1
|
Mehta D, Rajput K, Jain D, Bajaj A, Dasgupta U. Unveiling the Role of Mechanistic Target of Rapamycin Kinase (MTOR) Signaling in Cancer Progression and the Emergence of MTOR Inhibitors as Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:3758-3779. [PMID: 39698262 PMCID: PMC11650738 DOI: 10.1021/acsptsci.4c00530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The mechanistic target of rapamycin kinase (MTOR) is pivotal for cell growth, metabolism, and survival. It functions through two distinct complexes, mechanistic TORC1 and mechanistic TORC2 (mTORC1 and mTORC2). These complexes function in the development and progression of cancer by regulating different cellular processes, such as protein synthesis, lipid metabolism, and glucose homeostasis. The mTORC1 complex senses nutrients and initiates proliferative signals, and mTORC2 is crucial for cell survival and cytoskeletal rearrangements. mTORC1 and mTORC2 have therefore emerged as potential targets for cancer treatment. Several mTOR inhibitors, including rapamycin and its analogs (rapalogs), primarily target mTORC1 and are effective for specific cancer types. However, these inhibitors often lead to resistance and limited long-term advantages due to the activation of survival pathways through feedback mechanisms. Researchers have created next-generation inhibitors targeting mTORC1 and mTORC2 and dual PI3K/mTOR inhibitors to address these difficulties. These inhibitors demonstrate enhanced anti-tumor effects by simultaneously disrupting multiple signaling pathways and show promise for improved and long-lasting therapies. However, development of resistance and adverse side effects remain a significant obstacle. Recent additions known as RapaLinks have emerged as a boon to counter drug-resistant cancer cells, as they are more potent and provide a more comprehensive blockade of mTOR signaling pathways. This Review combines current research findings and clinical insights to enhance our understanding of the crucial role of mTOR signaling in cancer biology and highlights the evolution of mTOR inhibitors as promising therapeutic approaches.
Collapse
Affiliation(s)
- Devashish Mehta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Kajal Rajput
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Ujjaini Dasgupta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| |
Collapse
|
2
|
Ye Z, Ng CP, Liu H, Bao Q, Xu S, Zu D, He Y, Huang Y, Al-Aidaroos AQO, Guo K, Li J, Yaw LP, Xiong Q, Thura M, Zheng W, Guan F, Cheng X, Shi Y, Zeng Q. PRL1 and PRL3 promote macropinocytosis via its lipid phosphatase activity. Theranostics 2024; 14:3423-3438. [PMID: 38948056 PMCID: PMC11209707 DOI: 10.7150/thno.93127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
PRL1 and PRL3, members of the protein tyrosine phosphatase family, have been associated with cancer metastasis and poor prognosis. Despite extensive research on their protein phosphatase activity, their potential role as lipid phosphatases remains elusive. Methods: We conducted comprehensive investigations to elucidate the lipid phosphatase activity of PRL1 and PRL3 using a combination of cellular assays, biochemical analyses, and protein interactome profiling. Functional studies were performed to delineate the impact of PRL1/3 on macropinocytosis and its implications in cancer biology. Results: Our study has identified PRL1 and PRL3 as lipid phosphatases that interact with phosphoinositide (PIP) lipids, converting PI(3,4)P2 and PI(3,5)P2 into PI(3)P on the cellular membranes. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis, facilitating nutrient extraction, cell migration, and invasion, thereby contributing to tumor development. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis. Additionally, we found a correlation between PRL1/3 expression and glioma development, suggesting their involvement in glioma progression. Conclusions: Combining with the knowledge that PRLs have been identified to be involved in mTOR, EGFR and autophagy, here we concluded the physiological role of PRL1/3 in orchestrating the nutrient sensing, absorbing and recycling via regulating macropinocytosis through its lipid phosphatase activity. This mechanism could be exploited by tumor cells facing a nutrient-depleted microenvironment, highlighting the potential therapeutic significance of targeting PRL1/3-mediated macropinocytosis in cancer treatment.
Collapse
Affiliation(s)
- Zu Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Chee Ping Ng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Qimei Bao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Shengfeng Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dan Zu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Yanhua He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Yixing Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- National Clinical Research Center for Children's Health, Department of Pulmonology of Children's Hospital, Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Abdul Qader Omer Al-Aidaroos
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Ke Guo
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Jie Li
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Lai Ping Yaw
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Qiancheng Xiong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Min Thura
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Weihui Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| | - Fenghui Guan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China
| | - Yin Shi
- National Clinical Research Center for Children's Health, Department of Pulmonology of Children's Hospital, Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Republic of Singapore, Singapore 138673
| |
Collapse
|
3
|
Volegova MP, Hermosillo C, Cate JHD. The Helix-Loop-Helix motif of human EIF3A regulates translation of proliferative cellular mRNAs. PLoS One 2023; 18:e0292080. [PMID: 37768948 PMCID: PMC10538695 DOI: 10.1371/journal.pone.0292080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Improper regulation of translation initiation, a vital checkpoint of protein synthesis in the cell, has been linked to a number of cancers. Overexpression of protein subunits of eukaryotic translation initiation factor 3 (eIF3) is associated with increased translation of mRNAs involved in cell proliferation. In addition to playing a major role in general translation initiation by serving as a scaffold for the assembly of translation initiation complexes, eIF3 regulates translation of specific cellular mRNAs and viral RNAs. Mutations in the N-terminal Helix-Loop-Helix (HLH) RNA-binding motif of the EIF3A subunit interfere with Hepatitis C Virus Internal Ribosome Entry Site (IRES) mediated translation initiation in vitro. Here we show that the EIF3A HLH motif controls translation of a small set of cellular transcripts enriched in oncogenic mRNAs, including MYC. We demonstrate that the HLH motif of EIF3A acts specifically on the 5' UTR of MYC mRNA and modulates the function of EIF4A1 on select transcripts during translation initiation. In Ramos lymphoma cell lines, which are dependent on MYC overexpression, mutations in the HLH motif greatly reduce MYC expression, impede proliferation and sensitize cells to anti-cancer compounds. These results reveal the potential of the EIF3A HLH motif in eIF3 as a promising chemotherapeutic target.
Collapse
Affiliation(s)
- Marina P. Volegova
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
| | - Cynthia Hermosillo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- Department of Chemistry, University of California, Berkeley, CA, United States of America
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| |
Collapse
|
4
|
Loh AHP, Thura M, Gupta A, Tan SH, Kuan KKY, Ang KH, Merchant K, Chang KTE, Yon HY, Chen Y, Cheng MHW, Mahadev A, Ng MCH, Seng MSF, Iyer P, Chia PL, Soh SY, Zeng Q. Exploiting frequent and specific expression of PRL3 in pediatric solid tumors for first-in-child use of PRL3-zumab humanized antibody. Mol Ther Oncolytics 2023; 30:153-166. [PMID: 37674627 PMCID: PMC10477756 DOI: 10.1016/j.omto.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
Phosphatase of regenerating liver 3 (PRL3) is a specific tumor antigen overexpressed in a broad range of adult cancer types. However, its physiological expression in pediatric embryonal and mesenchymal tumors and its association with clinical outcomes in children is unknown. We sought to profile the expression of PRL3 in pediatric tumors in relation to survival outcomes, expression of angiogenesis markers, and G-protein-coupled receptor (GPCR)-mitogen-activated protein kinase (MAPK) signaling targets. PRL3-zumab, a first-in-class humanized antibody, was administered in a dose escalation schedule in a first-in-child clinical trial to study toxicity, pharmacokinetics, and clinical outcomes. Among 64 pediatric tumors, PRL3 was most frequently expressed in neuroblastoma (100%), rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcomas (71%), and renal sarcomas (60%) but absent in paired normal tissues. PRL3 was expressed in 75% of relapsed tumors and associated with shorter median event-free survival. Microarray profiling of PRL3-positive tumors showed elevation of angiogenin, TIMP1 and TIMP2, and GPCR-MAPK signaling proteins that commonly interacted with PRL3. The first use of PRL3-zumab in a pediatric patient saw no adverse events. A 28.6% reduction in maximum target lesion diameter was achieved when PRL3-zumab was administered concurrently with hypofractionated radiation. These findings support wider exploration of PRL3 expression in embryonal and mesenchymal tumors and further clinical application of PRL3-zumab in pediatric patients.
Collapse
Affiliation(s)
- Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Min Thura
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Abhishek Gupta
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
| | - Kelvin Kam Yew Kuan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Koon Hwee Ang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Khurshid Merchant
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Kenneth Tou En Chang
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Hui Yi Yon
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Yong Chen
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Mathew Hern Wang Cheng
- Department of Orthopaedic Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Arjandas Mahadev
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Orthopaedic Surgery, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Matthew Chau Hsien Ng
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of GI Oncology, National Cancer Centre Singapore, Singapore 229899, Singapore
| | - Michaela Su-Fern Seng
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Prasad Iyer
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Pei Ling Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
| | - Shui Yen Soh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital Singapore 229899, Singapore
- Duke-NUS School of Medicine, Singapore 169857, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A∗STAR), Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
5
|
Chia PL, Ang KH, Thura M, Zeng Q. PRL3 as a therapeutic target for novel cancer immunotherapy in multiple cancer types. Theranostics 2023; 13:1876-1891. [PMID: 37064866 PMCID: PMC10091880 DOI: 10.7150/thno.79265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 04/18/2023] Open
Abstract
Phosphatase of Regenerating Liver-3 (PRL3) was discovered in 1998 and was subsequently found to be correlated with cancer progression and metastasis in 2001. Extensive research in the past two decades has produced significant findings on PRL3-mediated cancer signaling and functions, as well as its clinical relevance in diverse types of cancer. PRL3 has been established to play a role in many cancer-related functions, including but not limited to metastasis, proliferation, and angiogenesis. Importantly, the tumor-specific expression of PRL3 protein in multiple cancer types has made it an attractive therapeutic target. Much effort has been made in developing PRL3-targeted therapy with small chemical inhibitors against intracellular PRL3, and notably, the development of PRL3-zumab as a novel cancer immunotherapy against PRL3. In this review, we summarize the current understanding of the role of PRL3 in cancer-related cellular functions, its prognostic value, as well as perspectives on PRL3 as a target for unconventional immunotherapy in the clinic with PRL3-zumab.
Collapse
Affiliation(s)
- Pei Ling Chia
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138673; ; ;
| | - Koon Hwee Ang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138673; ; ;
| | - Min Thura
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138673; ; ;
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore 138673; ; ;
| |
Collapse
|
6
|
Shi Y, Xu S, Ngoi NYL, Zeng Q, Ye Z. PRL-3 dephosphorylates p38 MAPK to promote cell survival under stress. Free Radic Biol Med 2021; 177:72-87. [PMID: 34662712 DOI: 10.1016/j.freeradbiomed.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/21/2023]
Abstract
Hypoxia within the tumor microenvironment, which leads to excessive ROS and genomic instability, is one of the hallmarks of cancer, contributing to self-renewal capability, metastasis, and radio-chemotherapy resistance. PRL-3 is an oncoprotein involved in various pro-survival signaling pathways, such as Ras/Erk, PI3K/Akt, Src/STAT, mTORC1 and JAK/STAT. However, there is little evidence connecting PRL-3-mediated apoptosis resistance to tumor microenvironmental stress. In this study, by profiling the PRL-3 expression of multiple tumor types retrieved from public databases (TCGA and NCBI GEO), we confirmed the oncogenic function of PRL-3 and found an intriguing connection between PRL-3 expression and tumor hypoxia signature genes. Moreover, by using CoCl2, a hypoxia mimetic and ROS inducer, we discovered that cells stably expressing PRL-3, but not catalytically-inactive mutant PRL-3 C104S, showed significant resistance to CoCl2 -induced apoptosis. This resistance to apoptosis was found to depend on p38 MAPK signaling and was further confirmed in other conditions of microenvironmental stress, including UV, H2O2 and hypoxia. Mechanistically, we proved that PRL-3 is a direct phosphatase of p38 MAPK under stressed conditions. Additionally, in mouse models of tumor metastasis, higher lung metastatic burden and lower p38 MAPK phosphorylation were found in mice seeded with GFP-PRL-3 expressing cells compared with those seeded with GFP-Ctrl cells. Taken together, our study identified a critical role of RPL-3 in tumorigenesis by negatively regulating p38 MAPK activity in order to facilitate tumor cell adaptation to a hypoxic stressed tumor microenvironment and suggests that PRL-3 could serve as a promising novel therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore.
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA; Department of Hematology-Oncology, National University Cancer Institute, 119228, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR Agency for Science Technology and Research, 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 119260, Singapore.
| | - Zu Ye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore; Institute of Molecular and Cell Biology, A*STAR Agency for Science Technology and Research, 138673, Singapore; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| |
Collapse
|
7
|
Shi Y, Xu S, Ngoi NYL, Hui Y, Ye Z. Rag GTPases suppress PRL-3 degradation and predict poor clinical diagnosis of cancer patients with low PRL-3 mRNA expression. Biochem Biophys Res Commun 2021; 576:108-116. [PMID: 34482023 DOI: 10.1016/j.bbrc.2021.08.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022]
Abstract
Ras-related GTP binding (Rag) GTPases are required to activate mechanistic target of rapamycin complex 1 (mTORC1), which plays a central role in cell growth and metabolism and is considered as one of the most important oncogenic pathways. Therefore, Rag GTPases have been speculated to play a pro-cancer role via mTOR induction. However, aside from stimulation of mTOR signaling, firm links connecting Rag GTPase activity and their downstream effectors with cancer progression, remain largely unreported. In this study, we reported a novel link between RagB/C and a known oncoprotein phosphatase of regenerating liver-3 (PRL-3) by screening 22 pairs of tumors and their adjacent normal tissues from gastric, liver and lung cancers, and validating our findings in cancer cell lines with ectopic RagB/C expression. RagB/C was found to enhance PRL-3 stability by modulating two major cellular protein degradation pathways: lysosomal-autophagy and ubiquitin-proteasome system (UPS). Functionally, we identified the correlation between RagB/C expression with poor clinical outcomes in breast or colon cancer patients who also showed low PRL-3 mRNA expression from data retrieved from TCGA datasets, highlighting the potential relevance of Rag GTPase and PRL-3 mRNA in combination as a prognostic clinical biomarker.
Collapse
Affiliation(s)
- Yin Shi
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Yuanjian Hui
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zu Ye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A∗STAR (Agency for Science, Technology and Research), Singapore, Singapore; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
8
|
Thura M, Ye Z, Al-Aidaroos AQ, Xiong Q, Ong JY, Gupta A, Li J, Guo K, Ang KH, Zeng Q. PRL3 induces polypoid giant cancer cells eliminated by PRL3-zumab to reduce tumor relapse. Commun Biol 2021; 4:923. [PMID: 34326464 PMCID: PMC8322210 DOI: 10.1038/s42003-021-02449-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
PRL3, a unique oncotarget, is specifically overexpressed in 80.6% of cancers. In 2003, we reported that PRL3 promotes cell migration, invasion, and metastasis. Herein, firstly, we show that PRL3 induces Polyploid Giant Cancer Cells (PGCCs) formation. PGCCs constitute stem cell-like pools to facilitate cell survival, chemo-resistance, and tumor relapse. The correlations between PRL3 overexpression and PGCCs attributes raised possibilities that PRL3 could be involved in PGCCs formation. Secondly, we show that PRL3+ PGCCs co-express the embryonic stem cell markers SOX2 and OCT4 and arise mainly due to incomplete cytokinesis despite extensive DNA damage. Thirdly, we reveal that PRL3+ PGCCs tolerate prolonged chemotherapy-induced genotoxic stress via suppression of the pro-apoptotic ATM DNA damage-signaling pathway. Fourthly, we demonstrated PRL3-zumab, a First-in-Class humanized antibody drug against PRL3 oncotarget, could reduce tumor relapse in 'tumor removal' animal model. Finally, we confirmed that PGCCs were enriched in relapse tumors versus primary tumors. PRL3-zumab has been approved for Phase 2 clinical trials in Singapore, US, and China to block all solid tumors. This study further showed PRL3-zumab could potentially serve an 'Adjuvant Immunotherapy' after tumor removal surgery to eliminate PRL3+ PGCC stem-like cells, preventing metastasis and relapse.
Collapse
Affiliation(s)
- Min Thura
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zu Ye
- MD Anderson Cancer Centre, The University of Texas, Houston, TX, USA
| | - Abdul Qader Al-Aidaroos
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Qiancheng Xiong
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Jun Yi Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Abhishek Gupta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jie Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ke Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Koon Hwee Ang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Zhang L, Liu G, Kong M, Li T, Wu D, Zhou X, Yang C, Xia L, Yang Z, Chen L. Revealing dynamic regulations and the related key proteins of myeloma-initiating cells by integrating experimental data into a systems biological model. Bioinformatics 2021; 37:1554-1561. [PMID: 31350562 DOI: 10.1093/bioinformatics/btz542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/17/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The growth and survival of myeloma cells are greatly affected by their surrounding microenvironment. To understand the molecular mechanism and the impact of stiffness on the fate of myeloma-initiating cells (MICs), we develop a systems biological model to reveal the dynamic regulations by integrating reverse-phase protein array data and the stiffness-associated pathway. RESULTS We not only develop a stiffness-associated signaling pathway to describe the dynamic regulations of the MICs, but also clearly identify three critical proteins governing the MIC proliferation and death, including FAK, mTORC1 and NFκB, which are validated to be related with multiple myeloma by our immunohistochemistry experiment, computation and manually reviewed evidences. Moreover, we demonstrate that the systematic model performs better than widely used parameter estimation algorithms for the complicated signaling pathway. AVAILABILITY AND IMPLEMENTATION We can not only use the systems biological model to infer the stiffness-associated genetic signaling pathway and locate the critical proteins, but also investigate the important pathways, proteins or genes for other type of the cancer. Thus, it holds universal scientific significance. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Le Zhang
- College of Computer Science.,Medical Big Data Center, Sichuan University, Chengdu 610065, China.,Chongqqing Zhongdi Medical Information Technology Co., Ltd, Chongqing 401320, China
| | - Guangdi Liu
- College of Computer and Information Science, Southwest University, Chongqing 400715, China.,Library of Chengdu University, Chengdu University, Chengdu 610106, China
| | - Meijing Kong
- College of Computer and Information Science, Southwest University, Chongqing 400715, China
| | - Tingting Li
- College of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Dan Wu
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Chuanwei Yang
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Xia
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhenzhou Yang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
10
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Duciel L, Monraz Gomez LC, Kondratova M, Kuperstein I, Saule S. The Phosphatase PRL-3 Is Involved in Key Steps of Cancer Metastasis. J Mol Biol 2019; 431:3056-3067. [DOI: 10.1016/j.jmb.2019.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
|
12
|
Sun W, Zhang Y, Wong KC, Liu K, Yang Y, Wu B, Tong JH, Chan AW, Chan HL, Yu J. Increased expression of GATA zinc finger domain containing 1 through gene amplification promotes liver cancer by directly inducing phosphatase of regenerating liver 3. Hepatology 2018; 67:2302-2319. [PMID: 29266303 PMCID: PMC6001784 DOI: 10.1002/hep.29750] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/15/2022]
Abstract
UNLABELLED We identified that GATA zinc finger domain containing 1 (GATAD1), a transcriptional factor, was significantly up-regulated in hepatocellular carcinoma (HCC) through gene amplification. We demonstrated the critical role, molecular mechanisms, and clinical implications of GATAD1 as a novel oncogenic factor in HCC. We found that GATAD1 protein was expressed in 76.6% of primary HCCs (85/111) but silenced in normal liver tissues. Gene amplification of GATAD1 was positively correlated with its overexpression in primary HCCs (R = 0.629, P < 0.0001). GATAD1 significantly increased cell proliferation, G1 -S cell cycle transition, and migration/invasion but suppressed apoptosis in liver cell lines and promoted tumor growth and lung metastasis in both xenograft and orthotopic mouse models. Mechanistically, GATAD1 induced the transcriptional expression of phosphatase of regenerating liver 3 (PRL3) by binding to its promoter identified by RNA sequencing and chromatin immunoprecipitation-PCR analyses. PRL3 played an oncogenic role in HCC. Knockdown of PRL3 blunted the tumorigenic effect of GATAD1. In addition, GATAD1 activated Akt signaling, evidenced by increased phosphorylation levels of total Akt, Akt1, Akt2, and Akt target glycogen synthase kinase 3β, while knockdown of PRL3 abolished this effect of GATAD1. We further unveiled that PRL3 activated Akt signaling by dephosphorylating phosphatase and tensin homolog at tyrosine residue, thus reducing phosphatase and tensin homolog protein. The PRL3 inhibitor 5-[[5-bromo-2-[(2-bromophenyl)methoxy]phenyl]methylene]-2-thioxo-4-thiazolidinone significantly suppressed HCC growth by inhibiting Akt activation. Moreover, high GATAD1 nuclear protein expression was associated with poor survival of HCC patients as an independent prognostic factor. CONCLUSION GATAD1 plays a pivotal oncogenic role in HCC by directly inducing PRL3 transcription to activate the Akt signaling pathway. GATAD1 may serve as an independent poor prognostic factor for HCC patients. (Hepatology 2018;67:2302-2319).
Collapse
Affiliation(s)
- Wei Sun
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
| | - Yanquan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong,CUHK‐Shenzhen Research InstituteShenzhenChina
| | - Ka Chun Wong
- Department of Computer ScienceCity University of Hong KongHong Kong
| | - Ken Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong,Faculty of MedicineThe University of SydneySydneyNSWAustralia
| | - Yidong Yang
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Bin Wu
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Joanna H.M. Tong
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Anthony W.H. Chan
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Henry L.Y. Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong,CUHK‐Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
13
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
14
|
Zhou J, Toh SHM, Chan ZL, Quah JY, Chooi JY, Tan TZ, Chong PSY, Zeng Q, Chng WJ. A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/β-catenin pathways for treatment of AML with high PRL-3 phosphatase. J Hematol Oncol 2018; 11:36. [PMID: 29514683 PMCID: PMC5842526 DOI: 10.1186/s13045-018-0581-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein tyrosine phosphatase of regenerating liver 3 (PRL-3) is overexpressed in a subset of AML patients with inferior prognosis, representing an attractive therapeutic target. However, due to relatively shallow pocket of the catalytic site of PRL-3, it is difficult to develop selective small molecule inhibitor. METHODS In this study, we performed whole-genome lentiviral shRNA library screening to discover synthetic lethal target to PRL-3 in AML. We used specific small molecule inhibitors to validate the synthetic lethality in human PRL-3 high vs PRL-3 low human AML cell lines and primary bone marrow cells from AML patients. AML mouse xenograft model was used to examine the in vivo synergism. RESULTS The list of genes depleted in TF1-hPRL3 cells was particularly enriched for members involved in WNT/β-catenin pathway and AKT/mTOR signaling. These findings prompted us to explore the impact of AKT/mTOR signaling inhibition in PRL-3 high AML cells in combination with WNT/β-catenin inhibitor. VS-5584, a novel, highly selective dual PI3K/mTOR inhibitor, and ICG-001, a WNT inhibitor, were used as a combination therapy. A synthetic lethal interaction between mTOR/AKT pathway inhibition and WNT/β-catenin was validated by a variety of cellular assays. Notably, we found that treatment with these two drugs significantly reduced leukemic burden and prolonged survival of mice transplanted with human PRL-3 high AML cells, but not with PRL-3 low AML cells. CONCLUSIONS In summary, our results support the existence of cooperative signaling networks between AKT/mTOR and WNT/β-catenin pathways in PRL-3 high AML cells. Simultaneous inhibition of these two pathways could achieve robust clinical efficacy for this subtype of AML patient with high PRL-3 expression and warrant further clinical investigation.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Zit-Liang Chan
- Cancer Science Institute of Singapore, Singapore, Singapore
| | | | - Jing-Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore, Singapore
- Translational Centre for Development and Research, National University Health System, Singapore, Singapore
| | | | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228 Singapore
| |
Collapse
|
15
|
Andersen S, Richardsen E, Rakaee M, Bertilsson H, Bremnes R, Børset M, Busund LT, Slørdahl T. Expression of phosphatase of regenerating liver (PRL)-3, is independently associated with biochemical failure, clinical failure and death in prostate cancer. PLoS One 2017; 12:e0189000. [PMID: 29190795 PMCID: PMC5708709 DOI: 10.1371/journal.pone.0189000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
Background Prostate cancer (PC) stratification needs new prognostic tools to reduce overtreatment. Phosphatase of regenerating liver (PRL-3) is a phosphatase found at high levels in several cancer types, where its expression is associated with survival. A recent PC cell line study has shown it to be involved in PC growth and migration. Methods We used a monoclonal antibody to evaluate the expression of PRL-3 in PC tissue of patients in an unselected cohort of 535 prostatectomy patients. We analyzed associations between PRL-3 expression and biochemical failure-free survival (BFFS), clinical failure-free survival (CFFS) and PC death-free survival (PCDFS). Results Cytoplasmic PRL-3 staining in tumor cells was significantly correlated to expression of molecules in the VEGFR-axis, but not to the clinicopathological variables. High PRL-3 was not significantly associated with survival in the univariate analysis for BFFS (p = 0.131), but significantly associated with CFFS (p = 0.044) and PCDFS (p = 0.041). In multivariate analysis for the various end points, PRL-3 came out as an independent and significant indicator of poor survival for BFFS (HR = 1.53, CI95% 1.10–2.13, p = 0.012), CFFS (HR = 2.41, CI95% 1.17–4.98, p = 0.017) and PCDFS (HR = 3.99, CI95% 1.21–13.1, p = 0.023). Conclusions PRL-3 is independently associated with all PC endpoints in this study. Since high PRL-3 expression also correlates with poor prognosis in other cancers and functional studies in PC support these findings, PRL-3 emerges as a potential treatment target in PC.
Collapse
Affiliation(s)
- Sigve Andersen
- Translational Cancer Research Group, Department Clinical Medicine, UiT, The Arctic University of Norway, Tromso, Norway
- Department Oncology, University Hospital of North Norway, Tromso, Norway
- * E-mail:
| | - Elin Richardsen
- Translational Cancer Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, Tromso, Norway
- Department Pathology, University Hospital of North Norway, Tromso, Norway
| | - Mehrdad Rakaee
- Translational Cancer Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, Tromso, Norway
| | - Helena Bertilsson
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Urology, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Roy Bremnes
- Translational Cancer Research Group, Department Clinical Medicine, UiT, The Arctic University of Norway, Tromso, Norway
- Department Oncology, University Hospital of North Norway, Tromso, Norway
| | - Magne Børset
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Lill-Tove Busund
- Translational Cancer Research Group, Department of Medical Biology, UiT, The Arctic University of Norway, Tromso, Norway
- Department Pathology, University Hospital of North Norway, Tromso, Norway
| | - Tobias Slørdahl
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
16
|
Lian S, Meng L, Yang Y, Ma T, Xing X, Feng Q, Song Q, Liu C, Tian Z, Qu L, Shou C. PRL-3 promotes telomere deprotection and chromosomal instability. Nucleic Acids Res 2017; 45:6546-6571. [PMID: 28482095 PMCID: PMC5499835 DOI: 10.1093/nar/gkx392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 04/26/2017] [Indexed: 12/24/2022] Open
Abstract
Phosphatase of regenerating liver (PRL-3) promotes cell invasiveness, but its role in genomic integrity remains unknown. We report here that shelterin component RAP1 mediates association between PRL-3 and TRF2. In addition, TRF2 and RAP1 assist recruitment of PRL-3 to telomeric DNA. Silencing of PRL-3 in colon cancer cells does not affect telomere integrity or chromosomal stability, but induces reactive oxygen species-dependent DNA damage response and senescence. However, overexpression of PRL-3 in colon cancer cells and primary fibroblasts promotes structural abnormalities of telomeres, telomere deprotection, DNA damage response, chromosomal instability and senescence. Furthermore, PRL-3 dissociates RAP1 and TRF2 from telomeric DNA in vitro and in cells. PRL-3-promoted telomere deprotection, DNA damage response and senescence are counteracted by disruption of PRL-3–RAP1 complex or expression of ectopic TRF2. Examination of clinical samples showed that PRL-3 status positively correlates with telomere deprotection and senescence. PRL-3 transgenic mice exhibit hallmarks of telomere deprotection and senescence and are susceptible to dextran sodium sulfate-induced colon malignancy. Our results uncover a novel role of PRL-3 in tumor development through its adverse impact on telomere homeostasis.
Collapse
Affiliation(s)
- Shenyi Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yongyong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ting Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qin Feng
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Caiyun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihua Tian
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
17
|
Control of leucine-dependent mTORC1 pathway through chemical intervention of leucyl-tRNA synthetase and RagD interaction. Nat Commun 2017; 8:732. [PMID: 28963468 PMCID: PMC5622079 DOI: 10.1038/s41467-017-00785-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/27/2017] [Indexed: 01/19/2023] Open
Abstract
Leucyl-tRNA synthetase (LRS) is known to function as leucine sensor in the mammalian target of rapamycin complex 1 (mTORC1) pathway. However, the pathophysiological significance of its activity is not well understood. Here, we demonstrate that the leucine sensor function for mTORC1 activation of LRS can be decoupled from its catalytic activity. We identified compounds that inhibit the leucine-dependent mTORC1 pathway by specifically inhibiting the GTPase activating function of LRS, while not affecting the catalytic activity. For further analysis, we selected one compound, BC-LI-0186, which binds to the RagD interacting site of LRS, thereby inhibiting lysosomal localization of LRS and mTORC1 activity. It also effectively suppressed the activity of cancer-associated MTOR mutants and the growth of rapamycin-resistant cancer cells. These findings suggest new strategies for controlling tumor growth that avoid the resistance to existing mTOR inhibitors resulting from cancer-associated MTOR mutations.Leucyl-tRNA synthetase (LRS) is a leucine sensor of the mTORC1 pathway. Here, the authors identify inhibitors of the GTPase activating function of LRS, not affecting its catalytic activity, and demonstrate that the leucine sensor function of LRS can be a new target for mTORC1 inhibition.
Collapse
|
18
|
Chan ML, Yu CC, Hsu JL, Leu WJ, Chan SH, Hsu LC, Liu SP, Ivantcova PM, Dogan Ö, Bräse S, Kudryavtsev KV, Guh JH. Enantiomerically pure β-dipeptide derivative induces anticancer activity against human hormone-refractory prostate cancer through both PI3K/Akt-dependent and -independent pathways. Oncotarget 2017; 8:96668-96683. [PMID: 29228561 PMCID: PMC5722513 DOI: 10.18632/oncotarget.18040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/08/2017] [Indexed: 11/25/2022] Open
Abstract
The use of peptides that target cancer cells and induce anticancer activities through various mechanisms is developing as a potential anticancer strategy. KUD983, an enantiomerically pure β-dipeptide derivative, displays potent activity against hormone-refractory prostate cancer (HRPC) PC-3 and DU145 cells with submicromolar IC50. KUD983 induced G1 arrest of the cell cycle and subsequent apoptosis associated with down-regulation of several related proteins including cyclin D1, cyclin E and Cdk4, and the de-phosphorylation of RB. The levels of nuclear and total c-Myc protein, which could increase the expression of both cyclin D1 and cyclin E, were profoundly inhibited by KUD983. Furthermore, it inhibited PI3K/Akt and mTOR/p70S6K/4E-BP1 pathways, the key signaling in multiple cellular functions. The transient transfection of constitutively active myristylated Akt (myr-Akt) cDNA significantly rescued KUD983-induced caspase activation but did not blunt the inhibition of mTOR/p70S6K/4E-BP1 signaling cascade suggesting the presence of both Akt-dependent and -independent pathways. Moreover, KUD983-induced effect was enhanced with the down-regulation of anti-apoptotic Bcl-2 members (e.g., Bcl-2, and Mcl-1) and IAP family members (e.g., survivin). Notably, KUD983 induced autophagic cell death using confocal microscopic examination, tracking the level of conversion of LC3-I to LC3-II and flow cytometric detection of acidic vesicular organelles-positive cells. In conclusion, the data suggest that KUD983 is an anticancer β-dipeptide against HRPCs through the inhibition of cell proliferation and induction of apoptotic and autophagic cell death. The suppression of signaling pathways regulated by c-Myc, PI3K/Akt and mTOR/p70S6K/4E-BP1 and the collaboration with down-regulation of Mcl-1 and survivin may explain KUD983-induced anti-HRPC mechanism.
Collapse
Affiliation(s)
- Mei-Ling Chan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chun Yu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - She-Hung Chan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Polina M Ivantcova
- Department of Medicinal Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Özdemir Dogan
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Konstantin V Kudryavtsev
- Department of Medicinal Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow region, Russian Federation
| | - Jih-Hwa Guh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Fujino Y, Takeishi S, Nishida K, Okamoto K, Muguruma N, Kimura T, Kitamura S, Miyamoto H, Fujimoto A, Higashijima J, Shimada M, Rokutan K, Takayama T. Downregulation of microRNA-100/microRNA-125b is associated with lymph node metastasis in early colorectal cancer with submucosal invasion. Cancer Sci 2017; 108:390-397. [PMID: 28032929 PMCID: PMC5378282 DOI: 10.1111/cas.13152] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Accepted: 12/25/2016] [Indexed: 12/20/2022] Open
Abstract
A majority of early colorectal cancers (CRCs) with submucosal invasion undergo surgical operation, despite a very low incidence of lymph node metastasis. Our study aimed to identify microRNAs (miRNAs) specifically responsible for lymph node metastasis in submucosal CRCs. MicroRNA microarray analysis revealed that miR-100 and miR-125b expression levels were significantly lower in CRC tissues with lymph node metastases than in those without metastases. These results were validated by quantitative real-time PCR in a larger set of clinical samples. The transfection of a miR-100 or miR-125b inhibitor into colon cancer HCT116 cells significantly increased cell invasion, migration, and MMP activity. Conversely, overexpression of miR-100 or miR-125b mimics significantly attenuated all these activities but did not affect cell growth. To identify target mRNAs, we undertook a gene expression array analysis of miR-100-silenced HCT116 cells as well as negative control cells. The Ingenuity Pathway Analysis, TargetScan software analyses, and subsequent verification of mRNA expression by real-time PCR identified mammalian target of rapamycin (mTOR) and insulin-like growth factor 1 receptor (IGF1R) as direct, and Fas and X-linked inhibitor-of-apoptosis protein (XIAP) as indirect candidate targets for miR-100 involved in lymph node metastasis. Knockdown of each gene by siRNA significantly reduced the invasiveness of HCT116 cells. These data clearly show that downregulation of miR-100 and miR-125b is closely associated with lymph node metastasis in submucosal CRC through enhancement of invasion, motility, and MMP activity. In particular, miR-100 may promote metastasis by upregulating mTOR, IGF1R, Fas, and XIAP as targets. Thus, miR-100 and miR-125b may be novel biomarkers for lymph node metastasis of early CRCs with submucosal invasion.
Collapse
Affiliation(s)
- Yasuteru Fujino
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Shunsaku Takeishi
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Kensei Nishida
- Department of PathophysiologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Koichi Okamoto
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Naoki Muguruma
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Tetsuo Kimura
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Shinji Kitamura
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Akiko Fujimoto
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Jun Higashijima
- Department of SurgeryInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Mitsuo Shimada
- Department of SurgeryInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Kazuhito Rokutan
- Department of PathophysiologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Tetsuji Takayama
- Department of Gastroenterology and OncologyInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| |
Collapse
|
20
|
Antibody Array Revealed PRL-3 Affects Protein Phosphorylation and Cytokine Secretion. PLoS One 2017; 12:e0169665. [PMID: 28068414 PMCID: PMC5222497 DOI: 10.1371/journal.pone.0169665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022] Open
Abstract
Phosphatase of regenerating liver 3 (PRL-3) promotes cancer metastasis and progression via increasing cell motility and invasiveness, however the mechanism is still not fully understood. Previous reports showed that PRL-3 increases the phosphorylation of many important proteins and suspected that PRL-3-enhanced protein phosphorylation may be due to its regulation on cytokines. To investigate PRL-3's impact on protein phosphorylation and cytokine secretion, we performed antibody arrays against protein phosphorylation and cytokines separately. The data showed that PRL-3 could enhance tyrosine phosphorylation and serine/threonine phosphorylation of diverse signaling proteins. Meanwhile, PRL-3 could affect the secretion of a subset of cytokines. Furthermore, we discovered the PRL-3-increased IL-1α secretion was regulated by NF-κB and Jak2-Stat3 pathways and inhibiting IL-1α could reduce PRL-3-enhanced cell migration. Therefore, our result indicated that PRL-3 promotes protein phosphorylation by acting as an 'activator kinase' and consequently regulates cytokine secretion.
Collapse
|
21
|
Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates. DISEASE MARKERS 2016; 2016:4912405. [PMID: 27965519 PMCID: PMC5124654 DOI: 10.1155/2016/4912405] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/02/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. The early detection of CRC, during the promotion/progression stages, is an enormous challenge for a successful outcome and remains a fundamental problem in clinical approach. Despite the continuous advancement in diagnostic and therapeutic methods, there is a need for discovery of sensitive and specific, noninvasive biomarkers. Tumor endothelial markers (TEMs) are associated with tumor-specific angiogenesis and are potentially useful to discriminate between tumor and normal endothelium. The most promising TEMs for oncogenic signaling in CRC appeared to be the TEM1, TEM5, TEM7, and TEM8. Overexpression of TEMs especially TEM1, TEM7, and TEM8 in colorectal tumor tissue compared to healthy tissue suggests their role in tumor blood vessels formation. Thus TEMs appear to be perspective candidates for early detection, monitoring, and treatment of CRC patients. This review provides an update on recent data on tumor endothelial markers and their possible use as biomarkers for screening, diagnosis, and therapy of colorectal cancer patients.
Collapse
|
22
|
Xiong J, Li Z, Zhang Y, Li D, Zhang G, Luo X, Jie Z, Liu Y, Cao Y, Le Z, Tan S, Zou W, Gong P, Qiu L, Li Y, Wang H, Chen H. PRL-3 promotes the peritoneal metastasis of gastric cancer through the PI3K/Akt signaling pathway by regulating PTEN. Oncol Rep 2016; 36:1819-28. [PMID: 27572739 PMCID: PMC5022899 DOI: 10.3892/or.2016.5030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/17/2016] [Indexed: 01/17/2023] Open
Abstract
Peritoneal metastasis is the most frequent cause of death in patients with advanced gastric carcinoma (GC). The phosphatase of regenerating liver-3 (PRL-3) is recognized as an oncogene and plays an important role in GC peritoneal metastasis. However, the mechanism of how PRL-3 regulates GC invasion and metastasis is unknown. In the present study, we found that PRL-3 presented with high expression in GC with peritoneal metastasis, but phosphatase and tensin homologue (PTEN) was weakly expressed. The p-PTEN/PTEN ratio was also higher in GC with peritoneal metastasis than that in the normal gastric tissues. We also found the same phenomenon when comparing the gastric mucosa cell line with the GC cell lines. After constructing a wild-type and a mutant-type plasmid without enzyme activity and transfecting them into GC SGC7901 cells, we showed that only PRL-3 had enzyme activity to downregulate PTEN and cause PTEN phosphorylation. The results also showed that PRL-3 increased the expression levels of MMP-2/MMP-9 and promoted the migration and invasion of the SGC7901 cells. Knockdown of PRL-3 decreased the expression levels of MMP-2/MMP-9 significantly, which further inhibited the migration and invasion of the GC cells. PRL-3 also increased the expression ratio of p-Akt/Akt, which indicated that PRL-3 may mediate the PI3K/Akt pathway to promote GC metastasis. When we transfected the PTEN siRNA plasmid into the PRL-3 stable low expression GC cells, the expression of p-Akt, MMP-2 and MMP-9 was reversed. In conclusion, our results provide a bridge between PRL-3 and PTEN; PRL-3 decreased the expression of PTEN as well as increased the level of PTEN phosphorylation and inactivated it, consequently activating the PI3K/Akt signaling pathway, and upregulating MMP-2/MMP-9 expression to promote GC cell peritoneal metastasis.
Collapse
Affiliation(s)
- Jianbo Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Daojiang Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Guoyang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xianshi Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhibiao Le
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shengxing Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Wenyu Zou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Peitao Gong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Lingyu Qiu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanyuan Li
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huan Wang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
23
|
Kostantin E, Hardy S, Valinsky WC, Kompatscher A, de Baaij JHF, Zolotarov Y, Landry M, Uetani N, Martínez-Cruz LA, Hoenderop JGJ, Shrier A, Tremblay ML. Inhibition of PRL-2·CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth. J Biol Chem 2016; 291:10716-25. [PMID: 26969161 PMCID: PMC4865918 DOI: 10.1074/jbc.m115.705863] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/06/2022] Open
Abstract
The oncogenic phosphatase of regenerating liver 2 (PRL-2) has been shown to regulate intracellular magnesium levels by forming a complex through an extended amino acid loop present in the Bateman module of the CNNM3 magnesium transporter. Here we identified highly conserved residues located on this amino acid loop critical for the binding with PRL-2. A single point mutation (D426A) of one of those critical amino acids was found to completely disrupt PRL-2·human Cyclin M 3 (CNNM3) complex formation. Whole-cell voltage clamping revealed that expression of CNNM3 influenced the surface current, whereas overexpression of the binding mutant had no effect, indicating that the binding of PRL-2 to CNNM3 is important for the activity of the complex. Interestingly, overexpression of the CNNM3 D426A-binding mutant in cancer cells decreased their ability to proliferate under magnesium-deprived situations and under anchorage-independent growth conditions, demonstrating a PRL-2·CNNM3 complex-dependent oncogenic advantage in a more stringent environment. We further confirmed the importance of this complex in vivo using an orthotopic xenograft breast cancer model. Finally, because molecular modeling showed that the Asp-426 side chain in CNNM3 buries into the catalytic cavity of PRL-2, we showed that a PRL inhibitor could abrogate complex formation, resulting in a decrease in proliferation of human breast cancer cells. In summary, we provide evidence that this fundamental regulatory aspect of PRL-2 in cancer cells could potentially lead to broadly applicable and innovative therapeutic avenues.
Collapse
Affiliation(s)
- Elie Kostantin
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada, the Departments of Biochemistry and
| | - Serge Hardy
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | | | - Andreas Kompatscher
- the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Jeroen H F de Baaij
- the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Yevgen Zolotarov
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada, the Departments of Biochemistry and
| | - Melissa Landry
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | - Noriko Uetani
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | - Luis Alfonso Martínez-Cruz
- the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Joost G J Hoenderop
- the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Alvin Shrier
- Physiology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Michel L Tremblay
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada, the Departments of Biochemistry and
| |
Collapse
|