1
|
Cheng H, Liu Y, Cheng M, Li W, Sun M, Tang Q, Ma J, Li P, Gong T. IDH2 regulates U2AF1 expression and hydroxymethylation in MDS patients. Biotechnol Genet Eng Rev 2024; 40:788-799. [PMID: 36942631 DOI: 10.1080/02648725.2023.2190953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The expression of some genes regulated by their DNA methylation is involved in pathogenesis and disease progression of myelodysplastic syndrome (MDS), which is characterised by abnormal differentiation and development of myeloid cells. Therefore, it is significant for us to work on investigating what factors regulate U2AF1 expression and hydroxymethylation in MDS patients. However, the members of TET protein family can change 5-methylcytosine (5mC) into 5-hydroxymethylcytosine5-methyl cytosine (5hmC). In general, 5mC and 5hmC levels maintain dynamic equilibrium, and their imbalance is associated with the onset and progression of some tumors. In this study, the expression and 5mC and 5hmC levels of U2AF1 gene decreased significantly after the treatment by decitabine in Mutz-1 cells. The decreased degree of 5hmC is far greater than that of 5mC. IDH2 expression decreased significantly followed by U2AF1 5hmC levels. However, the expression of other hydroxymethylation-related genes such as IDH1, TET1 and TET2 also decreased, but the difference did not achieve significance. Compared with IDH2 or U2AF1 wild-type MDS patients, U2AF1 expression and 5hmC level in patients with these two gene mutations were both significantly reduced.
Collapse
Affiliation(s)
- Huanchen Cheng
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Yu Liu
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Mei Cheng
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Wei Li
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Meng Sun
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Qinghua Tang
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Jun Ma
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Pu Li
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| | - Tiejun Gong
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Carnie CJ, Götz MJ, Palma-Chaundler CS, Weickert P, Wanders A, Serrano-Benitez A, Li HY, Gupta V, Awwad SW, Blum CJ, Sczaniecka-Clift M, Cordes J, Zagnoli-Vieira G, D'Alessandro G, Richards SL, Gueorguieva N, Lam S, Beli P, Stingele J, Jackson SP. Decitabine cytotoxicity is promoted by dCMP deaminase DCTD and mitigated by SUMO-dependent E3 ligase TOPORS. EMBO J 2024; 43:2397-2423. [PMID: 38760575 PMCID: PMC11183266 DOI: 10.1038/s44318-024-00108-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.
Collapse
Affiliation(s)
- Christopher J Carnie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Maximilian J Götz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Pedro Weickert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amy Wanders
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hao-Yi Li
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Guido Zagnoli-Vieira
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Giuseppina D'Alessandro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sean L Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Nadia Gueorguieva
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
McBrearty N, Cho C, Chen J, Zahedi F, Peck AR, Radaelli E, Assenmacher CA, Pavlak C, Devine A, Yu P, Lu Z, Zhang H, Li J, Pitarresi JR, Astsaturov I, Cukierman E, Rustgi AK, Stanger BZ, Rui H, Fuchs SY. Tumor-Suppressive and Immune-Stimulating Roles of Cholesterol 25-hydroxylase in Pancreatic Cancer Cells. Mol Cancer Res 2023; 21:228-239. [PMID: 36378658 PMCID: PMC9992122 DOI: 10.1158/1541-7786.mcr-22-0602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Cholesterol dependence is an essential characteristic of pancreatic ductal adenocarcinoma (PDAC). Cholesterol 25-hydroxylase (CH25H) catalyzes monooxygenation of cholesterol into 25-hydroxycholesterol, which is implicated in inhibiting cholesterol biosynthesis and in cholesterol depletion. Here, we show that, within PDAC cells, accumulation of cholesterol was facilitated by the loss of CH25H. Methylation of the CH25H gene and decreased levels of CH25H expression occurred in human pancreatic cancers and was associated with poor prognosis. Knockout of Ch25h in mice accelerated progression of Kras-driven pancreatic intraepithelial neoplasia. Conversely, restoration of CH25H expression in human and mouse PDAC cells decreased their viability under conditions of cholesterol deficit, and decelerated tumor growth in immune competent hosts. Mechanistically, the loss of CH25H promoted autophagy resulting in downregulation of MHC-I and decreased CD8+ T-cell tumor infiltration. Re-expression of CH25H in PDAC cells combined with immune checkpoint inhibitors notably inhibited tumor growth. We discuss additional benefits that PDAC cells might gain from inactivation of CH25H and the potential translational importance of these findings for therapeutic approaches to PDAC. IMPLICATIONS Loss of CH25H by pancreatic cancer cells may stimulate tumor progression and interfere with immunotherapies.
Collapse
Affiliation(s)
- Noreen McBrearty
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Cho
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jinyun Chen
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Farima Zahedi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy R. Peck
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clarice Pavlak
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anne Devine
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pengfei Yu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongru Zhang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jinyang Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason R. Pitarresi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19104, USA
| | - Edna Cukierman
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19104, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ben Z. Stanger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Ejam SS, Saleh RO, Catalan Opulencia MJ, Najm MA, Makhmudova A, Jalil AT, Abdelbasset WK, Al-Gazally ME, Hammid AT, Mustafa YF, Sergeevna SE, Karampoor S, Mirzaei R. Pathogenic role of 25-hydroxycholesterol in cancer development and progression. Future Oncol 2022; 18:4415-4442. [PMID: 36651359 DOI: 10.2217/fon-2022-0819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023] Open
Abstract
Cholesterol is an essential lipid that serves several important functions, including maintaining the homeostasis of cells, acting as a precursor to bile acid and steroid hormones and preserving the stability of membrane lipid rafts. 25-hydroxycholesterol (25-HC) is a cholesterol derivative that may be formed from cholesterol. 25-HC is a crucial component in various biological activities, including cholesterol metabolism. In recent years, growing evidence has shown that 25-HC performs a critical function in the etiology of cancer, infectious diseases and autoimmune disorders. This review will summarize the latest findings regarding 25-HC, including its biogenesis, immunomodulatory properties and role in innate/adaptive immunity, inflammation and the development of various types of cancer.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Pharmacy, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Mazin Aa Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Aziza Makhmudova
- Department of Social Sciences & Humanities, Samarkand State Medical Institute, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health & Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sergushina Elena Sergeevna
- National Research Ogarev Mordovia State University, 68 Bolshevitskaya Street, Republic of Mordovia, Saransk, 430005, Russia
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Role of reactive oxygen species in regulating 27-hydroxycholesterol-induced apoptosis of hematopoietic progenitor cells and myeloid cell lines. Cell Death Dis 2022; 13:916. [PMID: 36316327 PMCID: PMC9622808 DOI: 10.1038/s41419-022-05360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Oxysterols are oxygenated derivatives of cholesterol that contain an additional hydroxy, epoxide, or ketone group in the sterol nucleus and/or a hydroxyl group in the side chain of the cholesterol molecule. 27-Hydroxycholesterol (27HC) is a side-chain oxysterol that is oxygenated at the 27th carbon atom of cholesterol. The oxysterol (27HC) is produced via oxidation by sterol 27-hydroxylase (CYP27A1) and metabolized via oxysterol 7a-hydroxylase (CYP7B1) for bile acid synthesis in the liver. A previous study has demonstrated that treatment with the alternative Estrogen receptor alpha (ERα) ligand 27HC induces ERα-dependent hematopoietic stem cell (HSC) mobilization. In addition, Cyp27a1-deficient mice demonstrate significantly reduced 27HC levels and HSC mobilization. Here, we report that exogenous 27HC treatment leads to a substantial reduction in the hematopoietic stem and progenitor cell (HSPC) population owing to significantly increased reactive oxygen species (ROS) levels and apoptosis in the bone marrow (BM). However, 27HC does not influence the population of mature hematopoietic cells in the BM. Furthermore, exogenous 27HC treatment suppresses cell growth and promotes ROS production and apoptosis in leukemic cells. Moreover, acute myeloid leukemia (AML) patients with high CYP7B1 expression (expected to have inhibition of 27HC) had significantly shorter survival than those with low CYP7B1 expression (expected to have an elevation of 27HC). Single-cell RNA-sequencing (scRNA seq) analysis revealed that the expression of CYP7B1 was significantly increased in AML patients. Thus, our study suggests that 27HC may serve as a potent agent for regulating pools of HSPCs and may have an application as a novel therapeutic target for hematological malignancies. Collectively, pharmacological inhibition of CYP7B1 (expected to have an elevation of 27HC) would potentially have fewer long-term hematological side effects, particularly when used in combination with chemotherapy or radiation for the treatment of leukemia patients.
Collapse
|
6
|
Hazama Y, Tsujioka T, Kitanaka A, Tohyama K, Shimoya K. Histone deacetylase inhibitor, panobinostat, exerts anti-proliferative effect with partial normalization from aberrant epigenetic states on granulosa cell tumor cell lines. PLoS One 2022; 17:e0271245. [PMID: 35802681 PMCID: PMC9269920 DOI: 10.1371/journal.pone.0271245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
The prognosis of the patients with inoperable or advanced granulosa cell tumors (GCTs) is still poor, and therefore it is important to establish a novel treatment strategy. Here we investigated the in vitro effects of a histone deacetylase inhibitor, panobinostat (PS) on two GCT cell lines (KGN and COV434). GCT cell lines were found to be susceptible to PS treatment and it inhibited cell growth mainly by apoptosis. In cell cycle analysis, PS reduced only the ratio of S phase in GCT cell lines. Combined treatment of PS with a deubiquitinase inhibitor, VLX1570 enhanced the expression of p21, cleaved PARP, cleaved caspase-9, heme oxygenase-1, and the acetylation of histone H4 and α-tubulin, leading to an additive anti-proliferative effect on KGN and COV434. The gene set enrichment analysis revealed that PS treatment suppressed DNA replication- or cell cycle-related gene expression which led to chemotherapeutic cell death and in addition, this treatment induced activation of the gene set of adherens junction towards a normalized direction as well as activation of neuron-related gene sets that might imply unexpected differentiation potential due to epigenetic modification by a HDAC inhibitor in KGN cells. Exposure of KGN and COV434 cells to PS increased the expression of E-cadherin, one of the principal regulators associated with adherens junction in quantitative RT-PCR and immunoblotting analysis. In the present study, we indicate a basis of a novel therapeutic availability of a HDAC inhibitor for the treatment of GCTs and further investigations will be warranted.
Collapse
Affiliation(s)
- Yukiko Hazama
- Departments of Obstetrics and Gynecology, Kawasaki Medical School, Okayama, Japan
| | - Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
- * E-mail:
| | - Akira Kitanaka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Koichiro Shimoya
- Departments of Obstetrics and Gynecology, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
7
|
Liu W, Teodorescu P, Halene S, Ghiaur G. The Coming of Age of Preclinical Models of MDS. Front Oncol 2022; 12:815037. [PMID: 35372085 PMCID: PMC8966105 DOI: 10.3389/fonc.2022.815037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal bone-marrow diseases with ineffective hematopoiesis resulting in cytopenias and morphologic dysplasia of hematopoietic cells. MDS carry a wide spectrum of genetic abnormalities, ranging from chromosomal abnormalities such as deletions/additions, to recurrent mutations affecting the spliceosome, epigenetic modifiers, or transcription factors. As opposed to AML, research in MDS has been hindered by the lack of preclinical models that faithfully replicate the complexity of the disease and capture the heterogeneity. The complex molecular landscape of the disease poses a unique challenge when creating transgenic mouse-models. In addition, primary MDS cells are difficult to manipulate ex vivo limiting in vitro studies and resulting in a paucity of cell lines and patient derived xenograft models. In recent years, progress has been made in the development of both transgenic and xenograft murine models advancing our understanding of individual contributors to MDS pathology as well as the complex primary interplay of genetic and microenvironment aberrations. We here present a comprehensive review of these transgenic and xenograft models for MDS and future directions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Patric Teodorescu
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Ureshino H, Kurahashi Y, Watanabe T, Yamashita S, Kamachi K, Yamamoto Y, Fukuda-Kurahashi Y, Yoshida-Sakai N, Hattori N, Hayashi Y, Kawaguchi A, Tohyama K, Okada S, Harada H, Ushijima T, Kimura S. Silylation of Deoxynucleotide Analog Yields an Orally Available Drug with Antileukemia Effects. Mol Cancer Ther 2021; 20:1412-1421. [PMID: 34045225 PMCID: PMC9398096 DOI: 10.1158/1535-7163.mct-20-1125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
DNA methyltransferase inhibitors have improved the prognosis of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, because these agents are easily degraded by cytidine deaminase (CDA), they must be administered intravenously or subcutaneously. Recently, two orally bioavailable DNA methyltransferase inhibitors, CC-486 and ASTX727, were approved. In previous work, we developed 5-O-trialkylsilylated decitabines that resist degradation by CDA. However, the effects of silylation of a deoxynucleotide analog and enzymatic cleavage of silylation have not been fully elucidated. Enteric administration of OR21 in a cynomolgus monkey model led to high plasma concentrations and hypomethylation, and in a mouse model, oral administration of enteric-coated OR21 led to high plasma concentrations. The drug became biologically active after release of decitabine (DAC) from OR21 following removal of the 5'-O-trisilylate substituent. Toxicities were tolerable and lower than those of DAC. Transcriptome and methylome analysis of MDS and AML cell lines revealed that OR21 increased expression of genes associated with tumor suppression, cell differentiation, and immune system processes by altering regional promoter methylation, indicating that these pathways play pivotal roles in the action of hypomethylating agents. OR21 induced cell differentiation via upregulation of the late cell differentiation drivers CEBPE and GATA-1 Thus, silylation of a deoxynucleotide analog can confer oral bioavailability without new toxicities. Both in vivo and in vitro, OR21 exerted antileukemia effects, and had a better safety profile than DAC. Together, our findings indicate that OR21 is a promising candidate drug for phase I study as an alternative to azacitidine or decitabine.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis
- Cell Proliferation
- Decitabine/chemistry
- Decitabine/pharmacology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Macaca fascicularis
- Mice
- Mice, Inbred BALB C
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Silanes/chemistry
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
9
|
Novel copper complex CTB regulates methionine cycle induced TERT hypomethylation to promote HCC cells senescence via mitochondrial SLC25A26. Cell Death Dis 2020; 11:844. [PMID: 33041323 PMCID: PMC7548283 DOI: 10.1038/s41419-020-03048-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Related research has recognized the vital role of methionine cycle metabolism in cancers. However, the role and mechanism of methionine cycle metabolism in hepatocellular carcinoma are still unknown. In this study, we found that [Cu(ttpy-tpp)Br2]Br (Referred to as CTB) could induce hepatocellular carcinoma cells senescence, which is a new copper complex synthesized by our research group. Interestingly, CTB induces senescence by inhibiting the methionine cycle metabolism of HCC cells. Furthermore, the inhibitory effect of CTB on the methionine cycle depends on mitochondrial carrier protein SLC25A26, which was also required for CTB-induced HCC cells senescence. Importantly, we found that CTB-induced upregulation of SLC25A26 could cause abnormal methylation of TERT and inhibited TERT expression, which is considered to be an essential cause of cell senescence. The same results were also obtained in vivo, CTB inhibits the growth of subcutaneously implanted tumors in nude mice and promoted the expression of senescence markers in tumor tissues, and interference with SLC25A26 partially offset the antitumor effect of CTB.
Collapse
|
10
|
Recurrence-Associated Multi-RNA Signature to Predict Disease-Free Survival for Ovarian Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1618527. [PMID: 32149080 PMCID: PMC7044477 DOI: 10.1155/2020/1618527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
Ovarian cancer (OvCa) is an intractable gynecological malignancy due to the high recurrence rate. Several molecular biomarkers have been previously screened for early identifying patients with a high recurrence risk and poor prognosis. However, all the known studies focused on a single type of RNAs, not integrating various types. This study was to construct a new multi-RNA-based model to predict the recurrence and prognosis for OvCa patients by using the messenger RNA (mRNA, including long noncoding RNA (lncRNA)) and microRNA (miRNA) sequencing data of The Cancer Genome Atlas database. After univariate Cox regression and least absolute shrinkage and selection operator analyses, a multi-RNA-based signature (2 miRNAs: hsa-miR-508, hsa-miR-506; 1 lncRNA: TM4SF1-AS1; 11 mRNAs: MAGI3, SLAMF7, GLI2, PDK1, ARID3A, PLEKHG4B, TNFAIP8L3, C1QTNF3, NDUFAF1, CH25H, TMEM129) was generated and used to establish a risk score model. The high- and low-risk patients classified by the median risk score exhibited significantly different recurrence risks (89% versus 61%, p < 0.001) and survival time (the area under the receiver operating characteristic curve (AUC) = 0.901 for 5-year disease-free survival (DFS)). This risk model was independent of other clinical features and superior to pathologic staging for DFS prediction (AUC, 0.906 versus 0.524; C-index, 0.633 versus 0.510). Furthermore, some new interaction axes were revealed to explain the possible functions of these RNAs (competing endogenous RNA: TM4SF1-AS1-miR-186-STEAP2, LINC00536-miR-508-STEAP2, LINC00475-miR-506-TMEM129; coexpression: LINC00598-PLEKHG4B). In conclusion, this multi-RNA-based risk model may be clinically useful to stratify OvCa patients with different recurrence risks and survival outcomes and included RNAs may be potential therapeutic targets.
Collapse
|
11
|
Raselli T, Wyss A, Gonzalez Alvarado MN, Weder B, Mamie C, Spalinger MR, Van Haaften WT, Dijkstra G, Sailer AW, Imenez Silva PH, Wagner CA, Tosevski V, Leibl S, Scharl M, Rogler G, Hausmann M, Misselwitz B. The Oxysterol Synthesising Enzyme CH25H Contributes to the Development of Intestinal Fibrosis. J Crohns Colitis 2019; 13:1186-1200. [PMID: 31220227 PMCID: PMC6751338 DOI: 10.1093/ecco-jcc/jjz039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis and stenosis are common complications of Crohn's disease [CD], frequently requiring surgery. Anti-inflammatory strategies can only partially prevent fibrosis; hence, anti-fibrotic therapies remain an unmet clinical need. Oxysterols are oxidised cholesterol derivatives with important roles in various biological processes. The enzyme cholesterol 25-hydroxylase [CH25H] converts cholesterol to 25-hydroxycholesterol [25-HC], which modulates immune responses and oxidative stress. In human intestinal samples from CD patients, we found a strong correlation of CH25H mRNA expression with the expression of fibrosis markers. We demonstrate reduced intestinal fibrosis in mice deficient for the CH25H enzyme, using the sodium dextran sulphate [DSS]-induced chronic colitis model. Additionally, using a heterotopic transplantation model of intestinal fibrosis, we demonstrate reduced collagen deposition and lower concentrations of hydroxyproline in CH25H knockouts. In the heterotopic transplant model, CH25H was expressed in fibroblasts. Taken together, our findings indicate an involvement of oxysterol synthesis in the pathogenesis of intestinal fibrosis.
Collapse
Affiliation(s)
- T Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - A Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M N Gonzalez Alvarado
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - B Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - C Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - W T Van Haaften
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A W Sailer
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - C A Wagner
- Institute of Physiology, Zurich University, Zurich, Switzerland
| | - V Tosevski
- Mass Cytometry Facility, Zurich University, Zurich, Switzerland
| | - Sebastian Leibl
- Institute of Pathology and Molecular Pathology, University Hospital Zurich and Zurich University, Zurich, Switzerland
| | - M Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - M Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
| | - B Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich University, Zurich, Switzerland
- Corresponding author: Dr. Benjamin Misselwitz, Dept. of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Freiburgstr 18, 3010 Bern, Switzerland.
| |
Collapse
|
12
|
Murakami Y, Kimura Y, Kawahara A, Mitsuyasu S, Miyake H, Tohyama K, Endo Y, Yoshida N, Imamura Y, Watari K, Ono M, Okamura T, Kuwano M. The augmented expression of the cytidine deaminase gene by 5-azacytidine predicts therapeutic efficacy in myelodysplastic syndromes. Oncotarget 2019; 10:2270-2281. [PMID: 31040918 PMCID: PMC6481348 DOI: 10.18632/oncotarget.26784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 11/25/2022] Open
Abstract
5-Azacytidine (5AC), a hypomethylating agent, is clinically used for the treatment of patients with myelodysplastic syndromes (MDS). Cytidine deaminase (CDA) is a key enzyme in the detoxification of 5AC. We investigated whether the CDA expression could predict response to 5AC in MDS. Among leukemia-derived cell lines, MDS-L, an MDS-derived cell line with a relatively low CDA expression level, was found to be the most sensitive to 5AC. Combination with tetrahydrouridine, an inhibitor of CDA, synergistically potentiated the cytotoxic effect of 5AC. Treatment with 5AC markedly enhanced the expression level of CDA mRNA and showed demethylation at CpG sites in the 5′-flanking region of the CDA gene. We further compared the protein expression levels of CDA in matched clinical samples before and after treatment with 5AC in bone marrow cells from 8 MDS patients by an immunohistochemical analysis. The CDA expression level showed an approximately 2- to 3-fold increase after 5AC treatment in 3 of these cases, and these three patients with relatively higher CDA expression levels after 5AC treatment all showed better clinical responses to 5AC. In contrast, the 5 remaining patients, whose CDA expression showed no augmentation, observed no clinical benefit. Taken together, the optimized determination of the CDA expression levels before and after 5AC treatment, and the methylation status at CpG sites of 5′-flanking region of the CDA gene, may contribute to the development of precise 5AC therapy for MDS.
Collapse
Affiliation(s)
- Yuichi Murakami
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan.,Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizo Kimura
- Department of Pathology, St. Mary's Hospital, Kurume, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | | | | | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yoshio Endo
- Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Nao Yoshida
- Department of Hematology, St. Mary's Hospital, Kurume, Japan
| | - Yutaka Imamura
- Department of Hematology, St. Mary's Hospital, Kurume, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Okamura
- Hematology and Oncology Center, St. Mary's Hospital, Kurume, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| |
Collapse
|
13
|
Oguro H. The Roles of Cholesterol and Its Metabolites in Normal and Malignant Hematopoiesis. Front Endocrinol (Lausanne) 2019; 10:204. [PMID: 31001203 PMCID: PMC6454151 DOI: 10.3389/fendo.2019.00204] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hematopoiesis is sustained throughout life by hematopoietic stem cells (HSCs) that are capable of self-renewal and differentiation into hematopoietic progenitor cells (HPCs). There is accumulating evidence that cholesterol homeostasis is an important factor in the regulation of hematopoiesis. Increased cholesterol levels are known to promote proliferation and mobilization of HSCs, while hypercholesterolemia is associated with expansion of myeloid cells in the peripheral blood and links hematopoiesis with cardiovascular disease. Cholesterol is a precursor to steroid hormones, oxysterols, and bile acids. Among steroid hormones, 17β-estradiol (E2) induces HSC division and E2-estrogen receptor α (ERα) signaling causes sexual dimorphism of HSC division rate. Oxysterols are oxygenated derivatives of cholesterol and key substrates for bile acid synthesis and are considered to be bioactive lipids, and recent studies have begun to reveal their important roles in the hematopoietic and immune systems. 27-Hydroxycholesterol (27HC) acts as an endogenous selective estrogen receptor modulator and induces ERα-dependent HSC mobilization and extramedullary hematopoiesis. 7α,25-dihydroxycholesterol (7α,25HC) acts as a ligand for Epstein-Barr virus-induced gene 2 (EBI2) and directs migration of B cells in the spleen during the adaptive immune response. Bile acids serve as chemical chaperones and alleviate endoplasmic reticulum stress in HSCs. Cholesterol metabolism is dysregulated in hematologic malignancies, and statins, which inhibit de novo cholesterol synthesis, have cytotoxic effects in malignant hematopoietic cells. In this review, recent advances in our understanding of the roles of cholesterol and its metabolites as signaling molecules in the regulation of hematopoiesis and hematologic malignancies are summarized.
Collapse
|
14
|
Imanishi S, Umezu T, Kobayashi C, Ohta T, Ohyashiki K, Ohyashiki JH. Chromatin Regulation by HP1γ Contributes to Survival of 5-Azacytidine-Resistant Cells. Front Pharmacol 2018; 9:1166. [PMID: 30386240 PMCID: PMC6198088 DOI: 10.3389/fphar.2018.01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Recent investigations of the treatment for hematologic neoplasms have focused on targeting epigenetic regulators. The DNA methyltransferase inhibitor 5-azacytidine (AZA) has produced good results in the treatment of patients with myelodysplastic syndromes. The mechanism underlying its pharmacological activity involves many cellular processes including histone modifications, but chromatin regulation in AZA-resistant cells is still largely unknown. Therefore, we compared human leukemia cells with AZA resistance and their AZA-sensitive counterparts with regard to the response of histone modifications and their readers to AZA treatment to identify novel molecular target(s) in hematologic neoplasms with AZA resistance. We observed an a decrease of HP1γ, a methylated lysine 9 of histone H3-specific reader protein, in AZA-sensitive cells after treatment, whereas AZA treatment did not affect HP1 family proteins in AZA-resistant cells. The expression of shRNA targeting HP1γ reduced viability and induced apoptosis specifically in AZA-resistant cells, which accompanied with down-regulation of ATM/BRCA1 signaling, indicating that chromatin regulation by HP1γ plays a key role in the survival of AZA-resistant cells. In addition, the amount of HP1γ protein in AZA-sensitive and AZA-resistant cells was decreased after treatment with the bromodomain inhibitor I-BET151 at a dose that inhibited the growth of AZA-resistant cells more strongly than that of AZA-sensitive cells. Our findings demonstrate that treatment with AZA, which affects an epigenetic reader protein and targets HP1γ, or a bromodomain inhibitor is a novel strategy that can be used to treat patients with hematopoietic neoplasms with AZA resistance.
Collapse
Affiliation(s)
- Satoshi Imanishi
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tomohiro Umezu
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Kobayashi
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Junko H Ohyashiki
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
15
|
KIF20A, highly expressed in immature hematopoietic cells, supports the growth of HL60 cell line. Int J Hematol 2018; 108:607-614. [PMID: 30182171 DOI: 10.1007/s12185-018-2527-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
A microtubule-associated motor protein, kinesin-like family member 20A (KIF20A; also called MKlp2) is required for cytokinesis and contributes to intracellular vesicular trafficking. KIF20A plays a critical role in the development of several cancers, but its role in blood cells and hematological malignancies have not been studied. In the present study, we focused on the role of KIF20A in hematopoietic cells and possible involvement in myeloid neoplasms. We found that human leukemia cell lines and normal bone marrow CD34-positive cells stimulated by growth factors, but not mature peripheral blood cells, exhibit high KIF20A expression. We further found that HL60 cells, which originally express a large amount of KIF20A, showed decreased KIF20A expression in parallel with both neutrophil-like and macrophage-like differentiation-induction. KIF20A-knockdown using a lentivirus shRNA transfection system led to partial cell cycle arrest at the G2/M phase and frequent appearance of multinucleated cells. Treatment with a KIF20A-selective inhibitor, paprotrain enhanced the multinuclearity of KIF20A-knockdown cell clones and suppressed growth. The present study contributes to our understanding of the role of KIF20A in blood cells and leukemia cells in particular.
Collapse
|
16
|
Kida JI, Tsujioka T, Suemori SI, Okamoto S, Sakakibara K, Takahata T, Yamauchi T, Kitanaka A, Tohyama Y, Tohyama K. An MDS-derived cell line and a series of its sublines serve as an in vitro model for the leukemic evolution of MDS. Leukemia 2018; 32:1846-1850. [PMID: 29955132 DOI: 10.1038/s41375-018-0189-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/11/2018] [Accepted: 05/17/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Jun-Ichiro Kida
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | | | - Shuichiro Okamoto
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kanae Sakakibara
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | | | - Takahiro Yamauchi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akira Kitanaka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yumi Tohyama
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan.
| |
Collapse
|
17
|
Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci 2018. [PMID: 29526163 PMCID: PMC5846307 DOI: 10.1186/s12929-018-0422-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.
Collapse
Affiliation(s)
- Ricardo Leão
- Division of Urology, Department of Surgery Princess Margaret Cancer Centre, University Health Network, 610 University Ave 3-130, Toronto, ON, M5G 2M9, Canada. .,Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Faculty of Medicine, University of Coimbra, R. Larga, 3004-504, Coimbra, Coimbra, Portugal. .,Department of Urology, Coimbra University Hospital, Coimbra, Portugal.
| | - Joana Dias Apolónio
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Edifício 2 - Ala Norte, 8005-139, Faro, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Algarve Biomedical Center, Campus Gambelas, Faro, Portugal
| | - Donghyun Lee
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Arnaldo Figueiredo
- Faculty of Medicine, University of Coimbra, R. Larga, 3004-504, Coimbra, Coimbra, Portugal.,Department of Urology, Coimbra University Hospital, Coimbra, Portugal
| | - Uri Tabori
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8ON, Canada
| | - Pedro Castelo-Branco
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve, Edifício 2 - Ala Norte, 8005-139, Faro, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Algarve Biomedical Center, Campus Gambelas, Faro, Portugal
| |
Collapse
|
18
|
Avin BA, Umbricht CB, Zeiger MA. Human telomerase reverse transcriptase regulation by DNA methylation, transcription factor binding and alternative splicing (Review). Int J Oncol 2016; 49:2199-2205. [PMID: 27779655 DOI: 10.3892/ijo.2016.3743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
The catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), plays an essential role in telomere maintenance to oppose cellular senescence and, is highly regulated in normal and cancerous cells. Regulation of hTERT occurs through multiple avenues, including a unique pattern of CpG promoter methylation and alternative splicing. Promoter methylation affects the binding of transcription factors, resulting in changes in expression of the gene. In addition to expression level changes, changes in promoter binding can affect alternative splicing in a cotranscriptional manner. The alternative splicing of hTERT results in either the full length transcript which can form the active telomerase complex with hTR, or numerous inactive isoforms. Both regulation strategies are exploited in cancer to activate telomerase, however, the exact mechanism is unknown. Therefore, unraveling the link between promoter methylation status and alternative splicing for hTERT could expose yet another level of hTERT regulation. In an attempt to provide insight into the cellular control of active telomerase in cancer, this review will discuss our current perspective on CpG methylation of the hTERT promoter region, summarize the different forms of alternatively spliced variants, and examine examples of transcription factor binding that affects splicing.
Collapse
Affiliation(s)
- Brittany A Avin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christopher B Umbricht
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martha A Zeiger
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Okamoto S, Tsujioka T, Suemori SI, Kida JI, Kondo T, Tohyama Y, Tohyama K. Withaferin A suppresses the growth of myelodysplasia and leukemia cell lines by inhibiting cell cycle progression. Cancer Sci 2016; 107:1302-14. [PMID: 27311589 PMCID: PMC5021033 DOI: 10.1111/cas.12988] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/14/2022] Open
Abstract
Treatment outcomes for acute myeloid leukemia and myelodysplastic syndromes (MDS) remain unsatisfactory despite progress in various types of chemotherapy and hematopoietic stem cell transplantation. Therefore, there is a need for the development of new treatment options. We investigated the growth‐suppressive effects of withaferin A (WA), a natural plant steroidal lactone, on myelodysplasia and leukemia cell lines. WA exhibited growth‐suppressive effects on the cell lines, MDS‐L, HL‐60, THP‐1, Jurkat and Ramos, and induction of cell cycle arrest at G2/M phase at relatively low doses. Evaluation by annexin V/PI also confirmed the induction of partial apoptosis. Gene expression profiling and subsequent gene set enrichment analysis revealed increased expression of heme oxygenase‐1 (HMOX1). HMOX1 is known to induce autophagy during anticancer chemotherapy and is considered to be involved in the treatment resistance. Our study indicated increased HMOX1 protein levels and simultaneous increases in the autophagy‐related protein LC3A/B in MDS‐L cells treated with WA, suggesting increased autophagy. Combined use of WA with chloroquine, an autophagy inhibitor, enhanced early apoptosis and growth suppression. Together with the knowledge that WA had no apparent suppressive effect on the growth of human normal bone marrow CD34‐positive cells in the short‐term culture, this drug may have a potential for a novel therapeutic approach to the treatment of leukemia or MDS.
Collapse
Affiliation(s)
- Shuichiro Okamoto
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | | | - Jun-Ichiro Kida
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Toshinori Kondo
- Division of Hematology, Department of Internal Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yumi Tohyama
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Hyogo, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan.
| |
Collapse
|