1
|
Marín‐Capuz G, Crespo‐Picazo JL, Demetropoulos S, Garrido L, Hardwick J, Jribi I, Margaritoulis D, Panagopoulou A, Patrício AR, Robinson NJ, Pascual M, Pegueroles C, Carreras C. Incipient Range Expansion of Green Turtles in the Mediterranean. Mol Ecol 2025; 34:e17790. [PMID: 40377080 PMCID: PMC12100597 DOI: 10.1111/mec.17790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
In response to global climate change, numerous taxa are expanding their living ranges. In highly migratory species such as sea turtles, this expansion may be driven by individuals from nearby or distant areas. Recent nests outside the species' typical nesting range and reports of adult-sized individuals in the western Mediterranean suggest a green turtle (Chelonia mydas) range expansion into the central and western Mediterranean. To assess the green turtles' origin in these novel habitats, we built a genomic baseline using 2bRAD sequencing on five individuals from each of three Regional Management Units (RMUs): North Atlantic, South Atlantic and Mediterranean. We then compared this baseline with genotyped hatchlings from three nests laid in new central and eastern Mediterranean sites and four mature-sized green turtles tagged with satellite telemetry in the western Mediterranean. Our analyses revealed that the Tunisia nest originated from the South Atlantic RMU, while the Crete nests were produced by turtles from the Mediterranean RMU. Additionally, the three adult-sized turtles sampled in the southwestern Mediterranean were assigned to the South Atlantic RMU, while the mature-sized individual sampled in the northwestern Mediterranean belonged to the Mediterranean RMU. These results suggest a simultaneous incipient colonisation by two geographically distant RMUs. We propose that the range expansion of green turtles into the central and western Mediterranean is likely climate driven and these populations may become globally important as temperatures rise. Finally, our results highlight the essential role of the cost-effective RAD-Seq genomic assessment combined with tagging data to understand potential new colonisations.
Collapse
Affiliation(s)
- Gisela Marín‐Capuz
- Departament de Genètica, Microbiologia i Estadística and IRBioUniversitat de BarcelonaBarcelonaSpain
| | | | - Simon Demetropoulos
- MedTRACS (Mediterranean Turtle Research and Conservation Society), PeiyaPaphosCyprus
- Cyprus Wildlife SocietyNicosiaCyprus
| | - Lucia Garrido
- Fundación Para la Conservación y la Recuperación de Animales Marinos (CRAM)BarcelonaSpain
| | - Jane Hardwick
- Cayman Islands Department of EnvironmentGeorge TownCayman Islands
| | - Imed Jribi
- BIOME Lab Sfax Faculty of SciencesUniversity of SfaxSfaxTunisia
| | | | | | - Ana R. Patrício
- cE3c Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteFaculdade de Ciências da Universidade de LisboaLisboaPortugal
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Nathan J. Robinson
- Fundación Oceanogràfic de la Comunitat ValencianaValenciaSpain
- Institut de Ciències del MarSpanish National Research Council – Consejo Superior de Investigaciones CientíficasBarcelonaSpain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística and IRBioUniversitat de BarcelonaBarcelonaSpain
| | - Cinta Pegueroles
- Departament de Genètica, Microbiologia i Estadística and IRBioUniversitat de BarcelonaBarcelonaSpain
- Department of Genetics and MicrobiologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística and IRBioUniversitat de BarcelonaBarcelonaSpain
| |
Collapse
|
2
|
Ma L, Wu DY, Wang Y, Hall JM, Mi CR, Xie HX, Tao WJ, Hou C, Cheng KM, Zhang YP, Wang JC, Lu HL, Du WG, Sun BJ. Collective effects of rising average temperatures and heat events on oviparous embryos. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14266. [PMID: 38578127 DOI: 10.1111/cobi.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 04/06/2024]
Abstract
Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dan-Yang Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Wang
- School of Biological Sciences, Hebei Normal University, Shijiazhuang, China
| | - Joshua M Hall
- Department of Biology, Tennessee Technological University, Cookeville, Tennessee, USA
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Jie Tao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chao Hou
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kun-Ming Cheng
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
| | - Yong-Pu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ji-Chao Wang
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
| | - Hong-Liang Lu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Kynoch C, Paladino FV, Spotila JR, Santidrián Tomillo P. Variability in thermal tolerance of clutches from different mothers indicates adaptation potential to climate warming in sea turtles. GLOBAL CHANGE BIOLOGY 2024; 30:e17447. [PMID: 39098999 DOI: 10.1111/gcb.17447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
The current climate warming is a challenge to biodiversity that could surpass the adaptation capacity of some species. Hence, understanding the means by which populations undergo an increase in their thermal tolerance is critical to assess how they could adapt to climate warming. Specifically, sea turtle populations could respond to increasing temperatures by (1) colonizing new nesting areas, (2) nesting during cooler times of the year, and/or (3) by increasing their thermal tolerance. Differences in thermal tolerance of clutches laid by different females would indicate that populations have the potential to adapt by natural selection. Here, we used exhaustive information on nest temperatures and hatching success of leatherback turtle (Dermochelys coriacea) clutches over 14 years to assess the occurrence of individual variability in thermal tolerance among females. We found an effect of temperature, year, and the interaction between female identity and nest temperature on hatching success, indicating that clutches laid by different females exhibited different levels of vulnerability to high temperatures. If thermal tolerance is a heritable trait, individuals with higher thermal tolerances could have greater chances of passing their genes to following generations, increasing their frequency in the population. However, the high rate of failure of clutches at temperatures above 32°C suggests that leatherback turtles are already experiencing extreme heat stress. A proper understanding of mechanisms of adaptation in populations to counteract changes in climate could greatly contribute to future conservation of endangered populations in a rapidly changing world.
Collapse
Affiliation(s)
- Camille Kynoch
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Frank V Paladino
- The Leatherback Trust, Goldring-Gund Marine Biology Station, Playa Grande, Costa Rica
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - James R Spotila
- The Leatherback Trust, Goldring-Gund Marine Biology Station, Playa Grande, Costa Rica
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Pilar Santidrián Tomillo
- Centre Oceanogràfic de les Balears, Instituto Español de Oceanografía (IEO, CSIC), Palma de Mallorca, Spain
| |
Collapse
|
4
|
Simantiris N. The impact of climate change on sea turtles: Current knowledge, scientometrics, and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171354. [PMID: 38460688 DOI: 10.1016/j.scitotenv.2024.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Sea turtles are one of the most significant groups of marine species, playing a key role in the sustainability and conservation of marine ecosystems and the food chain. These emblematic species are threatened by several natural and anthropogenic pressures, and climate change is increasingly reported as one of the most important threats to sea turtles, affecting sea turtles at all stages of their life cycle and at both their marine and coastal habitats. The effect of climate change is expressed as global warming, sea-level rise, extreme storms, and alterations in predation and diseases' patterns, posing a potentially negative impact on sea turtles. In this systematic review, the author presented the current knowledge and research outcomes on the impact of climate change on sea turtles. Moreover, this study determined trends and hotspots in keywords, country collaborations, authors, and publications in the field through a scientometric analysis. Finally, this article reviewed proposed mitigation strategies by researchers, marine protected area (MPA) managers, and non-governmental organizations (NGOs) to reduce the impact of climate change on the conservation of sea turtles.
Collapse
Affiliation(s)
- Nikolaos Simantiris
- MEDASSET (Mediterranean Association to Save the Sea Turtles), Likavittou 1C, Athens, 10632, Greece; Ionian University, Department of Informatics, Corfu, 49132, Greece.
| |
Collapse
|
5
|
Christiaanse JC, Antolínez JAA, Luijendijk AP, Athanasiou P, Duarte CM, Aarninkhof S. Distribution of global sea turtle nesting explained from regional-scale coastal characteristics. Sci Rep 2024; 14:752. [PMID: 38191897 PMCID: PMC10774326 DOI: 10.1038/s41598-023-50239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Climate change and human activity threaten sea turtle nesting beaches through increased flooding and erosion. Understanding the environmental characteristics that enable nesting can aid to preserve and expand these habitats. While numerous local studies exist, a comprehensive global analysis of environmental influences on the distribution of sea turtle nesting habitats remains largely unexplored. Here, we relate the distribution of global sea turtle nesting to 22 coastal indicators, spanning hydrodynamic, atmospheric, geophysical, habitat, and human processes. Using state-of-the-art global datasets and a novel 50-km-resolution hexagonal coastline grid (Coastgons), we employ machine learning to identify spatially homogeneous patterns in the indicators and correlate these to the occurrence of nesting grounds. Our findings suggest sea surface temperature, tidal range, extreme surges, and proximity to coral and seagrass habitats significantly influence global nesting distribution. Low tidal ranges and low extreme surges appear to be particularly favorable for individual species, likely due to reduced nest flooding. Other indicators, previously reported as influential (e.g., precipitation and wind speed), were not as important in our global-scale analysis. Finally, we identify new, potentially suitable nesting regions for each species. On average, [Formula: see text] of global coastal regions between [Formula: see text] and [Formula: see text] latitude could be suitable for nesting, while only [Formula: see text] is currently used by turtles, showing that the realized niche is significantly smaller than the fundamental niche, and that there is potential for sea turtles to expand their nesting habitat. Our results help identify suitable nesting conditions, quantify potential hazards to global nesting habitats, and lay a foundation for nature-based solutions to preserve and potentially expand these habitats.
Collapse
Affiliation(s)
- Jakob C Christiaanse
- Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands.
| | - José A A Antolínez
- Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands
| | - Arjen P Luijendijk
- Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands
- Deltares , Delft, Netherlands
| | | | - Carlos M Duarte
- Biological Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan Aarninkhof
- Department of Hydraulic Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
6
|
Fuentes MMPB, Santos AJB, Abreu-Grobois A, Briseño-Dueñas R, Al-Khayat J, Hamza S, Saliba S, Anderson D, Rusenko KW, Mitchell NJ, Gammon M, Bentley BP, Beton D, Booth DTB, Broderick AC, Colman LP, Snape RTE, Calderon-Campuzano MF, Cuevas E, Lopez-Castro MC, Flores-Aguirre CD, Mendez de la Cruz F, Segura-Garcia Y, Ruiz-Garcia A, Fossette S, Gatto CR, Reina RD, Girondot M, Godfrey M, Guzman-Hernandez V, Hart CE, Kaska Y, Lara PH, Marcovaldi MAGD, LeBlanc AM, Rostal D, Liles MJ, Wyneken J, Lolavar A, Williamson SA, Manoharakrishnan M, Pusapati C, Chatting M, Mohd Salleh S, Patricio AR, Regalla A, Restrepo J, Garcia R, Santidrián Tomillo P, Sezgin C, Shanker K, Tapilatu F, Turkozan O, Valverde RA, Williams K, Yilmaz C, Tolen N, Nel R, Tucek J, Legouvello D, Rivas ML, Gaspar C, Touron M, Genet Q, Salmon M, Araujo MR, Freire JB, Castheloge VD, Jesus PR, Ferreira PD, Paladino FV, Montero-Flores D, Sozbilen D, Monsinjon JR. Adaptation of sea turtles to climate warming: Will phenological responses be sufficient to counteract changes in reproductive output? GLOBAL CHANGE BIOLOGY 2024; 30:e16991. [PMID: 37905464 DOI: 10.1111/gcb.16991] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Sea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a "middle of the road" scenario (SSP2-4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26-43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present-day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from -20 to -191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming.
Collapse
Affiliation(s)
- M M P B Fuentes
- Marine Turtle Research, Ecology, and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - A J B Santos
- Marine Turtle Research, Ecology, and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - A Abreu-Grobois
- Unidad Academica Mazatlan, Instituto de Ciencias del Mar y Limnologia, UNAM, Mazatlan, Sinaloa, Mexico
| | - R Briseño-Dueñas
- Unidad Academica Mazatlan, Instituto de Ciencias del Mar y Limnologia, UNAM, Mazatlan, Sinaloa, Mexico
| | - J Al-Khayat
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - S Hamza
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - S Saliba
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - D Anderson
- Gumbo Limbo Nature Center, Boca Raton, Florida, USA
| | - K W Rusenko
- Gumbo Limbo Nature Center, Boca Raton, Florida, USA
| | - N J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - M Gammon
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - B P Bentley
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - D Beton
- Society for Protection of Turtles, Gonyeli, Northern Cyprus
| | - D T B Booth
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - A C Broderick
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - L P Colman
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - R T E Snape
- Society for Protection of Turtles, Gonyeli, Northern Cyprus
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - M F Calderon-Campuzano
- Programa de Protección y Conservación de Tortugas Marinas, Convenio FONATUR-Instituto de Ciencias del Mar y Limnología-UNAM, Mazatlán, Sinaloa, Mexico
| | - E Cuevas
- Instituto de Investigaciones Oceanologicas, Universidad Autonoma de Baja California, Ensenada, Mexico
| | - M C Lopez-Castro
- Pronatura Península de Yucatán, A. C. Programa para la Conservación de la Tortuga Marina, Mérida, Yucatán, Mexico
| | - C D Flores-Aguirre
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F Mendez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Y Segura-Garcia
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - A Ruiz-Garcia
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - S Fossette
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - C R Gatto
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - R D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - M Girondot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| | - M Godfrey
- North Carolina Wildlife Resources Commission, Beaufort, North Carolina, USA
- Duke Marine Laboratory, Nicholas School of Environment, Duke University, Beaufort, North Carolina, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | - C E Hart
- Centro de Investigaciones Oceánicas del Mar de Cortés-Gran Acuario de Mazatlán, Mazatlán, Mexico
| | - Y Kaska
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - P H Lara
- Fundação Projeto Tamar, Florianópolis, Brazil
| | | | - A M LeBlanc
- Georgia Southern University, Statesboro, Georgia, USA
| | - D Rostal
- Georgia Southern University, Statesboro, Georgia, USA
| | - M J Liles
- Asociacion ProCosta, San Salvador, El Salvador
| | - J Wyneken
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - A Lolavar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - S A Williamson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | | | | | - M Chatting
- Environmental Science Centre, Qatar University, Doha, Qatar
- School of Civil Engineering, University College Dublin, Dublin, Ireland
| | - S Mohd Salleh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - A R Patricio
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Ispa-Instituto Universitário de Ciências Psicológicas, Lisbon, Portugal
| | - A Regalla
- Instituto da Biodiversidade e das Áreas Protegidas, Dr. Alfredo Simão da Silva (IBAP), Bissau, Guinea-Bissau
| | - J Restrepo
- Sea Turtle Conservancy, Gainesville, Florida, USA
| | - R Garcia
- Sea Turtle Conservancy, Gainesville, Florida, USA
| | | | - C Sezgin
- Sea Turtle Research, Rescue and Rehabilitation Center (DEKAMER), Mugla, Turkey
| | - K Shanker
- Dakshin Foundation, Bangalore, India
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - F Tapilatu
- Research Center of Pacific Marine Resources-University of Papua (UNIPA), Manokwari, Papua Barat, Indonesia
| | - O Turkozan
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, Aydın, Turkey
| | - R A Valverde
- Sea Turtle Conservancy, Gainesville, Florida, USA
- Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - K Williams
- Caretta Research Project, Savannah, Georgia, USA
| | - C Yilmaz
- Hakkari University, Vocational School of Health Services, Hakkari, Turkey
| | - N Tolen
- Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - R Nel
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - J Tucek
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - D Legouvello
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - M L Rivas
- Department of Biology, University of Cadiz, Cadiz, Spain
| | - C Gaspar
- Te Mana O Te Moana, Moorea-Maiao, French Polynesia
| | - M Touron
- Te Mana O Te Moana, Moorea-Maiao, French Polynesia
| | - Q Genet
- Te Mana O Te Moana, Moorea-Maiao, French Polynesia
| | - M Salmon
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - M R Araujo
- Ministerio de Medio Ambiente y Recursos Naturales, San Salvador, El Salvador
| | - J B Freire
- Fundação Espírito Santense de Tecnologia-FEST, Vitória, Espírito Santo, Brazil
| | | | - P R Jesus
- Econservation Estudos e Projetos Ambientais, Vitória, Espírito Santo, Brazil
| | - P D Ferreira
- Departamento de Gemologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - F V Paladino
- Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | | | - D Sozbilen
- Department of Veterinary, Acıpayam Vocational School, Pamukkale University, Denizli, Turkey
| | - J R Monsinjon
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Délégation Océan Indien (DOI), Le Port, La Réunion, France
| |
Collapse
|
7
|
Simoncini MS, de Sousa HC, Gonçalves Portelinha TC, Falcon GB, Collicchio E, Machado Balestra RA, Ferreira Luz VL, Colli GR, Malvasio A. Hydrological Effects on the Reproduction of the Giant South American River Turtle Podocnemis expansa (Testudines: Podocnemididae). ICHTHYOLOGY & HERPETOLOGY 2022. [DOI: 10.1643/h2020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Melina S. Simoncini
- Universidade Federal do Tocantins–UFT, Quadra 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brasil; (MSS)
| | - Heitor Campos de Sousa
- Universidade Federal do Tocantins–UFT, Quadra 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brasil; (MSS)
| | - Thiago Costa Gonçalves Portelinha
- Universidade Federal do Tocantins–UFT, Quadra 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brasil; (MSS)
| | - Guth Berger Falcon
- Instituto Chico Mendes de Conservação da Biodiversidade, Diretoria de Conservação da Biodiversidade, Quadra EQSW 103/104, CEP: 70670-350, Brasília, Distrito Federal, Brasil
| | - Erich Collicchio
- Universidade Federal do Tocantins–UFT, Quadra 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brasil; (MSS)
| | - Rafael A. Machado Balestra
- Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios, Rua 229, N° 95, 3° Andar, CEP: 74605090, Goiânia, Goiás, Brasil
| | - Vera L. Ferreira Luz
- Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios, Rua 229, N° 95, 3° Andar, CEP: 74605090, Goiânia, Goiás, Brasil
| | - Guarino Rinaldi Colli
- Universidade de Brasília–UnB, Departamento de Zoologia, Instituto de Ciências Biológicas, Avenida L4 Norte, Asa Norte, CEP: 70910-900, Brasília, Distrito Federal, Brasil
| | - Adriana Malvasio
- Universidade Federal do Tocantins–UFT, Quadra 109 Norte Av. NS-15, ALCNO-14, Plano Diretor Norte, CEP: 77001-090, Palmas, Tocantins, Brasil; (MSS)
| |
Collapse
|
8
|
Lyons MP, von Holle B, Weishampel JF. Why do sea turtle nests fail? Modeling clutch loss across the southeastern United States. Ecosphere 2022. [DOI: 10.1002/ecs2.3988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Marta P. Lyons
- Department of Biology University of Central Florida Orlando Florida USA
| | - Betsy von Holle
- Department of Biology University of Central Florida Orlando Florida USA
- National Science Foundation Alexandria Virginia USA
| | | |
Collapse
|
9
|
Najwa-Sawawi S, Azman NM, Rusli MU, Ahmad A, Fahmi-Ahmad M, Fadzly N. How deep is deep enough? Analysis of sea turtle eggs nest relocation procedure at Chagar Hutang Turtle Sanctuary. Saudi J Biol Sci 2021; 28:5053-5060. [PMID: 34466082 PMCID: PMC8381072 DOI: 10.1016/j.sjbs.2021.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
Sea turtle eggs incubation involves natural and artificial incubation of eggs, and indeed the depth will be varied and presumably affect the development of hatchlings. For nest relocation, the researcher needs to decide on the depth to incubate the eggs. Sea turtle eggs clutches may vary between 40 and 120 eggs for the green turtle, thus using a single value as the standard procedure might affect the quality of hatchlings. Here we quantify the dimension of the natural (in-situ) nest constructed by the nester and the artificial (ex-situ) built by our ranger during nest relocation. We suggest a linear regression calculation of Y = 0.2366X + 59.3267, better predict a more accurate nest depth based on the number of eggs to imitate the natural nest.
Collapse
Affiliation(s)
- Siti Najwa-Sawawi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.,School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nur Munira Azman
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohd Uzair Rusli
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Amirrudin Ahmad
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Muhammad Fahmi-Ahmad
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nik Fadzly
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
10
|
Patel SH, Winton MV, Hatch JM, Haas HL, Saba VS, Fay G, Smolowitz RJ. Projected shifts in loggerhead sea turtle thermal habitat in the Northwest Atlantic Ocean due to climate change. Sci Rep 2021; 11:8850. [PMID: 33893380 PMCID: PMC8065110 DOI: 10.1038/s41598-021-88290-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
It is well established that sea turtles are vulnerable to atmospheric and oceanographic shifts associated with climate change. However, few studies have formally projected how their seasonal marine habitat may shift in response to warming ocean temperatures. Here we used a high-resolution global climate model and a large satellite tagging dataset to project changes in the future distribution of suitable thermal habitat for loggerheads along the northeastern continental shelf of the United States. Between 2009 and 2018, we deployed 196 satellite tags on loggerheads within the Middle Atlantic Bight (MAB) of the Northwest Atlantic continental shelf region, a seasonal foraging area. Tag location data combined with depth and remotely sensed sea surface temperature (SST) were used to characterize the species’ current thermal range in the MAB. The best-fitting model indicated that the habitat envelope for tagged loggerheads consisted of SST ranging from 11.0° to 29.7 °C and depths between 0 and 105.0 m. The calculated core bathythermal range consisted of SSTs between 15.0° and 28.0 °C and depths between 8.0 and 92.0 m, with the highest probability of presence occurred in regions with SST between 17.7° and 25.3 °C and at depths between 26.1 and 74.2 m. This model was then forced by a high-resolution global climate model under a doubling of atmospheric CO2 to project loggerhead probability of presence over the next 80 years. Our results suggest that loggerhead thermal habitat and seasonal duration will likely increase in northern regions of the NW Atlantic shelf. This change in spatiotemporal range for sea turtles in a region of high anthropogenic use may prompt adjustments to the localized protected species conservation measures.
Collapse
Affiliation(s)
- Samir H Patel
- Coonamessett Farm Foundation, 277 Hatchville Road, East Falmouth, MA, 02536, USA.
| | - Megan V Winton
- School for Marine Science and Technology, University of Massachusetts Dartmouth, 836 S Rodney French Blvd, New Bedford, MA, 02744, USA.,Atlantic White Shark Conservancy, 235 Orleans Road, North Chatham, MA, 02650, USA
| | - Joshua M Hatch
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 166 Water Street, Woods Hole, MA, 02543, USA
| | - Heather L Haas
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 166 Water Street, Woods Hole, MA, 02543, USA
| | - Vincent S Saba
- Geophysical Fluid Dynamics Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Princeton University Forrestal Campus, 201 Forrestal Road, Princeton, NJ, 08544, USA
| | - Gavin Fay
- School for Marine Science and Technology, University of Massachusetts Dartmouth, 836 S Rodney French Blvd, New Bedford, MA, 02744, USA
| | - Ronald J Smolowitz
- Coonamessett Farm Foundation, 277 Hatchville Road, East Falmouth, MA, 02536, USA
| |
Collapse
|
11
|
Patrício AR, Hawkes LA, Monsinjon JR, Godley BJ, Fuentes MMPB. Climate change and marine turtles: recent advances and future directions. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Climate change is a threat to marine turtles that is expected to affect all of their life stages. To guide future research, we conducted a review of the most recent literature on this topic, highlighting knowledge gains and research gaps since a similar previous review in 2009. Most research has been focussed on the terrestrial life history phase, where expected impacts will range from habitat loss and decreased reproductive success to feminization of populations, but changes in reproductive periodicity, shifts in latitudinal ranges, and changes in foraging success are all expected in the marine life history phase. Models have been proposed to improve estimates of primary sex ratios, while technological advances promise a better understanding of how climate can influence different life stages and habitats. We suggest a number of research priorities for an improved understanding of how climate change may impact marine turtles, including: improved estimates of primary sex ratios, assessments of the implications of female-biased sex ratios and reduced male production, assessments of the variability in upper thermal limits of clutches, models of beach sediment movement under sea level rise, and assessments of impacts on foraging grounds. Lastly, we suggest that it is not yet possible to recommend manipulating aspects of turtle nesting ecology, as the evidence base with which to understand the results of such interventions is not robust enough, but that strategies for mitigation of stressors should be helpful, providing they consider the synergistic effects of climate change and other anthropogenic-induced threats to marine turtles, and focus on increasing resilience.
Collapse
Affiliation(s)
- AR Patrício
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, 1149-041 Lisbon, Portugal
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - LA Hawkes
- Hatherley Laboratories, College of Life and Environmental Sciences, University of Exeter, Streatham Campus, Exeter EX4 4PS, UK
| | - JR Monsinjon
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6139, South Africa
| | - BJ Godley
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - MMPB Fuentes
- Marine Turtle Research, Ecology and Conservation Group, Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
12
|
Maurer AS, Seminoff JA, Layman CA, Stapleton SP, Godfrey MH, Reiskind MOB. Population Viability of Sea Turtles in the Context of Global Warming. Bioscience 2021. [DOI: 10.1093/biosci/biab028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Sea turtles present a model for the potential impacts of climate change on imperiled species, with projected warming generating concern about their persistence. Various sea turtle life-history traits are affected by temperature; most strikingly, warmer egg incubation temperatures cause female-biased sex ratios and higher embryo mortality. Predictions of sea turtle resilience to climate change are often focused on how resulting male limitation or reduced offspring production may affect populations. In the present article, by reviewing research on sea turtles, we provide an overview of how temperature impacts on incubating eggs may cascade through life history to ultimately affect population viability. We explore how sex-specific patterns in survival and breeding periodicity determine the differences among offspring, adult, and operational sex ratios. We then discuss the implications of skewed sex ratios for male-limited reproduction, consider the negative correlation between sex ratio skew and genetic diversity, and examine consequences for adaptive potential. Our synthesis underscores the importance of considering the effects of climate throughout the life history of any species. Lethal effects (e.g., embryo mortality) are relatively direct impacts, but sublethal effects at immature life-history stages may not alter population growth rates until cohorts reach reproductive maturity. This leaves a lag during which some species transition through several stages subject to distinct biological circumstances and climate impacts. These perspectives will help managers conceptualize the drivers of emergent population dynamics and identify existing knowledge gaps under different scenarios of predicted environmental change.
Collapse
Affiliation(s)
- Andrew S Maurer
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, in the United States; he is also a research associate with the Jumby Bay Hawksbill Project in Antigua, West Indies
| | - Jeffrey A Seminoff
- Marine Turtle Ecology and Assessment Program, National Oceanic and Atmospheric Administration's Southwest Fisheries Science Center, La Jolla, California, United States
| | - Craig A Layman
- Center for Energy, Environment, and Sustainability, Wake Forest University, in Winston-Salem, North Carolina, in the United States
| | - Seth P Stapleton
- Conservation and animal health sciences, Minnesota Zoo, Apple Valley, Minnesota; he is also an adjunct faculty member in the Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, in Minneapolis, Minnesota, in the United States
| | - Matthew H Godfrey
- North Carolina Wildlife Resources Commission, Raleigh, North Carolina, United States
| | - Martha O Burford Reiskind
- Martha Burford Reiskind is an assistant professor in the Department of Biological Sciences and the director of the Genetics and Genomics Scholars program, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
13
|
Chatting M, Hamza S, Al-Khayat J, Smyth D, Husrevoglu S, Marshall CD. Feminization of hawksbill turtle hatchlings in the twenty-first century at an important regional nesting aggregation. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Projected climate change is forecasted to have significant effects on biological systems worldwide. Marine turtles in particular may be vulnerable, as the sex of their offspring is determined by their incubating temperature, termed temperature-dependent sex determination. This study aimed to estimate historical, and forecast future, primary sex ratios of hawksbill turtle Eretmochelys imbricata hatchlings at an important nesting ground in northeastern Qatar. Incubation temperatures from the Arabian/Persian Gulf were measured over 2 nesting seasons. Climate data from same period were regressed with nest temperatures to estimate incubation temperatures and hatchling sex ratios for the site from 1993 to 2100. Future hatchling sex ratios were estimated for 2 climate forecasts, one mid-range (SSP245) and one extreme (SSP585). Historical climate data showed female-biased sex ratios of 73.2 ± 12.1% from 1993 to 2017. Female biases from 2018 to 2100 averaged 85.7% ± 6.7% under the mid-range scenario and 87.9% ± 5.4% under the high-range scenario. In addition, predicted female hatchling production was >90% from 2054 and 2052 for SSP245 and SSP585, respectively. These results show that hawksbill primary sex ratios in Qatar are at risk of significant feminization by the year 2100 and that hawksbill turtle incubation temperatures in an extreme, understudied environment are already comparable to those predicted in tropical rookeries during the latter half of the 21st century. These results can help conservationists predict primary sex ratios for hawksbill turtles in the region in the face of 21st-century climate change.
Collapse
Affiliation(s)
- M Chatting
- Environmental Science Center, Qatar University, Doha 2713, Qatar
| | - S Hamza
- Environmental Science Center, Qatar University, Doha 2713, Qatar
| | - J Al-Khayat
- Environmental Science Center, Qatar University, Doha 2713, Qatar
| | - D Smyth
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5EY, UK
| | - S Husrevoglu
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey
| | - CD Marshall
- Department of Marine Biology, Department of Wildlife and Fisheries Sciences, Gulf Center for Sea Turtle Research, Texas A&M University, Galveston, Texas 77553, USA
| |
Collapse
|
14
|
Wei Y, Song B, Yuan S. Dynamics of a ratio-dependent population model for Green Sea Turtle with age structure. J Theor Biol 2021; 516:110614. [PMID: 33524406 DOI: 10.1016/j.jtbi.2021.110614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
The reproduction of the green sea turtles is characterized by the temperature dependent sex determination (TSD). Green sea turtle eggs are laid asexually. Temperature during hatching determines the sex of baby green sea turtles. In order to study the population dynamics of the green sea turtles and understand the dynamics of the sex ratio, in this paper we establish a stage-structured model by incorporating TSD and the ratio dependent Holling III functional response in the reproduction process of the green sea turtle population. The effects of incubation temperature and sex ratio deviation on persistence of the population are captured by the sole basic reproduction number. The persistent mode can be either a stable equilibrium or periodic oscillations. Numerical simulations and sensitive analysis help us to identify vital parameters in our model. Our research in the paper is in favor of elevating sexual encounter rates, reducing the searching time for males and increasing survival odds from baby state into adult in order to maintain sustainability of the green sea turtles.
Collapse
Affiliation(s)
- Yingying Wei
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baojun Song
- Department of Applied Mathematics and Statistics, Montclair State University, Montclair, NJ 07043, USA
| | - Sanling Yuan
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
15
|
Effects of local climate on loggerhead hatchling production in Brazil: Implications from climate change. Sci Rep 2019; 9:8861. [PMID: 31222177 PMCID: PMC6586835 DOI: 10.1038/s41598-019-45366-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/30/2019] [Indexed: 11/24/2022] Open
Abstract
Sea turtle eggs are heavily influenced by the environment in which they incubate, including effects on hatching success and hatchling viability (hatchling production). It is crucial to understand how the hatchling production of sea turtles is influenced by local climate and how potential changes in climate may impact future hatchling production. Generalized Additive Models were used to determine the relationship of six climatic variables at different temporal scales on loggerhead turtle (Caretta caretta) hatchling production at seventeen nesting beaches in Bahia, Espirito Santo, and Rio de Janeiro, Brazil. Using extreme and conservative climate change scenarios throughout the 21st century, potential impacts on future hatching success (the number of hatched eggs in a nest) were predicted using the climatic variable(s) that best described hatchling production at each nesting beach. Air temperature and precipitation were found to be the main drivers of hatchling production throughout Brazil. CMIP5 climate projections are for a warming of air temperature at all sites throughout the 21st century, while projections for precipitation vary regionally. The more tropical nesting beaches in Brazil, such as those in Bahia, are projected to experience declines in hatchling production, while the more temperate nesting beaches, such as those in Rio de Janeiro, are projected to experience increases in hatchling production by the end of the 21st century.
Collapse
|
16
|
Montero N, dei Marcovaldi MAG, Lopez–Mendilaharsu M, Santos AS, Santos AJB, Fuentes MMPB. Warmer and wetter conditions will reduce offspring production of hawksbill turtles in Brazil under climate change. PLoS One 2018; 13:e0204188. [PMID: 30408043 PMCID: PMC6224045 DOI: 10.1371/journal.pone.0204188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 01/27/2023] Open
Abstract
Climate change is expected to impact animals that are heavily reliant on environmental factors, such as sea turtles, since the incubation of their eggs, hatching success and sex ratio are influenced by the environment in which eggs incubate. As climate change progresses it is therefore important to understand how climatic conditions influence their reproductive output and the ramifications to population stability. Here, we examined the influences of five climatic variables (air temperature, accumulated and average precipitation, humidity, solar radiation, and wind speed) at different temporal scales on hawksbill sea turtle (Eretmochelys imbricata) hatchling production at ten nesting beaches within two regions of Brazil (five nesting beaches in Rio Grande do Norte and five in Bahia). Air temperature and accumulated precipitation were the main climatic drivers of hawksbill hatching success (number of eggs hatched within a nest) across Brazil and in Rio Grande do Norte, while air temperature and average precipitation were the main climatic drivers of hatching success at Bahia. Solar radiation was the main climatic driver of emergence success (number of hatchlings that emerged from total hatched eggs within a nest) at both regions. Warmer temperatures and higher solar radiation had negative effects on hatchling production, while wetter conditions had a positive effect. Conservative and extreme climate scenarios show air temperatures are projected to increase at this site, while precipitation projections vary between scenarios and regions throughout the 21st century. We predicted hatching success of undisturbed nests (no recorded depredation or storm-related impacts) will decrease in Brazil by 2100 as a result of how this population is influenced by local climate. This study shows the determining effects of different climate variables and their combinations on an important and critically endangered marine species.
Collapse
Affiliation(s)
- Natalie Montero
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America
| | | | | | | | | | - Mariana M. P. B. Fuentes
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
17
|
Rivas ML, Spínola M, Arrieta H, Faife-Cabrera M. Effect of extreme climatic events resulting in prolonged precipitation on the reproductive output of sea turtles. Anim Conserv 2018. [DOI: 10.1111/acv.12404] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M. L. Rivas
- Nature & Oceans of the Americas NGO; San José Costa Rica
- CAESCG - Department of Biology and Geology; Andalusian Centre for the Assessment and Monitoring of Global Change; University of Almeria; Almeria Spain
| | - M. Spínola
- International Institute of Conservation and Wildlife Management; University Nacional de Costa Rica; Heredia Costa Rica
| | - H. Arrieta
- Laboratory of Soil, Plants and Water of Earth University; Siquirres Costa Rica
| | - M. Faife-Cabrera
- Botanical Garden; University Central “Marta Abreu” de las Villas; Santa Clara Cuba
| |
Collapse
|
18
|
Lasala JA, Hughes CR, Wyneken J. Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida. PLoS One 2018; 13:e0191615. [PMID: 29370223 PMCID: PMC5784956 DOI: 10.1371/journal.pone.0191615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022] Open
Abstract
Species that display temperature-dependent sex determination are at risk as a result of increasing global temperatures. For marine turtles, high incubation temperatures can skew sex ratios towards females. There are concerns that temperature increases may result in highly female-biased offspring sex ratios, which would drive a future sex ratio skew. Studying the sex ratios of adults in the ocean is logistically very difficult because individuals are widely distributed and males are inaccessible because they remain in the ocean. Breeding sex ratios (BSR) are sought as a functional alternative to study adult sex ratios. One way to examine BSR is to determine the number of males that contribute to nests. Our goal was to evaluate the BSR for loggerhead turtles (Caretta caretta) nesting along the eastern Gulf of Mexico in Florida, from 2013–2015, encompassing three nesting seasons. We genotyped 64 nesting females (approximately 28% of all turtles nesting at that time) and up to 20 hatchlings from their nests (n = 989) using 7 polymorphic microsatellite markers. We identified multiple paternal contributions in 70% of the nests analyzed and 126 individual males. The breeding sex ratio was approximately 1 female for every 2.5 males. We did not find repeat males in any of our nests. The sex ratio and lack of repeating males was surprising because of female-biased primary sex ratios. We hypothesize that females mate offshore of their nesting beaches as well as en route. We recommend further comparisons of subsequent nesting events and of other beaches as it is imperative to establish baseline breeding sex ratios to understand how growing populations behave before extreme environmental effects are evident.
Collapse
Affiliation(s)
- Jacob A. Lasala
- Department of Biology, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| | - Colin R. Hughes
- Department of Biology, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Jeanette Wyneken
- Department of Biology, Florida Atlantic University, Boca Raton, Florida, United States of America
| |
Collapse
|
19
|
Foraging and recruitment hotspot dynamics for the largest Atlantic loggerhead turtle rookery. Sci Rep 2017; 7:16894. [PMID: 29203929 PMCID: PMC5715148 DOI: 10.1038/s41598-017-17206-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/22/2017] [Indexed: 12/02/2022] Open
Abstract
Determining patterns of migratory connectivity for highly-mobile, wide-ranging species, such as sea turtles, is challenging. Here, we combined satellite telemetry and stable isotope analysis to estimate foraging locations for 749 individual loggerheads nesting along the east central Florida (USA) coast, the largest rookery for the Northwest Atlantic population. We aggregated individual results by year, identified seven foraging hotspots and tracked these summaries to describe the dynamics of inter-annual contributions of these geographic areas to this rookery over a nine-year period. Using reproductive information for a subset of turtles (n = 513), we estimated hatchling yields associated with each hotspots. We found considerable inter-annual variability in the relative contribution of foraging areas to the nesting adults. Also reproductive success differed among foraging hotspots; females using southern foraging areas laid nests that produced more offspring in all but one year of the study. These analyses identified two high priority areas for future research and conservation efforts: the continental shelf adjacent to east central Florida and the Great Bahama Bank, which support higher numbers of foraging females that provide higher rates of hatchling production. The implementation of the continuous-surface approach to determine geographic origins of unknown migrants is applicable to other migratory species.
Collapse
|
20
|
Crash in sea-turtle births stumps ecologists. Nature 2017. [DOI: 10.1038/nature.2017.22748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Rafferty AR, Johnstone CP, Garner JA, Reina RD. A 20-year investigation of declining leatherback hatching success: implications of climate variation. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170196. [PMID: 29134057 PMCID: PMC5666240 DOI: 10.1098/rsos.170196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Unprecedented increases in air temperature and erratic precipitation patterns are predicted throughout the twenty-first century as a result of climate change. A recent global analysis of leatherback turtle hatchling output predicts that the nesting site at Sandy Point National Wildlife Refuge (SPNWR) will experience the most significant regional climate alterations. We aimed to identify how local air temperatures and precipitation patterns influenced within-nest mortality and overall hatchling output at this site between 1990 and 2010. We show that while the greatest mortality occurred during the latest stages of development (stage three), the rate of embryo mortality was highest during the initial stages (stage zero) of development (approx. 3.8 embryos per day per clutch). Increased mortality at stage three was associated with decreased precipitation and increased temperature during this developmental period, whereas precipitation prior to, and during stage zero had the greatest influence on early mortality. There was a significant decline in overall hatching success (falling from 74% to 55%) and emergence rate (calculated from the number of hatchlings that emerged from the nest as a percentage of hatched eggs) which fell from 96% to 91%. However, there was no trend observed in local temperature or precipitation during this timeframe, and neither variable was related to hatching success or emergence rate. In conclusion, our findings suggest that despite influencing within-nest mortality, climatic variability does not account for the overall decline in hatchling output at SPNWR from 1990 to 2010. Further research is therefore needed to elicit the reasons for this decline.
Collapse
Affiliation(s)
| | | | - Jeanne A. Garner
- West Indies Marine Animal Research and Conservation Service, Frederiksted, St Croix, US Virgin Islands
| | - Richard D. Reina
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
22
|
Reneker JL, Kamel SJ. Climate change increases the production of female hatchlings at a northern sea turtle rookery. Ecology 2017; 97:3257-3264. [PMID: 27912005 DOI: 10.1002/ecy.1603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 11/08/2022]
Abstract
The most recent climate change projections show a global increase in temperatures, along with major adjustments to precipitation, throughout the 21st century. Species exhibiting temperature-dependent sex determination are highly susceptible to such changes since the incubation environment influences critical offspring characteristics such as survival and sex ratio. Here we show that the mean incubation duration of loggerhead sea turtle (Caretta caretta) nests from a high-density nesting beach on Bald Head Island, North Carolina, USA has decreased significantly over the past 25 yr. This decrease in incubation duration is significantly positively correlated with mean air temperature and negatively correlated with mean precipitation during the nesting season. Additionally, although no change in hatching success was detected during this same period, a potentially detrimental consequence of shorter incubation durations is that they lead to the production of primarily female offspring. Given that global temperatures are predicted to increase by as much as 4°C over the next century, the mass feminization of sea turtle hatchlings is a high-priority concern. While presently limited in number, studies using long-term data sets to examine the temporal correlation between offspring characteristics and climatic trends are essential for understanding the scope and direction of climate change effects on species persistence.
Collapse
Affiliation(s)
- J L Reneker
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, 28409, USA
| | - S J Kamel
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, 28409, USA
| |
Collapse
|
23
|
Garner JA, MacKenzie DS, Gatlin D. Reproductive Biology of Atlantic Leatherback Sea Turtles at Sandy Point, St. Croix: The First 30 Years. CHELONIAN CONSERVATION AND BIOLOGY 2017. [DOI: 10.2744/ccb-1224.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jeanne A. Garner
- West Indies Marine Animal Research and Conservation Service, 202 Prosperity, Frederiksted, US Virgin Islands 00840 []
| | - Duncan S. MacKenzie
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, Texas 77843 USA []
| | - Delbert Gatlin
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 454 Throckmorton St., College Station, Texas 77843 USA []
| |
Collapse
|
24
|
Abstract
Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his “Why mountain passes are higher in the tropics” that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were “high” when small thermal changes had comparatively large effects and “low” when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively “higher” in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower “high” temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are “higher” in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival.
Collapse
|
25
|
Rees AF, Alfaro-Shigueto J, Barata PCR, Bjorndal KA, Bolten AB, Bourjea J, Broderick AC, Campbell LM, Cardona L, Carreras C, Casale P, Ceriani SA, Dutton PH, Eguchi T, Formia A, Fuentes MMPB, Fuller WJ, Girondot M, Godfrey MH, Hamann M, Hart KM, Hays GC, Hochscheid S, Kaska Y, Jensen MP, Mangel JC, Mortimer JA, Naro-Maciel E, Ng CKY, Nichols WJ, Phillott AD, Reina RD, Revuelta O, Schofield G, Seminoff JA, Shanker K, Tomás J, van de Merwe JP, Van Houtan KS, Vander Zanden HB, Wallace BP, Wedemeyer-Strombel KR, Work TM, Godley BJ. Are we working towards global research priorities for management and conservation of sea turtles? ENDANGER SPECIES RES 2016. [DOI: 10.3354/esr00801] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
The Maternal Legacy: Female Identity Predicts Offspring Sex Ratio in the Loggerhead Sea Turtle. Sci Rep 2016; 6:29237. [PMID: 27363786 PMCID: PMC4929680 DOI: 10.1038/srep29237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/06/2016] [Indexed: 11/19/2022] Open
Abstract
In organisms with temperature-dependent sex determination, the incubation environment plays a key role in determining offspring sex ratios. Given that global temperatures have warmed approximately 0.6 °C in the last century, it is necessary to consider how organisms will adjust to climate change. To better understand the degree to which mothers influence the sex ratios of their offspring, we use 24 years of nesting data for individual female loggerhead sea turtles (Caretta caretta) observed on Bald Head Island, North Carolina. We find that maternal identity is the best predictor of nest sex ratio in univariate and multivariate predictive models. We find significant variability in estimated nest sex ratios among mothers, but a high degree of consistency within mothers, despite substantial spatial and temporal thermal variation. Our results suggest that individual differences in nesting preferences are the main driver behind divergences in nest sex ratios. As such, a female’s ability to plastically adjust her nest sex ratios in response to environmental conditions is constrained, potentially limiting how individuals behaviorally mitigate the effects of environmental change. Given that many loggerhead populations already show female-biased offspring sex ratios, understanding maternal behavioral responses is critical for predicting the future of long-lived species vulnerable to extinction.
Collapse
|