1
|
Pokharel MD, Feng A, Liang Y, Ma W, Aggarwal S, Unwalla H, Black SM, Wang T. Drp1-associated genes implicated in sepsis survival. Front Immunol 2025; 15:1516145. [PMID: 39845954 PMCID: PMC11750657 DOI: 10.3389/fimmu.2024.1516145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Sepsis is a severe and life-threatening medical syndrome that can lead to organ failure and death. Despite advances in medical treatment, current therapies are often inadequate, with high septic mortality rates. Therefore, there is a critical need for reliable prognostic markers to be used in clinical settings to improve the management and outcomes of patients with sepsis. Recent studies have suggested that mitochondrial dynamics, including the processes of mitochondrial fission and fusion, are closely related to the severity of sepsis and the status of inflammation. By monitoring transcriptomic signals related to mitochondrial dynamics, new and reliable biomarkers can be engineered to more accurately predict sepsis survival risk. Such biomarkers would be invaluable in clinical settings, aiding healthcare providers in the early identification of high-risk patients and improving treatment strategies. To achieve this goal, we utilized the major mitochondrial fission regulatory protein dynamin-related protein 1 (Drp1, gene code DNM1L) and identified Drp1-associated genes that are enriched with sepsis survival genes. A 12-gene signature (GS) was established as a differentially expressed gene (DEG)-based GS. Next, we compared genes of proteins that interact with Drp1 to sepsis survival genes and identified 7 common genes, establishing a GS we term as protein-protein interaction (PPI)-based GS. To evaluate if these GSs can predict sepsis survival, we used publicly available human blood transcriptomic datasets from sepsis patients. We confirmed that both GSs can successfully predict sepsis survival in both discovery and validation cohorts with high sensitivity and specificity, with the PPI-based GS showing enhanced prognostic performance. Together, this study successfully engineers a new and validated blood-borne biomarker (PPI-based 7-gene GS) for sepsis survival risk prediction. This biomarker holds the potential for improving the early identification of high-risk sepsis patients and optimizing personalized treatment strategies to reduce sepsis mortality.
Collapse
Affiliation(s)
- Marissa D. Pokharel
- Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL, United States
| | - Anlin Feng
- Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| | - Ying Liang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| | - Wenli Ma
- Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL, United States
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL, United States
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL, United States
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| | - Ting Wang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL, United States
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL, United States
- Department of Environmental Health Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
2
|
Greenwood HE, Barber AR, Edwards RS, Tyrrell WE, George ME, Dos Santos SN, Baark F, Tanc M, Khalil E, Falzone A, Ward NP, DeBlasi JM, Torrente L, Soni PN, Pearce DR, Firth G, Smith LM, Vilhelmsson Timmermand O, Huebner A, Swanton C, Hynds RE, DeNicola GM, Witney TH. Imaging NRF2 activation in non-small cell lung cancer with positron emission tomography. Nat Commun 2024; 15:10484. [PMID: 39690148 PMCID: PMC11652680 DOI: 10.1038/s41467-024-54852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. Currently, there is no means to non-invasively identify NRF2 activation in living subjects. Here, we show that positron emission tomography imaging with the system xc- radiotracer, [18F]FSPG, provides a sensitive and specific marker of NRF2 activation in orthotopic, patient-derived, and genetically engineered mouse models of NSCLC. We found a NRF2-related gene expression signature in a large cohort of NSCLC patients, suggesting an opportunity to preselect patients prior to [18F]FSPG imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted with an antibody-drug conjugate for sustained tumour growth suppression. Overall, our results establish [18F]FSPG as a predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.
Collapse
Affiliation(s)
- Hannah E Greenwood
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Abigail R Barber
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Richard S Edwards
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Will E Tyrrell
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Madeleine E George
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Sofia N Dos Santos
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Friedrich Baark
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Muhammet Tanc
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Eman Khalil
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Aimee Falzone
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nathan P Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Janine M DeBlasi
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Pritin N Soni
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - David R Pearce
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Lydia M Smith
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | | | - Ariana Huebner
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Robert E Hynds
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Timothy H Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
| |
Collapse
|
3
|
Malila Y, Saensa-ard S, Kunyanee C, Petpiroon N, Kosit N, Charoenlappanit S, Phaonakrop N, Srimarut Y, Aueviriyavit S, Roytrakul S. Influences of Growth-Related Myopathies on Peptide Patterns of In Vitro Digested Cooked Chicken Breast and Stress-Related Responses in an Intestinal Caco-2 Cell Model. Foods 2024; 13:4042. [PMID: 39766984 PMCID: PMC11727595 DOI: 10.3390/foods13244042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The objective of this study was to determine the effects of growth-related myopathies, i.e., normal, wooden breast (WB), white striping (WS), and the combined lesions of WS and WB (WS + WB), on the molecular response of Caco-2 cells. A total of 24 cooked chicken breasts (n = 6 per myopathy) was subjected to an in vitro digestion using an enzymatic process mimicking human gastrointestinal digestion. Based on peptidomics, in vitro protein digestion of the abnormal samples, particularly WB meat, resulted in more peptides with lower molecular mass relative to those of normal samples. The cooked meat hydrolysates obtained at the end of the digestion were applied to a Caco-2 cell model for 4 h. The cell viability of treated normal and abnormal samples was not different (p ≥ 0.05). Absolute transcript abundances of genes associated with primary oxidative stress response, including nuclear factor erythroid 2 like 2, superoxide dismutase, and hypoxia-inducible factor 1 were determined using a droplet digital polymerase chain reaction. No significant differences in transcript abundance of those genes in Caco-2 cells were demonstrated between normal and the abnormal samples (p ≥ 0.05). Overall, the findings supported that, compared to normal meat, the cooked chicken meat with growth-related myopathies might be digested and absorbed to a greater extent. The cooked abnormal meat did not exert significant transcriptional impacts regarding oxidative stress on the human epithelial Caco-2 cells.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Sunitta Saensa-ard
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.S.-a.); (C.K.); (N.P.); (S.A.)
| | - Chanikarn Kunyanee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.S.-a.); (C.K.); (N.P.); (S.A.)
| | - Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.S.-a.); (C.K.); (N.P.); (S.A.)
| | - Nantanat Kosit
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Sawanya Charoenlappanit
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Narumon Phaonakrop
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.S.-a.); (C.K.); (N.P.); (S.A.)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (N.K.); (S.C.); (N.P.); (Y.S.); (S.R.)
| |
Collapse
|
4
|
Iwasaki T, Shirota H, Sasaki K, Ouchi K, Nakayama Y, Oshikiri H, Otsuki A, Suzuki T, Yamamoto M, Ishioka C. Specific cancer types and prognosis in patients with variations in the KEAP1-NRF2 system: A retrospective cohort study. Cancer Sci 2024; 115:4034-4044. [PMID: 39327066 PMCID: PMC11611756 DOI: 10.1111/cas.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
The KEAP1-NRF2 system induces the expression of antioxidant genes in response to various types of oxidative stress. Some cancer cells activate this system, which increases their malignancy through genetic mutations. We performed a retrospective cohort study using the C-CAT database, which contains the gene-panel sequence data from 60,056 cases of diagnosed solid tumors. We analyzed somatic mutations in NRF2 and KEAP1 genes and their associations with clinical outcomes. Variants in the NRF2 gene were clustered in exon 2, which encodes the DLG and ETGE motifs essential for KEAP1 interaction. The NRF2 variants were frequently observed in esophageal and lung squamous cell carcinoma with frequencies of 35.9% and 19.6%, respectively. Among these mutations, the NRF2 variants in the ETGE motif were indicators of a worse prognosis. KEAP1 variants were found in 2.5% of all cases. The variants were frequent in lung cancer and showed a worse prognosis in lung and other types of adenocarcinomas. We then conducted gene expression analysis using TCGA data. While cancers with DLG and ETGE variants were similar in terms of gene expression profiles, there were significant differences between cancers with KEAP1 and NRF2 variants. Our results indicate that genetic alteration of the KEAP1-NRF2 pathway is a major factor in patient prognosis for each cancer type and its genetic variant. Variants in NRF2 and KEAP1 genes can characterize the biological basis of each cancer type and are involved in carcinogenesis, resistance to therapy, and other biological differences.
Collapse
Affiliation(s)
- Tomoyuki Iwasaki
- Department of Medical OncologyTohoku University HospitalSendaiJapan
| | - Hidekazu Shirota
- Department of Medical OncologyTohoku University HospitalSendaiJapan
| | - Keiju Sasaki
- Department of Medical OncologyTohoku University HospitalSendaiJapan
| | - Kota Ouchi
- Department of Medical OncologyTohoku University HospitalSendaiJapan
| | - Yuki Nakayama
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Hiroyuki Oshikiri
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Akihito Otsuki
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Takafumi Suzuki
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Chikashi Ishioka
- Department of Medical OncologyTohoku University HospitalSendaiJapan
| |
Collapse
|
5
|
Ramisetti SV, Patra T, Munirathnam V, Sainath JV, Veeraiyan D, Namani A. NRF2 Signaling Pathway in Chemo/Radio/Immuno-Therapy Resistance of Lung Cancer: Looking Beyond the Tip of the Iceberg. Arch Bronconeumol 2024; 60 Suppl 2:S59-S66. [PMID: 39060123 DOI: 10.1016/j.arbres.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer is one of the most common causes of cancer death in men and women worldwide. Various combinations of surgery, chemotherapy, radiation therapy and immunotherapy are currently used to treat lung cancer. However, the prognosis remains relatively poor due to the higher frequency of tumor mutational burden (TMB). Nuclear factor E2-related factor 2 (NFE2L2/NRF2) is often considered a primary regulator of the expression of antioxidant enzymes and detoxification proteins and is involved in cytoprotection. On the contrary, NRF2 is even known to induce metastasis and support tumor progression. Kelch-like ECH-associated protein 1 (KEAP1) plays an important role in negatively regulating NRF2 activity via CUL3-mediated ubiquitinylation and successive proteasomal degradation. Extensive research has shown that the genetic alterations of KEAP1/NFE2L2/CUL3 genes lead to increased expression of NRF2 and its target genes in lung cancer. Thus, these studies provide ample evidence for the dual role of NRF2 in lung cancer. In this review, we discussed the mechanistic insights into the role of NRF2 signaling in therapy resistance by focusing on cell lines, mouse models, and translational studies in lung cancer. Finally, we highlighted the potential therapeutic strategies targeting NRF2 inhibition, followed by the discussion of biomarkers related to NRF2 activity in lung cancer. Overall, our article exclusively discusses in detail the NRF2 signaling pathway in resistance to therapy, especially immunotherapy, and its therapeutic avenue in the treatment of lung cancer.
Collapse
Affiliation(s)
- Sri Vidya Ramisetti
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Tapas Patra
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Sri Shankara National Centre for Cancer Prevention and Research, Sri Shankara Cancer Foundation, Bangalore 560004, India
| | - Vinayak Munirathnam
- Department of Medical Oncology, Sri Shankara Cancer Hospital and Research Centre, Bangalore 560004, India
| | - Jyothi Venkat Sainath
- Department of Head and Neck Oncology, Sri Shankara Cancer Hospital and Research Centre, Bangalore 560004, India
| | - Durgadevi Veeraiyan
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Sri Shankara National Centre for Cancer Prevention and Research, Sri Shankara Cancer Foundation, Bangalore 560004, India
| | - Akhileshwar Namani
- Department of Molecular Research, Sri Shankara Cancer Hospital and Research Centre, Sri Shankara National Centre for Cancer Prevention and Research, Sri Shankara Cancer Foundation, Bangalore 560004, India.
| |
Collapse
|
6
|
Liu B, Wang Z, Gu M, Wang J, Tan J. Research into overcoming drug resistance in lung cancer treatment using CRISPR-Cas9 technology: a narrative review. Transl Lung Cancer Res 2024; 13:2067-2081. [PMID: 39263032 PMCID: PMC11384501 DOI: 10.21037/tlcr-24-592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024]
Abstract
Background and Objective Lung cancer remains a leading cause of cancer-related mortality globally, with drug resistance posing a significant challenge to effective treatment. The advent of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR-Cas9) technology offers a novel and precise gene-editing technology for targeting and negating drug resistance mechanisms in lung cancer. This review summarizes the research progress in the use of CRISPR-Cas9 technology for investigating and managing drug resistance in lung cancer treatment. Methods A literature search was conducted using the Web of Science and PubMed databases, with the following keywords: [CRISPR-Cas9], [lung cancer], [drug resistance], [gene editing], and [gene therapy]. The search was limited to articles published in English from 2002 to September 2023. From the search results, studies that utilized CRISPR-Cas9 technology in the context of lung cancer drug resistance were selected for further analysis and summarize. Key Content and Findings CRISPR-Cas9 technology enables precise DNA-sequence editing, allowing for the targeted addition, deletion, or modification of genes. It has been applied to investigate drug resistance in lung cancer by focusing on key genes such as epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein 53 (TP53), and B-cell lymphoma/leukemia-2 (BCL2), among others. The technology has shown potential in inhibiting tumor growth, repairing mutations, and enhancing the sensitivity of cancer cells to chemotherapy. Additionally, CRISPR-Cas9 has been used to identify novel key genes and molecular mechanisms contributing to drug resistance, offering new avenues for therapeutic intervention. The review also highlights the use of CRISPR-Cas9 in targeting immune escape mechanisms and the development of strategies to improve drug sensitivity. Conclusions The CRISPR-Cas9 technology holds great promise for advancing lung cancer treatment, particularly in addressing drug resistance. The ability to precisely target and edit genes involved in resistance pathways offers a powerful tool for developing more effective and personalized therapies. While challenges remain in terms of delivery, safety, and ethical considerations, ongoing research and technological refinements are expected to further enhance the role of CRISPR-Cas9 in improving patient outcomes in lung cancer treatment.
Collapse
Affiliation(s)
- Bin Liu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinjing Tan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
7
|
Han F, Chen S, Zhang K, Zhang K, Wang M, Wang P. Targeting Nrf2/PHKG2 axis to enhance radiosensitivity in NSCLC. NPJ Precis Oncol 2024; 8:183. [PMID: 39169204 PMCID: PMC11339382 DOI: 10.1038/s41698-024-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/07/2024] [Indexed: 08/23/2024] Open
Abstract
While ferroptosis shows promise in anti-cancer strategy, the molecular mechanisms behind this process remain poorly understood. Our research aims to highlight the regulation of radiotherapy-induced ferroptosis in non-small cell lung cancer (NSCLC) via the NRF2/PHKG2 axis-mediated mechanism. To identify ferroptosis-associated genes associated with radioresistance in NSCLC, this study employed high-throughput transcriptome sequencing and Lasso risk regression analysis. Clinical samples were analyzed to confirm PHKG2 expression changes before and after radiotherapy. The study further examined ferritinophagy-related factors, intracellular iron levels, mitochondrial function, and ferroptosis in NSCLC cells undergoing radiation exposure to explore the effect of PHKG2 on radiosensitivity or radioresistance. The research also demonstrated the transcriptional inhibition of PHKG2 by NRF2 and created in situ transplantation tumor models of NSCLC to examine the role of NRF2/PHKG2 axis in NSCLC radiosensitivity and resistance in vivo. The Lasso risk regression model that incorporated ferroptosis-associated genes effectively predicted the prognosis of patients with NSCLC. Radiotherapy-sensitive tissues exhibited an increased expression of PHKG2. Overexpression of PHKG2 led to elevated intracellular iron levels by promoting ferritinophagy and increased mitochondrial stress-dependent ferroptosis induced by radiotherapy. PHKG2 transcription repression was achieved through NRF2. The FAGs-Lasso risk regression model can accurately predict the prognosis of NSCLC patients. Targeting Nrf2 upregulates the expression of PHKG2 and reverses radiotherapy resistance in NSCLC by promoting iron autophagy and inducing mitochondrial dysfunction, thereby increasing radiotherapy sensitivity.
Collapse
Affiliation(s)
- Fushi Han
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, 200065, China
| | - Shuzhen Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Kangwei Zhang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, 200065, China
| | - Kunming Zhang
- Department of Internal Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Meng Wang
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Peijun Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
8
|
Bi W, Xu Z, Liu F, Xie Z, Liu H, Zhu X, Zhong W, Zhang P, Tang X. Genome-wide analyses reveal the contribution of somatic variants to the immune landscape of multiple cancer types. PLoS Genet 2024; 20:e1011134. [PMID: 38241355 PMCID: PMC10829993 DOI: 10.1371/journal.pgen.1011134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
It has been well established that cancer cells can evade immune surveillance by mutating themselves. Understanding genetic alterations in cancer cells that contribute to immune regulation could lead to better immunotherapy patient stratification and identification of novel immune-oncology (IO) targets. In this report, we describe our effort of genome-wide association analyses across 22 TCGA cancer types to explore the associations between genetic alterations in cancer cells and 74 immune traits. Results showed that the tumor microenvironment (TME) is shaped by different gene mutations in different cancer types. Out of the key genes that drive multiple immune traits, top hit KEAP1 in lung adenocarcinoma (LUAD) was selected for validation. It was found that KEAP1 mutations can explain more than 10% of the variance for multiple immune traits in LUAD. Using public scRNA-seq data, further analysis confirmed that KEAP1 mutations activate the NRF2 pathway and promote a suppressive TME. The activation of the NRF2 pathway is negatively correlated with lower T cell infiltration and higher T cell exhaustion. Meanwhile, several immune check point genes, such as CD274 (PD-L1), are highly expressed in NRF2-activated cancer cells. By integrating multiple RNA-seq data, a NRF2 gene signature was curated, which predicts anti-PD1 therapy response better than CD274 gene alone in a mixed cohort of different subtypes of non-small cell lung cancer (NSCLC) including LUAD, highlighting the important role of KEAP1-NRF2 axis in shaping the TME in NSCLC. Finally, a list of overexpressed ligands in NRF2 pathway activated cancer cells were identified and could potentially be targeted for TME remodeling in LUAD.
Collapse
Affiliation(s)
- Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, People’s Republic of China
- Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, People’s Republic of China
- Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, People’s Republic of China
| | - Zhiyu Xu
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Feng Liu
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Zhi Xie
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Hao Liu
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Xiaotian Zhu
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Wenge Zhong
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Peipei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People’s Republic of China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, People’s Republic of China
| | - Xing Tang
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
9
|
Greenwood HE, Edwards RS, Tyrrell WE, Barber AR, Baark F, Tanc M, Khalil E, Falzone A, Ward NP, DeBlasi JM, Torrente L, Pearce DR, Firth G, Smith LM, Timmermand OV, Huebner A, George ME, Swanton C, Hynds RE, DeNicola GM, Witney TH. Imaging the master regulator of the antioxidant response in non-small cell lung cancer with positron emission tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.572007. [PMID: 38168428 PMCID: PMC10760199 DOI: 10.1101/2023.12.16.572007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.
Collapse
Affiliation(s)
- Hannah E. Greenwood
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Richard S. Edwards
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Will E. Tyrrell
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Abigail R. Barber
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Friedrich Baark
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Muhammet Tanc
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Eman Khalil
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Aimee Falzone
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Janine M. DeBlasi
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - David R. Pearce
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - George Firth
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Lydia M. Smith
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Oskar Vilhelmsson Timmermand
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Ariana Huebner
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Madeleine E. George
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Robert E. Hynds
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Timothy H. Witney
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| |
Collapse
|
10
|
Arolt C, Dugan M, Wild R, Richartz V, Holz B, Scheel AH, Brägelmann J, Wagener-Ryczek S, Merkelbach-Bruse S, Wolf J, Buettner R, Catanzariti L, Scheffler M, Hillmer AM. KEAP1/NFE2L2 Pathway Signature Outperforms KEAP1/NFE2L2 Mutation Status and Reveals Alternative Pathway-Activating Mutations in NSCLC. J Thorac Oncol 2023; 18:1550-1567. [PMID: 37473958 DOI: 10.1016/j.jtho.2023.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Activation of the antioxidant KEAP1/NFE2L2 (NRF2) pathway leads to increased glutamine dependence and an aggressive phenotype in NSCLC. Because this pathway has been explored as a clinical target, we developed a transcriptomic signature for identifying KEAP1/NFE2L2-activated tumors. METHODS A total of 971 NSCLC samples were used to train an expression signature (K1N2-score) to predict KEAP1/NFE2L2 mutations. There were 348 in-house NSCLCs that were analyzed using a NanoString expression panel for validation. RESULTS The 46-gene K1N2 score robustly predicted KEAP1/NFE2L2 mutations in the validation set irrespective of histology and mutation (area under the curve: 89.5, sensitivity: 90.2%), suggesting that approximately 90% of KEAP1/NFE2L2 mutations are pathway-activating. The K1N2-score outperformed KEAP1/NFE2L2 mutational status when predicting patient survival (score p = 0.047; mutation p = 0.215). In K1N2 score-positive but KEAP1/NFE2L2 wild-type samples, enrichment testing identified SMARCA4/BRG1 and CUL3 mutations as mimics of KEAP1/NFE2L2 mutations. CONCLUSIONS The K1N2-score identified KEAP1/NFE2L2-activated NSCLC by robustly detecting KEAP1/NFE2L2mut cases and discovering alternative genomic activators. It is a potential means for selecting patients with a constitutively active KEAP1/NFE2L2 pathway.
Collapse
Affiliation(s)
- Christoph Arolt
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Robert Wild
- Dracen Pharmaceuticals Inc., San Diego, California
| | - Vanessa Richartz
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Barbara Holz
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Andreas H Scheel
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Johannes Brägelmann
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Mildred Scheel School of Oncology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Svenja Wagener-Ryczek
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sabine Merkelbach-Bruse
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Lung Cancer Group Cologne, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Juergen Wolf
- Lung Cancer Group Cologne, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany; Department I for Internal Medicine, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Lung Cancer Group Cologne, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | | | - Matthias Scheffler
- Lung Cancer Group Cologne, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany; Department I for Internal Medicine, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Jiang J, van Ertvelde J, Ertaylan G, Peeters R, Jennen D, de Kok TM, Vinken M. Unraveling the mechanisms underlying drug-induced cholestatic liver injury: identifying key genes using machine learning techniques on human in vitro data sets. Arch Toxicol 2023; 97:2969-2981. [PMID: 37603094 PMCID: PMC10504391 DOI: 10.1007/s00204-023-03583-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Drug-induced intrahepatic cholestasis (DIC) is a main type of hepatic toxicity that is challenging to predict in early drug development stages. Preclinical animal studies often fail to detect DIC in humans. In vitro toxicogenomics assays using human liver cells have become a practical approach to predict human-relevant DIC. The present study was set up to identify transcriptomic signatures of DIC by applying machine learning algorithms to the Open TG-GATEs database. A total of nine DIC compounds and nine non-DIC compounds were selected, and supervised classification algorithms were applied to develop prediction models using differentially expressed features. Feature selection techniques identified 13 genes that achieved optimal prediction performance using logistic regression combined with a sequential backward selection method. The internal validation of the best-performing model showed accuracy of 0.958, sensitivity of 0.941, specificity of 0.978, and F1-score of 0.956. Applying the model to an external validation set resulted in an average prediction accuracy of 0.71. The identified genes were mechanistically linked to the adverse outcome pathway network of DIC, providing insights into cellular and molecular processes during response to chemical toxicity. Our findings provide valuable insights into toxicological responses and enhance the predictive accuracy of DIC prediction, thereby advancing the application of transcriptome profiling in designing new approach methodologies for hazard identification.
Collapse
Affiliation(s)
- Jian Jiang
- Entity of In Vitro Toxicology and Dermato‑Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Jonas van Ertvelde
- Entity of In Vitro Toxicology and Dermato‑Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Gökhan Ertaylan
- Vlaamse Instelling voor Technologisch Onderzoek (VITO) NV, Health, Boeretang 200, 2400, Mol, Belgium
| | - Ralf Peeters
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Theo M de Kok
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato‑Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
12
|
Shakya A, Liu P, Godek J, McKee NW, Dodson M, Anandhan A, Ooi A, Garcia JGN, Costa M, Chapman E, Zhang DD. The NRF2-p97-NRF2 negative feedback loop. Redox Biol 2023; 65:102839. [PMID: 37573837 PMCID: PMC10428046 DOI: 10.1016/j.redox.2023.102839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Abstract
p97 is a ubiquitin-targeted ATP-dependent segregase that regulates proteostasis, in addition to a variety of other cellular functions. Previously, we demonstrated that p97 negatively regulates NRF2 by extracting ubiquitylated NRF2 from the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex, facilitating proteasomal destruction. In the current study, we identified p97 as an NRF2-target gene that contains a functional ARE, indicating the presence of an NRF2-p97-NRF2 negative feedback loop that maintains redox homeostasis. Using CRISPR/Cas9 genome editing, we generated endogenous p97 ARE-mutated BEAS-2B cell lines. These p97 ARE-mutated cell lines exhibit altered expression of p97 and NRF2, as well as a compromised response to NRF2 inducers. Importantly, we also found a positive correlation between NRF2 activation and p97 expression in human cancer patients. Finally, using chronic arsenic-transformed cell lines, we demonstrated a synergistic effect of NRF2 and p97 inhibition in killing cancer cells with high NRF2 and p97 expression. Our study suggests dual upregulation of NRF2 and p97 occurs in certain types of cancers, suggesting that inhibition of both NRF2 and p97 could be a promising treatment strategy for stratified cancer patients.
Collapse
Affiliation(s)
- Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jack Godek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Nicholas W McKee
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Joe G N Garcia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, FL, 33458, USA
| | - Max Costa
- Departments of Environmental Medicine, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10010, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
13
|
Soghli N, Yousefi H, Naderi T, Fallah A, Moshksar A, Darbeheshti F, Vittori C, Delavar MR, Zare A, Rad HS, Kazemi A, Bitaraf A, Hussen BM, Taheri M, Jamali E. NRF2 signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer. Pathol Res Pract 2023; 243:154341. [PMID: 36739754 DOI: 10.1016/j.prp.2023.154341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Breast cancer is the most frequently diagnosed malignant tumor in women and a major public health concern. NRF2 axis is a cellular protector signaling pathway protecting both normal and cancer cells from oxidative damage. NRF2 is a transcription factor that binds to the gene promoters containing antioxidant response element-like sequences. In this report, differential expression of NRF2 signaling pathway elements, as well as the correlation of NRF2 pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, tumor grade, tumor stage, and methylation status, has been investigated in breast cancer using METABRIC and TCGA datasets. In the current report, our findings revealed the deregulation of several NRF2 signaling elements in breast cancer patients. Moreover, there were negative correlations between the methylation of NRF2 genes and mRNA expression. The expression of NRF2 genes significantly varied between different breast cancer subtypes. In conclusion, substantial deregulation of NRF2 signaling components suggests an important role of these genes in breast cancer. Because of the clear associations between mRNA expression and methylation status, DNA methylation could be one of the mechanisms that regulate the NRF2 pathway in breast cancer. Differential expression of Hippo genes among various breast cancer molecular subtypes suggests that NRF2 signaling may function differently in different subtypes of breast cancer. Our data also highlights an interesting link between NRF2 components' transcription and tumor grade/stage in breast cancer.
Collapse
Affiliation(s)
- Negin Soghli
- Babol University of Medical Sciences, Faculty of Dentistry, Babol, Iran
| | - Hassan Yousefi
- Louisiana State University Health Science Center (LSUHSC), Biochemistry & Molecular Biology, New Orleans, LA, USA; Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tohid Naderi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Fallah
- Department of hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moshksar
- University of Texas Medical Branch (UTMB), Interventional Radiology, Galveston, TX, USA
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Cecilia Vittori
- Stanley S. Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Zare
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Sadeghi Rad
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Abtin Kazemi
- Fasa University of Medical Sciences, School of Medicine, Fasa, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Qureshi HA, Azimi A, Wells J, Fernandez-Penas P. Tape stripped stratum corneum samples are suitable for diagnosis and comprehensive proteomic investigation in mycosis fungoides. Proteomics Clin Appl 2023; 17:e2200039. [PMID: 36824058 DOI: 10.1002/prca.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Mycosis Fungoides (MF) is a common cutaneous T-cell lymphoma. It can sometimes be challenging to diagnose MF using current clinico-histopathological criteria. Non-invasive molecular profiling analysis has the potential to aid the diagnosis and understanding of MF. METHOD Lesional and body site matched normal stratum corneum samples were obtained from the same MF patients (n = 28) using adhesive discs, followed by proteomic analyses using data-independent acquisition mass spectrometry (DIA-MS). Differential abundance analyses and bioinformatic analyses were performed to identify differentially abundant proteins and altered biofunctions between the MF and normal stratum corneum samples. RESULTS In total, 1303 proteins were identified, of which 290 proteins were significantly changed in the MF cohort compared to the normal stratum corneum. Ingenuity pathway analysis (IPA) predicted the significant inhibition of cell death of cancer cells and significant activation of immune-related activities and viral infection in the MF lesions. MF lesions were also associated with upstream regulators relating to immuno-oncologic dysfunctions. The top-250 variating proteins efficiently separated normal stratum corneum from matched MF samples. CONCLUSION Non-invasive proteomic analysis could transform the diagnosis of MF by reducing the need for invasive biopsy. The identification of altered biological functions may serve as useful biomarkers to predict MF progression.
Collapse
Affiliation(s)
- Hafsa Anees Qureshi
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Ali Azimi
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Jillian Wells
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Pablo Fernandez-Penas
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
15
|
Oku Y, Madia F, Lau P, Paparella M, McGovern T, Luijten M, Jacobs MN. Analyses of Transcriptomics Cell Signalling for Pre-Screening Applications in the Integrated Approach for Testing and Assessment of Non-Genotoxic Carcinogens. Int J Mol Sci 2022; 23:ijms232112718. [PMID: 36361516 PMCID: PMC9659232 DOI: 10.3390/ijms232112718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.
Collapse
Affiliation(s)
- Yusuke Oku
- The Organisation for Economic Cooperation and Development (OECD), 2 Rue Andre Pascal, 75016 Paris, France
- Correspondence: (Y.O.); (M.N.J.)
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martin Paparella
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innbruck, Austria
| | - Timothy McGovern
- US Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20901, USA
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA Utrecht, The Netherlands
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazard (CRCE), Public Health England (PHE), Chilton OX11 0RQ, Oxfordshire, UK
- Correspondence: (Y.O.); (M.N.J.)
| |
Collapse
|
16
|
Salehabadi A, Farkhondeh T, Harifi-Mood MS, Aschner M, Samarghandian S. Role of Nrf2 in bisphenol effects: a review study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55457-55472. [PMID: 35680748 DOI: 10.1007/s11356-022-20996-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols (BPs), the main endocrine-disrupting chemicals used in polycarbonate plastics, epoxy-phenol resins, and some other manufacturers, have been interestingly focused to find their toxic effects in recent years. Due to the strong relation between bisphenols and some crucial receptors such as ERs, AR, glucocorticoid receptor, THRs, ERRs, hPXR, AhR, and etcetera, the disrupting and oncogenic role of these chemicals on reproductive, respiratory, and circulatory systems and a broad group of body tissues have been investigated. BPs induce oxidant enzymes, exert antioxidant enzymes from body cells, and result in the expression of proinflammatory genes, leading to cell apoptosis and inflammation. To maintain the homeostasis of human body cells, Nrf2, the key regulator of oxidative stress (Ashrafizadeh et al., 2020a; Ashrafizadeh et al., 2020c; Boroumand et al., 2018), confronts BP-induced ROS and RNS through the activation of antioxidant enzymes such as SOD1/2, CAT, GSH, GPX, HO-1, and etcetera. Chemicals and drugs such as LUT, NAC, GEN, L-NMMA, Ph2Se2, and GE can regulate the interactions between BPs and Nrf2. Despite the vital role of controlled levels of Nrf2 as an anti-inflammatory and antiapoptotic element, the uncontrolled activity of this transcription factor could lead to cell proliferation and tumorigenesis through NQO1, SLC7a11, Gclm, HMOX1, NQO1 gene activation, and some other genes. To avoid the excessive activity of Nrf2, some protein complexes like CUL3-RBX1-Keap1 (as the primary regulator), β-TrCP, and WDR23 regulate Nrf2's function. It is necessary to note that BPA, as the most famous member, is further reviewed due to its resemblance to the bisphenol family to each other.
Collapse
Affiliation(s)
- Amin Salehabadi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, NY, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
17
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
18
|
Fahrmann JF, Tanaka I, Irajizad E, Mao X, Dennison JB, Murage E, Casabar J, Mayo J, Peng Q, Celiktas M, Vykoukal JV, Park S, Taguchi A, Delgado O, Tripathi SC, Katayama H, Soto LMS, Rodriguez-Canales J, Behrens C, Wistuba I, Hanash S, Ostrin EJ. Mutational Activation of the NRF2 Pathway Upregulates Kynureninase Resulting in Tumor Immunosuppression and Poor Outcome in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:2543. [PMID: 35626147 PMCID: PMC9139317 DOI: 10.3390/cancers14102543] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Activation of the NRF2 pathway through gain-of-function mutations or loss-of-function of its suppressor KEAP1 is a frequent finding in lung cancer. NRF2 activation has been reported to alter the tumor microenvironment. Here, we demonstrated that NRF2 alters tryptophan metabolism through the kynurenine pathway that is associated with a tumor-promoting, immune suppressed microenvironment. Specifically, proteomic profiles of 47 lung adenocarcinoma (LUAD) cell lines (11 KEAP1 mutant and 36 KEAP1 wild-type) revealed the tryptophan-kynurenine enzyme kynureninase (KYNU) as a top overexpressed protein associated with activated NRF2. The siRNA-mediated knockdown of NFE2L2, the gene encoding for NRF2, or activation of the NRF2 pathway through siRNA-mediated knockdown of KEAP1 or via chemical induction with the NRF2-activator CDDO-Me confirmed that NRF2 is a regulator of KYNU expression in LUAD. Metabolomic analyses confirmed KYNU to be enzymatically functional. Analysis of multiple independent gene expression datasets of LUAD, as well as a LUAD tumor microarray demonstrated that elevated KYNU was associated with immunosuppression, including potent induction of T-regulatory cells, increased levels of PD1 and PD-L1, and resulted in poorer survival. Our findings indicate a novel mechanism of NRF2 tumoral immunosuppression through upregulation of KYNU.
Collapse
Affiliation(s)
- Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Ichidai Tanaka
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan;
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Xiangying Mao
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Julian Casabar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Jeffrey Mayo
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.M.); (Q.P.)
| | - Qian Peng
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.M.); (Q.P.)
| | - Muge Celiktas
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Jody V. Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Soyoung Park
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan;
| | - Oliver Delgado
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | | | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Luisa Maren Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (L.M.S.S.); (J.R.-C.); (C.B.); (I.W.)
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (L.M.S.S.); (J.R.-C.); (C.B.); (I.W.)
| | - Carmen Behrens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (L.M.S.S.); (J.R.-C.); (C.B.); (I.W.)
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (L.M.S.S.); (J.R.-C.); (C.B.); (I.W.)
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.F.F.); (X.M.); (J.B.D.); (E.M.); (J.C.); (M.C.); (J.V.V.); (S.P.); (O.D.); (H.K.); (S.H.)
| | - Edwin J. Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (J.M.); (Q.P.)
| |
Collapse
|
19
|
Yang Y, Xu L, Sun L, Zhang P, Farid SS. Machine learning application in personalised lung cancer recurrence and survivability prediction. Comput Struct Biotechnol J 2022; 20:1811-1820. [PMID: 35521553 PMCID: PMC9043969 DOI: 10.1016/j.csbj.2022.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Machine learning is an important artificial intelligence technique that is widely applied in cancer diagnosis and detection. More recently, with the rise of personalised and precision medicine, there is a growing trend towards machine learning applications for prognosis prediction. However, to date, building reliable prediction models of cancer outcomes in everyday clinical practice is still a hurdle. In this work, we integrate genomic, clinical and demographic data of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) patients from The Cancer Genome Atlas (TCGA) and introduce copy number variation (CNV) and mutation information of 15 selected genes to generate predictive models for recurrence and survivability. We compare the accuracy and benefits of three well-established machine learning algorithms: decision tree methods, neural networks and support vector machines. Although the accuracy of predictive models using the decision tree method has no significant advantage, the tree models reveal the most important predictors among genomic information (e.g. KRAS, EGFR, TP53), clinical status (e.g. TNM stage and radiotherapy) and demographics (e.g. age and gender) and how they influence the prediction of recurrence and survivability for both early stage LUAD and LUSC. The machine learning models have the potential to help clinicians to make personalised decisions on aspects such as follow-up timeline and to assist with personalised planning of future social care needs.
Collapse
Key Words
- ANNs, artificial neural networks
- ANOVA, analysis of variance
- AUC, the area under the ROC curve
- CART, classification and regression tree
- CNV, copy number variation
- DTs, decision trees
- Decision tree
- FFNN, Feedforward neural networks
- LS-SVM, least-squares support vector machine
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Lung cancer
- ML, machine learning
- Machine learning
- NSCLC, non-small cell lung cancer
- Personalized diagnosis and prognosis
- ROC, receiver operating characteristic
- SVMs, support vector machines
- TCGA, The Cancer Genome Atlas
- TNM, a common cancer staging system while T, N and M refers to tumour, node and metastasis
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Li Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200043, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200043, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200043, China
| | - Suzanne S. Farid
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
20
|
Brennan S, Baird AM, O’Regan E, Sheils O. The Role of Human Papilloma Virus in Dictating Outcomes in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:677900. [PMID: 34250016 PMCID: PMC8262095 DOI: 10.3389/fmolb.2021.677900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
The Human Papilloma Virus (HPV) is an oncogenic virus which is associated with the development of head and neck squamous cell carcinoma (HNSCC), predominantly within the oropharynx. Approximately 25% of oropharyngeal squamous cell carcinoma (OPSCC) cases worldwide are attributable to HPV infection, with an estimated 65% in the United States. Transmission is via exposure during sexual contact, with distinctive anatomical features of the tonsils providing this organ with a predilection for infection by HPV. No premalignant lesion is identifiable on clinical examination, thus no comparative histological features to denote the stages of carcinogenesis for HPV driven HNSCC are identifiable. This is in contrast to HPV-driven cervical carcinoma, making screening a challenge for the head and neck region. However, HPV proffers a favorable prognosis in the head and neck region, with better overall survival rates in contrast to its HPV negative counterparts. This has resulted in extensive research into de-intensifying therapies aiming to minimize the morbidity induced by standard concurrent chemo-radiotherapy without compromising efficacy. Despite the favorable prognosis, cases of recurrence and/or metastasis of HPV positive HNSCC do occur, and are linked with poor outcomes. HPV 16 is the most frequent genotype identified in HNSCC, yet there is limited research to date studying the impact of other HPV genotype with respect to overall survival. A similar situation pertains to genetic aberrations associated in those with HPV positive HNSCC who recur, with only four published studies to date. Somatic mutations in TSC2, BRIP1, NBN, TACC3, NFE2l2, STK11, HRAS, PIK3R1, TP63, and FAT1 have been identified in recurrent HPV positive OPSCC. Finding alternative therapeutic strategies for this young cohort may depend on upfront identification of HPV genotypes and mutations which are linked with worse outcomes, thus ensuring appropriate stratification of treatment regimens.
Collapse
Affiliation(s)
- Shane Brennan
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| | - Esther O’Regan
- Department of Histopathology, St. James’s Hospital, Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Faculty of Health Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
21
|
Hata A, Nakajima T, Matsusaka K, Fukuyo M, Nakayama M, Morimoto J, Ito Y, Yamamoto T, Sakairi Y, Rahmutulla B, Ota S, Wada H, Suzuki H, Iwata T, Matsubara H, Ohara O, Yoshino I, Kaneda A. Genetic alterations in squamous cell lung cancer associated with idiopathic pulmonary fibrosis. Int J Cancer 2021; 148:3008-3018. [PMID: 33533494 DOI: 10.1002/ijc.33499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) are at higher risk of developing lung cancers including squamous cell lung carcinoma (SCC), which typically carries a poor prognosis. Although the molecular basis of cancer development subsequent to IPF has not been fully investigated, we recently reported two epigenetic phenotypes characterized by frequent and infrequent DNA hypermethylation in SCC, and an association of the infrequent hypermethylation phenotype with IPF-associated SCCs. Here, we conducted targeted exon sequencing in SCCs with and without IPF using the Human Lung Cancer Panel to investigate the genetic basis of IPF-associated SCC. SCCs with and without IPF displayed comparable numbers of total mutations (137 ± 22 vs 131 ± 27, P = .5), nonsynonymous mutations (72 ± 14 vs 69 ± 16, P = .5), indels (3.0 ± 3.5 vs 3.0 ± 3.9, P = 1) and synonymous mutations (62 ± 9.1 vs 60 ± 12, P = .5). Signature 1 was the predominant signature in SCCs with and without IPF. SETD2 and NFE2L2 mutations were significantly associated with IPF (44% vs 13%, P = .03 for SETD2; 38% vs 10%, P = .04 for NFE2L2). MYC amplification, assessed by copy number variant analysis, was also significantly associated with IPF (18.8% vs 0%, P = .04). Mutations in TP53 and CDKN2A were observed relatively frequently in SCCs with frequent hypermethylation (P = .02 for TP53 and P = .06 for CDKN2A). Survival analysis revealed that the SETD2 mutation was significantly associated with worse prognosis (P = .04). Collectively, we found frequent involvement of SETD2 and NFE2L2 mutations and MYC amplification in SCCs with IPF, and an association of a SETD2 mutation with poorer prognosis.
Collapse
Affiliation(s)
- Atsushi Hata
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Nakajima
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Applied Genomics and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Junichi Morimoto
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuki Ito
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Yamamoto
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Ota
- Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Hironobu Wada
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takekazu Iwata
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery and Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
22
|
Huang S, He T, Yang S, Sheng H, Tang X, Bao F, Wang Y, Lin X, Yu W, Cheng F, Lv W, Hu J. Metformin reverses chemoresistance in non-small cell lung cancer via accelerating ubiquitination-mediated degradation of Nrf2. Transl Lung Cancer Res 2020; 9:2337-2355. [PMID: 33489797 PMCID: PMC7815349 DOI: 10.21037/tlcr-20-1072] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The therapeutic efficacy of cisplatin-based chemotherapy for non-small cell lung cancer (NSCLC) is limited by drug resistance. In NSCLC, hyperactivation of nuclear factor erythroid 2-related factor 2 (Nrf2) counteracts oxidative stress to promote chemoresistance. Metformin-mediated downregulation of Nrf2 plays a pivotal role in overcoming drug resistance in NSCLC cells. Therefore, a deeper understanding of the molecular mechanisms of combination therapy and the role of Nrf2 in chemotherapeutic response is critical to clinical translation. Methods The effects of combination therapy with metformin and cisplatin on cell proliferation and apoptosis, intracellular reactive oxygen species (ROS) levels, and xenograft tumor formation were analyzed in NSCLC cells. Co-immunoprecipitation (co-IP) and Phos-tag assays were used to explore the mechanism of metformin-mediated Nrf2 suppression. Immunohistochemical (IHC) staining was performed to detect Nrf2 expression in matched tumor samples before and after neoadjuvant chemotherapy. Results Metformin was observed to synergistically augment cisplatin-induced cytotoxicity by strongly inhibiting the level of Nrf2, thereby weakening the antioxidant system and detoxification ability of Nrf2 and enhancing ROS-mediated apoptosis in NSCLC. The synergistic antitumor effect of combination therapy is blocked by treatment with the ROS scavenger N-acetyl cysteine (NAC) as well as overexpression of Nrf2 and its downstream antioxidant protein. Mechanistically, metformin extensively dephosphorylates Nrf2 by attenuating the interaction between Nrf2 and extracellular signal-regulated kinases 1/2 (ERK1/2), which then restores its polyubiquitination and accelerates its proteasomal degradation. Moreover, for the first time, an association of non-decreased Nrf2 expression in patients after neoadjuvant chemotherapy with poor survival and chemoresistance in NSCLC was revealed. Conclusions Our findings illustrate the mechanism of metformin-mediated Nrf2 degradation through posttranslational modifications (PTMs), which weakens the ROS defense system in NSCLC. Fluctuations in Nrf2 expression have a strong predictive ability for chemotherapeutic response in neoadjuvant NSCLC patients. Targeting of the Nrf2 pathway could be a therapeutic strategy for overcoming chemoresistance, with metformin as the first choice for this strategy.
Collapse
Affiliation(s)
- Sha Huang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu He
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxu Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Feichao Bao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenfeng Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Cheng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N. The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants (Basel) 2020; 9:E1151. [PMID: 33228209 PMCID: PMC7699519 DOI: 10.3390/antiox9111151] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer remains an elusive, highly complex disease and a global burden. Constant change by acquired mutations and metabolic reprogramming contribute to the high inter- and intratumor heterogeneity of malignant cells, their selective growth advantage, and their resistance to anticancer therapies. In the modern era of integrative biomedicine, realizing that a personalized approach could benefit therapy treatments and patients' prognosis, we should focus on cancer-driving advantageous modifications. Namely, reactive oxygen species (ROS), known to act as regulators of cellular metabolism and growth, exhibit both negative and positive activities, as do antioxidants with potential anticancer effects. Such complexity of oxidative homeostasis is sometimes overseen in the case of studies evaluating the effects of potential anticancer antioxidants. While cancer cells often produce more ROS due to their increased growth-favoring demands, numerous conventional anticancer therapies exploit this feature to ensure selective cancer cell death triggered by excessive ROS levels, also causing serious side effects. The activation of the cellular NRF2 (nuclear factor erythroid 2 like 2) pathway and induction of cytoprotective genes accompanies an increase in ROS levels. A plethora of specific targets, including those involved in thioredoxin (TRX) and glutathione (GSH) systems, are activated by NRF2. In this paper, we briefly review preclinical research findings on the interrelated roles of the NRF2 pathway and TRX and GSH systems, with focus given to clinical findings and their relevance in carcinogenesis and anticancer treatments.
Collapse
Affiliation(s)
| | | | | | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (L.M.); (S.B.S.)
| |
Collapse
|
24
|
Wang Q, Xu L, Wang G, Chen L, Li C, Jiang X, Gao H, Yang B, Tian W. Prognostic and clinicopathological significance of NRF2 expression in non-small cell lung cancer: A meta-analysis. PLoS One 2020; 15:e0241241. [PMID: 33186371 PMCID: PMC7665804 DOI: 10.1371/journal.pone.0241241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/09/2020] [Indexed: 01/14/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) functions as a transcription factor and regulates a wide array of antioxidant and stress-responsive genes. NRF2 has been widely implicated in different types of cancers, but only limited studies concerning the relationship between NRF2 expression and tumour invasion or prognosis in lung cancer. Therefore, we conducted a meta-analysis to determine the prognostic value of NRF2 in patients with non-small cell lung cancer (NSCLC). The relationship between NRF2 expression in NSCLC patients and clinicopathological features was also investigated. Overall survival (OS) and treatment response rate were evaluated using STATA software. Twenty eligible articles with 2530 lung cancer patients were included in this meta-analysis. The results revealed that high expression level of NRF2 was associated with pathologic distant metastasis (odds ratio (OR) = 2.64, 95% confidence interval (CI) 1.62-4.31; P < 0.001), lymph node metastasis (OR = 2.14, 95% CI: 1.53-3.00; P < 0.001), and tumour node metastasis (TNM) stage (OR = 1.95, 95% CI: 1.52-2.49, P < 0.001). High NRF2 expression was associated with low treatment response rate in platinum-based chemotherapy (HR = 0.11, 95% CI 0.02-0.51; P = 0.005). High expression level of NRF2 is predictive for poor overall survival rate (HR = 1.86, 95% CI 1.44-2.41, P < 0.001) and poor progression-free survival (PFS) (HR = 2.27, 95% CI 1.26-4.09, P = 0.006). Compared to patients with a low level of NRF2 expression, patients with high NRF2 expression levels were associated with worse OS and PFS when given the chemotherapy or EGFR-TKI. Together, our meta-analysis results suggest that NRF2 can act as a potential indicator of NSCLC tumour aggressiveness and help the prognosis and design of a better treatment strategy for NSCLC patients.
Collapse
Affiliation(s)
- Qingsong Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Liang Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Gang Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Chen
- Department of Otolaryngology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changping Li
- Department of Health Statistics, College of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiangli Jiang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hai Gao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bing Yang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiping Tian
- Tianjin Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
Safety assessment of the innovative functional food ingredient from Cannabis sativa L. wastes. THE EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Xylooligosaccharides (XOS) are the oligomers of β-1,4 linked xylose monomers and they have health promoting effect by modulating the beneficial microorganisms in intestine. In this study, hydrolysate obtained from hemp (Cannabis sativa) shives was investigated in terms of its in vitro toxicological impacts at cellular and genetic levels and antioxidant activity. The hydrolysate was found to contain 0.264 mg mL-1 of xylose, 0.789 mg mL-1 of xylobiose and 0.171 mg mL-1 of xylotriose in addition to hydroxymethlyfurfural (HMF) and furfural (F) at concentrations of 0.545 mg mL-1 and 0.107 mg mL-1, respectively. The cells, colon epithelial cells (CoN) and colon cancer cells (Caco-2), exposed to 5.00 mg mL-1 or lower XOS hydrolysate showed very similar growth profiles to the untreated control cells. At the genetic level, the oxidative responses of the cell types to XOS hydrolysate were different as measured by NFE2L2 (Nuclear factor, erythroid-derived 2-like 2) gene expression. Regarding antioxidant activity, the amount of XOS hydrolysate (IC50) that cleared 50 % of the 2,2-diphenyl-l-picrylhydrazyl (DPPH) in the medium was calculated as 0.12 mg mL-1. To conclude, based on in vitro studies, XOS hydrolysate obtained from lignocellulosic hemp shives emerges as an innovative, alternative and safe functional food candidate.
Collapse
|
26
|
Validating a targeted next-generation sequencing assay and profiling somatic variants in Chinese non-small cell lung cancer patients. Sci Rep 2020; 10:2070. [PMID: 32034196 PMCID: PMC7005734 DOI: 10.1038/s41598-020-58819-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/29/2019] [Indexed: 02/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is featured with complex genomic alterations. Molecular profiling of large cohort of NSCLC patients is thus a prerequisite for precision medicine. We first validated the detection performance of a next-generation sequencing (NGS) cancer hotspot panel, OncoAim, on formalin-fixed paraffin-embedded (FFPE) samples. We then utilized OncoAim to delineate the genomic aberrations in Chinese NSCLC patients. Overall detection performance was powerful for mutations with allele frequency (MAF) ≥ 5% at >500 × coverage depth, with >99% sensitivity, high specificity (positive predictive value > 99%), 94% accuracy and 96% repeatability. Profiling 422 NSCLC FFPE samples revealed that patient characteristics, including gender, age, lymphatic spread, histologic grade and histologic subtype were significantly associated with the mutation incidence of EGFR and TP53. Moreover, RTK signaling pathway activation was enriched in adenocarcinoma, while PI(3)K pathway activation, oxidative stress pathway activation, and TP53 pathway inhibition were more prevalent in squamous cell carcinoma. Additionally, novel co-existence (e.g., variants in BRAF and PTEN) and mutual-exclusiveness (e.g., alterations in EGFR and NFE2L2) were found. Finally, we revealed distinct mutation spectrum in TP53, as well as a previously undervalued PTEN aberration. Our findings could aid in improving diagnosis, prognosis and personalized therapeutic decisions of Chinese NSCLC patients.
Collapse
|
27
|
Akın-Balı DF, Aktas SH, Unal MA, Kankılıc T. Identification of novel Nrf2/Keap1 pathway mutations in pediatric acute lymphoblastic leukemia. Pediatr Hematol Oncol 2020; 37:58-75. [PMID: 31661353 DOI: 10.1080/08880018.2019.1682090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy of lymphoid progenitor cells, characterized by a wide range of biological and clinical heterogeneity. Oxidative stress is a common problem observed in carcinogenesis and it is involved in developing treatment resistance. Nuclear Factor Erythroid-2-Like 2 (Nrf2) transcription factor is the main regulator of antioxidant responses. The levels of reactive oxygen species (ROS) are tightly controlled and regulated by Nrf2 and its suppressor protein Kelch-like ECH-associated protein 1 (Keap1). Recently, many studies have shown that most of the genes in the Nrf2/Keap1/nuclear factor kappa-B (NF-κB)/phosphotyrosine-independent ligand for the Lck SH2 domain Of 62 KDa (p62) pathway show abnormally high mutational variations in cancer. However, variations in the Nrf2/Keap1/NF-κB1/p62 pathway in pediatric ALL have not been thoroughly investigated, yet. Thirty children, who were diagnosed with pediatirc ALL were included in the study. The Nrf2/Keap1/NF-κB1/p62 pathway variants were analyzed by DNA sequencing analysis. The PolyPhen-2 program was used for identifying pathogenic mutations. Our study examined the molecular dynamics (MD) perspectives of the effect of A159T and E121K mutations on protein stability for the first time in the literature by using the GROMACS45 software package utilizing the OPSLAA force field. Of the detected 17 nucleotide changes, 6 were novel. The study predicted the potential pathological effect of two mutations p. A159T and p.E121K in the Keap1 gene. The MD perspectives revealed that the E121K mutant's observed structural behavior accounted for the key role of His-129 and E121K, where E121K exhibited much higher drift compared to His-129. For a future perspective, it would be meaningful to study the protein-small molecule interactions of the Keap1 protein to elaborate on the drug effects in patients carrying these mutations.
Collapse
Affiliation(s)
| | - Sedef Hande Aktas
- Vocational School of Health Services, Eskisehir Osmangazi University, Eskisehir, Turkey.,Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| | | | - Teoman Kankılıc
- Faculty of Science Literature, Department of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| |
Collapse
|
28
|
Chen YC, Sahoo S, Brien R, Jung S, Humphries B, Lee W, Cheng YH, Zhang Z, Luker KE, Wicha MS, Luker GD, Yoon E. Single-cell RNA-sequencing of migratory breast cancer cells: discovering genes associated with cancer metastasis. Analyst 2019; 144:7296-7309. [PMID: 31710321 PMCID: PMC8942075 DOI: 10.1039/c9an01358j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Considerable evidence suggests breast cancer metastasis arises from cells undergoing epithelial-to-mesenchymal-transition (EMT) and cancer stem-like cells (CSCs). Using a microfluidic device that enriches migratory breast cancer cells with enhanced capacity for tumor formation and metastasis, we identified genes differentially expressed in migratory cells by high-throughput single-cell RNA-sequencing. Migratory cells exhibited overall signatures of EMT and CSCs with variable expression of marker genes, and they retained expression profiles of EMT over time. With single-cell resolution, we discovered intermediate EMT states and distinct epithelial and mesenchymal sub-populations of migratory cells, indicating breast cancer cells can migrate rapidly while retaining an epithelial state. Migratory cells showed differential profiles for regulators of oxidative stress, mitochondrial morphology, and the proteasome, revealing potential vulnerabilities and unexpected consequences of drugs. We also identified novel genes correlated with cell migration and outcomes in breast cancer as potential prognostic biomarkers and therapeutic targets to block migratory cells in metastasis.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Saswat Sahoo
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| | - Riley Brien
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
| | - Seungwon Jung
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
| | - Brock Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Woncheol Lee
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
| | - Yu-Heng Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
| | - Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Max S. Wicha
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Gary D. Luker
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
29
|
Goeman F, De Nicola F, Scalera S, Sperati F, Gallo E, Ciuffreda L, Pallocca M, Pizzuti L, Krasniqi E, Barchiesi G, Vici P, Barba M, Buglioni S, Casini B, Visca P, Pescarmona E, Mazzotta M, De Maria R, Fanciulli M, Ciliberto G, Maugeri-Saccà M. Mutations in the KEAP1-NFE2L2 Pathway Define a Molecular Subset of Rapidly Progressing Lung Adenocarcinoma. J Thorac Oncol 2019; 14:1924-1934. [DOI: 10.1016/j.jtho.2019.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
|
30
|
Dilara Fatma Akın-Balı, Teoman Kankılıç. Genetic Variations in Nrf2-Keap1 Complex: A Step towards Understanding Cancer Resistance in Blind Mole Rats Cytotypes. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019060050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Aksenenko MB, Palkina NV, Sergeeva ON, Yu Sergeeva E, Kirichenko AK, Ruksha TG. miR-155 overexpression is followed by downregulation of its target gene, NFE2L2, and altered pattern of VEGFA expression in the liver of melanoma B16-bearing mice at the premetastatic stage. Int J Exp Pathol 2019; 100:311-319. [PMID: 32043657 PMCID: PMC7042756 DOI: 10.1111/iep.12342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are involved in the control of tumour progression and in metastatic cascade dynamics. However, the role of microRNAs in distant organ reorganization at the premetastatic stage is less clear, although the process of premetastatic niche formation is a crucial event according to modern concepts of tumour dissemination. The role of the present study was to investigate the expression levels of miR-155, miR-21, miR-205 and miR-let7b, as well as that of their target genes, in target organs of melanoma metastasis at the premetastatic stage. The expression levels of both the pro-oncogenic miR-155 and the tumour suppressive miR-205 were found to be altered in the premetastatic liver of melanoma B16-bearing mice. Bioinformatics analysis identified the target genes of miR-155 to be nuclear factor, erythroid 2 like 2 (NFE2L2), secretogranin II, miR-205, semaphorin 5A and vascular endothelial growth factor A (VEGFA). Among those, the redox status regulatory factor NFE2L2 was downregulated, which corresponded to increased levels of miR-155. Due to the ability of pro-oxidative events to initiate angiogenesis, VEGFA levels were evaluated in the premetastatic liver by immunohistochemistry, which revealed increased VEGFA expression in the central parts of the organ and diminished expression in the periphery. Taken together, these findings may support the concept of functional organ reorganization due to melanoma progression.
Collapse
Affiliation(s)
- Mariya B. Aksenenko
- Departments of PathophysiologyKrasnoyarsk State Medical UniversityKrasnoyarskRussia
| | - Nadezhda V. Palkina
- Departments of PathophysiologyKrasnoyarsk State Medical UniversityKrasnoyarskRussia
| | - Olga N. Sergeeva
- Departments of PathophysiologyKrasnoyarsk State Medical UniversityKrasnoyarskRussia
| | | | - Andrey K. Kirichenko
- Forensic Medicine & Pathological AnatomyKrasnoyarsk State Medical UniversityKrasnoyarskRussia
| | - Tatiana G. Ruksha
- Departments of PathophysiologyKrasnoyarsk State Medical UniversityKrasnoyarskRussia
| |
Collapse
|
32
|
Yang Q, Deng H, Xia H, Xu M, Pan G, Mao J, Tao S, Yamanaka K, An Y. High NF-E2-related factor 2 expression predicts poor prognosis in patients with lung cancer: a meta-analysis of cohort studies. Free Radic Res 2019; 54:790-798. [DOI: 10.1080/10715762.2019.1642472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Hanyi Deng
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Mengchuan Xu
- Shihezi University School of Medicine, Shihezi, China
| | - Guotao Pan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Jiayuan Mao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Shasha Tao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | | | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Kerins MJ, Liu P, Tian W, Mannheim W, Zhang DD, Ooi A. Genome-Wide CRISPR Screen Reveals Autophagy Disruption as the Convergence Mechanism That Regulates the NRF2 Transcription Factor. Mol Cell Biol 2019; 39:e00037-19. [PMID: 31010806 PMCID: PMC6580702 DOI: 10.1128/mcb.00037-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor (erythroid 2)-like 2 (NRF2 or NFE2L2) transcription factor regulates the expression of many genes that are critical in maintaining cellular homeostasis. Its deregulation has been implicated in many diseases, including cancer and metabolic and neurodegenerative diseases. While several mechanisms by which NRF2 can be activated have gradually been identified over time, a more complete regulatory network of NRF2 is still lacking. Here we show through a genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screen that a total of 273 genes, when knocked out, will lead to sustained NRF2 activation. Pathway analysis revealed a significant overrepresentation of genes (18 of the 273 genes) involved in autophagy. Molecular validation of a subset of the enriched genes identified 8 high-confidence genes that negatively regulate NRF2 activity irrespective of cell type: ATG12, ATG7, GOSR1, IFT172, NRXN2, RAB6A, VPS37A, and the well-known negative regulator of NRF2, KEAP1 Of these, ATG12, ATG7, KEAP1, and VPS37A are known to be involved in autophagic processes. Our results present a comprehensive list of NRF2 negative regulators and reveal an intimate link between autophagy and NRF2 regulation.
Collapse
Affiliation(s)
- Michael J Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Wang Tian
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - William Mannheim
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
34
|
Telkoparan-Akillilar P, Suzen S, Saso L. Pharmacological Applications of Nrf2 Inhibitors as Potential Antineoplastic Drugs. Int J Mol Sci 2019; 20:ijms20082025. [PMID: 31022969 PMCID: PMC6514836 DOI: 10.3390/ijms20082025] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is associated with many diseases ranging from cancer to neurodegenerative disorders. Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is one of the most effective cytoprotective controller against OS. Modulation of Nrf2 pathway constitutes a remarkable strategy in the antineoplastic treatments. A big number of Nrf2-antioxidant response element activators have been screened for use as chemo-preventive drugs in OS associated diseases like cancer even though activation of Nrf2 happens in a variety of cancers. Research proved that hyperactivation of the Nrf2 pathway produces a situation that helps the survival of normal as well as malignant cells, protecting them against OS, anticancer drugs, and radiotherapy. In this review, the modulation of the Nrf2 pathway, anticancer activity and challenges associated with the development of an Nrf2-based anti-cancer treatment approaches are discussed.
Collapse
Affiliation(s)
- Pelin Telkoparan-Akillilar
- Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, 06520 Balgat, Ankara, Turkey.
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Tandogan, Ankara, Turkey.
| | - Luciano Saso
- Department of Physiology and Pharmacology, "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
35
|
Barrera-Rodríguez R. Importance of the Keap1-Nrf2 pathway in NSCLC: Is it a possible biomarker? Biomed Rep 2018; 9:375-382. [PMID: 30345037 PMCID: PMC6176108 DOI: 10.3892/br.2018.1143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Worldwide, lung cancer remains the most common cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for 85% of all diagnosed lung cancer cases. Chemotherapy is considered the standard of care for patients with advanced NSCLC; however, the tumors can develop mechanisms that inactivate these drugs. Comparative genomic analyses have revealed that disruptions in the kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2-related factor-2 (Nrf2) pathway are frequent in NSCLC, although Nrf2 mutations occur less frequently than Keap1 mutations. As the Keap1-Nrf2 pathway appears to be a primary regulator of key cellular processes that aid to resist the action of chemotherapy drugs, the clinical implementation of Nrf2 inhibitors in patients with advanced NSCLC may be a useful therapeutic approach for patients harboring KEAP1-NRF2 mutations. The aim of the present review was to highlight findings of how constitutive Nrf2 activation may be a specific biomarker for predicting patients most likely to benefit from classical chemotherapy drugs, overall improving patient survival rate.
Collapse
Affiliation(s)
- Raúl Barrera-Rodríguez
- Department of Biochemistry and Environmental Medicine, National Institute of Respiratory Diseases, Mexico City 14080, Mexico
| |
Collapse
|
36
|
A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci Rep 2018; 8:12846. [PMID: 30150714 PMCID: PMC6110754 DOI: 10.1038/s41598-018-31281-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Identification and characterization of somatic mutations in cancer have important prognostication and treatment implications. Genes encoding the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor and its negative regulator, Kelch-like ECH-associated protein 1 (KEAP1), are frequently mutated in cancer. These mutations drive constitutive NRF2 activation and correlate with poor prognosis. Despite its apparent significance, a comprehensive catalogue of somatic NRF2 mutations across different tumor types is still lacking. Here, we catalogue NRF2 mutations in The Cancer Genome Atlas (TCGA) database. 226 unique NRF2-mutant tumors were identified from 10,364 cases. NRF2 mutations were found in 21 out of the 33 tumor types. A total of 11 hotspots were identified. Of these, mutation to the R34 position was most frequent. Notably, R34 and D29 mutations were overrepresented in bladder, lung, and uterine cancers. Analyses of corresponding RNA sequencing data using a de novo derived gene expression classifier showed that the R34 mutations drive constitutive NRF2 activation with a selection pressure biased against the formation of R34L. Of all R34 mutants, R34L conferred the least degree of protein stabilization, suggesting a pro-tumor NRF2 half-life threshold. Our findings offer a comprehensive catalogue of NRF2 mutations in cancer that can help prognostication and NRF2 research.
Collapse
|
37
|
Liu D, Zhang Y, Wei Y, Liu G, Liu Y, Gao Q, Zou L, Zeng W, Zhang N. Activation of AKT pathway by Nrf2/PDGFA feedback loop contributes to HCC progression. Oncotarget 2018; 7:65389-65402. [PMID: 27588483 PMCID: PMC5323163 DOI: 10.18632/oncotarget.11700] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/24/2016] [Indexed: 01/10/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), a master transcription factor in the antioxidant response, has been found to be ubiquitously expressed in various cancer cells and in the regulation tumor proliferation, invasion, and chemoresistance activities. The regulatory roles of Nrf2 in controlling Hepatocellular carcinoma (HCC) progression remain unclear. In this study, we demonstrated that Nrf2 was significantly elevated in HCC cells and tissues and was correlated with poor prognosis of HCCs. Consistently, Nrf2 significantly promoted HCC cell growth both in vitro and in vivo. Further investigation suggested a novel association of Nrf2 with Platelet-Derived Growth Factor-A (PDGFA). Nrf2 promoted PDGFA transcription by recruiting specificity protein 1 (Sp1) to its promoter, resulting in increased activation of the AKT/p21 pathway and cell cycle progression of HCC cells. As a feedback loop, PDGFA enhanced Nrf2 expression and activation in an AKT dependent manner. In line with these findings, expression of Nrf2 and PDGFA were positively correlated in HCC tissues. Taken together, this study uncovers a novel mechanism of the Nrf2/PDGFA regulatory loop that is crucial for AKT-dependent HCC progression, and thereby provides potential targets for HCC therapy.
Collapse
Affiliation(s)
- Danyang Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonglong Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingze Wei
- Department of Pathology, Tumor Hospital of Nantong, Nantong, China
| | - Guoyuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yufeng Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiongmei Gao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liping Zou
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Namani A, Matiur Rahaman M, Chen M, Tang X. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer. BMC Cancer 2018; 18:46. [PMID: 29306329 PMCID: PMC5756380 DOI: 10.1186/s12885-017-3907-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers. Methods RNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two methods (altered KEAP1-NRF2-CUL3 versus normal, and altered KEAP1-NRF2-CUL3 versus wild-type). We then used a new approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in 4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8 database and protein-protein interaction (PPI) analysis using the STRING v10 database were performed on the signature. Results A signature composed of a subset of 17 genes regulated by the KEAP1-NRF2-CUL3 axis was identified by overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes) datasets. We showed that increased expression was significantly associated with poor survival in 4 independent HNSCC datasets, including the TCGA-HNSCC dataset. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and PPI analysis revealed that most of the genes in this signature are associated with drug metabolism and glutathione metabolic pathways. Conclusions Altogether, our study emphasizes the discovery of a gene signature regulated by the KEAP1-NRF2-CUL3 axis which is strongly associated with tumorigenesis and drug resistance in HNSCC. This 17-gene signature provides potential biomarkers and therapeutic targets for HNSCC cases in which the NRF2 pathway is activated. Electronic supplementary material The online version of this article (10.1186/s12885-017-3907-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akhileshwar Namani
- Department of Biochemistry, University School of Medicine, Hangzhou, 310058, People's Republic of China
| | - Md Matiur Rahaman
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiuwen Tang
- Department of Biochemistry, University School of Medicine, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
39
|
Namani A, Cui QQ, Wu Y, Wang H, Wang XJ, Tang X. NRF2-regulated metabolic gene signature as a prognostic biomarker in non-small cell lung cancer. Oncotarget 2017; 8:69847-69862. [PMID: 29050246 PMCID: PMC5642521 DOI: 10.18632/oncotarget.19349] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mutations in Kelch-like ECH-associated protein 1 (KEAP1) cause the aberrant activation of nuclear factor erythroid-derived 2-like 2 (NRF2), which leads to oncogenesis and drug resistance in lung cancer cells. Our study was designed to identify the genes involved in lung cancer progression targeted by NRF2. A series of microarray experiments in normal and cancer cells, as well as in animal models, have revealed regulatory genes downstream of NRF2 that are involved in wide variety of pathways. Specifically, we carried out individual and combinatorial microarray analysis of KEAP1 overexpression and NRF2 siRNA-knockdown in a KEAP1 mutant-A549 non-small cell lung cancer (NSCLC) cell line. As a result, we identified a list of genes which were mainly involved in metabolic functions in NSCLC by using functional annotation analysis. In addition, we carried out in silico analysis to characterize the antioxidant responsive element sequences in the promoter regions of known and putative NRF2-regulated metabolic genes. We further identified an NRF2-regulated metabolic gene signature (NRMGS) by correlating the microarray data with lung adenocarcinoma RNA-Seq gene expression data from The Cancer Genome Atlas followed by qRT-PCR validation, and finally showed that higher expression of the signature conferred a poor prognosis in 8 independent NSCLC cohorts. Our findings provide novel prognostic biomarkers for NSCLC.
Collapse
Affiliation(s)
- Akhileshwar Namani
- Department of Biochemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Qin Qin Cui
- Department of Biochemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Yihe Wu
- Department of Thoracic Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou 310058, PR China
| | - Hongyan Wang
- Department of Biochemistry, Zhejiang University, Hangzhou 310058, PR China
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xiu Jun Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuwen Tang
- Department of Biochemistry, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
40
|
Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7316492. [PMID: 27847554 PMCID: PMC5099458 DOI: 10.1155/2016/7316492] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/08/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
The transcription factor Nrf2 (NF-E2 related factor 2) is a master regulator of the cell antioxidant response associated with tumor growth and resistance to cytotoxic treatments. In particular, Nrf2 induces upregulation of cytoprotective genes by interacting with the closely situated AREs (Antioxidant Response Elements) in response to endogenous or exogenous stress stimuli and takes part to several oncogenic signaling pathways. Among these, the crosstalk with Notch pathway has been shown to enhance cytoprotection and maintenance of cellular homeostasis, tissue organization by modulating cell proliferation kinetics, and stem cell self-renewal in several organs. The role of Notch and Nrf2 related pathways in tumorigenesis is highly variable and when they are both abnormally activated they can synergistically cause neoplastic proliferation by promoting cell survival, differentiation, invasion, and metastases. NFE2L2, KEAP1, and NOTCH genes family appear in the list of significantly mutated genes in tumors in both combined and individual sets, supporting the crucial role that the aberrant Nrf2-Notch crosstalk might have in cancerogenesis. In this review, we summarize current knowledge about the alterations of Nrf2 and Notch pathways and their reciprocal transcriptional regulation throughout tumorigenesis and progression of lung tumors, supporting the potentiality of putative biomarkers and therapeutic targets.
Collapse
|
41
|
Zhu J, Wang H, Chen F, Fu J, Xu Y, Hou Y, Kou HH, Zhai C, Nelson MB, Zhang Q, Andersen ME, Pi J. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radic Biol Med 2016; 99:544-556. [PMID: 27634172 DOI: 10.1016/j.freeradbiomed.2016.09.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/29/2016] [Accepted: 09/10/2016] [Indexed: 12/30/2022]
Abstract
The Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating a wide array of genes for antioxidant and detoxification enzymes in response to oxidative and xenobiotic stress. A large number of Nrf2-antioxidant response element (ARE) activators have been screened for use as chemopreventive agents in oxidative stress-related diseases and even cancer. However, constitutive activation of Nrf2 occurs in a variety of cancers. Aberrant activation of Nrf2 is correlated with cancer progression, chemoresistance, and radioresistance. In this review, we examine recent studies of Nrf2-ARE inhibitors in the context of cancer therapy. We enumerate the possible Nrf2-inhibiting mechanisms of these compounds, their effects sensitizing cancer cells to chemotherapeutic agents, and the prospect of applying them in clinical cancer therapy.
Collapse
Affiliation(s)
- Jiayu Zhu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Feng Chen
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Road, Heping Area, Shenyang 110001, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Henry H Kou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Cheng Zhai
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - M Bud Nelson
- MedBlue Incubator, Inc., Research Triangle Park, NC 27709, USA
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Melvin E Andersen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, ScitoVation, LLC, NC 27709, USA LLC
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
42
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is frequently impervious to curative treatment efforts. Similar to other cancers associated with prolonged exposure to carcinogens, HNSCCs often have a high burden of mutations, contributing to substantial inter- and intra-tumor heterogeneity. The heterogeneity of this malignancy is further increased by the rising rate of human papillomavirus (HPV)-associated (HPV+) HNSCC, which defines an etiological subtype significantly different from the more common tobacco and alcohol associated HPV-negative (HPV-) HNSCC. Since 2011, application of large scale genome sequencing projects by The Cancer Genome Atlas (TCGA) network and other groups have established extensive datasets to characterize HPV- and HPV+ HNSCC, providing a foundation for advanced molecular diagnoses, identification of potential biomarkers, and therapeutic insights. Some genomic lesions are now appreciated as widely dispersed. For example, HPV- HNSCC characteristically inactivates the cell cycle suppressors TP53 (p53) and CDKN2A (p16), and often amplifies CCND1 (cyclin D), which phosphorylates RB1 to promote cell cycle progression from G1 to S. By contrast, HPV+ HNSCC expresses viral oncogenes E6 and E7, which inhibit TP53 and RB1, and activates the cell cycle regulator E2F1. Frequent activating mutations in PIK3CA and inactivating mutations in NOTCH1 are seen in both subtypes of HNSCC, emphasizing the importance of these pathways. Studies of large patient cohorts have also begun to identify less common genetic alterations, predominantly found in HPV- tumors, which suggest new mechanisms relevant to disease pathogenesis. Targets of these alterations including AJUBA and FAT1, both involved in the regulation of NOTCH/CTNNB1 signaling. Genes involved in oxidative stress, particularly CUL3, KEAP1 and NFE2L2, strongly associated with smoking, have also been identified, and are less well understood mechanistically. Application of sophisticated data-mining approaches, integrating genomic information with profiles of tumor methylation and gene expression, have helped to further yield insights, and in some cases suggest additional approaches to stratify patients for clinical treatment. We here discuss some recent insights built on TCGA and other genomic foundations.
Collapse
Affiliation(s)
- Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA.,Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|