1
|
Zhao X, Liu Y, Yuan B, Cao Z, Yang Y, He C, Chan KC, Xiao S, Lin H, Fang Q, Ye G, Ye X. Genomic signatures associated with the evolutionary loss of egg yolk in parasitoid wasps. Proc Natl Acad Sci U S A 2025; 122:e2422292122. [PMID: 40232796 PMCID: PMC12036997 DOI: 10.1073/pnas.2422292122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Trait regression and loss have occurred repeatedly in numerous lineages in response to environmental changes. In parasitoid wasps, a megadiverse group of hymenopteran insects, yolk protein reduction or loss has been observed in many species, likely linked to the transition from ectoparasitism to endoparasitism. However, the genetic basis of this trait and the impact of its loss on genome evolution remain poorly understood. Here, we performed a comparative genomic analysis of 64 hymenopteran insects. The conserved insect yolk protein gene vitellogenin (Vg) underwent five independent loss events in four families, involving 23 of the analyzed endoparasitoid species. Whole-genome alignment suggested that Vg loss occurred during genome rearrangement events. Analysis of Vg receptor gene (VgR) loss, selection, and structural variation in lineages lacking Vg demonstrated functional biases in the patterns of gene loss. The ectoparasitism to endoparasitism transition did not appear to be the primary driver of Vg loss or the subsequent VgR evolution. Together, these findings reveal the genomic changes underlying a unique trait loss in parasitoid wasps. More broadly, this study enhances our understanding of yolk protein loss evolution outside the class Mammalia, highlighting a potential evolutionary trend arising from the availability of an alternative nutrient source for embryonic development.
Collapse
Affiliation(s)
- Xianxin Zhao
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yuanyuan Liu
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Bo Yuan
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Zhichao Cao
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Chun He
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Kevin C. Chan
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou215123, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai201203, China
| | - Shan Xiao
- Ningbo Academy of Agricultural Science, Ningbo315100, China
| | - Haiwei Lin
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xinhai Ye
- College of Advanced Agriculture Science, Zhejiang Agriculture and Forestry University, Hangzhou311300, China
- Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang Agriculture and Forestry University, Hangzhou311300, China
| |
Collapse
|
2
|
Lessenger AT, Skotheim JM, Swaffer MP, Feldman JL. Somatic polyploidy supports biosynthesis and tissue function by increasing transcriptional output. J Cell Biol 2025; 224:e202403154. [PMID: 39652010 PMCID: PMC11627111 DOI: 10.1083/jcb.202403154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cell size and biosynthetic capacity generally increase with increased DNA content. Somatic polyploidy has therefore been proposed to be an adaptive strategy to increase cell size in specialized tissues with high biosynthetic demands. However, if and how DNA concentration limits cellular biosynthesis in vivo is not well understood. Here, we show that polyploidy in the Caenorhabditis elegans intestine is critical for cell growth and yolk biosynthesis, a central role of this organ. Artificially lowering the DNA/cytoplasm ratio by reducing polyploidization in the intestine gave rise to smaller cells with dilute mRNA. Highly expressed transcripts were more sensitive to this mRNA dilution, whereas lowly expressed genes were partially compensated-in part by loading more RNA Polymerase II on the remaining genomes. Polyploidy-deficient animals produced fewer and slower-growing offspring, consistent with reduced synthesis of highly expressed yolk proteins. DNA-dilute cells had normal total protein concentration, which we propose is achieved by increasing the expression of translational machinery at the expense of specialized, cell-type-specific proteins.
Collapse
Affiliation(s)
| | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Mathew P. Swaffer
- Department of Biology, Stanford University, Stanford, CA, USA
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
3
|
Yang B, Manifold B, Han W, DeSousa C, Zhu W, Streets A, Titov DV. SRS microscopy identifies inhibition of vitellogenesis as a mediator of lifespan extension by caloric restriction in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.636008. [PMID: 40034647 PMCID: PMC11875241 DOI: 10.1101/2025.01.31.636008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The molecular mechanisms of aging are not fully understood. Here, we used label-free Stimulated Raman scattering (SRS) microscopy to investigate changes in proteins and lipids throughout the lifespan of C. elegans. We observed a dramatic buildup of proteins within the body cavity or pseudocoelom of aged adults that was blunted by interventions that extend lifespan: caloric restriction (CR) and the reduced insulin/insulin-like growth factor signaling (IIS) pathway. Using a combination of microscopy, proteomic analysis, and validation with mutant strains, we identified vitellogenins as the key molecular components of the protein buildup in the pseudocoelom. Vitellogenins shuttle nutrients from intestine to embryos and are homologous to human apolipoprotein B, the causal driver of cardiovascular disease. We then showed that CR and knockdown of vitellogenins both extend lifespan by >60%, but their combination has no additional effect on lifespan, suggesting that CR extends the lifespan of C. elegans in part by inhibiting vitellogenesis. The extensive dataset of more than 12,000 images stitched into over 350 whole-animal SRS images of C. elegans at different ages and subjected to different longevity intervention will be a valuable resource for researchers interested in aging.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Bryce Manifold
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Wuji Han
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Catherin DeSousa
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Wanyi Zhu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Denis V. Titov
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| |
Collapse
|
4
|
Erdmann EA, Forbes M, Becker M, Perez S, Hundley HA. ADR-2 regulates fertility and oocyte fate in Caenorhabditis elegans. Genetics 2024; 228:iyae114. [PMID: 39028799 PMCID: PMC11457940 DOI: 10.1093/genetics/iyae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
RNA-binding proteins (RBPs) play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the adenosine deaminase acting on RNA family of RBPs and the sole adenosine-to-inosine RNA-editing enzyme in Caenorhabditis elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RBPs that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogeneous nuclear ribonucleoprotein family of RBPs. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and RNA editing-independent mechanisms in regulating embryogenesis.
Collapse
Affiliation(s)
- Emily A Erdmann
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | - Melanie Forbes
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Margaret Becker
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Sarina Perez
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Fuentes R, Marlow FL, Abrams EW, Zhang H, Kobayashi M, Gupta T, Kapp LD, DiNardo Z, Heller R, Cisternas R, García-Castro P, Segovia-Miranda F, Montecinos-Franjola F, Vought W, Vejnar CE, Giraldez AJ, Mullins MC. Maternal regulation of the vertebrate oocyte-to-embryo transition. PLoS Genet 2024; 20:e1011343. [PMID: 39052672 PMCID: PMC11302925 DOI: 10.1371/journal.pgen.1011343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Maternally-loaded factors in the egg accumulate during oogenesis and are essential for the acquisition of oocyte and egg developmental competence to ensure the production of viable embryos. However, their molecular nature and functional importance remain poorly understood. Here, we present a collection of 9 recessive maternal-effect mutants identified in a zebrafish forward genetic screen that reveal unique molecular insights into the mechanisms controlling the vertebrate oocyte-to-embryo transition. Four genes, over easy, p33bjta, poached and black caviar, were found to control initial steps in yolk globule sizing and protein cleavage during oocyte maturation that act independently of nuclear maturation. The krang, kazukuram, p28tabj, and spotty genes play distinct roles in egg activation, including cortical granule biology, cytoplasmic segregation, the regulation of microtubule organizing center assembly and microtubule nucleation, and establishing the basic body plan. Furthermore, we cloned two of the mutant genes, identifying the over easy gene as a subunit of the Adaptor Protein complex 5, Ap5m1, which implicates it in regulating intracellular trafficking and yolk vesicle formation. The novel maternal protein Krang/Kiaa0513, highly conserved in metazoans, was discovered and linked to the function of cortical granules during egg activation. These mutant genes represent novel genetic entry points to decipher the molecular mechanisms functioning in the oocyte-to-embryo transition, fertility, and human disease. Additionally, our genetic adult screen not only contributes to the existing knowledge in the field but also sets the basis for future investigations. Thus, the identified maternal genes represent key players in the coordination and execution of events prior to fertilization.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Florence L. Marlow
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine Mount Sinai, New York, New York, United States of America
| | - Elliott W. Abrams
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Purchase College, State University of New York, Purchase, New York, United States of America
| | - Hong Zhang
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Tripti Gupta
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lee D. Kapp
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zachary DiNardo
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ronald Heller
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ruth Cisternas
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Priscila García-Castro
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fabián Segovia-Miranda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Montecinos-Franjola
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, Maryland, United States of America
| | - William Vought
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles E. Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Antonio J. Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Erdmann EA, Forbes M, Becker M, Perez S, Hundley HA. ADR-2 regulates fertility and oocyte fate in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565157. [PMID: 37961348 PMCID: PMC10635048 DOI: 10.1101/2023.11.01.565157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
RNA binding proteins play essential roles in coordinating germline gene expression and development in all organisms. Here, we report that loss of ADR-2, a member of the Adenosine DeAminase acting on RNA (ADAR) family of RNA binding proteins and the sole adenosine-to-inosine RNA editing enzyme in C. elegans, can improve fertility in multiple genetic backgrounds. First, we show that loss of RNA editing by ADR-2 restores normal embryo production to subfertile animals that transgenically express a vitellogenin (yolk protein) fusion to green fluorescent protein. Using this phenotype, a high-throughput screen was designed to identify RNA binding proteins that when depleted yield synthetic phenotypes with loss of adr-2. The screen uncovered a genetic interaction between ADR-2 and SQD-1, a member of the heterogenous nuclear ribonucleoprotein (hnRNP) family of RNA binding proteins. Microscopy, reproductive assays, and high-throughput sequencing reveal that sqd-1 is essential for the onset of oogenesis and oogenic gene expression in young adult animals, and that loss of adr-2 can counteract the effects of loss of sqd-1 on gene expression and rescue the switch from spermatogenesis to oogenesis. Together, these data demonstrate that ADR-2 can contribute to the suppression of fertility and suggest novel roles for both RNA editing-dependent and independent mechanisms in regulating embryogenesis.
Collapse
Affiliation(s)
- Emily A. Erdmann
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington IN, US 47405
| | - Melanie Forbes
- Department of Biology, Indiana University, Bloomington IN, US 47405
| | - Margaret Becker
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN, US 47405
| | - Sarina Perez
- Department of Biology, Indiana University, Bloomington IN, US 47405
| | | |
Collapse
|
7
|
Lessenger AT, Swaffer MP, Skotheim JM, Feldman JL. Somatic polyploidy supports biosynthesis and tissue function by increasing transcriptional output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586714. [PMID: 38585999 PMCID: PMC10996643 DOI: 10.1101/2024.03.25.586714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cell size and biosynthetic capacity generally increase with increased DNA content. Polyploidy has therefore been proposed to be an adaptive strategy to increase cell size in specialized tissues with high biosynthetic demands. However, if and how DNA concentration limits cellular biosynthesis in vivo is not well understood, and the impacts of polyploidy in non-disease states is not well studied. Here, we show that polyploidy in the C. elegans intestine is critical for cell growth and yolk biosynthesis, a central role of this organ. Artificially lowering the DNA/cytoplasm ratio by reducing polyploidization in the intestine gave rise to smaller cells with more dilute mRNA. Highly-expressed transcripts were more sensitive to this mRNA dilution, whereas lowly-expressed genes were partially compensated - in part by loading more RNA Polymerase II on the remaining genomes. DNA-dilute cells had normal total protein concentration, which we propose is achieved by increasing production of translational machinery at the expense of specialized, cell-type specific proteins.
Collapse
|
8
|
Fanelli MJ, Welsh CM, Lui DS, Smulan LJ, Walker AK. Immunity-linked genes are stimulated by a membrane stress pathway linked to Golgi function and the ARF-1 GTPase. SCIENCE ADVANCES 2023; 9:eadi5545. [PMID: 38055815 PMCID: PMC10699786 DOI: 10.1126/sciadv.adi5545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Infection response and other immunity-linked genes (ILGs) were first named in Caenorhabditis elegans-based expression after pathogen challenge, but many are also up-regulated when lipid metabolism is perturbed. Why pathogen attack and metabolic changes both increase ILGs is unclear. We find that ILGs are activated when phosphatidylcholine (PC) levels change in membranes of secretory organelles in C. elegans. RNAi targeting of the ADP-ribosylation factor arf-1, which disrupts the Golgi and secretory function, also activates ILGs. Low PC limits ARF-1 function, suggesting a mechanism for ILG activation via lipid metabolism, as part of a membrane stress response acting outside the ER. RNAi of selected ILGs uncovered defects in the secretion of two GFP reporters and the accumulation of a pathogen-responsive complement C1r/C1s, Uegf, Bmp1 (CUB) domain fusion protein. Our data argue that up-regulation of some ILGs is a coordinated response to changes in trafficking and may act to counteract stress on secretory function.
Collapse
Affiliation(s)
- Matthew J. Fanelli
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, MA, USA
| | - Christofer M. Welsh
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, MA, USA
- Morningside School of Biomedical Sciences, UMASS Chan Medical School, Worcester, MA, USA
| | - Dominique S. Lui
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, MA, USA
| | - Lorissa J. Smulan
- Department of Medicine, UMASS Chan Medical School, Worcester, MA, USA
| | - Amy K. Walker
- Program in Molecular Medicine, UMASS Chan Medical School, Worcester, MA, USA
| |
Collapse
|
9
|
Torzone SK, Park AY, Breen PC, Cohen NR, Dowen RH. Opposing action of the FLR-2 glycoprotein hormone and DRL-1/FLR-4 MAP kinases balance p38-mediated growth and lipid homeostasis in C. elegans. PLoS Biol 2023; 21:e3002320. [PMID: 37773960 PMCID: PMC10566725 DOI: 10.1371/journal.pbio.3002320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/11/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023] Open
Abstract
Animals integrate developmental and nutritional signals before committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development.
Collapse
Affiliation(s)
- Sarah K. Torzone
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aaron Y. Park
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Peter C. Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalie R. Cohen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
10
|
Geens E, Van de Walle P, Caroti F, Jelier R, Steuwe C, Schoofs L, Temmerman L. Yolk-deprived Caenorhabditis elegans secure brood size at the expense of competitive fitness. Life Sci Alliance 2023; 6:e202201675. [PMID: 37059473 PMCID: PMC10105328 DOI: 10.26508/lsa.202201675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
Oviparous animals support reproduction via the incorporation of yolk as a nutrient source into the eggs. In Caenorhabditis elegans, however, yolk proteins seem dispensable for fecundity, despite constituting the vast majority of the embryonic protein pool and acting as carriers for nutrient-rich lipids. Here, we used yolk protein-deprived C. elegans mutants to gain insight into the traits that may yet be influenced by yolk rationing. We show that massive yolk provisioning confers a temporal advantage during embryogenesis, while also increasing early juvenile body size and promoting competitive fitness. Opposite to species that reduce egg production under yolk deprivation, our results indicate that C. elegans relies on yolk as a fail-safe to secure offspring survival, rather than to maintain offspring numbers.
Collapse
Affiliation(s)
- Ellen Geens
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Francesca Caroti
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Rob Jelier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Christian Steuwe
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
11
|
Tang J, Ma YC, Chen YL, Yang RQ, Liu HC, Wang X, Ni B, Zou CG, Zhang KQ. Vitellogenin accumulation leads to reproductive senescence by impairing lysosomal function. SCIENCE CHINA. LIFE SCIENCES 2023; 66:439-452. [PMID: 36680676 DOI: 10.1007/s11427-022-2242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/19/2022] [Indexed: 01/22/2023]
Abstract
The maintenance of proteostasis is essential for cellular and organism healthspan. How proteostasis collapse influences reproductive span remains largely unclear. In Caenorhabditis elegans, excess accumulation of vitellogenins, the major components in yolk proteins, is crucial for the development of the embryo and occurs throughout the whole body during the aging process. Here, we show that vitellogenin accumulation leads to reproduction cessation. Excess vitellogenin is accumulated in the intestine and transported into the germline, impairing lysosomal activity in these tissues. The lysosomal function in the germline is required for reproductive span by maintaining oocyte quality. In contrast, autophagy and sperm depletion are not involved in vitellogenin accumulation-induced reproductive aging. Our findings provide insights into how proteome imbalance has an impact on reproductive aging and imply that improvement of lysosomal function is an effective approach for mid-life intervention for maintaining reproductive health in mammals.
Collapse
Affiliation(s)
- Jie Tang
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), Kunming, 650118, China
| | - Yi-Cheng Ma
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yuan-Li Chen
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
- Faculty of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Rui-Qiu Yang
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Heng-Chen Liu
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xin Wang
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Baosen Ni
- Institute of Biology and Environmental Engineering, School of Chemistry, Biology & Environment, Yuxi Normal University, Yuxi, 653100, China
| | - Cheng-Gang Zou
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
12
|
Wu T, Cao DH, Liu Y, Yu H, Fu DY, Ye H, Xu J. Mating-Induced Common and Sex-Specific Behavioral, Transcriptional Changes in the Moth Fall Armyworm ( Spodoptera frugiperda, Noctuidae, Lepidoptera) in Laboratory. INSECTS 2023; 14:209. [PMID: 36835778 PMCID: PMC9964209 DOI: 10.3390/insects14020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The intermediate process between mating and postmating behavioral changes in insects is still poorly known. Here, we studied mating-induced common and sex-specific behavioral and transcriptional changes in both sexes of Spodoptera frugiperda and tested whether the transcriptional changes are linked to postmating behavioral changes in each sex. A behavioral study showed that mating caused a temporary suppression of female calling and male courting behavior, and females did not lay eggs until the next day after the first mating. The significant differences on daily fecundity under the presence of males or not, and the same or novel males, suggest that females may intentionally retain eggs to be fertilized by novel males or to be fertilized competitively by different males. RNA sequencing in females revealed that there are more reproduction related GO (gene ontology) terms and KEGG (Kyoto encyclopedia of genes and genomes) pathways (mainly related to egg and zygote development) enriched to upregulated DEGs (differentially expressed genes) than to downregulated DEGs at 0 and 24 h postmating. In males, however, mating induced DEGs did not enrich any reproduction related terms/pathways, which may be because male reproductive bioinformatics is relatively limited in moths. Mating also induced upregulation on soma maintenance (such as immune activity and stress reaction) related processes in females at 0, 6 and 24 h postmating. In males, mating also induced upregulation on soma maintenance related processes at 0 h postmating, but induced downregulation on these processes at 6 and 24 h postmating. In conclusion, this study demonstrated that mating induced sex-specific postmating behavioral and transcriptional changes in both sexes of S. frugiperda and suggested that the transcriptional changes are correlated with postmating physiological and behavioral changes in each sex.
Collapse
Affiliation(s)
- Ting Wu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Da-Hu Cao
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Yu Liu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
| | - Hong Yu
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- School of Life Science, Southwest Forestry University, Kunming 650224, China
| | - Hui Ye
- School of Ecology and Environment, Yunnan University, Kunming 650091, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
13
|
Rennich BJ, Luth ES, Hofer J, Juo P. Low-Density Lipoprotein Receptor LRP-2 regulates GLR-1 glutamate receptors and glutamatergic behavior in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000837. [PMID: 37179968 PMCID: PMC10172966 DOI: 10.17912/micropub.biology.000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
We identified the Low-Density Lipoprotein (LDL) Receptor Related Protein-2 (LRP-2) in a RNAi screen for genes that regulate glutamatergic behavior in C. elegans . lrp-2 loss-of-function mutants have defects in glutamatergic mechanosensory nose-touch behavior and suppress increased spontaneous reversals induced by GLR-1(A/T), a constitutively-active form of the AMPA-type glutamate receptor GLR-1. Total and surface levels of GLR-1 are increased throughout the ventral nerve cord of lrp-2 mutants suggesting that LRP-2 promotes glutamatergic signaling by regulating some aspect of GLR-1 trafficking, localization or function.
Collapse
Affiliation(s)
- Bethany J Rennich
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Eric S Luth
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
- Biology, Simmons University, Boston, MA 02115
| | - Julia Hofer
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
| | - Peter Juo
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111
- Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111
- Correspondence to: Peter Juo (
)
| |
Collapse
|
14
|
van Rijnberk LM, Barrull-Mascaró R, van der Palen RL, Schild ES, Korswagen HC, Galli M. Endomitosis controls tissue-specific gene expression during development. PLoS Biol 2022; 20:e3001597. [PMID: 35609035 PMCID: PMC9129049 DOI: 10.1371/journal.pbio.3001597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Polyploid cells contain more than 2 copies of the genome and are found in many plant and animal tissues. Different types of polyploidy exist, in which the genome is confined to either 1 nucleus (mononucleation) or 2 or more nuclei (multinucleation). Despite the widespread occurrence of polyploidy, the functional significance of different types of polyploidy is largely unknown. Here, we assess the function of multinucleation in Caenorhabditis elegans intestinal cells through specific inhibition of binucleation without altering genome ploidy. Through single-worm RNA sequencing, we find that binucleation is important for tissue-specific gene expression, most prominently for genes that show a rapid up-regulation at the transition from larval development to adulthood. Regulated genes include vitellogenins, which encode yolk proteins that facilitate nutrient transport to the germline. We find that reduced expression of vitellogenins in mononucleated intestinal cells leads to progeny with developmental delays and reduced fitness. Together, our results show that binucleation facilitates rapid up-regulation of intestine-specific gene expression during development, independently of genome ploidy, underscoring the importance of spatial genome organization for polyploid cell function. Why do some cells contain more than one nucleus? By comparing mononucleated and multinucleated polyploid cells in C. elegans, this study shows that having multiple nuclei is important for optimal transcriptional upregulation of developmentally controlled genes.
Collapse
Affiliation(s)
- Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ramon Barrull-Mascaró
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Reinier L. van der Palen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik S. Schild
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
15
|
Erdmann EA, Abraham O, Hundley HA. Caenorhabditis elegans expressing a Vitellogenin::GFP fusion protein show reduced embryo content and brood size. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000532. [PMID: 35252801 PMCID: PMC8889445 DOI: 10.17912/micropub.biology.000532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/03/2022]
Abstract
Vitellogenin::GFP fusion proteins have been used in several studies of the synthesis, endocytosis, and function of yolk in Caenorhabditis elegans. Here we report that one commonly used transgenic strain harboring a vit-2::gfp fusion displays defects in reproduction that lead to a significantly decreased embryo content and brood size in adult worms.
Collapse
Affiliation(s)
| | - Olivia Abraham
- Medical Sciences Program, Indiana University School of Medicine- Bloomington, Bloomington, IN, USA
| | - Heather A. Hundley
- Medical Sciences Program, Indiana University School of Medicine- Bloomington, Bloomington, IN, USA,
Correspondence to: Heather A. Hundley ()
| |
Collapse
|
16
|
Yu H, Shi MR, Xu J, Chen P, Liu JH. Mating-Induced Trade-Offs upon Egg Production versus Fertilization and Offspring's Survival in a Sawfly with Facultative Parthenogenesis. INSECTS 2021; 12:693. [PMID: 34442259 PMCID: PMC8396567 DOI: 10.3390/insects12080693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
Investigation of mating-induced trade-offs between reproduction and survival is conducive to provide evolutionary insights into reproductive strategies and aging. Here, we used RNAseq and bioinformatics to reveal mating-induced changes of genes and pathways related to reproduction and survival in female Cephalcia chuxiongica, a pine defoliator with facultative parthenogenesis and long larval dormancy. Results showed that mating induced substantial downregulation on genes and pathways associated to immunity, stress response, and longevity. However, mating induced divergent reproductive response, with downregulation on genes and pathways related to egg production while upregulation on genes and pathways related to egg fertilization. Considering the nature of limited resources in adults, low fecundity, and egg protection behavior in C. chuxiongica, we suggest that mating triggers trade-offs between reproduction and survival in this insect and females of this species may have evolved specific strategies to adapt to the environmental and hosts' conditions, e.g., restrict whole fecundity to ensure higher fertilization and offspring's survival. Moreover, mating induced significant responses on genes and pathways that play important roles in vertebrate reproduction while their function in insects are unclear, such as the progesterone-mediated oocyte maturation pathway; the significant regulation after mating suggests that their function may be evolutionarily conserved in animal kingdom.
Collapse
Affiliation(s)
- Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China; (H.Y.); (M.-R.S.)
| | - Min-Rui Shi
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China; (H.Y.); (M.-R.S.)
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China; (H.Y.); (M.-R.S.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Peng Chen
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China;
| | - Jian-Hong Liu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China; (H.Y.); (M.-R.S.)
| |
Collapse
|
17
|
Turek M, Banasiak K, Piechota M, Shanmugam N, Macias M, Śliwińska MA, Niklewicz M, Kowalski K, Nowak N, Chacinska A, Pokrzywa W. Muscle-derived exophers promote reproductive fitness. EMBO Rep 2021; 22:e52071. [PMID: 34288362 PMCID: PMC8339713 DOI: 10.15252/embr.202052071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
Organismal functionality and reproduction depend on metabolic rewiring and balanced energy resources. However, the crosstalk between organismal homeostasis and fecundity and the associated paracrine signaling mechanisms are still poorly understood. Using Caenorhabditis elegans, we discovered that large extracellular vesicles (known as exophers) previously found to remove damaged subcellular elements in neurons and cardiomyocytes are released by body wall muscles (BWM) to support embryonic growth. Exopher formation (exopheresis) by BWM is sex-specific and a non-cell autonomous process regulated by developing embryos in the uterus. Embryo-derived factors induce the production of exophers that transport yolk proteins produced in the BWM and ultimately deliver them to newly formed oocytes. Consequently, offspring of mothers with a high number of muscle-derived exophers grew faster. We propose that the primary role of muscular exopheresis is to stimulate reproductive capacity, thereby influencing the adaptation of worm populations to the current environmental conditions.
Collapse
Affiliation(s)
- Michał Turek
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland.,Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Laboratory of Animal Molecular Physiology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Banasiak
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Małgorzata Piechota
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Nilesh Shanmugam
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Matylda Macias
- Core Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Małgorzata Alicja Śliwińska
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Marta Niklewicz
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Konrad Kowalski
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, University of Warsaw, Warsaw, Poland.,Laboratory of Mitochondrial Biogenesis, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,IMol Polish Academy of Sciences, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
18
|
Receptor-mediated yolk uptake is required for oskar mRNA localization and cortical anchorage of germ plasm components in the Drosophila oocyte. PLoS Biol 2021; 19:e3001183. [PMID: 33891588 PMCID: PMC8064586 DOI: 10.1371/journal.pbio.3001183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/11/2021] [Indexed: 11/22/2022] Open
Abstract
The Drosophila germ plasm is responsible for germ cell formation. Its assembly begins with localization of oskar mRNA to the posterior pole of the oocyte. The oskar translation produces 2 isoforms with distinct functions: short Oskar recruits germ plasm components, whereas long Oskar remodels actin to anchor the components to the cortex. The mechanism by which long Oskar anchors them remains elusive. Here, we report that Yolkless, which facilitates uptake of nutrient yolk proteins into the oocyte, is a key cofactor for long Oskar. Loss of Yolkless or depletion of yolk proteins disrupts the microtubule alignment and oskar mRNA localization at the posterior pole of the oocyte, whereas microtubule-dependent localization of bicoid mRNA to the anterior and gurken mRNA to the anterior-dorsal corner remains intact. Furthermore, these mutant oocytes do not properly respond to long Oskar, causing defects in the actin remodeling and germ plasm anchoring. Thus, the yolk uptake is not merely the process for nutrient incorporation, but also crucial for oskar mRNA localization and cortical anchorage of germ plasm components in the oocyte. A study of the fruit fly Drosophila reveals that receptor-mediated yolk uptake is not merely a nutrient storage process for future embryogenesis, but is also required for localization of Oskar mRNA and cortical anchorage of germ plasm components in the oocyte during oogenesis.
Collapse
|
19
|
Plagens RN, Mossiah I, Kim Guisbert KS, Guisbert E. Chronic temperature stress inhibits reproduction and disrupts endocytosis via chaperone titration in Caenorhabditis elegans. BMC Biol 2021; 19:75. [PMID: 33858388 PMCID: PMC8051109 DOI: 10.1186/s12915-021-01008-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Temperature influences biology at all levels, from altering rates of biochemical reactions to determining sustainability of entire ecosystems. Although extended exposure to elevated temperatures influences organismal phenotypes important for human health, agriculture, and ecology, the molecular mechanisms that drive these responses remain largely unexplored. Prolonged, mild temperature stress (48 h at 28 °C) has been shown to inhibit reproduction in Caenorhabditis elegans without significantly impacting motility or viability. Results Analysis of molecular responses to chronic stress using RNA-seq uncovers dramatic effects on the transcriptome that are fundamentally distinct from the well-characterized, acute heat shock response (HSR). While a large portion of the genome is differentially expressed ≥ 4-fold after 48 h at 28 °C, the only major class of oogenesis-associated genes affected is the vitellogenin gene family that encodes for yolk proteins (YPs). Whereas YP mRNAs decrease, the proteins accumulate and mislocalize in the pseudocoelomic space as early as 6 h, well before reproduction declines. A trafficking defect in a second, unrelated fluorescent reporter and a decrease in pre-synaptic neuronal signaling indicate that the YP mislocalization is caused by a generalized defect in endocytosis. Molecular chaperones are involved in both endocytosis and refolding damaged proteins. Decreasing levels of the major HSP70 chaperone, HSP-1, causes similar YP trafficking defects in the absence of stress. Conversely, increasing chaperone levels through overexpression of the transcription factor HSF-1 rescues YP trafficking and restores neuronal signaling. Conclusions These data implicate chaperone titration during chronic stress as a molecular mechanism contributing to endocytic defects that influence multiple aspects of organismal physiology. Notably, HSF-1 overexpression improves recovery of viable offspring after exposure to stress. These findings provide important molecular insights into understanding organismal responses to temperature stress as well as phenotypes associated with chronic protein misfolding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01008-1.
Collapse
Affiliation(s)
- Rosemary N Plagens
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Isiah Mossiah
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
20
|
Rasulova M, Zečić A, Monje Moreno JM, Vandemeulebroucke L, Dhondt I, Braeckman BP. Elevated Trehalose Levels in C. elegans daf-2 Mutants Increase Stress Resistance, Not Lifespan. Metabolites 2021; 11:metabo11020105. [PMID: 33673074 PMCID: PMC7917784 DOI: 10.3390/metabo11020105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
The C. elegans insulin/IGF-1 (insulin-like growth factor 1) signaling mutant daf-2 recapitulates the dauer metabolic signature—a shift towards lipid and carbohydrate accumulation—which may be linked to its longevity and stress resistance phenotypes. Trehalose, a disaccharide of glucose, is highly upregulated in daf‑2 mutants and it has been linked to proteome stabilization and protection against heat, cold, desiccation, and hypoxia. Earlier studies suggested that elevated trehalose levels can explain up to 43% of the lifespan extension observed in daf-2 mutants. Here we demonstrate that trehalose accumulation is responsible for increased osmotolerance, and to some degree thermotolerance, rather than longevity in daf-2 mutants. This indicates that particular stress resistance phenotypes can be uncoupled from longevity.
Collapse
|
21
|
Van de Walle P, Muñoz-Jiménez C, Askjaer P, Schoofs L, Temmerman L. DamID identifies targets of CEH-60/PBX that are associated with neuron development and muscle structure in Caenorhabditis elegans. PLoS One 2020; 15:e0242939. [PMID: 33306687 PMCID: PMC7732058 DOI: 10.1371/journal.pone.0242939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022] Open
Abstract
Transcription factors govern many of the time- and tissue-specific gene expression events in living organisms. CEH-60, a homolog of the TALE transcription factor PBX in vertebrates, was recently characterized as a new regulator of intestinal lipid mobilization in Caenorhabditis elegans. Because CEH-60's orthologs and paralogs exhibit several other functions, notably in neuron and muscle development, and because ceh-60 expression is not limited to the C. elegans intestine, we sought to identify additional functions of CEH-60 through DNA adenine methyltransferase identification (DamID). DamID identifies protein-genome interaction sites through GATC-specific methylation. We here report 872 putative CEH-60 gene targets in young adult animals, and 587 in L2 larvae, many of which are associated with neuron development or muscle structure. In light of this, we investigate morphology and function of ceh-60 expressing AWC neurons, and contraction of pharyngeal muscles. We find no clear functional consequences of loss of ceh-60 in these assays, suggesting that in AWC neurons and pharyngeal muscle, CEH-60 function is likely more subtle or redundant with other factors.
Collapse
Affiliation(s)
- Pieter Van de Walle
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Celia Muñoz-Jiménez
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
22
|
Mata-Cabana A, Pérez-Nieto C, Olmedo M. Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans. ADVANCES IN GENETICS 2020; 107:33-87. [PMID: 33641748 DOI: 10.1016/bs.adgen.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developmental programs are under strict genetic control that favors robustness of the process. In order to guarantee the same outcome in different environmental situations, development is modulated by input pathways, which inform about external conditions. In the nematode Caenorhabditis elegans, the process of postembryonic development involves a series of stereotypic cell divisions, the progression of which is controlled by the nutritional status of the animal. C. elegans can arrest development at different larval stages, leading to cell arrest of the relevant divisions of the stage. This means that studying the nutritional control of development in C. elegans we can learn about the mechanisms controlling cell division in an in vivo model. In this work, we reviewed the current knowledge about the nutrient sensing pathways that control the progression or arrest of development in response to nutrient availability, with a special focus on the arrest at the L1 stage.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - Carmen Pérez-Nieto
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain.
| |
Collapse
|
23
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
24
|
Heimbucher T, Hog J, Gupta P, Murphy CT. PQM-1 controls hypoxic survival via regulation of lipid metabolism. Nat Commun 2020; 11:4627. [PMID: 33009389 PMCID: PMC7532158 DOI: 10.1038/s41467-020-18369-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/31/2020] [Indexed: 12/25/2022] Open
Abstract
Animals have evolved responses to low oxygen conditions to ensure their survival. Here, we have identified the C. elegans zinc finger transcription factor PQM-1 as a regulator of the hypoxic stress response. PQM-1 is required for the longevity of insulin signaling mutants, but surprisingly, loss of PQM-1 increases survival under hypoxic conditions. PQM-1 functions as a metabolic regulator by controlling oxygen consumption rates, suppressing hypoxic glycogen levels, and inhibiting the expression of the sorbitol dehydrogenase-1 SODH-1, a crucial sugar metabolism enzyme. PQM-1 promotes hypoxic fat metabolism by maintaining the expression of the stearoyl-CoA desaturase FAT-7, an oxygen consuming, rate-limiting enzyme in fatty acid biosynthesis. PQM-1 activity positively regulates fat transport to developing oocytes through vitellogenins under hypoxic conditions, thereby increasing survival rates of arrested progeny during hypoxia. Thus, while pqm-1 mutants increase survival of mothers, ultimately this loss is detrimental to progeny survival. Our data support a model in which PQM-1 controls a trade-off between lipid metabolic activity in the mother and her progeny to promote the survival of the species under hypoxic conditions. Animals respond to hypoxic stress by adjusting metabolic processes to balance survival and reproduction. Here the authors identify the transcription factor PQM-1 as a metabolic regulator that balances hypoxic lipid and carbohydrate metabolism in C. elegans to limit somatic integrity and promote progeny survival.
Collapse
Affiliation(s)
- Thomas Heimbucher
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA. .,Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, 79104, Baden-Wuerttemberg, Germany.
| | - Julian Hog
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, 79104, Baden-Wuerttemberg, Germany
| | - Piyush Gupta
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, 79104, Baden-Wuerttemberg, Germany
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
25
|
Sornda T, Ezcurra M, Kern C, Galimov ER, Au C, de la Guardia Y, Gems D. Production of YP170 Vitellogenins Promotes Intestinal Senescence in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2020; 74:1180-1188. [PMID: 30854561 PMCID: PMC6625598 DOI: 10.1093/gerona/glz067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
During aging, etiologies of senescence cause multiple pathologies, leading to morbidity and death. To understand aging requires identification of these etiologies. For example, Caenorhabditis elegans hermaphrodites consume their own intestinal biomass to support yolk production, which in later life drives intestinal atrophy and ectopic yolk deposition. Yolk proteins (YPs; vitellogenins) exist as three abundant species: YP170, derived from vit-1–vit-5; and YP115 and YP88, derived from vit-6. Here, we show that inhibiting YP170 synthesis leads to a reciprocal increase in YP115/YP88 levels and vice versa, an effect involving posttranscriptional mechanisms. Inhibiting YP170 production alone, despite increasing YP115/YP88 synthesis, reduces intestinal atrophy as much as inhibition of all YP synthesis, which increases life span. By contrast, inhibiting YP115/YP88 production alone accelerates intestinal atrophy and reduces life span, an effect that is dependent on increased YP170 production. Thus, despite copious abundance of both YP170 and YP115/YP88, only YP170 production is coupled to intestinal atrophy and shortened life span. In addition, increasing levels of YP115/YP88 but not of YP170 increases resistance to oxidative stress; thus, longevity resulting from reduced vitellogenin synthesis is not attributable to oxidative stress resistance.
Collapse
Affiliation(s)
- Thanet Sornda
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK.,Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Marina Ezcurra
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK.,School of Biosciences, University of Kent, Canterbury, UK
| | - Carina Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| | - Evgeniy R Galimov
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| | - Catherine Au
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| | - Yila de la Guardia
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK.,Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Panama
| | - David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| |
Collapse
|
26
|
Abstract
Epigenetic effects can be mediated by changes in chromatin state that are transmitted from parent to child via gametes, but support is gathering for maternal yolk, which is deposited into ooctyes, as an extranuclear epigenetic factor that can contribute to phenotypic plasticity across generations in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Robert H Dowen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Shawn Ahmed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Olmedo M, Mata‐Cabana A, Jesús Rodríguez‐Palero M, García‐Sánchez S, Fernández‐Yañez A, Merrow M, Artal‐Sanz M. Prolonged quiescence delays somatic stem cell-like divisions in Caenorhabditis elegans and is controlled by insulin signaling. Aging Cell 2020; 19:e13085. [PMID: 31852031 PMCID: PMC6996950 DOI: 10.1111/acel.13085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Cells can enter quiescence in adverse conditions and resume proliferation when the environment becomes favorable. Prolonged quiescence comes with a cost, reducing the subsequent speed and potential to return to proliferation. Here, we show that a similar process happens during Caenorhabditis elegans development, providing an in vivo model to study proliferative capacity after quiescence. Hatching under starvation provokes the arrest of blast cell divisions that normally take place during the first larval stage (L1). We have used a novel method to precisely quantify each stage of postembryonic development to analyze the consequences of prolonged L1 quiescence. We report that prolonged L1 quiescence delays the reactivation of blast cell divisions in C. elegans, leading to a delay in the initiation of postembryonic development. The transcription factor DAF-16/FOXO is necessary for rapid recovery after extended arrest, and this effect is independent from its role as a suppressor of cell proliferation. Instead, the activation of DAF-16 by decreased insulin signaling reduces the rate of L1 aging, increasing proliferative potential. We also show that yolk provisioning affects the proliferative potential after L1 arrest modulating the rate of L1 aging, providing a possible mechanistic link between insulin signaling and the maintenance of proliferative potential. Furthermore, variable yolk provisioning in embryos is one of the sources of interindividual variability in recovery after quiescence of genetically identical animals. Our results support the relevance of L1 arrest as an in vivo model to study stem cell-like aging and the mechanisms for maintenance of proliferation potential after quiescence.
Collapse
Affiliation(s)
- María Olmedo
- Departamento de GenéticaFacultad de BiologíaUniversidad de SevillaSevilleSpain
| | | | - María Jesús Rodríguez‐Palero
- Andalusian Center for Developmental BiologyConsejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de OlavideSevilleSpain
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| | | | - Antonio Fernández‐Yañez
- Andalusian Center for Developmental BiologyConsejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de OlavideSevilleSpain
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| | - Martha Merrow
- Institute of Medical PsychologyFaculty of MedicineLMU MunichMunichGermany
| | - Marta Artal‐Sanz
- Andalusian Center for Developmental BiologyConsejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de OlavideSevilleSpain
- Department of Molecular Biology and Biochemical EngineeringUniversidad Pablo de OlavideSevilleSpain
| |
Collapse
|
28
|
Gao B, Song XQ, Yu H, Fu DY, Xu J, Ye H. Mating-Induced Differential Expression in Genes Related to Reproduction and Immunity in Spodoptera litura (Lepidoptera: Noctuidae) Female Moths. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:10. [PMID: 32092133 PMCID: PMC7039226 DOI: 10.1093/jisesa/ieaa003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Mating promotes reproductive activity, which may impact immune performance. Paradoxically, mating frequently challenges females' immunity (e.g., infections). Therefore, studies of postmating resource allocation between reproduction and survival are likely to shed new light on life-history trade-off and sexual selection. Here, we used RNAseq to test whether and how mating affected mRNA expression in genes related to reproduction and immunity in Spodoptera litura female moths. Results show a divergent change in the differentially expressed genes (DEGs) between reproduction and immunity: the immune response was largely downregulated shortly after mating (~6 h postmating), which has some recovery at 24 h postmating; reproductive response is trivial shortly after mating (~6 h postmating), but it largely upregulated at 24 h postmating (e.g., egg maturation related genes were highly upregulated). Considering the fact that most of the total DEGs downregulated from 0 to 6 h postmating (from 51/68 to 214/260) but most of the total DEGs upregulated at 24 h postmating (816/928), it is possible that trade-offs between reproduction and immunity occurred in mated females. For example, they may shut down immunity to favor sperm storage and save limited resources to support the increased energy required in reproduction (e.g., egg maturation and oviposition). Mating-induced infections should be trivial due to low polyandry in S. litura. A reduced immune defense may have no threat to S. litura survival but may benefit reproduction significantly. Furthermore, obvious expression changes were detected in genes related to hormone production, suggesting that endocrine changes could play important roles in postmating responses.
Collapse
Affiliation(s)
- Bo Gao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Qian Song
- School of Life Sciences, Yunnan University, Kunming, China
| | - Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Da-Ying Fu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Hui Ye
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
29
|
Abstract
Resource reallocation to metabolic processes promoting reproduction is critical for the survival of a species and therefore is tightly regulated. In this issue of Developmental Cell, Dowen (2019) finds that a PBX/MEIS homeodomain transcription factor complex controls a transcriptional network that balances reproduction versus longevity and somatic maintenance.
Collapse
Affiliation(s)
- Thomas Heimbucher
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Bioinformatics and Molecular Genetics, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
30
|
Van de Walle P, Geens E, Baggerman G, José Naranjo-Galindo F, Askjaer P, Schoofs L, Temmerman L. CEH-60/PBX regulates vitellogenesis and cuticle permeability through intestinal interaction with UNC-62/MEIS in Caenorhabditis elegans. PLoS Biol 2019; 17:e3000499. [PMID: 31675356 PMCID: PMC6824563 DOI: 10.1371/journal.pbio.3000499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022] Open
Abstract
The onset of sexual maturity involves dramatic changes in physiology and gene expression in many animals. These include abundant yolk protein production in egg-laying species, an energetically costly process under extensive transcriptional control. Here, we used the model organism Caenorhabditis elegans to provide evidence for the spatiotemporally defined interaction of two evolutionarily conserved transcription factors, CEH-60/PBX and UNC-62/MEIS, acting as a gateway to yolk protein production. Via proteomics, bimolecular fluorescence complementation (BiFC), and biochemical and functional readouts, we show that this interaction occurs in the intestine of animals at the onset of sexual maturity and suffices to support the reproductive program. Our electron micrographs and functional assays provide evidence that intestinal PBX/MEIS cooperation drives another process that depends on lipid mobilization: the formation of an impermeable epicuticle. Without this lipid-rich protective layer, mutant animals are hypersensitive to exogenous oxidative stress and are poor partners for mating. Dedicated communication between the hypodermis and intestine in C. elegans likely supports these physiological outcomes, and we propose a fundamental role for the conserved PBX/MEIS interaction in multicellular signaling networks that rely on lipid homeostasis.
Collapse
Affiliation(s)
- Pieter Van de Walle
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Geert Baggerman
- Centre for Proteomics (CFP), University of Antwerp, Antwerpen, Belgium
- VITO, Mol, Belgium
| | | | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Universidad Pablo de Olavide, Seville, Spain
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail:
| |
Collapse
|
31
|
Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in Caenorhabditis elegans. Front Physiol 2019; 10:1067. [PMID: 31551797 PMCID: PMC6736625 DOI: 10.3389/fphys.2019.01067] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenins are a family of yolk proteins that are by far the most abundant among oviparous animals. In the model nematode Caenorhabditis elegans, the 6 vitellogenins are among the most highly expressed genes in the adult hermaphrodite intestine, which produces copious yolk to provision eggs. In this article we review what is known about the vitellogenin genes and proteins in C. elegans, in comparison with vitellogenins in other taxa. We argue that the primary purpose of abundant vitellogenesis in C. elegans is to support post-embryonic development and fertility, rather than embryogenesis, especially in harsh environments. Increasing vitellogenin provisioning underlies several post-embryonic phenotypic alterations associated with advancing maternal age, demonstrating that vitellogenins can act as an intergenerational signal mediating the influence of parental physiology on progeny. We also review what is known about vitellogenin regulation - how tissue-, sex- and stage-specificity of expression is achieved, how vitellogenins are regulated by major signaling pathways, how vitellogenin expression is affected by extra-intestinal tissues and how environmental experience affects vitellogenesis. Lastly, we speculate whether C. elegans vitellogenins may play other roles in worm physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
32
|
CEH-60/PBX and UNC-62/MEIS Coordinate a Metabolic Switch that Supports Reproduction in C. elegans. Dev Cell 2019; 49:235-250.e7. [PMID: 30956009 DOI: 10.1016/j.devcel.2019.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
The molecular basis of how animals integrate metabolic, developmental, and environmental information before committing resources to reproduction is an unresolved issue in developmental biology. In C. elegans, adult animals reallocate fat stores from intestinal cells to the germline via low-density lipoprotein (LDL)-like particles to promote embryogenesis. Here, I demonstrate that two conserved homeodomain transcription factors, CEH-60/PBX and UNC-62/MEIS, coordinate a transcriptional network that supports reproduction while suppressing longevity and stress-response pathways. The CEH-60:UNC-62 heterodimer serves an unanticipated dual function in intestinal nuclei by directly activating the expression of lipoprotein genes while directly repressing stress-responsive genes. Consequently, ceh-60 mutants display fat storage defects, a dramatic lifespan extension, and hyper-activation of innate immunity genes. Finally, CEH-60 associates with PQM-1 at the DAF-16-associated element within the promoters of stress-responsive genes to control gene expression. Thus, CEH-60 governs an elaborate transcriptional network that balances stress responses and longevity against reproduction during developmental transitions.
Collapse
|
33
|
PRY-1/Axin signaling regulates lipid metabolism in Caenorhabditis elegans. PLoS One 2018; 13:e0206540. [PMID: 30403720 PMCID: PMC6221325 DOI: 10.1371/journal.pone.0206540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023] Open
Abstract
The nematode Caenorhabditis elegans constitutes a leading animal model to study how signaling pathway components function in conserved biological processes. Here, we describe the role of an Axin family member, PRY-1, in lipid metabolism. Axins are scaffolding proteins that play crucial roles in signal transduction pathways by physically interacting with multiple factors and coordinating the assembly of protein complexes. Genome-wide transcriptome profiling of a pry-1 mutant revealed differentially regulated genes that are associated with lipid metabolism such as vitellogenins (yolk lipoproteins), fatty acid desaturases, lipases, and fatty acid transporters. Consistent with these categorizations, we found that pry-1 is crucial for the maintenance of lipid levels. Knockdowns of vit genes in a pry-1 mutant background restored lipid levels, suggesting that vitellogenins contribute to PRY-1 function in lipid metabolic processes. Additionally, lowered expression of desaturases and lipidomic analysis provided evidence that fatty acid synthesis is reduced in pry-1 mutants. Accordingly, an exogenous supply of oleic acid restored depleted lipids in somatic tissues of worms. Overall, our findings demonstrate that PRY-1/Axin signaling is essential for lipid metabolism and involves the regulation of yolk proteins.
Collapse
|
34
|
Haley R, Wang Y, Zhou Z. The small GTPase RAB-35 defines a third pathway that is required for the recognition and degradation of apoptotic cells. PLoS Genet 2018; 14:e1007558. [PMID: 30138370 PMCID: PMC6107108 DOI: 10.1371/journal.pgen.1007558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023] Open
Abstract
In metazoans, apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Multiple small GTPases in the Rab family are known to function in phagosome maturation by regulating vesicle trafficking. We discovered rab-35 as a new gene important for apoptotic cell clearance from a genetic screen targeting putative Rab GTPases in Caenorhabditis elegans. We further identified TBC-10 as a putative GTPase-activating protein (GAP), and FLCN-1 and RME-4 as two putative Guanine Nucleotide Exchange Factors (GEFs), for RAB-35. We found that RAB-35 was required for the efficient incorporation of early endosomes to phagosomes and for the timely degradation of apoptotic cell corpses. More specifically, RAB-35 promotes two essential events that initiate phagosome maturation: the switch of phagosomal membrane phosphatidylinositol species from PtdIns(4,5)P2 to PtdIns(3)P, and the recruitment of the small GTPase RAB-5 to phagosomal surfaces. These functions of RAB-35 were previously unknown. Remarkably, although the phagocytic receptor CED-1 regulates these same events, RAB-35 and CED-1 appear to function independently. Upstream of degradation, RAB-35 also facilitates the recognition of apoptotic cells independently of the known CED-1 and CED-5 pathways. RAB-35 localizes to extending pseudopods and is further enriched on nascent phagosomes, consistent with its dual roles in regulating apoptotic cell-recognition and phagosome maturation. Epistasis analyses indicate that rab-35 acts in parallel to both of the canonical ced-1/6/7 and ced-2/5/10/12 clearance pathways. We propose that RAB-35 acts as a robustness factor, defining a novel pathway that aids these canonical pathways in both the recognition and degradation of apoptotic cells.
Collapse
Affiliation(s)
- Ryan Haley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Ying Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
35
|
C. elegans Eats Its Own Intestine to Make Yolk Leading to Multiple Senescent Pathologies. Curr Biol 2018; 28:2544-2556.e5. [PMID: 30100339 PMCID: PMC6108400 DOI: 10.1016/j.cub.2018.06.035] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/08/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Aging (senescence) is characterized by the development of numerous pathologies, some of which limit lifespan. Key to understanding aging is discovery of the mechanisms (etiologies) that cause senescent pathology. In C. elegans, a major senescent pathology of unknown etiology is atrophy of its principal metabolic organ, the intestine. Here we identify a cause of not only this pathology but also of yolky lipid accumulation and redistribution (a form of senescent obesity): autophagy-mediated conversion of intestinal biomass into yolk. Inhibiting intestinal autophagy or vitellogenesis rescues both visceral pathologies and can also extend lifespan. This defines a disease syndrome leading to multimorbidity and contributing to late-life mortality. Activation of gut-to-yolk biomass conversion by insulin/IGF-1 signaling (IIS) promotes reproduction and senescence. This illustrates how major, IIS-promoted senescent pathologies in C. elegans can originate not from damage accumulation but from direct effects of futile, continued action of a wild-type biological program (vitellogenesis). C. elegans consume their own intestine to synthesize yolk and promote reproduction This causes diseases of aging, including atrophy of the intestine and yolk steatosis Intestinal senescence in C. elegans is promoted by autophagy Here destructive run-on of wild-type biological programs causes senescent pathologies
Collapse
|
36
|
Maternal age generates phenotypic variation in Caenorhabditis elegans. Nature 2017; 552:106-109. [PMID: 29186117 PMCID: PMC5736127 DOI: 10.1038/nature25012] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
Genetically identical individuals growing in the same environment often show substantial phenotypic variation within populations of organisms as diverse as bacteria1, nematodes2, rodents3 and humans4. With some exceptions5, the causes are poorly understood. We show here that isogenic Caenorhabditis elegans nematodes vary in their size at hatching, speed of development, growth rate, starvation resistance, fecundity, and also in the rate of development of their germline relative to that of somatic tissues. Surprisingly, we show that the primary cause of this variation is the age of an individual’s mother, with young mothers producing progeny impaired for many traits. We identify age-dependent changes in maternal provisioning of a lipoprotein complex (vitellogenin) to embryos as the molecular mechanism underlying variation in multiple traits throughout the life of an animal. The production of sub-optimal progeny by young mothers likely reflects a trade-off between the competing fitness traits of a short generation time and progeny survival and fecundity.
Collapse
|
37
|
Abstract
This outlook discusses Dowen et al.'s finding of a novel microRNA-mediated intertissue signaling pathway in the C. elegans epidermis that regulates vitellogenesis, the reallocation of intestinal fat to the germline to support reproduction. In this issue of Genes & Development, Dowen and colleagues (pp. 1515–1528) elegantly unify two previously unconnected aspects of physiology. The investigators provide significant genetic evidence to support a critical link between developmental timing decisions and the regulation of lipid mobilization at the transition to adulthood in Caenorhabditis elegans. This novel connection involves cross-tissue signaling from the hypodermis (epidermis) to the intestine to promote reproductive success in the germline.
Collapse
Affiliation(s)
- Benjamin P Weaver
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Aileen K Sewell
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Min Han
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
38
|
Harvald EB, Sprenger RR, Dall KB, Ejsing CS, Nielsen R, Mandrup S, Murillo AB, Larance M, Gartner A, Lamond AI, Færgeman NJ. Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C. elegans. Cell Syst 2017; 5:38-52.e4. [PMID: 28734827 DOI: 10.1016/j.cels.2017.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/03/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022]
Abstract
Starvation causes comprehensive metabolic changes, which are still not fully understood. Here, we used quantitative proteomics and RNA sequencing to examine the temporal starvation responses in wild-type Caenorhabditis elegans and animals lacking the transcription factor HLH-30. Our findings show that starvation alters the abundance of hundreds of proteins and mRNAs in a temporal manner, many of which are involved in central metabolic pathways, including lipoprotein metabolism. We demonstrate that premature death of hlh-30 animals under starvation can be prevented by knockdown of either vit-1 or vit-5, encoding two different lipoproteins. We further show that the size and number of intestinal lipid droplets under starvation are altered in hlh-30 animals, which can be rescued by knockdown of vit-1. Taken together, this indicates that survival of hlh-30 animals under starvation is closely linked to regulation of intestinal lipid stores. We provide the most detailed poly-omic analysis of starvation responses to date, which serves as a resource for further mechanistic studies of starvation.
Collapse
Affiliation(s)
- Eva Bang Harvald
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Kathrine Brændgaard Dall
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Alejandro Brenes Murillo
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Mark Larance
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, College of Life Science, University of Dundee, Dow Street, Dundee, UK
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
39
|
A microRNA program in the C. elegans hypodermis couples to intestinal mTORC2/PQM-1 signaling to modulate fat transport. Genes Dev 2017; 30:1515-28. [PMID: 27401555 PMCID: PMC4949325 DOI: 10.1101/gad.283895.116] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 01/18/2023]
Abstract
In this study, Dowen et al. identified a microRNA-regulated developmental timing pathway that coordinates the mobilization of intestinal fat stores to the germline during C. elegans development. Their results show that lin-4 and let-7 microRNAs promotes mTOR signaling, which regulates intestinal fat metabolism, thereby providing insight into a novel function for microRNAs. Animals integrate metabolic, developmental, and environmental information before committing key resources to reproduction. In Caenorhabditis elegans, adult animals transport fat from intestinal cells to the germline to promote reproduction. We identified a microRNA (miRNA)-regulated developmental timing pathway that functions in the hypodermis to nonautonomously coordinate the mobilization of intestinal fat stores to the germline upon initiation of adulthood. This developmental timing pathway, which is controlled by the lin-4 and let-7 miRNAs, engages mTOR signaling in the intestine. The intestinal signaling component is specific to mTORC2 and functions in parallel to the insulin pathway to modulate the activity of the serum/glucocorticoid-regulated kinase (SGK-1). Surprisingly, SGK-1 functions independently of DAF-16/FoxO; instead, SGK-1 promotes the cytoplasmic localization of the PQM-1 transcription factor, which antagonizes intestinal fat mobilization at the transcriptional level when localized to the nucleus. These results revealed that a non-cell-autonomous developmental input regulates intestinal fat metabolism by engaging mTORC2 signaling to promote the intertissue transport of fat reserves from the soma to the germline.
Collapse
|
40
|
Evolutionarily conserved TRH neuropeptide pathway regulates growth in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:E4065-E4074. [PMID: 28461507 DOI: 10.1073/pnas.1617392114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In vertebrates thyrotropin-releasing hormone (TRH) is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions. However, a functional equivalent in protostomian animals remains unknown, although TRH receptors are conserved in proto- and deuterostomians. Here we identify a TRH-like neuropeptide precursor in Caenorhabditis elegans that belongs to a bilaterian family of TRH precursors. Using CRISPR/Cas9 and RNAi reverse genetics, we show that TRH-like neuropeptides, through the activation of their receptor TRHR-1, promote growth in Celegans TRH-like peptides from pharyngeal motor neurons are required for normal body size, and knockdown of their receptor in pharyngeal muscle cells reduces growth. Mutants deficient for TRH signaling have no defects in pharyngeal pumping or isthmus peristalsis rates, but their growth defect depends on the bacterial diet. In addition to the decrease in growth, trh-1 mutants have a reduced number of offspring. Our study suggests that TRH is an evolutionarily ancient neuropeptide, having its origin before the divergence of protostomes and deuterostomes, and may ancestrally have been involved in the control of postembryonic growth and reproduction.
Collapse
|
41
|
Leiser SF, Jafari G, Primitivo M, Sutphin GL, Dong J, Leonard A, Fletcher M, Kaeberlein M. Age-associated vulval integrity is an important marker of nematode healthspan. AGE (DORDRECHT, NETHERLANDS) 2016; 38:419-431. [PMID: 27566309 PMCID: PMC5266215 DOI: 10.1007/s11357-016-9936-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Improving healthspan, defined as the period where organisms live without frailty and/or disease, is a major goal of biomedical research. While healthspan measures in people are relatively easy to identify, developing robust markers of healthspan in model organisms has proven challenging. Studies using the nematode Caenorhabditis elegans have provided vital information on the basic mechanisms of aging; however, worm health is difficult to define, and the impact of interventions that increase lifespan on worm healthspan has been controversial. Here, we describe a marker of population healthspan in C. elegans that we term age-associated vulval integrity defects, or Avid, frequently described elsewhere as rupture or exploding. We connect the presence of this phenotype with temperature, reproduction, diet, and longevity. Our results show that Avid occurs in post-reproductive worms under common laboratory conditions at a frequency that correlates negatively with temperature; Avid is rare in worms kept at 25 °C and more frequent in worms kept at 15 °C. We describe the kinetics of Avid, link the phenotype to oocyte production, and describe how Avid involves the ejection of worm proteins and/or internal organ(s) from the vulva. Finally, we find that Avid is preventable by removing worms from food, suggesting that Avid results from the intake, digestion, and/or absorption of food. Our results show that Avid is a significant cause of death in worm populations maintained under laboratory conditions and that its prevention often correlates with worm longevity. We propose that Avid is a powerful marker of worm healthspan whose underlying molecular mechanisms may be conserved.
Collapse
Affiliation(s)
- Scott F Leiser
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA.
| | - Gholamali Jafari
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Melissa Primitivo
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - George L Sutphin
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jingyi Dong
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alison Leonard
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Marissa Fletcher
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
42
|
Wang H, Jiang X, Wu J, Zhang L, Huang J, Zhang Y, Zou X, Liang B. Iron Overload Coordinately Promotes Ferritin Expression and Fat Accumulation in Caenorhabditis elegans. Genetics 2016; 203:241-253. [PMID: 27017620 PMCID: PMC4858777 DOI: 10.1534/genetics.116.186742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/20/2016] [Indexed: 01/22/2023] Open
Abstract
The trace element iron is crucial for living organisms, since it plays essential roles in numerous cellular functions. Systemic iron overload and the elevated level of ferritin, a ubiquitous intracellular protein that stores and releases iron to maintain the iron homeostasis in cells, has long been epidemiologically associated with obesity and obesity-related diseases. However, the underlying mechanisms of this association remain unclear. Here, using Caenorhabditis elegans, we show that iron overload induces the expression of sgk-1, encoding the serum and glucocorticoid-inducible kinase, to promote the level of ferritin and fat accumulation. Mutation of cyp-23A1, encoding a homolog of human cytochrome P450 CYP7B1 that is related to neonatal hemochromatosis, further enhances the elevated expression of ftn-1, sgk-1, and fat accumulation. sgk-1 positively regulates the expression of acs-20 and vit-2, genes encoding homologs of the mammalian FATP1/4 fatty acid transport proteins and yolk lipoproteins, respectively, to facilitate lipid uptake and translocation for storage under iron overload. This study reveals a completely novel pathway in which sgk-1 plays a central role to synergistically regulate iron and lipid homeostasis, offering not only experimental evidence supporting a previously unverified link between iron and obesity, but also novel insights into the pathogenesis of iron and obesity-related human metabolic diseases.
Collapse
Affiliation(s)
- Haizhen Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xue Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jieyu Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jingfei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuru Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiaoju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
43
|
De Loof A, Schoofs L, Huybrechts R. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? Gen Comp Endocrinol 2016; 226:56-71. [PMID: 26707056 DOI: 10.1016/j.ygcen.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022]
Abstract
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| |
Collapse
|