuronal inhibition and for the detailed analysis of neuronal activities in vivo.
Collapse
|
30
|
Imaging of electrical activity in small diameter fibers of the murine peripheral nerve with virally-delivered GCaMP6f. Sci Rep 2018; 8:3219. [PMID: 29459701 PMCID: PMC5818512 DOI: 10.1038/s41598-018-21528-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/06/2018] [Indexed: 12/24/2022] Open
Abstract
Current neural interfaces are hampered by lack of specificity and selectivity for neural interrogation. A method that might improve these interfaces is an optical peripheral nerve interface which communicates with individual axons via optogenetic reporters. To determine the feasibility of such an interface, we delivered the genetically encoded calcium indicator GCaMP6f to the mouse peripheral nerve by intramuscular injection of adenoassociated viral vector (AAV1) under the control of the CAG (chicken beta actin- cytomegalovirus hybrid promoter). Small diameter axons in the common peroneal nerve were transduced and demonstrated electrically inducible calcium transients ex vivo. Responses to single electrical stimuli were resolvable, and increasing the number of stimuli resulted in a monotonic increase in maximum fluorescence and a prolongation of calcium transient kinetics. This work demonstrates the viability of using a virally-delivered, genetically-encoded calcium indicator to read-out from peripheral nerve axons.
Collapse
|
31
|
Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annu Rev Pharmacol Toxicol 2018; 58:83-103. [PMID: 28992430 PMCID: PMC7386286 DOI: 10.1146/annurev-pharmtox-010617-053110] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Billions of US dollars are invested every year by the pharmaceutical industry in drug development, with the aim of introducing new drugs that are effective and have minimal side effects. Thirty percent of in-pipeline drugs are excluded in an early phase of preclinical and clinical screening owing to cardiovascular safety concerns, and several lead molecules that pass the early safety screening make it to market but are later withdrawn owing to severe cardiac side effects. Although the current drug safety screening methodologies can identify some cardiotoxic drug candidates, they cannot accurately represent the human heart in many aspects, including genomics, transcriptomics, and patient- or population-specific cardiotoxicity. Despite some limitations, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful and evolving technology that has been shown to recapitulate many attributes of human cardiomyocytes and their drug responses. In this review, we discuss the potential impact of the inclusion of the hiPSC-CM platform in premarket candidate drug screening.
Collapse
Affiliation(s)
- Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Adam J T Schuldt
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
32
|
Barykina NV, Subach OM, Piatkevich KD, Jung EE, Malyshev AY, Smirnov IV, Bogorodskiy AO, Borshchevskiy VI, Varizhuk AM, Pozmogova GE, Boyden ES, Anokhin KV, Enikolopov GN, Subach FV. Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi. PLoS One 2017; 12:e0183757. [PMID: 28837632 PMCID: PMC5570312 DOI: 10.1371/journal.pone.0183757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022] Open
Abstract
Currently available genetically encoded calcium indicators (GECIs) utilize calmodulins (CaMs) or troponin C from metazoa such as mammals, birds, and teleosts, as calcium-binding domains. The amino acid sequences of the metazoan calcium-binding domains are highly conserved, which may limit the range of the GECI key parameters and cause undesired interactions with the intracellular environment in mammalian cells. Here we have used fungi, evolutionary distinct organisms, to derive CaM and its binding partner domains and design new GECI with improved properties. We applied iterative rounds of molecular evolution to develop FGCaMP, a novel green calcium indicator. It includes the circularly permuted version of the enhanced green fluorescent protein (EGFP) sandwiched between the fungal CaM and a fragment of CaM-dependent kinase. FGCaMP is an excitation-ratiometric indicator that has a positive and an inverted fluorescence response to calcium ions when excited at 488 and 405 nm, respectively. Compared with the GCaMP6s indicator in vitro, FGCaMP has a similar brightness at 488 nm excitation, 7-fold higher brightness at 405 nm excitation, and 1.3-fold faster calcium ion dissociation kinetics. Using site-directed mutagenesis, we generated variants of FGCaMP with improved binding affinity to calcium ions and increased the magnitude of FGCaMP fluorescence response to low calcium ion concentrations. Using FGCaMP, we have successfully visualized calcium transients in cultured mammalian cells. In contrast to the limited mobility of GCaMP6s and G-GECO1.2 indicators, FGCaMP exhibits practically 100% molecular mobility at physiological concentrations of calcium ion in mammalian cells, as determined by photobleaching experiments with fluorescence recovery. We have successfully monitored the calcium dynamics during spontaneous activity of neuronal cultures using FGCaMP and utilized whole-cell patch clamp recordings to further characterize its behavior in neurons. Finally, we used FGCaMP in vivo to perform structural and functional imaging of zebrafish using wide-field, confocal, and light-sheet microscopy.
Collapse
Affiliation(s)
- Natalia V. Barykina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- P.K. Anokhin Institute of Normal Physiology of RAMS, Moscow, Russia
| | - Oksana M. Subach
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Kiryl D. Piatkevich
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Erica E. Jung
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Aleksey Y. Malyshev
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Ivan V. Smirnov
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
- Medico-Biological Faculty, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | | | | | - Anna M. Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | - Galina E. Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Edward S. Boyden
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, United States of America
| | - Konstantin V. Anokhin
- P.K. Anokhin Institute of Normal Physiology of RAMS, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Grigori N. Enikolopov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Department of Anesthesiology, Stony Brook University Medical Center, Stony Brook, NY, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, United States of America
| | - Fedor V. Subach
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
33
|
Kim TJ, Yoo JY, Shim WS. Substitution with a Single Cysteine in the Green Fluorescent Protein-Based Calcium Indicator GCaMP3 Enhances Calcium Sensitivity. J Fluoresc 2017; 27:2187-2193. [PMID: 28791525 DOI: 10.1007/s10895-017-2159-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022]
Abstract
Genetically encoded calcium indicators (GECI) such as GCaMP3 are attracting significant attention as a good option for measuring intracellular calcium levels. Recently, a modified GCaMP3 called dCys-GCaMP3 was developed by replacing two threonine residues with cysteines. dCys-GCaMP3 proved to be a better calcium indicator, but it was not clear how and why the two cysteine residues were able to enhance the protein's calcium sensitivity. The aim of the present study was to investigate the possible roles of these cysteine residues in dCys-GCaMP3. dCys-GCaMP3 (Thr330Cys;Thr364Cys) exhibited enhanced fluorescence intensity compared to the canonical GCaMP3 in calcium imaging experiments. However, substitution of a single residue at position 330 with cysteine (Thr330Cys) also afforded comparable sensitivity to GCaMP3. In contrast, the other single residue substitution at position 364 with cysteine (Thr364Cys) failed to enhance calcium sensitivity, showing that cysteine at position 330 is essential to improve calcium sensitivity. Thr330Cys substitution in the GCaMP3 or "Cys330-GCaMP3" showed significantly reduced background fluorescence, and the fluorescence intensity was proportional to the amount of DNA used to transfect the cells used in the study. The substitute had to be cysteine, because replacement with other amino acids such as alanine, valine, and aspartate did not improve GCaMP3's calcium sensitivity. Cys330-GCaMP3 outperformed a synthetic calcium-specific indicator, Fluo-3, in various calcium imaging experiments. Thus, the present study asserts that substituting the threonine at position 330 in GCaMP3 with cysteine is essential to enhance calcium sensitivity, and suggests that Cys330-GCaMP3 can be used as a potent fluorescent calcium indicator to measure intracellular calcium levels.
Collapse
Affiliation(s)
- Tae Joon Kim
- College of Pharmacy, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon, 21936, South Korea
| | - Ji Young Yoo
- College of Pharmacy, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon, 21936, South Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambakmoero 191, Yeonsu-gu, Incheon, 21936, South Korea. .,Gachon Institute of Pharmaceutical Sciences, Hambakmoero 191, Yeonsu-gu, Incheon, 21936, South Korea.
| |
Collapse
|
34
|
Pahlavan S, Morad M. Total internal reflectance fluorescence imaging of genetically engineered ryanodine receptor-targeted Ca 2+ probes in rat ventricular myocytes. Cell Calcium 2017; 66:98-110. [PMID: 28807154 DOI: 10.1016/j.ceca.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022]
Abstract
The details of cardiac Ca2+ signaling within the dyadic junction remain unclear because of limitations in rapid spatial imaging techniques, and availability of Ca2+ probes localized to dyadic junctions. To critically monitor ryanodine receptors' (RyR2) Ca2+ nano-domains, we combined the use of genetically engineered RyR2-targeted pericam probes, (FKBP-YCaMP, Kd=150nM, or FKBP-GCaMP6, Kd=240nM) with rapid total internal reflectance fluorescence (TIRF) microscopy (resolution, ∼80nm). The punctate z-line patterns of FKBP,2-targeted probes overlapped those of RyR2 antibodies and sharply contrasted to the images of probes targeted to sarcoplasmic reticulum (SERCA2a/PLB), or cytosolic Fluo-4 images. FKBP-YCaMP signals were too small (∼20%) and too slow (2-3s) to detect Ca2+ sparks, but the probe was effective in marking where Fluo-4 Ca2+ sparks developed. FKBP-GCaMP6, on the other hand, produced rapidly decaying Ca2+ signals that: a) had faster kinetics and activated synchronous with ICa3 but were of variable size at different z-lines and b) were accompanied by spatially confined spontaneous Ca2+ sparks, originating from a subset of eager sites. The frequency of spontaneously occurring sparks was lower in FKBP-GCaMP6 infected myocytes as compared to Fluo-4 dialyzed myocytes, but isoproterenol enhanced their frequency more effectively than in Fluo-4 dialyzed cells. Nevertheless, isoproterenol failed to dissociate FKBP-GCaMP6 from the z-lines. The data suggests that FKBP-GCaMP6 binds predominantly to junctional RyR2s and has sufficient on-rate efficiency as to monitor the released Ca2+ in individual dyadic clefts, and supports the idea that β-adrenergic agonists may modulate the stabilizing effects of native FKBP on RyR2.
Collapse
Affiliation(s)
- Sara Pahlavan
- Cardiac Signaling Center of University of South Carolina, Clemson University and Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Marin Morad
- Cardiac Signaling Center of University of South Carolina, Clemson University and Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
35
|
Genetically encoded indicators of neuronal activity. Nat Neurosci 2017; 19:1142-53. [PMID: 27571193 DOI: 10.1038/nn.4359] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023]
Abstract
Experimental efforts to understand how the brain represents, stores and processes information require high-fidelity recordings of multiple different forms of neural activity within functional circuits. Thus, creating improved technologies for large-scale recordings of neural activity in the live brain is a crucial goal in neuroscience. Over the past two decades, the combination of optical microscopy and genetically encoded fluorescent indicators has become a widespread means of recording neural activity in nonmammalian and mammalian nervous systems, transforming brain research in the process. In this review, we describe and assess different classes of fluorescent protein indicators of neural activity. We first discuss general considerations in optical imaging and then present salient characteristics of representative indicators. Our focus is on how indicator characteristics relate to their use in living animals and on likely areas of future progress.
Collapse
|
36
|
A R Webb A, Kuchitsu K, Kwak J, Pei ZM, Iida H. Sensors Make Sense of Signaling. PLANT & CELL PHYSIOLOGY 2017; 58:1121-1125. [PMID: 28838127 DOI: 10.1093/pcp/pcx085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB3 0LJ, UK
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Faculty of Science, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | - June Kwak
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno-Jungangdaero, Daegu 42988, South Korea
| | - Zhen-Ming Pei
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Department of Biology, Duke University, 124 Science Dr, Durham, NC 27708, USA
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, 4-1-1 Nukui Kita-machi, Koganei-shi, Tokyo 184-8501, Japan
| |
Collapse
|
37
|
DeFalco TA, Toyota M, Phan V, Karia P, Moeder W, Gilroy S, Yoshioka K. Using GCaMP3 to Study Ca2+ Signaling in Nicotiana Species. PLANT & CELL PHYSIOLOGY 2017; 58:1173-1184. [PMID: 28482045 DOI: 10.1093/pcp/pcx053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/06/2017] [Indexed: 05/24/2023]
Abstract
Ca2+ signaling is a central component of plant biology; however, direct analysis of in vivo Ca2+ levels is experimentally challenging. In recent years, the use of genetically encoded Ca2+ indicators has revolutionized the study of plant Ca2+ signaling, although such studies have been largely restricted to the model plant Arabidopsis. We have developed stable transgenic Nicotiana benthamiana and Nicotiana tabacum lines expressing the single-wavelength fluorescent Ca2+ indicator, GCaMP3. Ca2+ levels in these plants can be imaged in situ using fluorescence microscopy, and these plants can be used qualitatively and semi-quantitatively to evaluate Ca2+ signals in response to a broad array of abiotic or biotic stimuli, such as cold shock or pathogen-associated molecular patterns (PAMPs). Furthermore, these tools can be used in conjunction with well-established N. benthamiana techniques such as virus-induced gene silencing (VIGS) or transient heterologous expression to assay the effects of loss or gain of function on Ca2+ signaling, an approach which we validated via silencing or transient expression of the PAMP receptors FLS2 (Flagellin Sensing 2) or EFR (EF-Tu receptor), respectively. Using these techniques, along with chemical inhibitor treatments, we demonstrate how these plants can be used to elucidate the molecular components governing Ca2+ signaling in response to specific stimuli.
Collapse
Affiliation(s)
- Thomas A DeFalco
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
- The Sainsbury Laboratory, Norwich NR4 7UH, UK
| | - Masatsugu Toyota
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| | - Van Phan
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Purva Karia
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Keiko Yoshioka
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, M5S 3B2, Canada
| |
Collapse
|
38
|
Matveev V. Padé Approximation of a Stationary Single-Channel Ca 2+ Nanodomain. Biophys J 2017; 111:2062-2074. [PMID: 27806286 DOI: 10.1016/j.bpj.2016.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022] Open
Abstract
We consider the stationary solution for the Ca2+ concentration near a point Ca2+ source describing a single-channel Ca2+ nanodomain, in the presence of a single mobile buffer with one-to-one Ca2+ binding stoichiometry. Previously, a number of Ca2+ nanodomains approximations have been developed, for instance the excess buffer approximation (EBA), the rapid buffering approximation (RBA), and the linear approximation (LIN), each valid for appropriate buffering conditions. Apart from providing a simple method of estimating Ca2+ and buffer concentrations without resorting to computationally expensive numerical solution of reaction-diffusion equations, such approximations proved useful in revealing the dependence of nanodomain Ca2+ distribution on crucial parameters such as buffer mobility and its Ca2+ binding properties. In this study, we present a different form of analytic approximation, which is based on matching the short-range Taylor series of the nanodomain concentration with the long-range asymptotic series expressed in inverse powers of distance from channel location. Namely, we use a "dual" Padé rational function approximation to simultaneously match terms in the short- and the long-range series, and we show that this provides an accurate approximation to the nanodomain Ca2+ and buffer concentrations. We compare this approximation with the previously obtained approximations and show that it yields a better estimate of the free buffer concentration for a wide range of buffering conditions. The drawback of our method is that it has a complex algebraic form for any order higher than the lowest bilinear order, and cannot be readily extended to multiple Ca2+ channels. However, it may be possible to extend the Padé method to estimate Ca2+ nanodomains in the presence of cooperative Ca2+ buffers with two Ca2+ binding sites, the case that existing methods do not address.
Collapse
Affiliation(s)
- V Matveev
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey.
| |
Collapse
|
39
|
Hansen KJ, Favreau JT, Gershlak JR, Laflamme MA, Albrecht DR, Gaudette GR. Optical Method to Quantify Mechanical Contraction and Calcium Transients of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Tissue Eng Part C Methods 2017; 23:445-454. [PMID: 28562232 DOI: 10.1089/ten.tec.2017.0190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.
Collapse
Affiliation(s)
- Katrina J Hansen
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - John T Favreau
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Joshua R Gershlak
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Michael A Laflamme
- 2 Toronto General Research Institute, McEwen Centre for Regenerative Medicine, University Health Network , Toronto, Canada
| | - Dirk R Albrecht
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| | - Glenn R Gaudette
- 1 Department of Biomedical Engineering, Worcester Polytechnic Institute , Worcester, Massachusetts
| |
Collapse
|
40
|
Zhang H, Yin C, Liu T, Zhang Y, Huo F. "Turn-on" fluorescent probe detection of Ca 2+ ions and applications to bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 180:211-216. [PMID: 28301823 DOI: 10.1016/j.saa.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/24/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Ca2+ is intracellular divalent cation with the largest concentration variations and involved in many biological phenomena and often acted as a second messenger in signaling pathway. Therefore, the development of probes for specific Ca2+ detection is of great importance. Herein, a novel turn-on fluorescent probe for the detection of Ca2+ in MeCN-aqueous medium was designed and synthesized. The probe displayed responses to Ca2+ with a fluorescence enhancement at 525nm, accompanying with a distinct fluorescence change from nearly colorless to bright yellow-green. Besides, the probe exhibited a rapid signal response time (within 25s), a good linearity range and a lower detection limit (2.70×10-7M). In addition, the ability of the probe to detect Ca2+ in living cells (HeLa cells) via an enhancement of the fluorescence has also been demonstrated.
Collapse
Affiliation(s)
- Huifang Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Tao Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
41
|
Helassa N, Podor B, Fine A, Török K. Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics. Sci Rep 2016; 6:38276. [PMID: 27922063 PMCID: PMC5138832 DOI: 10.1038/srep38276] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023] Open
Abstract
Calmodulin-based genetically encoded fluorescent calcium indicators (GCaMP-s) are powerful tools of imaging calcium dynamics from cells to freely moving animals. High affinity indicators with slow kinetics however distort the temporal profile of calcium transients. Here we report the development of reduced affinity ultrafast variants of GCaMP6s and GCaMP6f. We hypothesized that GCaMP-s have a common kinetic mechanism with a rate-limiting process in the interaction of the RS20 peptide and calcium-calmodulin. Therefore we targeted specific residues in the binding interface by rational design generating improved indicators with GCaMP6fu displaying fluorescence rise and decay times (t1/2) of 1 and 3 ms (37 °C) in vitro, 9 and 22-fold faster than GCaMP6f respectively. In HEK293T cells, GCaMP6fu revealed a 4-fold faster decay of ATP-evoked intracellular calcium transients than GCaMP6f. Stimulation of hippocampal CA1 pyramidal neurons with five action potentials fired at 100 Hz resulted in a single dendritic calcium transient with a 2-fold faster rise and 7-fold faster decay time (t1/2 of 40 ms) than GCaMP6f, indicating that tracking high frequency action potentials may be limited by calcium dynamics. We propose that the design strategy used for generating GCaMP6fu is applicable for the acceleration of the response kinetics of GCaMP-type calcium indicators.
Collapse
Affiliation(s)
- Nordine Helassa
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Borbala Podor
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alan Fine
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katalin Török
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|