1
|
Zhao L, Guo R, Zhao Z, Wang J, Lou Z, Bao J, Zheng W, Wang Q, Qiao L, Ye Y, Kwan HY, Zhou H, Wu Q, Xu K. Linking Hyperuricemia to Cancer: Emerging Evidence on Risk and Progression. Curr Oncol Rep 2025:10.1007/s11912-025-01677-z. [PMID: 40285993 DOI: 10.1007/s11912-025-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE OF REVIEW Metabolic disorders significantly contribute to cancer burden globally. Uric acid (UA), a recognized metabolic risk factor linked to gout, also promotes insulin resistance, fatty liver, inflammation, and carcinogenesis. This systematic review evaluates UA's dual role in cancer, synthesizing epidemiological, mechanistic, and clinical evidence to clarify its potential as a therapeutic target. RECENT FINDINGS The research of UA on cancer development mainly focuses on a clinical observational study, with limited molecular mechanism exploration. The associations between UA and cancer risk remain controversial, as sometimes the antioxidant, anti-inflammatory and immune-enhancing properties of UA are presented. There is lacking a systematic and updated review for summarizing the role of hyperuricemia on cancer risk and progression. The precise mechanism of UA in either enhancing or inhibiting cancer progression remains uncertain. Serum uric acid (SUA) exhibits paradoxical roles in cancer, with its effects varying by tumor type, concentration, gender, and disease stage. While UA predominantly drives tumorigenesis in most cancers, it shows protective effects in specific malignancies such as soft-tissue sarcoma and laryngeal squamous cell carcinoma, potentially through antioxidant activity at lower concentrations. Mechanistically, UA highly participate in the cancer risk and progression through reactive oxygen species (ROS) generation, disrupting T cell activation and dendritic cell maturation, exacerbating insulin resistance, and driving xanthine oxidoreductase (XOR) expression during the process of wound healing. Emerging clinical and mechanistic evidence highlights its oncogenic potential, underscoring the need for large-scale randomized controlled trials and cohort studies to clarify the relationship between hyperuricemia and cancer progression. Future research should prioritize exploring anti-UA therapies for cancer treatment, developing advanced animal models to dissect UA's mechanisms, and integrating diverse genomic datasets to unravel its context-dependent roles. Addressing these gaps will advance targeted strategies to leverage UA biology in cancer management.
Collapse
Affiliation(s)
- Lingyun Zhao
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai, 519000, China
| | - Ruihong Guo
- Infectious Diseases Department, Fuyang First Hospital, Hangzhou, 311400, Zhejiang, China
| | - Ziming Zhao
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jue Wang
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Zhonghan Lou
- Department of Hepatology, Hangzhou Xixi Hospital, Affiliated to the Zhejiang Chinese Medical University, Hangzhou, 310023, Zhejiang, China
| | - Jianfeng Bao
- Department of Hepatology, Hangzhou Xixi Hospital, Affiliated to the Zhejiang Chinese Medical University, Hangzhou, 310023, Zhejiang, China
| | - Wei Zheng
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Qiang Wang
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Yun Ye
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hua Zhou
- Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai, 519000, China.
| | - Qibiao Wu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Keyang Xu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
2
|
Hu X, Ling D. Artificial metabzyme-driven metabolic reprogramming and precision oncology. Clin Transl Med 2025; 15:e70215. [PMID: 39888283 PMCID: PMC11782831 DOI: 10.1002/ctm2.70215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 02/01/2025] Open
Affiliation(s)
- Xi Hu
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Institute of PharmaceuticsAnhui Academy of Chinese MedicineHefeiChina
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and ApplicationAnhui University of Chinese MedicineHefeiChina
| | - Daishun Ling
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringNational Center for Translational Medicine, National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and TherapyShanghai Jiao Tong UniversityShanghaiChina
- WLA LaboratoriesShanghaiChina
| |
Collapse
|
3
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
4
|
Xue X, Sun Z, Ji X, Lin H, Jing H, Yu Q. Associations between serum uric acid and breast cancer incidence: A systematic review and meta-analysis. Am J Med Sci 2024; 368:610-620. [PMID: 38986907 DOI: 10.1016/j.amjms.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/27/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Serum uric acid (SUA) may be involved in the development of cancer by inhibiting oxidative stress, but its relationship with breast cancer remains unclear. MATERIALS AND METHODS The PubMed, Embase, and Web of Science databases were searched systematically for studies on SUA levels in women with breast cancer and the effect of SUA levels on the risk of breast cancer. The Newcastle‒Ottawa Quality Assessment Scale (NOS) was used to assess the quality of all relevant studies included. RESULTS A total of 19 studies were included, including 75,827 women with breast cancer and 508,528 healthy controls. A meta-analysis found that SUA levels were negatively correlated with breast cancer risk in women (HR = 0.94, 95% CI: 0.89 - 0.99, p = 0.003). SUA levels in female breast cancer patients were not significantly different from those in healthy controls (SMD = 0.49, 95% CI = -0.09 - 1.08, p = 0.10), while SUA levels were increased in female breast cancer patients in articles published after 2010, SUA concentration detected by spectrophotometry, and non-Asian populations, regardless of menopausal state and treatment state. CONCLUSION High levels of SUA may reduce the risk of breast cancer in women, suggesting that SUA was a protective factor in women.
Collapse
Affiliation(s)
- Xiao Xue
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China
| | - Zhengyi Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China
| | - Xufeng Ji
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China.
| | - Hua Lin
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China.
| | - Huang Jing
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China.
| | - Qiuyang Yu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
5
|
Hu X, Zhang B, Zhang M, Liang W, Hong B, Ma Z, Sheng J, Liu T, Yang S, Liang Z, Zhang J, Fan C, Li F, Ling D. An artificial metabzyme for tumour-cell-specific metabolic therapy. NATURE NANOTECHNOLOGY 2024; 19:1712-1722. [PMID: 39103450 DOI: 10.1038/s41565-024-01733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/28/2024] [Indexed: 08/07/2024]
Abstract
Metabolic dysregulation constitutes a pivotal feature of cancer progression. Enzymes with multiple metal active sites play a major role in this process. Here we report the first metabolic-enzyme-like FeMoO4 nanocatalyst, dubbed 'artificial metabzyme'. It showcases dual active centres, namely, Fe2+ and tetrahedral Mo4+, that mirror the characteristic architecture of the archetypal metabolic enzyme xanthine oxidoreductase. Employing spatially dynamic metabolomics in conjunction with the assessments of tumour-associated metabolites, we demonstrate that FeMoO4 metabzyme catalyses the metabolic conversion of tumour-abundant xanthine into uric acid. Subsequent metabolic adjustments orchestrate crosstalk with immune cells, suggesting a potential therapeutic pathway for cancer. Our study introduces an innovative paradigm in cancer therapy, where tumour cells are metabolically reprogrammed to autonomously modulate and directly interface with immune cells through the intervention of an artificial metabzyme, for tumour-cell-specific metabolic therapy.
Collapse
Affiliation(s)
- Xi Hu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
- WLA Laboratories, Shanghai, China
| | - Miao Zhang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, the First Affiliated Hospital, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wenshi Liang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, the First Affiliated Hospital, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Bangzhen Hong
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, China
| | - Zhiyuan Ma
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, the First Affiliated Hospital, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianpeng Sheng
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, the First Affiliated Hospital, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Tianqi Liu
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, the First Affiliated Hospital, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Li
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, the First Affiliated Hospital, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Zhejiang University, Hangzhou, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
- WLA Laboratories, Shanghai, China.
| |
Collapse
|
6
|
Zhou J, Fu R, Zhang J, Zhang S, Lin Z, Lin Z, Liu X, Xu X, Chen Y, Hu Z. Association between serum uric acid and colorectal cancer risk in European population: a two-sample Mendelian randomization study. Front Oncol 2024; 14:1394320. [PMID: 39011473 PMCID: PMC11246881 DOI: 10.3389/fonc.2024.1394320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Objectives This study aimed to explore the potential causal associations between serum uric acid (SUA) and the risk of colorectal cancer, colon cancer and rectal cancer. Methods Twenty-six SUA-related single nucleotide polymorphisms which were identified by a large meta-analysis of genome-wide association studies (GWASs) were used as instrumental variables in the two-sample Mendelian randomization (MR) study. Meta-analyses were used to synthesize the results of multiple GWASs which were extracted from the MRC Integrative Epidemiology Unit GWAS database for each type of cancer. The inverse variance weighted (IVW) method was used as the primary MR method to analyze the association between SUA and colorectal cancer risk. Several sensitivity analyses were performed to test the robustness of results. Results The IVW method showed that there were no causal relationships between SUA and the risk of colorectal cancer [odds ratio (OR): 1.0015; 95% confidence interval (CI): 0.9975-1.0056] and colon cancer (OR: 1.0015; 95% CI: 0.9974-1.0055). The SUA levels were negative correlated with rectal cancer risk (OR: 0.9984; 95% CI: 0.9971-0.9998). The similar results were observed in both males (OR: 0.9987; 95% CI: 0.9975-0.9998) and females (OR: 0.9985; 95% CI: 0.9971-0.9999). The sensitivity analyses suggested no evidence of heterogeneity or horizontal pleiotropy. The leave-one-out analyses showed that one SNP (rs1471633) significantly drove the causal effect of SUA on rectal cancer risk. The MR-Egger regression and weighted median both showed that there were no causal relationships between SUA and the risk of colorectal cancer and its subtypes. Conclusion Overall, there was no linear causal association between SUA and the risk of colorectal cancer. However, further research is needed to investigate the role of higher SUA levels such as hyperuricemia or gout in the occurrence of colorectal cancer.
Collapse
Affiliation(s)
- Jinsong Zhou
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Rong Fu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Juwei Zhang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Suhong Zhang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhifeng Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zheng Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xin Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaolu Xu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yulun Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Lin HL, Wang S, Sato K, Zhang YQ, He BT, Xu J, Nakazawa T, Qin YJ, Zhang HY. Uric acid-driven NLRP3 inflammasome activation triggers lens epithelial cell senescence and cataract formation. Cell Death Discov 2024; 10:126. [PMID: 38461179 PMCID: PMC10925029 DOI: 10.1038/s41420-024-01900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
Excessive uric acid (UA) is associated with age-related cataract. A previous study showed that a high UA level in the aqueous humor stimulated the senescence of lens epithelial cells (LECs), leading to cataract progression. To better understand the underlying mechanisms, we investigated UA-driven senescence in human lens tissue samples obtained during surgery, rat lens organ cultures, and in vivo experiments, using senescence-associated β-galactosidase (SA-β-gal) staining, electronic microscopy, Western blotting, and histological analyses. Initially, we identified markedly higher expressions of NLRP3 and caspase-1 in the lens capsules of hyper-uricemic patients compared to normo-uricemic patients. This increase was accompanied by a significant rise in the SA-β-gal positive rate. We next built a cataract model in which rat lenses in an organ culture system were treated with an increasing dosage of UA. Notably, opacification was apparent in the lenses treated with 800 μM of UA starting on the fifth day. Mechanistically, UA treatment not only significantly induced the expression of NLRP3, caspase-1, and IL-1β, but also upregulated the levels of SA-β-gal and the senescence regulators p53 and p21. These effects were fully reversed, and lens opacification was ameliorated by the addition of MCC950, a selective NLRP3 antagonist. Moreover, an in vivo model showed that intravitreal UA injection rapidly induced cataract phenotypes within 21 days, an effect significantly mitigated by co-injection with MCC950. Together, our findings suggest that targeting the UA-induced NLRP3 inflammasome with MCC950 could be a promising strategy for preventing cataract formation associated with inflammageing.
Collapse
Affiliation(s)
- Hong Liang Lin
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sheng Wang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kota Sato
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Qiao Zhang
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bei Ting He
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yong Jie Qin
- Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Hong Yang Zhang
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Yu Q, Sun Z, Wang Y, Du X, Huang J, Wang L. Hyperuricemia is accompanied by elevated peripheral CD4 + T cells. Sci Rep 2023; 13:12537. [PMID: 37532790 PMCID: PMC10397288 DOI: 10.1038/s41598-023-39775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Hyperuricemia (HUA) makes a chronic inflammation status, which affects immune cells. The association between HUA and immune cells, such as monocytes and neutrophils, has been extensively studied. However, studies on HUA and lymphocytes are still limited. We selected 1543 healthy participants and 258 individuals with HUA to analyze the correlation between serum uric acid (SUA) levels and immune cells, and 98 healthy participants and 16 individuals with HUA were used to study the relationship between SUA levels and cytokine levels. Then, we used soluble UA to stimulate peripheral blood mononuclear cells in vitro and examined lymphocyte subset counts and activation by flow cytometry. The results revealed that the number of lymphocytes in the HUA group was significantly increased, particularly CD4+ T cell numbers, which were higher than those in the total population (P = 0.0019), females (P = 0.0142), and males (P = 0.0199) of the healthy control group. Concomitantly, interleukin (IL)-4 and IL-10 levels significantly increased in people with HUA (P = 0.0254; P = 0.0019). In vitro, soluble UA promoted the proliferation and activation of CD4+ T and CD19+ B cells. Thus, HUA is accompanied by elevated peripheral CD4+ T cells and may cause a Th2-dominant immune status.
Collapse
Affiliation(s)
- Qiuyang Yu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Zhengyi Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Ying Wang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xue Du
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jing Huang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Liying Wang
- Institute of Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
9
|
Rodrigues MC, Morais JAV, Ganassin R, Oliveira GRT, Costa FC, Morais AAC, Silveira AP, Silva VCM, Longo JPF, Muehlmann LA. An Overview on Immunogenic Cell Death in Cancer Biology and Therapy. Pharmaceutics 2022; 14:pharmaceutics14081564. [PMID: 36015189 PMCID: PMC9413301 DOI: 10.3390/pharmaceutics14081564] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Immunogenic cell death (ICD) is a modality of regulated cell death that is sufficient to promote an adaptive immune response against antigens of the dying cell in an immunocompetent host. An important characteristic of ICD is the release and exposure of damage-associated molecular patterns, which are potent endogenous immune adjuvants. As the induction of ICD can be achieved with conventional cytotoxic agents, it represents a potential approach for the immunotherapy of cancer. Here, different aspects of ICD in cancer biology and treatment are reviewed.
Collapse
Affiliation(s)
- Mosar Corrêa Rodrigues
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - José Athayde Vasconcelos Morais
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Rayane Ganassin
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Giulia Rosa Tavares Oliveira
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Fabiana Chagas Costa
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Amanda Alencar Cabral Morais
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Ariane Pandolfo Silveira
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Victor Carlos Mello Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - João Paulo Figueiró Longo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
| | - Luis Alexandre Muehlmann
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-275, Brazil; (M.C.R.); (J.A.V.M.); (R.G.); (G.R.T.O.); (F.C.C.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (A.A.C.M.); (A.P.S.); (V.C.M.S.); (J.P.F.L.)
- Correspondence:
| |
Collapse
|
10
|
Chen MM, Meng LH. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol Sin 2022; 43:1623-1632. [PMID: 34811515 PMCID: PMC9253144 DOI: 10.1038/s41401-021-00800-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023]
Abstract
Xanthine oxidoreductase (XOR) is a critical, rate-limiting enzyme that controls the last two steps of purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. It also produces reactive oxygen species (ROS) during the catalytic process. The enzyme is generally recognized as a drug target for the therapy of gout and hyperuricemia. The catalytic products uric acid and ROS act as antioxidants or oxidants, respectively, and are involved in pro/anti-inflammatory actions, which are associated with various disease manifestations, including metabolic syndrome, ischemia reperfusion injury, cardiovascular disorders, and cancer. Recently, extensive efforts have been devoted to understanding the paradoxical roles of XOR in tumor promotion. Here, we summarize the expression of XOR in different types of cancer and decipher the dual roles of XOR in cancer by its enzymatic or nonenzymatic activity to provide an updated understanding of the mechanistic function of XOR in cancer. We also discuss the potential to modulate XOR in cancer therapy.
Collapse
Affiliation(s)
- Man-man Chen
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ling-hua Meng
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
11
|
Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci 2020; 254:117580. [DOI: 10.1016/j.lfs.2020.117580] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
|
12
|
Oliveira MMS, Westerberg LS. Cytoskeletal regulation of dendritic cells: An intricate balance between migration and presentation for tumor therapy. J Leukoc Biol 2020; 108:1051-1065. [PMID: 32557835 DOI: 10.1002/jlb.1mr0520-014rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DCs) are the main players in many approaches for cancer therapy. The idea with DC tumor therapy is to promote activation of tumor infiltrating cytotoxic T cells that kill tumor cells. This requires that DCs take up tumor Ag and present peptides on MHC class I molecules in a process called cross-presentation. For this process to be efficient, DCs have to migrate to the tumor draining lymph node and there activate the machinery for cross-presentation. In this review, we will discuss recent progress in understanding the role of actin regulators for control of DC migration and Ag presentation. The potential to target actin regulators for better DC-based tumor therapy will also be discussed.
Collapse
Affiliation(s)
- Mariana M S Oliveira
- Department of Microbiology Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Jung SW, Kim SM, Kim YG, Lee SH, Moon JY. Uric acid and inflammation in kidney disease. Am J Physiol Renal Physiol 2020; 318:F1327-F1340. [PMID: 32223310 DOI: 10.1152/ajprenal.00272.2019] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Asymptomatic hyperuricemia is frequently observed in patients with kidney disease. Although a substantial number of epidemiologic studies have suggested that an elevated uric acid level plays a causative role in the development and progression of kidney disease, whether hyperuricemia is simply a result of decreased renal excretion of uric acid or is a contributor to kidney disease remains a matter of debate. Over the last two decades, multiple experimental studies have expanded the knowledge of the biological effects of uric acid beyond its role in gout. In particular, uric acid induces immune system activation and alters the characteristics of resident kidney cells, such as tubular epithelial cells, endothelial cells, and vascular smooth muscle cells, toward a proinflammatory and profibrotic state. These findings have led to an increased awareness of uric acid as a potential and modifiable risk factor in kidney disease. Here, we discuss the effects of uric acid on the immune system and subsequently review the effects of uric acid on the kidneys mainly in the context of inflammation.
Collapse
Affiliation(s)
- Su Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| | - Su-Mi Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Cabău G, Crișan TO, Klück V, Popp RA, Joosten LAB. Urate-induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunol Rev 2020; 294:92-105. [PMID: 31853991 PMCID: PMC7065123 DOI: 10.1111/imr.12833] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Trained immunity is a process in which innate immune cells undergo functional reprogramming in response to pathogens or damage-associated molecules leading to an enhanced non-specific immune response to subsequent stimulation. While this capacity to respond more strongly to stimuli is beneficial for host defense, in some circumstances it can lead to maladaptive programming and chronic inflammation. Gout is characterized by persistent low-grade inflammation and is associated with an increased number of comorbidities. Hyperuricemia is the main risk factor for gout and is linked to the development of comorbidities. Several experimental studies have shown that urate can mechanistically alter the inflammatory capacity of myeloid cells, while observational studies have indicated an association of hyperuricemia to a wide spectrum of common adult inflammatory diseases. In this review, we argue that hyperuricemia is a main culprit in the development of the long-term systemic inflammation seen in gout. We revisit existing evidence for urate-induced transcriptional and epigenetic reprogramming that could lead to an altered functional state of circulating monocytes consisting in enhanced responsiveness and maladaptive immune responses. By discussing specific functional adaptations of monocytes and macrophages induced by soluble urate or monosodium urate crystals and their contribution to inflammation in vitro and in vivo, we further enforce that urate is a metabolite that can induce innate immune memory and we discuss future research and possible new therapeutic approaches for gout and its comorbidities.
Collapse
Affiliation(s)
- Georgiana Cabău
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Tania O. Crișan
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Viola Klück
- Department of Internal MedicineRadboud Institute of Molecular Life Sciences (RIMLS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Radu A. Popp
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Leo A. B. Joosten
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Internal MedicineRadboud Institute of Molecular Life Sciences (RIMLS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
15
|
Eleftheriadis T, Pissas G, Antoniadi G, Filippidis G, Liakopoulos V, Stefanidis I. Urate crystals trigger B-cell receptor signal transduction and induce B-cell proliferation. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0054/jbcpp-2019-0054.xml. [PMID: 31927516 DOI: 10.1515/jbcpp-2019-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Background Urate in its crystal form is a known danger-associated molecular pattern, which after its internalization activates cells of the innate immune system. However, by inducing lipid raft sequestration and clustering of membrane-bound proteins with immunoreceptor tyrosine-based activation motifs, urate crystals can also activate cells of the innate immune system without previous internalization. Also, urate crystals trigger T-cell receptor signal transduction and induce T-cell proliferation. In this study, we evaluated whether urate crystals can also initiate B-cell receptor (BCR) signal transduction and promote B-cell proliferation. Methods B cells were isolated from the blood of 10 individuals and cultured with or without urate at a concentration of 10 mg/dL, at which crystallization occurs. Phosphorylated Igα (CD79A) and c-Myc were assessed by Western blotting and B-cell proliferation with BrdU assay. Results Urate increased the level of phosphorylated Igα, a component of the BCR complex. Phosphorylation of Igα is the very proximal event in BCR signal transduction. Also, urate increased the expression of c-Myc, an essential transcription factor for BCR-induced B-cell proliferation. Finally, urate induces B-cell proliferation. Conclusions Urate crystals trigger BCR signal transduction and induce B-cell proliferation. The clinical significance of urate-induced B-cell activation remains to be elucidated.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Biopolis, Mezourlo Hill, 41110 Larissa, Greece, Phone: 00302413501665, Fax: 00302413501667
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Georgios Filippidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
16
|
TNP-470 skews DC differentiation to Th1-stimulatory phenotypes and can serve as a novel adjuvant in a cancer vaccine. Blood Adv 2019; 2:1664-1679. [PMID: 30012585 DOI: 10.1182/bloodadvances.2017013433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022] Open
Abstract
Fumagillin is an antiangiogenic and antineoplastic fungal natural product, and TNP-470 is one of its most potent analogs. Decades of studies revealed that TNP-470 has potent anticancer activities via destruction of neovasculature. In stark contrast, TNP-470 has been reported to suppress lymphocyte proliferation, thereby limiting its clinical potentials. In an attempt to investigate whether the similar or opposite immunomodulatory effect of TNP-470 could act on myeloid cells, we found that TNP-470 potentiates the immunogenicity of dendritic cells (DCs) toward a phenotype with T helper cell type 1 (Th1)-stimulatory features. Using DC vaccine on a murine melanoma cancer model, the TNP-470-treated DC vaccine could significantly induce tumor-specific immunogenicity and substantially enhance tumor eradication when compared with vehicle-treated DC vaccine in a prophylactic setting. Enhanced tumor-specific immunogenicity and delayed tumor progression were observed in a therapeutic setting upon the TNP-470-treated DC vaccine. Our data showed that TNP-470 potentiates Toll-like receptor signaling, including NF-κB activation, in DCs to transcriptionally activate interleukin-12 production, thus inducing a Th1-immune response. Our current study uncovers a novel immune function of TNP-470 in DCs and redefines its role as a novel class of small molecule immune adjuvant in DC-based cancer vaccine given potentiation of DC immunogenicity is a major roadblock in DC vaccine development. Our study not only provides a novel adjuvant for ex vivo-cultured patient-specific DC vaccines for cancer treatment but also discovers the distinct immunostimulatory function of TNP-470 in DCs of myeloid lineage that differs from its immunosuppressive function in lymphoid cells.
Collapse
|
17
|
Gao L, Jiang Y, Wang Y, Qu X, Li L, Lou X, Wang Y, Guo H, Liu Y. Male asymptomatic hyperuricemia patients display a lower number of NKG2D+ NK cells before and after a low-purine diet. Medicine (Baltimore) 2018; 97:e13668. [PMID: 30558070 PMCID: PMC6320027 DOI: 10.1097/md.0000000000013668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aberrant activation of the immune system has been reported in asymptomatic hyperuricemia (HUA) patients. However, very few studies have elucidated the role of natural killer (NK) cells in this disease. METHODS In this study, we evaluated the relationship between NK cells and HUA in 16 control subjects and 20 patients, who were all on a low-purine diet. We analyzed the number of circulating NK cells, its subsets, interferon-γ, and CD107 NK cells, by flow cytometry, before and after 4 and 24 weeks of diet control. We also assessed the potential association of the NK cells with clinical measures. RESULTS The patients consistently had a lower number of NKG2D NK cells before and after low-purine diet, even the serum uric acid (SUA) levels <7 mg/dL after diet control. Moreover, a lower number of NK cells and a higher number of CD107a NK cells were observed on recruitment. Low-purine diet was benefit on the improvement of the SUA levels, body mass index (BMI), and the number and functions of NK cells. Furthermore, the number of CD3CD56 NK cells and NKG2D NK cells negatively correlated with the BMI before and after diet control. CONCLUSION The consistent lower number of NKG2D NK cells and correlated with BMI before and after low-purine diet may be involved in the occurrence and development of HUA.
Collapse
Affiliation(s)
- Lichao Gao
- The School of Public Health
- Department of Endocrinology of The First Hospital, Jilin University
| | - Yanfang Jiang
- Genetic Diagnosis Center
- Key Laboratory of Zoonoses Research, Ministry of Education, The First Hospital of Jilin University, Changchun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yichen Wang
- Department of Endocrinology of The First Hospital, Jilin University
| | - Xiaozhang Qu
- Department of Endocrinology of The First Hospital, Jilin University
| | - Lei Li
- Department of Endocrinology of The First Hospital, Jilin University
| | - Xiaoqian Lou
- Department of Endocrinology of The First Hospital, Jilin University
| | - Ye Wang
- Department of Endocrinology of The First Hospital, Jilin University
| | - Hui Guo
- Department of Endocrinology of The First Hospital, Jilin University
| | - Ya Liu
- The School of Public Health
| |
Collapse
|
18
|
A pan-cancer study of the transcriptional regulation of uricogenesis in human tumours: pathological and pharmacological correlates. Biosci Rep 2018; 38:BSR20171716. [PMID: 30104401 PMCID: PMC6146287 DOI: 10.1042/bsr20171716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/04/2023] Open
Abstract
Uric acid (UA) is the end product of the catabolism of purines, and its serum levels are commonly increased in cancer patients. We aimed to explore the transcriptional regulation of tumour uricogenesis in human tumours, and relate uricogenesis with tumour pathological and pharmacological findings. Using data from The Cancer Genome Atlas (TCGA), we analysed the expression levels of xanthine dehydrogenase (XDH) and adenine phosphoribosyltransferase (APRT), two key enzymes in UA production and the purine salvage pathway, respectively. We found large differences between tumour types and individual tumours in their expression of XDH and APRT. Variations in locus-specific DNA methylation and gene copy number correlated with the expression levels of XDH and APRT in human tumours respectively. We explored the consequences of this differential regulation of uricogenesis. Tumours with high levels of XDH mRNA were characterised by higher expression of several genes encoding pro-inflammatory and immune cytokines, and increased levels of tumour infiltration with immune cells. Finally, we studied cancer drug sensitivity using data from the National Cancer Institute-60 (NCI-60) database. A specific correlation was found between the expression levels of APRT and cell sensitivity to the chemotherapeutic agent 5-fluorouracil (5-FU). Our findings underline the existence of great differences in uricogenesis between different types of human tumours. The study of uricogenesis offers promising perspectives for the identification of clinically relevant molecular biomarkers and for tumour stratification in the therapeutic context.
Collapse
|
19
|
Eleftheriadis T, Pissas G, Sounidaki M, Antoniadi G, Antoniadis N, Liakopoulos V, Stefanidis I. Uric acid increases cellular and humoral alloimmunity in primary human peripheral blood mononuclear cells. Nephrology (Carlton) 2018; 23:610-615. [DOI: 10.1111/nep.13069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Accepted: 04/30/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| | - Maria Sounidaki
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| | - Nikolaos Antoniadis
- Organ Transplant Unit, Hippokration General Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| |
Collapse
|
20
|
Shu F, Shi Y. Systematic Overview of Solid Particles and Their Host Responses. Front Immunol 2018; 9:1157. [PMID: 29892295 PMCID: PMC5985299 DOI: 10.3389/fimmu.2018.01157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Crystalline/particulate substances trigger a plethora of signaling events in host cells. The most prominent consequence is the inflammatory reactions that underlie crystal arthropathies, such as gout and pseudogout. However, their impact on our health was underestimated. Recent work on the role of cholesterol crystal in the development of atherosclerosis and the harm of environmental particulates has set up new frontiers in our defense against their detrimental effects. On the other hand, in the last 100 years, crystalline/particulate substances have been used with increasing frequencies in our daily lives as a part of new industrial manufacturing and engineering. Importantly, they have become a tool in modern medicine, used as vaccine adjuvants and drug delivery vehicles. Their biological effects are also being dissected in great detail, particularly with regard to their inflammatory signaling pathways. Solid structure interaction with host cells is far from being uniform, with outcomes dependent on cell types and chemical/physical properties of the particles involved. In this review, we offer a systematic and broad outlook of this landscape and a sage analysis of the complex nature of this topic.
Collapse
Affiliation(s)
- Fei Shu
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Yan Shi
- Department of Basic Medical Sciences, Institute for Immunology, Center for Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Simeunovic Ostojic M, Maas J. Anorexia nervosa and uric acid beyond gout: An idea worth researching. Int J Eat Disord 2018; 51:97-101. [PMID: 29314231 DOI: 10.1002/eat.22817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/24/2022]
Abstract
Uric acid is best known for its role in gout-the most prevalent inflammatory arthritis in humans-that is also described as an unusual complication of anorexia nervosa (AN). However, beyond gout, uric acid could also be involved in the pathophysiology and psychopathology of AN, as it has many biological functions serving as a pro- and antioxidant, neuroprotector, neurostimulant, and activator of the immune response. Further, recent research suggests that uric acid could be a biomarker of mood dysfunction, personality traits, and behavioral patterns. This article discusses the hypothesis that uric acid in AN may not be a mere innocent bystander determined solely by AN behavior and its medical complications. In contrast, the relation between uric acid and AN may have evolutionary origin and may be reciprocal, where uric acid regulates some features and pathophysiological processes of AN, including weight and metabolism regulation, oxidative stress, immunity, mood, cognition, and (hyper)activity.
Collapse
Affiliation(s)
- Mladena Simeunovic Ostojic
- Center for Eating Disorders Helmond, Mental Health Center Region Oost-Brabant, Wesselmanlaan 25a, Helmond, HA, 5707, The Netherlands
| | - Joyce Maas
- Center for Eating Disorders Helmond, Mental Health Center Region Oost-Brabant, Wesselmanlaan 25a, Helmond, HA, 5707, The Netherlands.,Department of Medical and Clinical Psychology, Tilburg University, Warandelaan 2, P.O. Box 90153, Tilburg, LE, 5000, The Netherlands
| |
Collapse
|
22
|
Abstract
As potent antigen-presenting cells, dendritic cells (DCs) comprise the most heterogeneous cell population with significant cellular phenotypic and functional plasticity. They form a sentinel network to modulate immune responses, since intrinsic cellular mechanisms and complex external, environmental signals endow DCs with the distinct capacity to induce protective immunity or tolerance to self. Interactions between DCs and other cells of the immune system mediate this response. This interactive response depends on DC maturation status and subtype, as well as the microenvironment of the tissue location and DC-intrinsic regulators. Dysregulated DCs can initiate and perpetuate various immune disorders, which creates attractive therapeutic targets. In this review, we provide a detailed outlook on DC ontogeny and functional specialization. We highlight recent advances on the regulatory role that DCs play in immune responses, the putative molecular regulators that control DC functional responding and the contribution of DCs to inflammatory disease physiopathology.
Collapse
|
23
|
Patidar A, Selvaraj S, Sarode A, Chauhan P, Chattopadhyay D, Saha B. DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine 2017; 104:114-123. [PMID: 29032985 DOI: 10.1016/j.cyto.2017.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
Random mutations leading to loss of cell cycle control is not a rare occurrence in an organism but the mutated cells are recognized and eliminated preventing the development of a tumor. These potentially tumorigenic cells release damage-associated molecular patterns (DAMPs), which are recognized by toll-like receptors (TLRs) on macrophages and dendritic cells. The initial TLR-DAMP interactions lead to different responses such as altered antigen presentation and cytokine release that directly affect T cell activation and removal of the tumorigenic cells. The indirect effects of TLR-DAMP interaction include chemokine-directed altered T cell trafficking, angiogenesis for both T cell infiltration and tumor cell metastasis, and alteration of intra-tumoral milieu contributing to the development of tumor cells heterogeneity. Thus, the initial TLR-DAMP interaction has a set of local effects that modulate tumor cell growth and heterogeneity and a disseminating set of central effects that dynamically affect T cell trafficking and functions. Herein, we argue that the DAMP-TLR-cytokine axis in the tumor microenvironment serves as the mainstay that orchestrates and regulates the pro- and anti-tumor elements which dynamically interact between themselves eventuating in tumor regression or growth. The knowledge of this TLR-based immuno-surveillance framework is a key to developing a novel immunotherapy against cancer.
Collapse
Affiliation(s)
- Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | - Aditya Sarode
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | - Bhaskar Saha
- National Institute of Traditional Medicine, Belagavi, Karnataka, India.
| |
Collapse
|
24
|
Eleftheriadis T, Pissas G, Sounidaki M, Antoniadi G, Tsialtas I, Liakopoulos V, Stefanidis I. Urate crystals directly activate the T-cell receptor complex and induce T-cell proliferation. Biomed Rep 2017; 7:365-369. [PMID: 29085633 PMCID: PMC5649536 DOI: 10.3892/br.2017.960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
Uric acid is a known danger associated molecular pattern molecule able to induce inflammation following internalization of its crystals by cells of the innate immune system. By activating antigen-presenting cells, urate boosts adaptive immunity as well. Furthermore, urate crystals can induce proliferation of isolated T-cells, which are unable to phagocytose crystal particles. In light of the evidence that urate crystals can also activate dendritic cells and macrophages without prior internalization but through sequestration of lipid rafts (and consequently receptors clustering in a non specific manner), the authors evaluated whether such a mechanism is involved in the direct activation of T-cells by urate crystals. In the present study, isolated human T-cells were cultured with or without urate at a concentration above its crystallization level. The expression and phosphorylation state of the T-cell receptor (TCR) complex zeta chain and the expression of the master regulator of cell proliferation c-Myc were assessed by western blotting. T-cell proliferation was measured by bromodeoxyuridine assay. Collectively, the results indicated that urate increased zeta chain phosphorylation indicating that it induces activation of TCR complex directly, since zeta chain phosphorylation takes place at the cell membrane and is a very proximal event in TCR complex-mediated signal transduction. In parallel, urate increased the expression of the transcription factor c-Myc and induced T-cell proliferation. In conclusion, urate crystals directly activate the TCR complex and induce T-cell proliferation.
Collapse
Affiliation(s)
- Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Maria Sounidaki
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Ioannis Tsialtas
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, University of Thessaly, Larissa, Thessaly 41110, Greece
| |
Collapse
|
25
|
Abstract
In healthy individuals, metabolically quiescent T cells survey lymph nodes and peripheral tissues in search of cognate antigens. During infection, T cells that encounter cognate antigens are activated and - in a context-specific manner - proliferate and/or differentiate to become effector T cells. This process is accompanied by important changes in cellular metabolism (known as metabolic reprogramming). The magnitude and spectrum of metabolic reprogramming as it occurs in T cells in the context of acute infection ensure host survival. By contrast, altered T cell metabolism, and hence function, is also observed in various disease states, in which T cells actively contribute to pathology. In this Review, we introduce the idea that the spectrum of immune cell metabolic states can provide a basis for categorizing human diseases. Specifically, we first summarize the metabolic and interlinked signalling requirements of T cells responding to acute infection. We then discuss how metabolic reprogramming of T cells is linked to disease.
Collapse
|
26
|
Truxova I, Hensler M, Skapa P, Halaska MJ, Laco J, Ryska A, Spisek R, Fucikova J. Rationale for the Combination of Dendritic Cell-Based Vaccination Approaches With Chemotherapy Agents. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:115-156. [PMID: 28215530 DOI: 10.1016/bs.ircmb.2016.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Owing to their central role in the initiation and regulation of antitumor immunity, dendritic cells (DCs) have been widely tested for use in cancer immunotherapy. Despite several encouraging clinical applications, existing DC-based immunotherapy efforts have yielded inconsistent results. Recent work has identified strategies that may allow for more potent DC-based vaccines, such as the combination with antitumor agents that have the potential to synergistically enhance DC functions. Selected cytotoxic agents may stimulate DCs either by directly promoting their maturation or through the induction of immunogenic tumor cell death. Moreover, they may support DC-induced adaptive immune responses by disrupting tumor-induced immunosuppressive mechanisms via selective depletion or inhibition of regulatory subsets, such as myeloid-derived suppressor cells and/or regulatory T cells (Tregs). Here, we summarize our current knowledge on the capacity of anticancer chemotherapeutics to modulate DC phenotype and functions and the results of ongoing clinical trials evaluating the use of DC-based immunotherapy in combination with chemotherapy in cancer patients.
Collapse
Affiliation(s)
- I Truxova
- 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic; Sotio a.s., Prague, Czech Republic
| | | | - P Skapa
- 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - M J Halaska
- 3rd Faculty of Medicine and Faculty Hospital Kralovske Vinohrady, Charles University, Prague, Czech Republic
| | - J Laco
- Faculty of Medicine and Faculty Hospital in Hradec Kralove, Charles University, Prague, Czech Republic
| | - A Ryska
- Faculty of Medicine and Faculty Hospital in Hradec Kralove, Charles University, Prague, Czech Republic
| | - R Spisek
- 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic; Sotio a.s., Prague, Czech Republic
| | - J Fucikova
- 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic; Sotio a.s., Prague, Czech Republic.
| |
Collapse
|
27
|
Elster JD, Krishnadas DK, Lucas KG. Dendritic cell vaccines: A review of recent developments and their potential pediatric application. Hum Vaccin Immunother 2016; 12:2232-9. [PMID: 27245943 DOI: 10.1080/21645515.2016.1179844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For many cancers the use of conventional chemotherapy has been maximized, and further intensification of chemotherapy generally results in excess toxicity with little long-term benefit for cure. Many tumors become resistant to chemotherapy, making the investigation of novel approaches such as immunotherapy of interest. Because the tumor microenvironment is known to promote immune tolerance and down regulate the body's natural defense mechanisms, modulating the immune system with the use of dendritic cell (DC) therapy is an attractive approach. Thousands of patients with diverse tumor types have been treated with DC vaccines. While antigen specific immune responses have been reported, the duration and magnitude of these responses are typically weak, and objective clinical responses have been limited. DC vaccine generation and administration is a multi-step process with opportunities for improvement in source of DC for vaccine, selection of target antigen, and boosting effector cell response via administration of vaccine adjuvant or concomitant pharmacologic immunomodulation. In this review we will discuss recent developments in each of these areas and highlight elements that could be moved into pediatric clinical trials.
Collapse
Affiliation(s)
- Jennifer D Elster
- a Department of Pediatrics , Hematology/Oncology, University of Louisville , Louisville , KY , USA
| | - Deepa K Krishnadas
- a Department of Pediatrics , Hematology/Oncology, University of Louisville , Louisville , KY , USA
| | - Kenneth G Lucas
- a Department of Pediatrics , Hematology/Oncology, University of Louisville , Louisville , KY , USA
| |
Collapse
|