1
|
García E. Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the "Suicidal Tendencies" of Streptococcus pneumoniae-A Review. Microorganisms 2025; 13:827. [PMID: 40284663 PMCID: PMC12029793 DOI: 10.3390/microorganisms13040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a significant human pathogen responsible for a range of diseases from mild infections to invasive pneumococcal diseases, particularly affecting children, the elderly, and immunocompromised individuals. Despite pneumococcal conjugate vaccines having reduced disease incidence, challenges persist due to serotype diversity, vaccine coverage gaps, and antibiotic resistance. This review highlights the role of LytA, a key autolysin (N-acetylmuramoyl-l-alanine amidase), in pneumococcal biology. LytA regulates autolysis, contributes to inflammation, and biofilm formation, and impairs bacterial clearance. It also modulates complement activation, aiding immune evasion. LytA expression is influenced by environmental signals and genetic regulation and is tied to competence for genetic transformation, which is an important virulence trait, particularly in meningitis. With the increase in antibiotic resistance, LytA has emerged as a potential therapeutic target. Current research explores its use in bacteriolytic therapies, vaccine development, and synergistic antibiotic strategies. Various compounds, including synthetic peptides, plant extracts, and small molecules, have been investigated for their ability to trigger LytA-mediated bacterial lysis. Future directions include the development of novel anti-pneumococcal interventions leveraging LytA's properties while overcoming vaccine efficacy and resistance-related challenges. Human challenge models and animal studies continue to deepen our understanding of pneumococcal pathogenesis and potential treatment strategies.
Collapse
Affiliation(s)
- Ernesto García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| |
Collapse
|
2
|
Martínez-Caballero S, Freton C, Molina R, Bartual SG, Gueguen-Chaignon V, Mercy C, Gago F, Mahasenan KV, Muñoz IG, Lee M, Hesek D, Mobashery S, Hermoso JA, Grangeasse C. Molecular basis of the final step of cell division in Streptococcus pneumoniae. Cell Rep 2023; 42:112756. [PMID: 37418323 PMCID: PMC10434722 DOI: 10.1016/j.celrep.2023.112756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/13/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Bacterial cell-wall hydrolases must be tightly regulated during bacterial cell division to prevent aberrant cell lysis and to allow final separation of viable daughter cells. In a multidisciplinary work, we disclose the molecular dialogue between the cell-wall hydrolase LytB, wall teichoic acids, and the eukaryotic-like protein kinase StkP in Streptococcus pneumoniae. After characterizing the peptidoglycan recognition mode by the catalytic domain of LytB, we further demonstrate that LytB possesses a modular organization allowing the specific binding to wall teichoic acids and to the protein kinase StkP. Structural and cellular studies notably reveal that the temporal and spatial localization of LytB is governed by the interaction between specific modules of LytB and the final PASTA domain of StkP. Our data collectively provide a comprehensive understanding of how LytB performs final separation of daughter cells and highlights the regulatory role of eukaryotic-like kinases on lytic machineries in the last step of cell division in streptococci.
Collapse
Affiliation(s)
- Siseth Martínez-Caballero
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, Lyon, France
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergio G Bartual
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Chryslène Mercy
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, Lyon, France
| | - Federico Gago
- Department of Biomedical Sciences & Instituto de Química Médica-CSIC Associated Unit, School of Medicine and Health Sciences, University of Alcalá, 28805 Alcalá de Henares, Spain
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Inés G Muñoz
- Structural Biology Program, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, Lyon, France.
| |
Collapse
|
3
|
Haubrich BA, Nayyab S, Gallati M, Hernandez J, Williams C, Whitman A, Zimmerman T, Li Q, Chen Y, Zhou CZ, Basu A, Reid CW. Inhibition of Streptococcus pneumoniae growth by masarimycin. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467499 DOI: 10.1099/mic.0.001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive bacterium Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin as a bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 8 µM. The diamide inhibited detergent-induced autolysis in a concentration-dependent manner, indicating perturbation of peptidoglycan degradation as the mode-of-action. Cell based screening of masarimycin against a panel of autolysin mutants, identified a higher MIC against a ΔlytB strain lacking an endo-N-acetylglucosaminidase involved in cell division. Subsequent biochemical and phenotypic analyses suggested that the higher MIC was due to an indirect interaction with LytB. Further analysis of changes to the cell surface in masarimycin treated cells identified the overexpression of several moonlighting proteins, including elongation factor Tu which is implicated in regulating cell shape. Checkerboard assays using masarimycin in concert with additional antibiotics identified an antagonistic relationship with the cell wall targeting antibiotic fosfomycin, which further supports a cell wall mode-of-action.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Department of Basic Sciences, Touro University Nevada, College of Osteopathic Medicine, Henderson, NV 89014, USA
| | - Saman Nayyab
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Amherst Department of Molecular and Cellular Biology, University of Massachusetts, 230 Stockbridge Rd Amherst, MA, USA
| | - Mika Gallati
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Jazmeen Hernandez
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Caroline Williams
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Andrew Whitman
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Tahl Zimmerman
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC, USA
| | - Qiong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Yuxing Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Amit Basu
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Christopher W Reid
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| |
Collapse
|
4
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
Kharadi RR, Sundin GW. Cyclic-di-GMP Regulates Autoaggregation Through the Putative Peptidoglycan Hydrolase, EagA, and Regulates Transcription of the znuABC Zinc Uptake Gene Cluster in Erwinia amylovora. Front Microbiol 2020; 11:605265. [PMID: 33281804 PMCID: PMC7705223 DOI: 10.3389/fmicb.2020.605265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
Erwinia amylovora is the causal agent of fire blight, an economically impactful disease that affects apple and pear production worldwide. E. amylovora pathogenesis is comprised of distinct type III secretion-dependent and biofilm-dependent stages. Alterations in the intracellular levels of cyclic-di-GMP (c-di-GMP) regulate the transition between the different stages of infection in E. amylovora. We previously reported that hyper-elevation of c-di-GMP levels in E. amylovora Ea1189, resulting from the deletion of all three c-di-GMP specific phosphodiesterase genes (Ea1189ΔpdeABC), resulted in an autoaggregation phenotype. The two major exopolysaccharides, amylovoran and cellulose, were also shown to partially contribute to autoaggregation. In this study, we aimed to identify the c-di-GMP dependent factor(s) that contributes to autoaggregation. We conducted a transposon mutant screen in Ea1189ΔpdeABC and selected for loss of autoaggregation. Our search identified a peptidoglycan hydrolase, specifically, a D, D-endopeptidase of the metallopeptidase class, EagA (Erwiniaaggregation factor A), that was found to physiologically contribute to autoaggregation in a c-di-GMP dependent manner. The production of amylovoran was also positively affected by EagA levels. An eagA deletion mutant (Ea1189ΔeagA) was significantly reduced in virulence compared to the wild type E. amylovora Ea1189. eagA is part of the znuABC zinc uptake gene cluster and is located within an operon downstream of znuA. The znuAeagA/znuCB gene cluster was transcriptionally regulated by elevated levels of c-di-GMP as well as by the zinc-dependent transcriptional repressor Zur. We also observed that with an influx of Zn2+ in the environment, the transcription of the znuAeagA/znuBC gene cluster is regulated by both Zur and a yet to be characterized c-di-GMP dependent pathway.
Collapse
Affiliation(s)
- Roshni R Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines. Front Microbiol 2020; 11:579916. [PMID: 33123110 PMCID: PMC7573253 DOI: 10.3389/fmicb.2020.579916] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
The pyogenic streptococci group includes pathogenic species for humans and other animals and has been associated with enduring morbidity and high mortality. The main reason for the treatment failure of streptococcal infections is the increased resistance to antibiotics. In recent years, infectious diseases caused by pyogenic streptococci resistant to multiple antibiotics have been raising with a significant impact to public health and veterinary industry. The rise of antibiotic-resistant streptococci has been associated to diverse mechanisms, such as efflux pumps and modifications of the antimicrobial target. Among streptococci, antibiotic resistance emerges from previously sensitive populations as result of horizontal gene transfer or chromosomal point mutations due to excessive use of antimicrobials. Streptococci strains are also recognized as biofilm producers. The increased resistance of biofilms to antibiotics among streptococci promote persistent infection, which comprise circa 80% of microbial infections in humans. Therefore, to overcome drug resistance, new strategies, including new antibacterial and antibiofilm agents, have been studied. Interestingly, the use of systems based on nanoparticles have been applied to tackle infection and reduce the emergence of drug resistance. Herein, we present a synopsis of mechanisms associated to drug resistance in (pyogenic) streptococci and discuss some innovative strategies as alternative to conventional antibiotics, such as bacteriocins, bacteriophage, and phage lysins, and metal nanoparticles. We shall provide focused discussion on the advantages and limitations of agents considering application, efficacy and safety in the context of impact to the host and evolution of bacterial resistance.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,Biomedical Research Centre, University of Granada, Granada, Spain
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
7
|
Domenech M, García E. The N-Acetylglucosaminidase LytB of Streptococcus pneumoniae Is Involved in the Structure and Formation of Biofilms. Appl Environ Microbiol 2020; 86:e00280-20. [PMID: 32198170 PMCID: PMC7205503 DOI: 10.1128/aem.00280-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
The N-acetylglucosaminidase LytB of Streptococcus pneumoniae is involved in nasopharyngeal colonization and is responsible for cell separation at the end of cell division; thus, ΔlytB mutants form long chains of cells. This paper reports the construction and properties of a defective pneumococcal mutant producing an inactive LytB protein (LytBE585A). It is shown that an enzymatically active LytB is required for in vitro biofilm formation, as lytB mutants (either ΔlytB or producing the inactive LytBE585A) are incapable of forming substantial biofilms, despite that extracellular DNA is present in the biofilm matrix. Adding small amounts (0.5 to 2.0 μg/ml) of exogenous LytB or some LytB constructs restored the biofilm-forming capacity of lytB mutants to wild-type levels. The LytBE585A mutant formed biofilm more rapidly than ΔlytB mutants in the presence of LytB. This suggests that the mutant protein acted in a structural role, likely through the formation of complexes with extracellular DNA. The chain-dispersing capacity of LytB allowed the separation of daughter cells, presumably facilitating the formation of microcolonies and, finally, of biofilms. A role for the possible involvement of LytB in the synthesis of the extracellular polysaccharide component of the biofilm matrix is also discussed.IMPORTANCE It has been previously accepted that biofilm formation in S. pneumoniae must be a multigenic trait because the mutation of a single gene has led to only to partial inhibition of biofilm production. In the present study, however, evidence that the N-acetylglucosaminidase LytB is crucial in biofilm formation is provided. Despite the presence of extracellular DNA, strains either deficient in LytB or producing a defective LytB enzyme formed only shallow biofilms.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
8
|
Domain sliding of two Staphylococcus aureus N-acetylglucosaminidases enables their substrate-binding prior to its catalysis. Commun Biol 2020; 3:178. [PMID: 32313083 PMCID: PMC7170848 DOI: 10.1038/s42003-020-0911-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
To achieve productive binding, enzymes and substrates must align their geometries to complement each other along an entire substrate binding site, which may require enzyme flexibility. In pursuit of novel drug targets for the human pathogen S. aureus, we studied peptidoglycan N-acetylglucosaminidases, whose structures are composed of two domains forming a V-shaped active site cleft. Combined insights from crystal structures supported by site-directed mutagenesis, modeling, and molecular dynamics enabled us to elucidate the substrate binding mechanism of SagB and AtlA-gl. This mechanism requires domain sliding from the open form observed in their crystal structures, leading to polysaccharide substrate binding in the closed form, which can enzymatically process the bound substrate. We suggest that these two hydrolases must exhibit unusual extents of flexibility to cleave the rigid structure of a bacterial cell wall.
Collapse
|
9
|
Domenech A, Slager J, Veening JW. Antibiotic-Induced Cell Chaining Triggers Pneumococcal Competence by Reshaping Quorum Sensing to Autocrine-Like Signaling. Cell Rep 2019; 25:2390-2400.e3. [PMID: 30485808 PMCID: PMC6289044 DOI: 10.1016/j.celrep.2018.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/22/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae can acquire antibiotic resistance by activation of competence and subsequent DNA uptake. Here, we demonstrate that aztreonam (ATM) and clavulanic acid (CLA) promote competence. We show that both compounds induce cell chain formation by targeting the d,d-carboxypeptidase PBP3. In support of the hypothesis that chain formation promotes competence, we demonstrate that an autolysin mutant (ΔlytB) is hypercompetent. Since competence is initiated by the binding of a small extracellular peptide (CSP) to a membrane-anchored receptor (ComD), we wondered whether chain formation alters CSP diffusion kinetics. Indeed, ATM or CLA presence affects competence synchronization by shifting from global to local quorum sensing, as CSP is primarily retained to chained cells, rather than shared in a common pool. Importantly, autocrine-like signaling prolongs the time window in which the population is able to take up DNA. Together, these insights demonstrate the versatility of quorum sensing and highlight the importance of an accurate antibiotic prescription. Identification of a mechanism by which antibiotics induce competence in S. pneumoniae Antibiotics targeting penicillin-binding protein 3 promote chain formation Cell chains retain, rather than diffuse, the quorum-sensing peptide CSP Chaining populations feature a longer competence and transformation time window
Collapse
Affiliation(s)
- Arnau Domenech
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
10
|
Vollmer W, Massidda O, Tomasz A. The Cell Wall of Streptococcus pneumoniae. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0018-2018. [PMID: 31172911 PMCID: PMC11026078 DOI: 10.1128/microbiolspec.gpp3-0018-2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae has a complex cell wall that plays key roles in cell shape maintenance, growth and cell division, and interactions with components of the human host. The peptidoglycan has a heterogeneous composition with more than 50 subunits (muropeptides)-products of several peptidoglycan-modifying enzymes. The amidation of glutamate residues in the stem peptide is needed for efficient peptide cross-linking, and peptides with a dipeptide branch prevail in some beta-lactam-resistant strains. The glycan strands are modified by deacetylation of N-acetylglucosamine residues and O-acetylation of N-acetylmuramic acid residues, and both modifications contribute to pneumococcal resistance to lysozyme. The glycan strands carry covalently attached wall teichoic acid and capsular polysaccharide. Pneumococci are unique in that the wall teichoic acid and lipoteichoic acid contain the same unusually complex repeating units decorated with phosphoryl choline residues, which anchor the choline-binding proteins. The structures of lipoteichoic acid and the attachment site of wall teichoic acid to peptidoglycan have recently been revised. During growth, pneumococci assemble their cell walls at midcell in coordinated rounds of cell elongation and division, leading to the typical ovococcal cell shape. Cell wall growth depends on the cytoskeletal FtsA and FtsZ proteins and is regulated by several morphogenesis proteins that also show patterns of dynamic localization at midcell. Some of the key regulators are phosphorylated by StkP and dephosphorylated by PhpP to facilitate robust selection of the division site and plane and to maintain cell shape.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | |
Collapse
|
11
|
Borišek J, Pintar S, Ogrizek M, Turk D, Perdih A, Novič M. A Water-Assisted Catalytic Mechanism in Glycoside Hydrolases Demonstrated on the Staphylococcus aureus Autolysin E. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jure Borišek
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Sara Pintar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Mitja Ogrizek
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Dušan Turk
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Marjana Novič
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
12
|
Functional characterization of murB-potABCD operon for polyamine uptake and peptidoglycan synthesis in Streptococcus suis. Microbiol Res 2018; 207:177-187. [DOI: 10.1016/j.micres.2017.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 11/12/2017] [Indexed: 01/27/2023]
|
13
|
Maciejewska B, Olszak T, Drulis-Kawa Z. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 2018; 102:2563-2581. [PMID: 29442169 PMCID: PMC5847195 DOI: 10.1007/s00253-018-8811-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/21/2023]
Abstract
Bacteriophages (phages) are viruses that infect bacteria. The "predator-prey" interactions are recognized as a potentially effective way to treat infections. Phages, as well as phage-derived proteins, especially enzymes, are intensively studied to become future alternative or supportive antibacterials used alone or in combination with standard antibiotic regimens treatment. There are many publications presenting phage therapy aspects, and some papers focused separately on the application of phage-derived enzymes. In this review, we discuss advantages and limitations of both agents concerning their specificity, mode of action, structural issues, resistance development, pharmacokinetics, product preparation, and interactions with the immune system. Finally, we describe the current regulations for phage-based product application.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Tomasz Olszak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| |
Collapse
|
14
|
Zucchini L, Mercy C, Garcia PS, Cluzel C, Gueguen-Chaignon V, Galisson F, Freton C, Guiral S, Brochier-Armanet C, Gouet P, Grangeasse C. PASTA repeats of the protein kinase StkP interconnect cell constriction and separation of Streptococcus pneumoniae. Nat Microbiol 2018; 3:197-209. [PMID: 29203882 DOI: 10.1038/s41564-017-0069-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022]
Abstract
Eukaryotic-like serine/threonine kinases (eSTKs) with extracellular PASTA repeats are key membrane regulators of bacterial cell division. How PASTA repeats govern eSTK activation and function remains elusive. Using evolution- and structural-guided approaches combined with cell imaging, we disentangle the role of each PASTA repeat of the eSTK StkP from Streptococcus pneumoniae. While the three membrane-proximal PASTA repeats behave as interchangeable modules required for the activation of StkP independently of cell wall binding, they also control the septal cell wall thickness. In contrast, the fourth and membrane-distal PASTA repeat directs StkP localization at the division septum and encompasses a specific motif that is critical for final cell separation through interaction with the cell wall hydrolase LytB. We propose a model in which the extracellular four-PASTA domain of StkP plays a dual function in interconnecting the phosphorylation of StkP endogenous targets along with septal cell wall remodelling to allow cell division of the pneumococcus.
Collapse
Affiliation(s)
- Laure Zucchini
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Chryslène Mercy
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Pierre Simon Garcia
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
- Laboratoire de Biométrie et Biologie Evolutive, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Villeurbanne, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, Structure Fédérative de Recherche Biosciences/UMS3444/US8, Université Claude Bernard Lyon 1, Ecole Normale Supérieur de Lyon, INSERM, Centre National de la Recherche Scientifique, Lyon, France
| | - Frédéric Galisson
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Sébastien Guiral
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Villeurbanne, France
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France.
| |
Collapse
|
15
|
Bustamante N, Iglesias-Bexiga M, Bernardo-García N, Silva-Martín N, García G, Campanero-Rhodes MA, García E, Usón I, Buey RM, García P, Hermoso JA, Bruix M, Menéndez M. Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan. Sci Rep 2017; 7:16494. [PMID: 29184076 PMCID: PMC5705596 DOI: 10.1038/s41598-017-16392-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022] Open
Abstract
Endolysins, the cell wall lytic enzymes encoded by bacteriophages to release the phage progeny, are among the top alternatives to fight against multiresistant pathogenic bacteria; one of the current biggest challenges to global health. Their narrow range of susceptible bacteria relies, primarily, on targeting specific cell-wall receptors through specialized modules. The cell wall-binding domain of Cpl-7 endolysin, made of three CW_7 repeats, accounts for its extended-range of substrates. Using as model system the cell wall-binding domain of Cpl-7, here we describe the molecular basis for the bacterial cell wall recognition by the CW_7 motif, which is widely represented in sequences of cell wall hydrolases. We report the crystal and solution structure of the full-length domain, identify N-acetyl-D-glucosaminyl-(β1,4)-N-acetylmuramyl-L-alanyl-D-isoglutamine (GMDP) as the peptidoglycan (PG) target recognized by the CW_7 motifs, and characterize feasible GMDP-CW_7 contacts. Our data suggest that Cpl-7 cell wall-binding domain might simultaneously bind to three PG chains, and also highlight the potential use of CW_7-containing lysins as novel anti-infectives.
Collapse
Affiliation(s)
- Noemí Bustamante
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Manuel Iglesias-Bexiga
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Noelia Bernardo-García
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Noella Silva-Martín
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Guadalupe García
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María A Campanero-Rhodes
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Esther García
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Isabel Usón
- Instituto de Biología Molecular de Barcelona, CSIC, Baldiri Reixach 13, 08028, Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | - Rubén M Buey
- Metabolic Engineering Group. Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Pedro García
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan A Hermoso
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Marta Bruix
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
16
|
Bacterial size matters: Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis. PLoS Pathog 2017; 13:e1006526. [PMID: 28742152 PMCID: PMC5542707 DOI: 10.1371/journal.ppat.1006526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/03/2017] [Accepted: 07/12/2017] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections. Enterococcus faecalis is a commensal bacterium that colonizes the gastrointestinal tract of humans. This organism is an opportunistic pathogen that can cause a wide range of life-threatening infections in hospital settings. Despite the identification of several virulence factors, the mechanisms by which E. faecalis evades host immunity and causes infections remains poorly understood. Here, we explore how the formation of diplococci and short cell chains, a distinctive property of E. faecalis, contributes to pathogenesis. We describe several mechanisms that control the activity of AtlA, the enzyme dedicated to septum cleavage during division. Using a combination of in vitro assays and flow cytometry analyses of E. faecalis mutants, we show that AtlA activity is regulated by several mechanisms. We reveal that during pathogenesis, AtlA activity is critical for overcoming the host immune response. In the absence of AtlA, the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and can no longer cause lethality in the zebrafish model of infection, thus indicating that control of cell chain length is a novel virulence factor in E. faecalis. This work highlights a link between cell division and pathogenesis and suggests that cell separation represents a step that can be targeted to control bacterial infections.
Collapse
|
17
|
Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases. Curr Opin Struct Biol 2017; 44:87-100. [PMID: 28109980 DOI: 10.1016/j.sbi.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 01/26/2023]
Abstract
The major component of bacterial cell wall is peptidoglycan (PG), a complex polymer formed by long glycan chains cross-linked by peptide stems. PG is in constant equilibrium requiring well-orchestrated coordination between synthesis and degradation. The resulting cell-wall fragments can be recycled, act as messengers for bacterial communication, as effector molecules in immune response or as signaling molecules triggering antibiotics resistance. Tailoring and recycling of PG requires the cleavage of different covalent bonds of the PG sacculi by a diverse set of specific enzymes whose activities are strictly regulated. Here, we review the molecular mechanisms that govern PG remodeling focusing on the structural information available for the bacterial lytic enzymes and the mechanisms by which they recognize their substrates.
Collapse
|
18
|
Haghighat S, Siadat SD, Sorkhabadi SMR, Sepahi AA, Mahdavi M. Cloning, expression and purification of autolysin from methicillin-resistant Staphylococcus aureus: potency and challenge study in Balb/c mice. Mol Immunol 2016; 82:10-18. [PMID: 28006655 DOI: 10.1016/j.molimm.2016.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus (MRSA) is an opportunistic pathogen which causes a variety of clinical diseases and leads to high rates of morbidity and mortality. Development of an effective vaccine appears to be a useful strategy to control the infection. Here, the internal region of atl was cloned into the pET24a plasmid and expressed in E. coli BL21 (DE3). Cloning of atl was confirmed by colony-PCR, enzymatic digestion and sequencing. Protein expressed in E coli, BL21 DE3 and was confirmed with SDS-PAGE and western blot analysis. Subsequently, BALB/c mice were injected subcutaneously three times with 20μg of the recombinant autolysin. After Bleeding, autolysin-specific total IgG antibodies and isotypes were evaluated using ELISA. Opsonophagocytic killing assay was performed and experimental challenge was done by intraperitoneal injection with sub lethal doses of MRSA in mice and also survival rate was regularly monitored. Results showed that vaccinated mice could exhibit higher levels of autolysin-specific antibodies (P<0.0001) with a predominant IgG1 response versus control group. Results from in vitro experiments indicated that S. aureus opsonized with immunized-mice sera displayed significantly increased phagocytic uptake and effective intracellular killing versus non-immunized mice. The number of viable bacteria in the kidney of immunized mice showed 1000 times less than the control mice; additionally, an increased survival rate was found after immunization with the candidate vaccine versus control group. Results from this study demonstrated that the autolysin is a valuable target for the development of immunotherapeutic strategies against S. aureus and candidate vaccines.
Collapse
Affiliation(s)
- Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran.
| | - Seyed Davar Siadat
- Department of Mycobacteriology & Pulmonary Research, Microbiology Research center, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Mehdi Rezayat Sorkhabadi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Gutiérrez-Fernández J, Saleh M, Alcorlo M, Gómez-Mejía A, Pantoja-Uceda D, Treviño MA, Voß F, Abdullah MR, Galán-Bartual S, Seinen J, Sánchez-Murcia PA, Gago F, Bruix M, Hammerschmidt S, Hermoso JA. Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis. Sci Rep 2016; 6:38094. [PMID: 27917891 PMCID: PMC5137146 DOI: 10.1038/srep38094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022] Open
Abstract
The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to phosphorylcholine (PCho) moieties from cell-wall teichoic acids. By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion. CbpL is a very elongated three-module protein composed of (i) an Excalibur Ca2+-binding domain -reported in this work for the very first time-, (ii) an unprecedented anchorage module showing alternate disposition of canonical and non-canonical choline-binding sites that allows vine-like binding of fully-PCho-substituted teichoic acids (with two choline moieties per unit), and (iii) a Ltp_Lipoprotein domain. Our structural and infection assays indicate an important role of the whole multimodular protein allowing both to locate CbpL at specific places on the cell wall and to interact with host components in order to facilitate pneumococcal lung infection and transmigration from nasopharynx to the lungs and blood. CbpL implication in both resistance against killing by phagocytes and pneumococcal pathogenesis further postulate this surface-protein as relevant among the pathogenic arsenal of the pneumococcus.
Collapse
Affiliation(s)
- Javier Gutiérrez-Fernández
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Malek Saleh
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Martín Alcorlo
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Alejandro Gómez-Mejía
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - David Pantoja-Uceda
- Department of Biological Physical Chemistry. "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Miguel A Treviño
- Department of Biological Physical Chemistry. "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Franziska Voß
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Mohammed R Abdullah
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Sergio Galán-Bartual
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Jolien Seinen
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Pedro A Sánchez-Murcia
- Department of Biomedical Sciences, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Marta Bruix
- Department of Biological Physical Chemistry. "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| |
Collapse
|
20
|
Chan WT, Espinosa M. The Streptococcus pneumoniae pezAT Toxin-Antitoxin System Reduces β-Lactam Resistance and Genetic Competence. Front Microbiol 2016; 7:1322. [PMID: 27610103 PMCID: PMC4997998 DOI: 10.3389/fmicb.2016.01322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Chromosomally encoded Type II Toxin–Antitoxin operons are ubiquitous in bacteria and archaea. Antitoxins neutralize the toxic effect of cognate Toxins by protein–protein interactions and sequestering the active residues of the Toxin. Toxins target essential bacterial processes, mostly translation and replication. However, one class apart is constituted by the PezAT pair because the PezT toxin target cell wall biosynthesis. Here, we have examined the role of the pezAT toxin–antitoxin genes in its natural host, the pathogenic bacterium Streptococcus pneumoniae. The pezAT operon on Pneumococcal Pathogenicity Island 1 was deleted from strain R6 and its phenotypic traits were compared with those of the wild type. The mutant cells formed shorter chains during exponential phase, leading to increased colony-forming units. At stationary phase, the mutant was more resilient to lysis. Importantly, the mutant exhibited higher resistance to antibiotics targeting cell walls (β-lactams), but not to antibiotics acting at other levels. In addition, the mutants also showed enhanced genetic competence. We suggest that PezAT participates in a subtle equilibrium between loss of functions (resistance to β-lactams and genetic competence) and gain of other traits (virulence).
Collapse
Affiliation(s)
- Wai T Chan
- Bacterial Gene Expression and Gene Transfer, Molecular Microbiology and Infectious Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Bacterial Gene Expression and Gene Transfer, Molecular Microbiology and Infectious Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
21
|
Choline Binding Proteins from Streptococcus pneumoniae: A Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials. Antibiotics (Basel) 2016; 5:antibiotics5020021. [PMID: 27314398 PMCID: PMC4929436 DOI: 10.3390/antibiotics5020021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is an important pathogen responsible for acute invasive and non-invasive infections such as meningitis, sepsis and otitis media, being the major cause of community-acquired pneumonia. The fight against pneumococcus is currently hampered both by insufficient vaccine coverage and by rising antimicrobial resistances to traditional antibiotics, making necessary the research on novel targets. Choline binding proteins (CBPs) are a family of polypeptides found in pneumococcus and related species, as well as in some of their associated bacteriophages. They are characterized by a structural organization in two modules: a functional module (FM), and a choline-binding module (CBM) that anchors the protein to the choline residues present in the cell wall through non-covalent interactions. Pneumococcal CBPs include cell wall hydrolases, adhesins and other virulence factors, all playing relevant physiological roles for bacterial viability and virulence. Moreover, many pneumococcal phages also make use of hydrolytic CBPs to fulfill their infectivity cycle. Consequently, CBPs may play a dual role for the development of novel antipneumococcal drugs, both as targets for inhibitors of their binding to the cell wall and as active cell lytic agents (enzybiotics). In this article, we review the current state of knowledge about host- and phage-encoded pneumococcal CBPs, with a special focus on structural issues, together with their perspectives for effective anti-infectious treatments.
Collapse
|
22
|
Ko TP, Tseng ST, Lai SJ, Chen SC, Guan HH, Shin Yang C, Jung Chen C, Chen Y. SH3-like motif-containing C-terminal domain of staphylococcal teichoic acid transporter suggests possible function. Proteins 2016; 84:1328-32. [DOI: 10.1002/prot.25074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica; Taipei Taiwan
| | - Shih-Ting Tseng
- Department of Food and Nutrition; Providence University; Taichung City Taiwan
- Department of Endocrinology and Metabolism; Kuang Tien General Hospital; Taiwan
| | - Shu-Jung Lai
- Institute of Biological Chemistry, Academia Sinica; Taipei Taiwan
| | - Sheng-Chia Chen
- Department of Biotechnology; Hungkuang University; Taichung Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division; National Synchrotron Radiation Research Center; Hsinchu 30076 Taiwan
| | - Chia Shin Yang
- Department of Biotechnology; Hungkuang University; Taichung Taiwan
- Taiwan Advance Biopharm (TABP) Inc; Xizhi City, New Taipei City Taiwan
| | - Chun Jung Chen
- Life Science Group, Scientific Research Division; National Synchrotron Radiation Research Center; Hsinchu 30076 Taiwan
- Institute of Biotechnology and Center for Bioscience and Biotechnology; National Cheng Kung University; Tainan City 701 Taiwan
- Department of Physics; National Tsing Hua University; Hsinchu 30043 Taiwan
| | - Yeh Chen
- Department of Biotechnology; Hungkuang University; Taichung Taiwan
| |
Collapse
|
23
|
Herlihey FA, Clarke AJ. Controlling Autolysis During Flagella Insertion in Gram-Negative Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:41-56. [PMID: 27722959 DOI: 10.1007/5584_2016_52] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The flagellum is an important macromolecular machine for many pathogenic bacteria. It is a hetero-oligomeric structure comprised of three major sub-structures: basal body, hook and thin helical filament. An important step during flagellum assembly is the localized and controlled degradation of the peptidoglycan sacculus to allow for the insertion of the rod as well as to facilitate anchoring for proper motor function. The peptidoglycan lysis events require specialized lytic enzymes, β-N-acetylglucosaminidases and lytic transglycosylases, which differ in flagellated proteobacteria. Due to their autolytic activity, these enzymes need to be controlled in order to prevent cellular lysis. This review summarizes are current understanding of the peptidoglycan lysis events required for flagellum assembly and motility with a main focus on Gram-negative bacteria.
Collapse
Affiliation(s)
- Francesca A Herlihey
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|