1
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2025; 603:1689-1728. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Röderer P, Belu A, Heidrich L, Siobal M, Isensee J, Prolingheuer J, Janocha E, Valdor M, Hagendorf S, Bahrenberg G, Opitz T, Segschneider M, Haupt S, Nitzsche A, Brüstle O, Hucho T. Emergence of nociceptive functionality and opioid signaling in human induced pluripotent stem cell-derived sensory neurons. Pain 2023; 164:1718-1733. [PMID: 36727909 PMCID: PMC10348637 DOI: 10.1097/j.pain.0000000000002860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Induced pluripotent stem cells (iPSCs) have enabled the generation of various difficult-to-access cell types such as human nociceptors. A key challenge associated with human iPSC-derived nociceptors (hiPSCdNs) is their prolonged functional maturation. While numerous studies have addressed the expression of classic neuronal markers and ion channels in hiPSCdNs, the temporal development of key signaling cascades regulating nociceptor activity has remained largely unexplored. In this study, we used an immunocytochemical high-content imaging approach alongside electrophysiological staging to assess metabotropic and ionotropic signaling of large scale-generated hiPSCdNs across 70 days of in vitro differentiation. During this period, the resting membrane potential became more hyperpolarized, while rheobase, action potential peak amplitude, and membrane capacitance increased. After 70 days, hiPSCdNs exhibited robust physiological responses induced by GABA, pH shift, ATP, and capsaicin. Direct activation of protein kinase A type II (PKA-II) through adenylyl cyclase stimulation with forskolin resulted in PKA-II activation at all time points. Depolarization-induced activation of PKA-II emerged after 35 days of differentiation. However, effective inhibition of forskolin-induced PKA-II activation by opioid receptor agonists required 70 days of in vitro differentiation. Our results identify a pronounced time difference between early expression of functionally important ion channels and emergence of regulatory metabotropic sensitizing and desensitizing signaling only at advanced stages of in vitro cultivation, suggesting an independent regulation of ionotropic and metabotropic signaling. These data are relevant for devising future studies into the development and regulation of human nociceptor function and for defining time windows suitable for hiPSCdN-based drug discovery.
Collapse
Affiliation(s)
- Pascal Röderer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Andreea Belu
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Luzia Heidrich
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Maike Siobal
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jonathan Prolingheuer
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Michaela Segschneider
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
| | - Simone Haupt
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Anja Nitzsche
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Saito-Diaz K, James C, Patel AJ, Zeltner N. Isolation of human pluripotent stem cell-derived sensory neuron subtypes by immunopanning. Front Cell Dev Biol 2023; 11:1101423. [PMID: 37206924 PMCID: PMC10189519 DOI: 10.3389/fcell.2023.1101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Sensory neurons (SNs) detect a wide range of information from the body and the environment that is critical for homeostasis. There are three main subtypes of SNs: nociceptors, mechanoreceptors, and proprioceptors, which express different membrane proteins, such as TRKA, TRKB, or TRKC, respectively. Human pluripotent stem cell technology provides an ideal platform to study development and diseases of SNs, however there is not a viable method to isolate individual SN subtype for downstream analysis available. Here, we employ the method immunopanning to isolate each SN subtype. This method is very gentle and allows proper survival after the isolation. We use antibodies against TRKA, TRKB, and TRKC to isolate nociceptors, mechanoreceptors, and proprioceptors, respectively. We show that our cultures are enriched for each subtype and express their respective subtype markers. Furthermore, we show that the immunopanned SNs are electrically active and respond to specific stimuli. Thus, our method can be used to purify viable neuronal subtypes using respective membrane proteins for downstream studies.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Christina James
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Archie Jayesh Patel
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Nimbalkar S, Guo X, Colón A, Jackson M, Akanda N, Patel A, Grillo M, Hickman JJ. Development of a functional human induced pluripotent stem cell-derived nociceptor MEA system as a pain model for analgesic drug testing. Front Cell Dev Biol 2023; 11:1011145. [PMID: 36936691 PMCID: PMC10014464 DOI: 10.3389/fcell.2023.1011145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The control of severe or chronic pain has relied heavily on opioids and opioid abuse and addiction have recently become a major global health crisis. Therefore, it is imperative to develop new pain therapeutics which have comparable efficacy for pain suppression but lack of the harmful effects of opioids. Due to the nature of pain, any in vivo experiment is undesired even in animals. Recent developments in stem cell technology has enabled the differentiation of nociceptors from human induced pluripotent stem cells. This study sought to establish an in vitro functional induced pluripotent stem cells-derived nociceptor culture system integrated with microelectrode arrays for nociceptive drug testing. Nociceptors were differentiated from induced pluripotent stem cells utilizing a modified protocol and a medium was designed to ensure prolonged and stable nociceptor culture. These neurons expressed nociceptor markers as characterized by immunocytochemistry and responded to the exogenous toxin capsaicin and the endogenous neural modulator ATP, as demonstrated with patch clamp electrophysiology. These cells were also integrated with microelectrode arrays for analgesic drug testing to demonstrate their utilization in the preclinical drug screening process. The neural activity was induced by ATP to mimic clinically relevant pathological pain and then the analgesics Lidocaine and the opioid DAMGO were tested individually and both induced immediate silencing of the nociceptive activity. This human-based functional nociceptive system provides a valuable platform for investigating pathological pain and for evaluating effective analgesics in the search of opioid substitutes.
Collapse
Affiliation(s)
- Siddharth Nimbalkar
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - Xiufang Guo
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - Alisha Colón
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | | | - Nesar Akanda
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - Aakash Patel
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - Marcella Grillo
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
| | - James J. Hickman
- Hybrid Systems Lab, University of Central Florida, NanoScience Technology Center, Orlando, FL, United States
- Hesperos Inc., Orlando, FL, United States
- *Correspondence: James J. Hickman,
| |
Collapse
|
5
|
Badiola-Mateos M, Osaki T, Kamm RD, Samitier J. In vitro modelling of human proprioceptive sensory neurons in the neuromuscular system. Sci Rep 2022; 12:21318. [PMID: 36494423 PMCID: PMC9734133 DOI: 10.1038/s41598-022-23565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.
Collapse
Affiliation(s)
- Maider Badiola-Mateos
- grid.424736.00000 0004 0536 2369Institute for Bioengineering of Catalonia (IBEC)—Barcelona Institute of Science and Technology, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Electronic and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 500 Technology Square, MIT Building, Cambridge, MA 02139 USA ,grid.263145.70000 0004 1762 600XPresent Address: The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Tatsuya Osaki
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 500 Technology Square, MIT Building, Cambridge, MA 02139 USA ,grid.26999.3d0000 0001 2151 536XPresent Address: Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-Ku, Tokyo, 153-8505 Japan
| | - Roger Dale Kamm
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 500 Technology Square, MIT Building, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Cambridge, MA 02139 USA
| | - Josep Samitier
- grid.424736.00000 0004 0536 2369Institute for Bioengineering of Catalonia (IBEC)—Barcelona Institute of Science and Technology, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Electronic and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain ,grid.512890.7Centro de Investigación Biomédica en Red (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
6
|
Schrenk-Siemens K, Pohle J, Rostock C, Abd El Hay M, Lam RM, Szczot M, Lu S, Chesler AT, Siemens J. Human Stem Cell-Derived TRPV1-Positive Sensory Neurons: A New Tool to Study Mechanisms of Sensitization. Cells 2022; 11:cells11182905. [PMID: 36139481 PMCID: PMC9497105 DOI: 10.3390/cells11182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Somatosensation, the detection and transduction of external and internal stimuli such as temperature or mechanical force, is vital to sustaining our bodily integrity. But still, some of the mechanisms of distinct stimuli detection and transduction are not entirely understood, especially when noxious perception turns into chronic pain. Over the past decade major progress has increased our understanding in areas such as mechanotransduction or sensory neuron classification. However, it is in particular the access to human pluripotent stem cells and the possibility of generating and studying human sensory neurons that has enriched the somatosensory research field. Based on our previous work, we describe here the generation of human stem cell-derived nociceptor-like cells. We show that by varying the differentiation strategy, we can produce different nociceptive subpopulations with different responsiveness to nociceptive stimuli such as capsaicin. Functional as well as deep sequencing analysis demonstrated that one protocol in particular allowed the generation of a mechano-nociceptive sensory neuron population, homogeneously expressing TRPV1. Accordingly, we find the cells to homogenously respond to capsaicin, to become sensitized upon inflammatory stimuli, and to respond to temperature stimulation. The efficient and homogenous generation of these neurons make them an ideal translational tool to study mechanisms of sensitization, also in the context of chronic pain.
Collapse
Affiliation(s)
- Katrin Schrenk-Siemens
- Department of Pharmacology, Im Neuenheimer Feld 366, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (K.S.-S.); (J.S.)
| | - Jörg Pohle
- Department of Pharmacology, Im Neuenheimer Feld 366, University of Heidelberg, 69120 Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Zieglerstr. 6, 52078 Aachen, Germany
| | - Charlotte Rostock
- Department of Pharmacology, Im Neuenheimer Feld 366, University of Heidelberg, 69120 Heidelberg, Germany
| | - Muad Abd El Hay
- Department of Pharmacology, Im Neuenheimer Feld 366, University of Heidelberg, 69120 Heidelberg, Germany
- Ernst Strüngmann Institute, Deutschordenstr. 46, 60528 Frankfurt, Germany
| | - Ruby M. Lam
- National Center for Complementary and Integrative Health, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Marcin Szczot
- National Center for Complementary and Integrative Health, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, 58330 Linköping, Sweden
| | - Shiying Lu
- Department of Pharmacology, Im Neuenheimer Feld 366, University of Heidelberg, 69120 Heidelberg, Germany
- Oliver Wyman GmbH, Muellerstr. 3, 80469 Munich, Germany
| | - Alexander T. Chesler
- National Center for Complementary and Integrative Health, NIH, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Jan Siemens
- Department of Pharmacology, Im Neuenheimer Feld 366, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (K.S.-S.); (J.S.)
| |
Collapse
|
7
|
Labau JIR, Andelic M, Faber CG, Waxman SG, Lauria G, Dib-Hajj SD. Recent advances for using human induced-pluripotent stem cells as pain-in-a-dish models of neuropathic pain. Exp Neurol 2022; 358:114223. [PMID: 36100046 DOI: 10.1016/j.expneurol.2022.114223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Neuropathic pain is amongst the most common non-communicable disorders and the poor effectiveness of current treatment is an unmet need. Although pain is a universal experience, there are significant inter-individual phenotypic differences. Developing models that can accurately recapitulate the clinical pain features is crucial to better understand underlying pathophysiological mechanisms and find innovative treatments. Current data from heterologous expression systems that investigate properties of specific molecules involved in pain signaling, and from animal models, show limited success with their translation into the development of novel treatments for pain. This is in part because they do not recapitulate the native environment in which a particular molecule functions, and due to species-specific differences in the properties of several key molecules that are involved in pain signaling. The limited availability of post-mortem tissue, in particular dorsal root ganglia (DRG), has hampered research using human cells in pre-clinical studies. Human induced-pluripotent stem cells (iPSCs) have emerged as an exciting alternative platform to study patient-specific diseases. Sensory neurons that are derived from iPSCs (iPSC-SNs) have provided new avenues towards elucidating peripheral pathophysiological mechanisms, the potential for development of personalized treatments, and as a cell-based system for high-throughput screening for discovering novel analgesics. Nevertheless, reprogramming and differentiation protocols to obtain nociceptors have mostly yielded immature homogenous cell populations that do not recapitulate the heterogeneity of native sensory neurons. To close the gap between native human tissue and iPSCs, alternative strategies have been developed. We will review here recent developments in differentiating iPSC-SNs and their use in pre-clinical translational studies. Direct conversion of stem cells into the cells of interest has provided a more cost- and time-saving method to improve reproducibility and diversity of sensory cell types. Furthermore, multi-cellular strategies that mimic in vivo microenvironments for cell maturation, by improving cell contact and communication (co-cultures), reproducing the organ complexity and architecture (three-dimensional organoid), and providing iPSCs with the full spatiotemporal context and nutrients needed for acquiring a mature phenotype (xenotransplantation), have led to functional sensory neuron-like systems. Finally, this review touches on novel prospective strategies, including fluorescent-tracking to select the differentiated neurons of relevance, and dynamic clamp, an electrophysiological method that allows direct manipulation of ionic conductances that are missing in iPSC-SNs.
Collapse
Affiliation(s)
- Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA; Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, the Netherlands; School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Mirna Andelic
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Catharina G Faber
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
| | - Giuseppe Lauria
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.
| |
Collapse
|
8
|
Zeidler M, Kummer KK, Kress M. Towards bridging the translational gap by improved modeling of human nociception in health and disease. Pflugers Arch 2022; 474:965-978. [PMID: 35655042 PMCID: PMC9393146 DOI: 10.1007/s00424-022-02707-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Despite numerous studies which have explored the pathogenesis of pain disorders in preclinical models, there is a pronounced translational gap, which is at least partially caused by differences between the human and rodent nociceptive system. An elegant way to bridge this divide is the exploitation of human-induced pluripotent stem cell (iPSC) reprogramming into human iPSC-derived nociceptors (iDNs). Several protocols were developed and optimized to model nociceptive processes in health and disease. Here we provide an overview of the different approaches and summarize the knowledge obtained from such models on pain pathologies associated with monogenetic sensory disorders so far. In addition, novel perspectives offered by increasing the complexity of the model systems further to better reflect the natural environment of nociceptive neurons by involving other cell types in 3D model systems are described.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Holzer AK, Suciu I, Karreman C, Goj T, Leist M. Specific Attenuation of Purinergic Signaling during Bortezomib-Induced Peripheral Neuropathy In Vitro. Int J Mol Sci 2022; 23:ijms23073734. [PMID: 35409095 PMCID: PMC8998302 DOI: 10.3390/ijms23073734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Human peripheral neuropathies are poorly understood, and the availability of experimental models limits further research. The PeriTox test uses immature dorsal root ganglia (DRG)-like neurons, derived from induced pluripotent stem cells (iPSC), to assess cell death and neurite damage. Here, we explored the suitability of matured peripheral neuron cultures for the detection of sub-cytotoxic endpoints, such as altered responses of pain-related P2X receptors. A two-step differentiation protocol, involving the transient expression of ectopic neurogenin-1 (NGN1) allowed for the generation of homogeneous cultures of sensory neurons. After >38 days of differentiation, they showed a robust response (Ca2+-signaling) to the P2X3 ligand α,β-methylene ATP. The clinical proteasome inhibitor bortezomib abolished the P2X3 signal at ≥5 nM, while 50−200 nM was required in the PeriTox test to identify neurite damage and cell death. A 24 h treatment with low nM concentrations of bortezomib led to moderate increases in resting cell intracellular Ca2+ concentration but signaling through transient receptor potential V1 (TRPV1) receptors or depolarization-triggered Ca2+ influx remained unaffected. We interpreted the specific attenuation of purinergic signaling as a functional cell stress response. A reorganization of tubulin to form dense structures around the cell somata confirmed a mild, non-cytotoxic stress triggered by low concentrations of bortezomib. The proteasome inhibitors carfilzomib, delanzomib, epoxomicin, and MG-132 showed similar stress responses. Thus, the model presented here may be used for the profiling of new proteasome inhibitors in regard to their side effect (neuropathy) potential, or for pharmacological studies on the attenuation of their neurotoxicity. P2X3 signaling proved useful as endpoint to assess potential neurotoxicants in peripheral neurons.
Collapse
Affiliation(s)
- Anna-Katharina Holzer
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Thomas Goj
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (A.-K.H.); (I.S.); (C.K.); (T.G.)
- CAAT-Europe, University of Konstanz, 78457 Konstanz, Germany
- Correspondence: ; Tel.: +49-(0)-7531-88-5037
| |
Collapse
|
10
|
Holzer AK, Karreman C, Suciu I, Furmanowsky LS, Wohlfarth H, Loser D, Dirks WG, Pardo González E, Leist M. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:727-741. [PMID: 35689659 PMCID: PMC9299516 DOI: 10.1093/stcltm/szac031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/09/2022] [Indexed: 11/12/2022] Open
Abstract
In vitro models of the peripheral nervous system would benefit from further refinements to better support studies on neuropathies. In particular, the assessment of pain-related signals is still difficult in human cell cultures. Here, we harnessed induced pluripotent stem cells (iPSCs) to generate peripheral sensory neurons enriched in nociceptors. The objective was to generate a culture system with signaling endpoints suitable for pharmacological and toxicological studies. Neurons generated by conventional differentiation protocols expressed moderate levels of P2X3 purinergic receptors and only low levels of TRPV1 capsaicin receptors, when maturation time was kept to the upper practically useful limit of 6 weeks. As alternative approach, we generated cells with an inducible NGN1 transgene. Ectopic expression of this transcription factor during a defined time window of differentiation resulted in highly enriched nociceptor cultures, as determined by functional (P2X3 and TRPV1 receptors) and immunocytochemical phenotyping, complemented by extensive transcriptome profiling. Single cell recordings of Ca2+-indicator fluorescence from >9000 cells were used to establish the “fraction of reactive cells” in a stimulated population as experimental endpoint, that appeared robust, transparent and quantifiable. To provide an example of application to biomedical studies, functional consequences of prolonged exposure to the chemotherapeutic drug oxaliplatin were examined at non-cytotoxic concentrations. We found (i) neuronal (allodynia-like) hypersensitivity to otherwise non-activating mechanical stimulation that could be blocked by modulators of voltage-gated sodium channels; (ii) hyper-responsiveness to TRPV1 receptor stimulation. These findings and several other measured functional alterations indicate that the model is suitable for pharmacological and toxicological studies related to peripheral neuropathies.
Collapse
Affiliation(s)
- Anna-Katharina Holzer
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
- Graduate School Biological Sciences (GBS), University of Konstanz, Konstanz, Germany
| | - Christiaan Karreman
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Ilinca Suciu
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Lara-Seline Furmanowsky
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Harald Wohlfarth
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Wilhelm G Dirks
- Department of Human and Animal Cell Lines, DSMZ, German Collection of Microorganisms and Cell Cultures and German Biological Resource Center, Braunschweig, Germany
| | - Emilio Pardo González
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Marcel Leist
- Corresponding author: Marcel Leist, PhD, In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation at the University of Konstanz, Universitaetsstr. 10, Konstanz 78457, Germany.
| |
Collapse
|
11
|
Guo Z, Tong C, Jacków J, Doucet YS, Abaci HE, Zeng W, Hansen C, Hayashi R, DeLorenzo D, Rami A, Pappalardo A, Lumpkin EA, Christiano AM. Engineering human skin model innervated with itch sensory neuron-like cells differentiated from induced pluripotent stem cells. Bioeng Transl Med 2022; 7:e10247. [PMID: 35111948 PMCID: PMC8780951 DOI: 10.1002/btm2.10247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD), driven by interleukins (IL-4/IL-13), is a chronic inflammatory skin disease characterized by intensive pruritus. However, it is unclear how immune signaling and sensory response pathways cross talk with each other. We differentiated itch sensory neuron-like cells (ISNLCs) from iPSC lines. These ISNLCs displayed neural markers and action potentials and responded specifically to itch-specific stimuli. These ISNLCs expressed receptors specific for IL-4/IL-13 and were activated directly by the two cytokines. We successfully innervated these ISNLCs into full thickness human skin constructs. These innervated skin grafts can be used in clinical applications such as wound healing. Moreover, the availability of such innervated skin models will be valuable to develop drugs to treat skin diseases such as AD.
Collapse
Affiliation(s)
- Zongyou Guo
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Chi‐Kun Tong
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Joanna Jacków
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Yanne S. Doucet
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Hasan E. Abaci
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Wangyong Zeng
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Corey Hansen
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | - Ryota Hayashi
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | | | - Avina Rami
- Department of DermatologyColumbia UniversityNew YorkNew YorkUSA
| | | | | | | |
Collapse
|
12
|
Zeidler M, Kummer KK, Schöpf CL, Kalpachidou T, Kern G, Cader MZ, Kress M. NOCICEPTRA: Gene and microRNA Signatures and Their Trajectories Characterizing Human iPSC-Derived Nociceptor Maturation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102354. [PMID: 34486248 PMCID: PMC8564443 DOI: 10.1002/advs.202102354] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/07/2023]
Abstract
Nociceptors are primary afferent neurons serving the reception of acute pain but also the transit into maladaptive pain disorders. Since native human nociceptors are hardly available for mechanistic functional research, and rodent models do not necessarily mirror human pathologies in all aspects, human induced pluripotent stem cell-derived nociceptors (iDN) offer superior advantages as a human model system. Unbiased mRNA::microRNA co-sequencing, immunofluorescence staining, and qPCR validations, reveal expression trajectories as well as miRNA target spaces throughout the transition of pluripotent cells into iDNs. mRNA and miRNA candidates emerge as regulatory hubs for neurite outgrowth, synapse development, and ion channel expression. The exploratory data analysis tool NOCICEPTRA is provided as a containerized platform to retrieve experimentally determined expression trajectories, and to query custom gene sets for pathway and disease enrichments. Querying NOCICEPTRA for marker genes of cortical neurogenesis reveals distinct similarities and differences for cortical and peripheral neurons. The platform provides a public domain neuroresource to exploit the entire data sets and explore miRNA and mRNA as hubs regulating human nociceptor differentiation and function.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - Kai K. Kummer
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - Clemens L. Schöpf
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | | | - Georg Kern
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - M. Zameel Cader
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Michaela Kress
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| |
Collapse
|
13
|
Chrysostomidou L, Cooper AH, Weir GA. Cellular models of pain: New technologies and their potential to progress preclinical research. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100063. [PMID: 34977426 PMCID: PMC8683679 DOI: 10.1016/j.ynpai.2021.100063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/16/2023]
Abstract
Human sensory neurons can reduce the translational gap in analgesic development. Access to dorsal root ganglion (hDRG) neurons is increasing. Diverse sensory neuron subtypes can now be generated via stem cell technology. Advances of these technologies will improve our understanding of human nociception.
In vitro models fill a vital niche in preclinical pain research, allowing detailed study of molecular pathways, and in the case of humanised systems, providing a translational bridge between in vivo animal models and human patients. Significant advances in cellular technology available to basic pain researchers have occurred in the last decade, including developing protocols to differentiate sensory neuron-like cells from stem cells and greater access to human dorsal root ganglion tissue. In this review, we discuss the use of both models in preclinical pain research: What can a human sensory neuron in a dish tell us that rodent in vivo models cannot? How similar are these models to their endogenous counterparts, and how should we judge them? What limitations do we need to consider? How can we leverage cell models to improve translational success? In vitro human sensory neuron models equip pain researchers with a valuable tool to investigate human nociception. With continual development, consideration for their advantages and limitations, and effective integration with other experimental strategies, they could become a driving force for the pain field's advancement.
Collapse
Affiliation(s)
- Lina Chrysostomidou
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew H Cooper
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Greg A Weir
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Derivation of Peripheral Nociceptive, Mechanoreceptive, and Proprioceptive Sensory Neurons from the same Culture of Human Pluripotent Stem Cells. Stem Cell Reports 2021; 16:446-457. [PMID: 33545066 PMCID: PMC7940146 DOI: 10.1016/j.stemcr.2021.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
The three peripheral sensory neuron (SN) subtypes, nociceptors, mechanoreceptors, and proprioceptors, localize to dorsal root ganglia and convey sensations such as pain, temperature, pressure, and limb movement/position. Despite previous reports, to date no protocol is available allowing the generation of all three SN subtypes at high efficiency and purity from human pluripotent stem cells (hPSCs). We describe a chemically defined differentiation protocol that generates all three SN subtypes from the same starting population, as well as methods to enrich for each individual subtype. The protocol yields high efficiency and purity cultures that are electrically active and respond to specific stimuli. We describe their molecular character and maturity stage and provide evidence for their use as an axotomy model; we show disease phenotypes in hPSCs derived from patients with familial dysautonomia. Our protocol will allow the modeling of human disorders affecting SNs, the search for treatments, and the study of human development.
Collapse
|
15
|
Hulme AJ, McArthur JR, Maksour S, Miellet S, Ooi L, Adams DJ, Finol-Urdaneta RK, Dottori M. Molecular and Functional Characterization of Neurogenin-2 Induced Human Sensory Neurons. Front Cell Neurosci 2020; 14:600895. [PMID: 33362470 PMCID: PMC7761588 DOI: 10.3389/fncel.2020.600895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Sensory perception is fundamental to everyday life, yet understanding of human sensory physiology at the molecular level is hindered due to constraints on tissue availability. Emerging strategies to study and characterize peripheral neuropathies in vitro involve the use of human pluripotent stem cells (hPSCs) differentiated into dorsal root ganglion (DRG) sensory neurons. However, neuronal functionality and maturity are limited and underexplored. A recent and promising approach for directing hPSC differentiation towards functionally mature neurons involves the exogenous expression of Neurogenin-2 (NGN2). The optimized protocol described here generates sensory neurons from hPSC-derived neural crest (NC) progenitors through virally induced NGN2 expression. NC cells were derived from hPSCs via a small molecule inhibitor approach and enriched for migrating NC cells (66% SOX10+ cells). At the protein and transcript level, the resulting NGN2 induced sensory neurons (NGN2iSNs) express sensory neuron markers such as BRN3A (82% BRN3A+ cells), ISLET1 (91% ISLET1+ cells), TRKA, TRKB, and TRKC. Importantly, NGN2iSNs repetitively fire action potentials (APs) supported by voltage-gated sodium, potassium, and calcium conductances. In-depth analysis of the molecular basis of NGN2iSN excitability revealed functional expression of ion channels associated with the excitability of primary afferent neurons, such as Nav1.7, Nav1.8, Kv1.2, Kv2.1, BK, Cav2.1, Cav2.2, Cav3.2, ASICs and HCN among other ion channels, for which we provide functional and transcriptional evidence. Our characterization of stem cell-derived sensory neurons sheds light on the molecular basis of human sensory physiology and highlights the suitability of using hPSC-derived sensory neurons for modeling human DRG development and their potential in the study of human peripheral neuropathies and drug therapies.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Lestienne F, Viodé C, Ceruti I, Carrere S, Bessou-Touya S, Duplan H, Castex-Rizzi N. Cutaneous sensitivity modulation by Aquaphilus dolomiae extract-G3 on in vitro models of neuro-inflammation. J Eur Acad Dermatol Venereol 2020; 34 Suppl 5:43-48. [PMID: 32870552 DOI: 10.1111/jdv.16641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inflammatory skin disorders, including atopic dermatitis (AD), associated pruritus and sensitive skin, have a complex multifactorial pathogenesis including neurogenic inflammation involving the release in blood and skin of neurotransmitters such as substance P (SP). AIMS AND METHODS In vitro models evaluated the effect of the original biological extract of Aquaphilus dolomiae extract-G3 (ADE-G3) on cutaneous neurogenic inflammation. RESULTS ADE-G3 significantly inhibited SP-stimulated release of IL-1β and TNF-α from normal human epidermal keratinocytes; significantly and dose-dependently inhibited SP-stimulated activation of human mast cells; significantly inhibited veratridine-stimulated release of SP from human sensory neurons; modulated expression of genes involved in lipid synthesis, innate immunity, corneocyte scaffolding and epidermal differentiation in a histamine-sensitized reconstructed human epidermis model; and, when applied topically to ex vivo human explants, inhibited IL-8 and histamine release. CONCLUSIONS Topically applied ADE-G3, once formulated, may improve neuro-inflammation in patients with inflammatory skin disorders.
Collapse
Affiliation(s)
- F Lestienne
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse Cedex 1, France
| | - C Viodé
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse Cedex 1, France
| | - I Ceruti
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse Cedex 1, France
| | - S Carrere
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse Cedex 1, France
| | - S Bessou-Touya
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse Cedex 1, France
| | - H Duplan
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse Cedex 1, France
| | - N Castex-Rizzi
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse Cedex 1, France
| |
Collapse
|
17
|
Nakatake Y, Ko SB, Sharov AA, Wakabayashi S, Murakami M, Sakota M, Chikazawa N, Ookura C, Sato S, Ito N, Ishikawa-Hirayama M, Mak SS, Jakt LM, Ueno T, Hiratsuka K, Matsushita M, Goparaju SK, Akiyama T, Ishiguro KI, Oda M, Gouda N, Umezawa A, Akutsu H, Nishimura K, Matoba R, Ohara O, Ko MS. Generation and Profiling of 2,135 Human ESC Lines for the Systematic Analyses of Cell States Perturbed by Inducing Single Transcription Factors. Cell Rep 2020; 31:107655. [DOI: 10.1016/j.celrep.2020.107655] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/07/2020] [Accepted: 04/23/2020] [Indexed: 01/23/2023] Open
|
18
|
In Vitro Differentiation of Human Skin-Derived Cells into Functional Sensory Neurons-Like. Cells 2020; 9:cells9041000. [PMID: 32316463 PMCID: PMC7226083 DOI: 10.3390/cells9041000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Skin-derived precursor cells (SKPs) are neural crest stem cells that persist in certain adult tissues, particularly in the skin. They can generate a large type of cell in vitro, including neurons. SKPs were induced to differentiate into sensory neurons (SNs) by molecules that were previously shown to be important for the generation of SNs: purmorphamine, CHIR99021, BMP4, GDNF, BDNF, and NGF. We showed that the differentiation of SKPs induced the upregulation of neurogenins. At the end of the differentiation protocol, transcriptional analysis was performed on BRN3A and a marker of pain-sensing nerve cell PRDM12 genes: 1000 times higher for PRDM12 and 2500 times higher for BRN3A in differentiated cells than they were in undifferentiated SKPs. Using immunostaining, we showed that 65% and 80% of cells expressed peripheral neuron markers BRN3A and PERIPHERIN, respectively. Furthermore, differentiated cells expressed TRPV1, PAR2, TRPA1, substance P, CGRP, HR1. Using calcium imaging, we observed that a proportion of cells responded to histamine, SLIGKV (a specific agonist of PAR2), polygodial (a specific agonist of TRPA1), and capsaicin (a specific agonist of TRPV1). In conclusion, SKPs are able to differentiate directly into functional SNs. These differentiated cells will be very useful for further in vitro studies.
Collapse
|
19
|
Neural In Vitro Models for Studying Substances Acting on the Central Nervous System. Handb Exp Pharmacol 2020; 265:111-141. [PMID: 32594299 DOI: 10.1007/164_2020_367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Animal models have been greatly contributing to our understanding of physiology, mechanisms of diseases, and toxicity. Yet, their limitations due to, e.g., interspecies variation are reflected in the high number of drug attrition rates, especially in central nervous system (CNS) diseases. Therefore, human-based neural in vitro models for studying safety and efficacy of substances acting on the CNS are needed. Human iPSC-derived cells offer such a platform with the unique advantage of reproducing the "human context" in vitro by preserving the genetic and molecular phenotype of their donors. Guiding the differentiation of hiPSC into cells of the nervous system and combining them in a 2D or 3D format allows to obtain complex models suitable for investigating neurotoxicity or brain-related diseases with patient-derived cells. This chapter will give an overview over stem cell-based human 2D neuronal and mixed neuronal/astrocyte models, in vitro cultures of microglia, as well as CNS disease models and considers new developments in the field, more specifically the use of brain organoids and 3D bioprinted in vitro models for safety and efficacy evaluation.
Collapse
|
20
|
Farkhondeh A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, Lo DC, Zheng W. Induced pluripotent stem cells for neural drug discovery. Drug Discov Today 2019; 24:992-999. [PMID: 30664937 DOI: 10.1016/j.drudis.2019.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/31/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Neurological diseases such as Alzheimer's disease and Parkinson's disease are growing problems, as average life expectancy is increasing globally. Drug discovery for neurological disease remains a major challenge. Poor understanding of disease pathophysiology and incomplete representation of human disease in animal models hinder therapeutic drug development. Recent advances with induced pluripotent stem cells (iPSCs) have enabled modeling of human diseases with patient-derived neural cells. Utilizing iPSC-derived neurons advances compound screening and evaluation of drug efficacy. These cells have the genetic backgrounds of patients that more precisely model disease-specific pathophysiology and phenotypes. Neural cells derived from iPSCs can be produced in a large quantity. Therefore, application of iPSC-derived human neurons is a new direction for neuronal drug discovery.
Collapse
Affiliation(s)
- Atena Farkhondeh
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Rong Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kevin G Chen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Might
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Zhao H, Shao Y, Li H, Zhou H. A novel method to reconstruct epithelial tissue using high-purity keratinocyte lineage cells induced from human embryonic stem cells. Cell Cycle 2018; 18:264-273. [PMID: 30563408 DOI: 10.1080/15384101.2018.1555118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The treatment of oral mucosa defect such as autologous oral mucosa caused by resection of oral mucosa carcinoma is still not ideal in clinical practice. However, Tissue engineering gives us the possibility to solve this problem. As we all know, Human embryonic stem cells (hESCs) have the ability to give rise to various cell types. We can take advantage of the totipotency of human embryonic stem cells to acquire keratinocytes. Directing the epithelial differentiation of hESCs can provide seed cells for the construction of epithelium tissue by tissue engineering. But, how to get high purity keratinocytes by induced stem cells then Applied to tissue engineering mucosa is an important challenge. We described a novel method to directly induce hESCs to differentiate into keratinocytes. Retinoic acid, ascorbic acid, and bone morphogenetic protein induced hESCs to differentiate into cells that highly expressed cytokeratin (CK)14. Our findings suggest that the retinoic acid, ascorbic acid and bone morphogenetic proteins induced hESCs to form high purity keratinocyte cell populations. In addition, we found that the highly pure keratinocyte populations reconstructed artificial tissue resembling epithelial tissue when inoculated in vitro on a biological scaffold.
Collapse
Affiliation(s)
- Houming Zhao
- a Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology , Shandong University , Shanghai , China
| | - Yanxiong Shao
- a Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology , Shandong University , Shanghai , China
| | - Hanqing Li
- a Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology , Shandong University , Shanghai , China
| | - Haiwen Zhou
- a Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology , Shandong University , Shanghai , China
| |
Collapse
|
22
|
Black BJ, Atmaramani R, Plagens S, Campbell ZT, Dussor G, Price TJ, Pancrazio JJ. Emerging neurotechnology for antinoceptive mechanisms and therapeutics discovery. Biosens Bioelectron 2018; 126:679-689. [PMID: 30544081 DOI: 10.1016/j.bios.2018.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/01/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
Abstract
The tolerance, abuse, and potential exacerbation associated with classical chronic pain medications such as opioids creates a need for alternative therapeutics. Phenotypic screening provides a complementary approach to traditional target-based drug discovery. Profiling cellular phenotypes enables quantification of physiologically relevant traits central to a disease pathology without prior identification of a specific drug target. For complex disorders such as chronic pain, which likely involves many molecular targets, this approach may identify novel treatments. Sensory neurons, termed nociceptors, are derived from dorsal root ganglia (DRG) and can undergo changes in membrane excitability during chronic pain. In this review, we describe phenotypic screening paradigms that make use of nociceptor electrophysiology. The purpose of this paper is to review the bioelectrical behavior of DRG neurons, signaling complexity in sensory neurons, various sensory neuron models, assays for bioelectrical behavior, and emerging efforts to leverage microfabrication and microfluidics for assay development. We discuss limitations and advantages of these various approaches and offer perspectives on opportunities for future development.
Collapse
Affiliation(s)
- Bryan J Black
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA.
| | - Rahul Atmaramani
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Sarah Plagens
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
23
|
Development and validation of an in vitro model system to study peripheral sensory neuron development and injury. Sci Rep 2018; 8:15961. [PMID: 30374154 PMCID: PMC6206093 DOI: 10.1038/s41598-018-34280-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023] Open
Abstract
The ability to discriminate between diverse types of sensation is mediated by heterogeneous populations of peripheral sensory neurons. Human peripheral sensory neurons are inaccessible for research and efforts to study their development and disease have been hampered by the availability of relevant model systems. The in vitro differentiation of peripheral sensory neurons from human embryonic stem cells therefore provides an attractive alternative since an unlimited source of biological material can be generated for studies that specifically address development and injury. The work presented in this study describes the derivation of peripheral sensory neurons from human embryonic stem cells using small molecule inhibitors. The differentiated neurons express canonical- and modality-specific peripheral sensory neuron markers with subsets exhibiting functional properties of human nociceptive neurons that include tetrodotoxin-resistant sodium currents and repetitive action potentials. Moreover, the derived cells associate with human donor Schwann cells and can be used as a model system to investigate the molecular mechanisms underlying neuronal death following peripheral nerve injury. The quick and efficient derivation of genetically diverse peripheral sensory neurons from human embryonic stem cells offers unlimited access to these specialised cell types and provides an invaluable in vitro model system for future studies.
Collapse
|
24
|
Human peptidergic nociceptive sensory neurons generated from human epidermal neural crest stem cells (hEPI-NCSC). PLoS One 2018; 13:e0199996. [PMID: 29953534 PMCID: PMC6023242 DOI: 10.1371/journal.pone.0199996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 06/17/2018] [Indexed: 01/28/2023] Open
Abstract
Here we provide new technology for generating human peptidergic nociceptive sensory neurons in a straightforward and efficient way. The cellular source, human epidermal neural crest stem cells (hEPI-NCSC), consists of multipotent somatic stem cells that reside in the bulge of hair follicles. hEPI-NCSC and primary sensory neurons have a common origin, the embryonic neural crest. For directed differentiation, hEPI-NCSC were exposed to pertinent growth factors and small molecules in order to modulate master signalling networks involved in differentiation of neural crest cells into postmitotic peptidergic sensory neurons during embryonic development. The neuronal populations were homogenous in regard to antibody marker expression. Cells were immunoreactive for essential master regulatory genes, including NGN1/2, SOX10, and BRN3a among others, and for the pain-mediating genes substance P (SP), calcitonin gene related protein (CGRP) and the TRPV1 channel. Approximately 30% of total cells responded to capsaicin, indicating that they expressed an active TRPV1 channel. In summary, hEPI-NCSC are a biologically relevant and easily available source of somatic stem cells for generating human peptidergic nociceptive neurons without the need for genetic manipulation and cell purification. As no analgesics exist that specifically target TRPV1, a ready supply of high-quality human peptidergic nociceptive sensory neurons could open the way for new approaches, in a biologically relevant cellular context, to drug discovery and patient-specific disease modelling that is aimed at pain control, and as such is highly desirable.
Collapse
|
25
|
Viventi S, Dottori M. Modelling the dorsal root ganglia using human pluripotent stem cells: A platform to study peripheral neuropathies. Int J Biochem Cell Biol 2018; 100:61-68. [PMID: 29772357 DOI: 10.1016/j.biocel.2018.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 12/28/2022]
Abstract
Sensory neurons of the dorsal root ganglia (DRG) are the primary responders to stimuli inducing feelings of touch, pain, temperature, vibration, pressure and muscle tension. They consist of multiple subpopulations based on their morphology, molecular and functional properties. Our understanding of DRG sensory neurons has been predominantly driven by rodent studies and using transformed cell lines, whereas less is known about human sensory DRG neurons simply because of limited availability of human tissue. Although these previous studies have been fundamental for our understanding of the sensory system, it is imperative to profile human DRG subpopulations as it is becoming evident that human sensory neurons do not share the identical molecular and functional properties found in other species. Furthermore, there are wide range of diseases and disorders that directly/indirectly cause sensory neuronal degeneration or dysfunctionality. Having an in vitro source of human DRG sensory neurons is paramount for studying their development, unique neuronal properties and for accelerating regenerative therapies to treat sensory neuropathies. Here we review the major studies describing generation of DRG sensory neurons from human pluripotent stem cells and fibroblasts and the gaps that need to be addressed for using in vitro-generated human DRG neurons to model human DRG tissue.
Collapse
Affiliation(s)
- Serena Viventi
- Department of Biomedical Engineering, University of Melbourne, Australia
| | - Mirella Dottori
- Department of Biomedical Engineering, University of Melbourne, Australia; Illawarra Health and Medical Research Institute, Centre for Molecular and Medical Bioscience, University of Wollongong, Australia.
| |
Collapse
|
26
|
Ghaffari LT, Starr A, Nelson AT, Sattler R. Representing Diversity in the Dish: Using Patient-Derived in Vitro Models to Recreate the Heterogeneity of Neurological Disease. Front Neurosci 2018; 12:56. [PMID: 29479303 PMCID: PMC5812426 DOI: 10.3389/fnins.2018.00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Neurological diseases, including dementias such as Alzheimer's disease (AD) and fronto-temporal dementia (FTD) and degenerative motor neuron diseases such as amyotrophic lateral sclerosis (ALS), are responsible for an increasing fraction of worldwide fatalities. Researching these heterogeneous diseases requires models that endogenously express the full array of genetic and epigenetic factors which may influence disease development in both familial and sporadic patients. Here, we discuss the two primary methods of developing patient-derived neurons and glia to model neurodegenerative disease: reprogramming somatic cells into induced pluripotent stem cells (iPSCs), which are differentiated into neurons or glial cells, or directly converting (DC) somatic cells into neurons (iNeurons) or glial cells. Distinct differentiation techniques for both models result in a variety of neuronal and glial cell types, which have been successful in displaying unique hallmarks of a variety of neurological diseases. Yield, length of differentiation, ease of genetic manipulation, expression of cell-specific markers, and recapitulation of disease pathogenesis are presented as determining factors in how these methods may be used separately or together to ascertain mechanisms of disease and identify therapeutics for distinct patient populations or for specific individuals in personalized medicine projects.
Collapse
Affiliation(s)
- Layla T Ghaffari
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Alexander Starr
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Andrew T Nelson
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health-St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
27
|
Fouillet A, Watson JF, Piekarz AD, Huang X, Li B, Priest B, Nisenbaum E, Sher E, Ursu D. Characterisation of Nav1.7 functional expression in rat dorsal root ganglia neurons by using an electrical field stimulation assay. Mol Pain 2017; 13:1744806917745179. [PMID: 29166836 PMCID: PMC5731621 DOI: 10.1177/1744806917745179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The Nav1.7 subtype of voltage-gated sodium channels is specifically expressed in sensory and sympathetic ganglia neurons where it plays an important role in the generation and transmission of information related to pain sensation. Human loss or gain-of-function mutations in the gene encoding Nav1.7 channels (SCN9A) are associated with either absence of pain, as reported for congenital insensitivity to pain, or with exacerbation of pain, as reported for primary erythromelalgia and paroxysmal extreme pain disorder. Based on this important human genetic evidence, numerous drug discovery efforts are ongoing in search for Nav1.7 blockers as a novel therapeutic strategy to treat pain conditions. Results We are reporting here a novel approach to study Nav1.7 function in cultured rat sensory neurons. We used live cell imaging combined with electrical field stimulation to evoke and record action potential-driven calcium transients in the neurons. We have shown that the tarantula venom peptide Protoxin-II, a known Nav1.7 subtype selective blocker, inhibited electrical field stimulation-evoked calcium responses in dorsal root ganglia neurons with an IC50 of 72 nM, while it had no activity in embryonic hippocampal neurons. The results obtained in the live cell imaging assay were supported by patch-clamp studies as well as by quantitative PCR and Western blotting experiments that confirmed the presence of Nav1.7 mRNA and protein in dorsal root ganglia but not in embryonic hippocampal neurons. Conclusions The findings presented here point to a selective effect of Protoxin-II in sensory neurons and helped to validate a new method for investigating and comparing Nav1.7 pharmacology in sensory versus central nervous system neurons. This will help in the characterisation of the selectivity of novel Nav1.7 modulators using native ion channels and will provide the basis for the development of higher throughput models for enabling pain-relevant phenotypic screening.
Collapse
Affiliation(s)
- Antoine Fouillet
- 1 Lilly Research Centre, 1539 Eli Lilly and Company , Windlesham, UK
| | - Jake F Watson
- 1 Lilly Research Centre, 1539 Eli Lilly and Company , Windlesham, UK
| | - Andrew D Piekarz
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Xiaofang Huang
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Baolin Li
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Birgit Priest
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Eric Nisenbaum
- 2 Lilly Research Laboratories, 1539 Eli Lilly and Company , IN, USA
| | - Emanuele Sher
- 1 Lilly Research Centre, 1539 Eli Lilly and Company , Windlesham, UK
| | - Daniel Ursu
- 1 Lilly Research Centre, 1539 Eli Lilly and Company , Windlesham, UK
| |
Collapse
|
28
|
Webb RL, Gallegos-Cárdenas A, Miller CN, Solomotis NJ, Liu HX, West FD, Stice SL. Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Parallel Human Differentiation Into Sensory Neural Subtypes. Cell Reprogram 2017; 19:88-94. [PMID: 28266869 DOI: 10.1089/cell.2016.0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate into neural rosette (NR) structures similar to human NRs, here we demonstrate that pig NR cells could differentiate into neural crest cells and other peripheral nervous system-relevant cell types. Treatment with either bone morphogenetic protein 4 or fetal bovine serum led to differentiation into BRN3A-positive sensory cells and increased expression of sensory neuron TRK receptor gene family: TRKA, TRKB, and TRKC. Porcine sensory neural cells would allow determination of parallels between human and porcine cells in response to noxious stimuli, analgesics, and reparative mechanisms. In vitro differentiation of pig sensory neurons provides a novel model system for neural cell subtype specification and would provide a novel platform for the study of regenerative therapeutics by elucidating the requirements for innervation following injury and axonal survival.
Collapse
Affiliation(s)
- Robin L Webb
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Amalia Gallegos-Cárdenas
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Colette N Miller
- 2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Nicholas J Solomotis
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Hong-Xiang Liu
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Franklin D West
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| | - Steven L Stice
- 1 Regenerative Bioscience Center, University of Georgia , Rhodes Center for Animal and Dairy Science, Athens, Georgia .,2 Department of Animal and Dairy Science, Rhodes Center for Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia , Athens, Georgia
| |
Collapse
|