1
|
Yang M, Lu Y, Jin S, Liu W, Yao M, Jiang Z, Shu Y. Postoperative Tongqi Formula ameliorates postoperative ileus via p38 MAPK signaling pathway and metabolic disorder. Heliyon 2025; 11:e41217. [PMID: 39811334 PMCID: PMC11732544 DOI: 10.1016/j.heliyon.2024.e41217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Aim of the study This study investigated the mechanism by which the Postoperative Tongqi Formula (PTQF) treats postoperative ileus (POI) through regulation of the p38 MAPK signaling pathway, Zona occludens 1 (ZO-1) protein, and metabolism. Methods The primary components of PTQF were characterized using UHPLC-Q-TOF-MS/MS. The identified compounds subsequently employed network pharmacology to predict the signaling pathways associated with the inflammatory phase of POI. The anti-inflammatory effects of PTQF were evaluated in vitro using RAW264.7 cells. A rat model of POI was used to assess efficacy based on the spleen index and charcoal powder propulsion rat in the small intestine. Furthermore, pathological damage to the small intestine was analyzed using hematoxylin and eosin (HE) staining as well as immunofluorescence to evaluate ZO-1 protein expression. Inflammatory cytokine levels were quantified using enzyme-linked immunosorbent assay (ELISA). Subsequently, Western blot analysis was performed to examine the p38 MAPK signaling pathway. Finally, a metabolomics approach was employed to analyze serum samples to identify potential metabolic pathways. Results A total of 130 chemical constituents were identified in PTQF. Following the network pharmacology analysis of these compounds, the p38 MAPK signaling pathway was chosen for further investigation. In vitro, PTQF effectively inhibited inflammatory responses in RAW264.7 cells. Results from the spleen index and charcoal powder propulsion rate indicated that PTQF alleviated the inflammatory phase of POI in rats by mitigating systemic and intestinal inflammation. This was supported by reduced levels of inflammatory factors, modulation of ZO-1 protein expression, and a decrease in p38 MAPK phosphorylation levels. Furthermore, serum metabolomics revealed nine differential metabolites linked to intestinal inflammation. Conclusion PTQF mitigates inflammation and intestinal damage in POI rats by modulating inflammatory factors, ZO-1 protein expression, the p38 MAPK signaling pathway, and metabolic disturbances.
Collapse
Affiliation(s)
- Mengmeng Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuxuan Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shufan Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wanqiu Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Miaoshi Yao
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhiwei Jiang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yachun Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| |
Collapse
|
2
|
Qin Y, Li K, Zhang Q, Liu J, Xie Y, Zhang T, Wang X, Zhang L, Jiang Y, Liu G. Linoleic acid inhibits lipopolysaccharide-induced inflammation by promoting TLR4 regulated autophagy in murine RAW264.7 macrophages. J Appl Biomed 2024; 22:185-196. [PMID: 40033806 DOI: 10.32725/jab.2024.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/21/2024] [Indexed: 03/05/2025] Open
Abstract
Linoleic acid (LA), an essential fatty acid, has emerged as a pivotal regulator in disorders associated with inflammation in recent years; however, the underlying mechanisms are still not completely understood. We utilized network pharmacology and experimental methodologies to elucidate the mechanisms underlying the anti-inflammatory effects of LA. Our network pharmacology analysis revealed that LA shares common targets with sepsis. These targets are enriched in various pathways comprising C-type signaling pathway, PI3K-Akt signaling pathway, toll-like receptor signaling pathway, neutrophil extracellular trap formation, AMPK signaling pathway, and autophagy-animal. These findings suggest that LA may exert regulatory effects on inflammation and autophagy during sepsis. Subsequently, we established in vivo and ex vivo models of sepsis using lipopolysaccharide (LPS) in experimental study. Treatment with LA reduced lung damage in mice with LPS-induced lung injury, and reduced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in plasma, bronchoalveolar lavage fluid (BALF), and peritoneal lavage fluid (PLF). LA also decreased the production of TNF-α and IL-6 in RAW264.7 macrophages exposed to LPS. In LPS-induced RAW264.7 macrophages, LA induced an elevation in LC3-II while causing a reduction in p62, which was associated with downregulation of toll-like receptor 4 (TLR4). We utilized 3-methyladenine (3-MA) to inhibit the autophagic activity, which reversed the modulatory effects of LA on LC3-II and p62. 3-MA also prevented the decline in TLR4 expression along with reduction in pro-inflammatory cytokines secretion. Our findings suggest that the activation of autophagy by LA may lead to the downregulation of TLR4, thereby exerting its anti-inflammatory effects.
Collapse
Affiliation(s)
- Yin Qin
- University-Town Hospital of Chongqing Medical University, Department of Emergency and Critical Care Medicine, Chongqing 401331, China
- University-Town Hospital of Chongqing Medical University, Medical Sciences Research Center, Chongqing 401331, China
| | - Kexin Li
- University-Town Hospital of Chongqing Medical University, Medical Sciences Research Center, Chongqing 401331, China
| | - Qiuhong Zhang
- University-Town Hospital of Chongqing Medical University, Department of Emergency and Critical Care Medicine, Chongqing 401331, China
- University-Town Hospital of Chongqing Medical University, Medical Sciences Research Center, Chongqing 401331, China
| | - Jie Liu
- University-Town Hospital of Chongqing Medical University, Department of Emergency and Critical Care Medicine, Chongqing 401331, China
- University-Town Hospital of Chongqing Medical University, Medical Sciences Research Center, Chongqing 401331, China
| | - Yu Xie
- University-Town Hospital of Chongqing Medical University, Department of Emergency and Critical Care Medicine, Chongqing 401331, China
- University-Town Hospital of Chongqing Medical University, Medical Sciences Research Center, Chongqing 401331, China
| | - Tingting Zhang
- University-Town Hospital of Chongqing Medical University, Department of Emergency and Critical Care Medicine, Chongqing 401331, China
- University-Town Hospital of Chongqing Medical University, Medical Sciences Research Center, Chongqing 401331, China
| | - Xiaoliang Wang
- University-Town Hospital of Chongqing Medical University, Medical Sciences Research Center, Chongqing 401331, China
| | - Li Zhang
- Chongqing Medical University, Department of Pathophysiology, Chongqing 400016, China
| | - Yu Jiang
- University-Town Hospital of Chongqing Medical University, Department of Respiratory and Critical Care Medicine, Chongqing 401331, China
| | - Gang Liu
- University-Town Hospital of Chongqing Medical University, Department of Emergency and Critical Care Medicine, Chongqing 401331, China
- University-Town Hospital of Chongqing Medical University, Medical Sciences Research Center, Chongqing 401331, China
| |
Collapse
|
3
|
Abbas Z, Tong Y, Wang J, Zhang J, Wei X, Si D, Zhang R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. Int J Mol Sci 2024; 25:5333. [PMID: 38791372 PMCID: PMC11121110 DOI: 10.3390/ijms25105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.A.); (Y.T.); (J.W.); (J.Z.); (X.W.); (D.S.)
| |
Collapse
|
4
|
Alharthi F. Chicoric acid enhances the antioxidative defense system and protects against inflammation and apoptosis associated with the colitis model induced by dextran sulfate sodium in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119814-119824. [PMID: 37930572 DOI: 10.1007/s11356-023-30742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Although several anticolitic drugs are available, their application is associated with numerous side effects. Chicoric acid (CA) is a hydroxycinnamic acid found naturally in chicory (Cichorium intybus), purple coneflower (Echinacea purpurea), and basil with numerous health benefits, such as antioxidative and anti-inflammatory activities. Here, the potential anticolitic efficiency of CA against dextran sulfate sodium (DSS)-induced colitis in rats was examined in rats. Animals were randomly assigned to the following five groups: control, CA (100 mg/kg body weight), DSS [(DSS); 4% w/v], CA + DSS (100 mg/kg), and the 5-aminosalicylic acid (100 mg/kg) + DSS group. The obtained data revealed that CA significantly prevented the shortening of colon length. Meanwhile, the oxidative stress-related enzymes were increased, while malondialdehyde and nitric oxide, were markedly decreased significantly by CA. The results also indicated that CA administration decreased significantly the pro-apoptogenic indices (Bax and caspase-3) and enhanced significantly Bcl-2, the anti-apoptogenic protein. Moreover, DSS caused a significant elevation of pro-inflammatory mediators, including interleukin-1β, tumor necrosis factor-α, myeloperoxidase, cyclooxygenase II, prostaglandin E2, and peroxisome proliferator-activated receptor gamma. Interestingly, these changes were significantly decreased following the CA administration. At the molecular level, CA supplementation has increased significantly the expression level of nuclear factor erythroid 2-related factor-2 (Nrf2) and decreased the expressions of nitric oxide synthase and mitogen-activated protein kinase 14. CA has been determined to significantly lessen DSS-induced colitis by activating Nrf2 and its derived antioxidant molecules and suppressing inflammation and apoptosis cascades associated with the development of colitis; suggesting that CA could be used as an alternative naturally-derived anticolitic agent.
Collapse
Affiliation(s)
- Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
5
|
Martins MS, Gonçalves AC, Alves G, Silva LR. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int J Mol Sci 2023; 24:12024. [PMID: 37569399 PMCID: PMC10418693 DOI: 10.3390/ijms241512024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Blackberries and mulberries are small and perishable fruits that provide significant health benefits when consumed. In reality, both are rich in phytochemicals, such as phenolics and volatile compounds, and micronutrients, such as vitamins. All the compounds are well-known thanks to their medicinal and pharmacological properties, namely antioxidant, anti-inflammatory, anti-cancer, antiviral, and cardiovascular properties. Nevertheless, variables such as genotype, production conditions, fruit ripening stage, harvesting time, post-harvest storage, and climate conditions influence their nutritional composition and economic value. Given these facts, the current review focuses on the nutritional and chemical composition, as well as the health benefits, of two blackberry species (Rubus fruticosus L., and Rubus ulmifolius Schott) and one mulberry species (Morus nigra L.).
Collapse
Affiliation(s)
- Mariana S. Martins
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
| | - Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (A.C.G.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
6
|
Zhang L, Zhou X, Chen H, You L, Zhang T, Cheng M, Yao Y, Pan X, Yang X. Mulberry extract ameliorates T2DM-related symptoms via AMPK pathway in STZ-HFD-induced C57BL/6J mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116475. [PMID: 37120060 DOI: 10.1016/j.jep.2023.116475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry (Morus alba L.) is not only a tasty food but also a beneficial medicinal substance that has been historically used to treat diabetes, as recorded in Tang Ben Cao. Recent research on animal models has shown that the ethyl acetate extract of Morus alba L. fruits (EMF) has hypoglycemic and hypolipidemic properties. However, there is a lack of documentation on the specific mechanisms through which EMF exerts its hypoglycemic effects. OBJECTIVE OF THE STUDY This study aimed to investigate the impact of EMF on L6 cells and C57/BL6J mice and to elucidate the potential mechanisms underlying its effects. The findings of this study can contribute to the existing evidence for the application of EMF as a therapeutic drug or dietary supplement in the management of type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The UPLC-Q-TOF-MS technique was utilized to gather MS data. Masslynx 4.1 software in conjunction with the SciFinder database and other relevant references were used to analyze and identify the chemical composition of EMF. A series of in vitro investigations including MTT assay, glucose uptake assay and Western blot analysis were performed using an L6 cell model stably expressing IRAP-mOrange after EMF treatment. In vivo investigations were performed on a STZ-HFD co-induced T2DM mouse model, which included assessments of body composition, biochemical tests, histopathological analysis, and Western blot analysis. RESULTS MTT results revealed that EMF had no toxic effects on the cells at various concentrations. When EMF was administered to L6 cells, there was an increase in glucose transporter type 4 (GLUT4) translocation activity and a significant dose-dependent enhancement of glucose uptake by L6 myotubes. EMF treatment led to a marked increase in P-AMPK levels and GLUT4 expression in the cells, but these effects were reversed by an AMPK inhibitor (Compound C). In diabetic mice with STZ-HFD-induced diabetes, EMF treatment improved oral glucose tolerance, hyperglycemia, and hyperinsulinemia. Furthermore, EMF supplementation significantly reduced insulin resistance (IR) in diabetic mice, as evaluated using a steady-state model of the insulin resistance index. Histopathological sections demonstrated that acute EMF treatment reduced hepatic steatosis, pancreatic damage, and adipocyte hypertrophy. Western blot analysis demonstrated that EMF treatment also reduced abnormally high PPARγ expression, elevated the level of p-AMPK and p-ACC, and augmented the abundance of GLUT4 in insulin-sensitive peripheral tissues. SUMMARY The results suggest that EMF may exert beneficial effects on T2DM through the AMPK/GLUT4 and AMPK/ACC pathways, as well as by regulating PPARγ expression.
Collapse
Affiliation(s)
- Lulu Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Xiuteng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huijian Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Liangzhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Meng Cheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yudi Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Xin Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China.
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China.
| |
Collapse
|
7
|
Sung TS, Ryoo SB, Lee CH, Choi SM, Nam JW, Kim HB, Lee JY, Lim JD, Park KJ, Lee HT. Prokinetic Activity of Mulberry Fruit, Morus alba L. Nutrients 2023; 15:nu15081889. [PMID: 37111108 PMCID: PMC10143206 DOI: 10.3390/nu15081889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The fruit of Morus alba L. (MAF) has been consumed as a food worldwide. MAF has also been widely used in traditional medicine for thousands of years in East Asia, and its diverse bioactivities have been reported in numerous publications. However, no prokinetic activity has been reported for MAF or its components. In the present study, therefore, we investigated the effects of MAF on gastrointestinal motor function by measuring the intestinal transit rate (ITR) of Evans blue in mice in vivo. The ITR values accelerated by MAF were significantly higher than those accelerated by cisapride or metoclopramide, suggesting that MAF has potential as a new prokinetic agent to replace cisapride and metoclopramide. We also investigated the effects of MAF on myogenic and neurogenic contractions in human intestinal smooth muscles by measuring spontaneous contractions of smooth muscle strips, smooth muscle contractions induced by neural stimulation, and migrating motor complexes from intestinal segments in the human ileum and sigmoid colon in situ. MAF increased both myogenic and neurogenic contractions to enhance ileal and colonic motility in the human intestine. Taken together, these results indicate that MAF enhanced intestinal motility by increasing both myogenic and neurogenic contractions, thereby accelerating the ITR.
Collapse
Affiliation(s)
- Tae Sik Sung
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang-Hyun Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Seon-Min Choi
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hyun-Bok Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Ji Young Lee
- Department of Ophthalmology and Visual Science, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung-Dae Lim
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Republic of Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun-Tai Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| |
Collapse
|
8
|
Yu C, Chen Y, Ahmadi S, Wu D, Wu J, Ding T, Liu D, Ye X, Chen S, Pan H. Goji berry leaf exerts a comparable effect against colitis and microbiota dysbiosis to its fruit in dextran-sulfate-sodium-treated mice. Food Funct 2023; 14:3026-3037. [PMID: 36861301 DOI: 10.1039/d2fo02886g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Goji berry and mulberry are both popular berries with anti-colitis effects, but their leaves have received less attention. In this study, the anti-colitis effects of goji berry leaf and mulberry leaf were investigated in dextran-sulfate-sodium-induced colitis C57BL/6N mice compared with their fruits. Goji berry leaf and goji berry reduced colitic symptoms and ameliorated tissue damage, while mulberry leaf did not. ELISA and western blotting analysis suggested that goji berry showed the best performance in inhibiting the overproduction of pro-inflammatory cytokines (TNF-α, IL-6 and IL-10) and improving damaged colonic barrier (occludin and claudin-1). Besides, goji berry leaf and goji berry reversed the gut microbiota dysbiosis by increasing the abundance of beneficial bacteria like Bifidobacterium and Muribaculaceae, and decreasing the abundance of harmful bacteria like Bilophila and Lachnoclostridium. Goji berry, mulberry and goji berry leaf could restore acetate, propionate, butyrate and valerate to ameliorate inflammation, while mulberry leaf could not restore butyrate. To the best of our knowledge, this is the first report on the comparison of the anti-colitis effects of goji berry leaf, mulberry leaf and their fruits, which is meaningful for the rational utilization of goji berry leaf as a functional food.
Collapse
Affiliation(s)
- Chengxiao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Yihao Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Shokouh Ahmadi
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Jiaxiong Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China. .,Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China.,Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China. .,Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China.,Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro Food Processing, Fuli Institute of Food Science, Zhejiang University, Zhejiang, 310058, China. .,Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, China.,Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
9
|
Wang X, Su L, Tan J, Ding T, Yue Y. Albiflorin alleviates DSS-induced ulcerative colitis in mice by reducing inflammation and oxidative stress. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:48-56. [PMID: 36594064 PMCID: PMC9790056 DOI: 10.22038/ijbms.2022.66678.14624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023]
Abstract
Objectives To clarify therapeutic potential of albiflorin and its intrinsic mechanisms against dextran sulfate sodium (DSS)-induced Ulcerative colitis (UC) mice. Materials and Methods Sixty male C57BL/6 mice were randomly divided into five groups: negative control, positive, albiflorin low-dose group, albiflorin high-dose group and treatment control (Salicylazosulfapyridine "SASP", 100 mg/kg) group. Acute colitis was induced in all groups except NC by administration of 3% DSS for 7 days. Albiflorin and SASP were administered via the intragastric route twice a day for 7 days. The changes of colon tissue were assessed by disease activity index (DAI), HE staining, and ELISA. Adrenodoxin expressions of UC colon tissues were evaluated by immunohistochemistry. Western blotting was performed to investigate related protein of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Results It has been found that the albiflorin shares similar influences as the SASP in ameliorating the DSS-induced UC. The reduced DAI and alleviated colon tissue damage were observed in albiflorin intervened groups. Moreover, albiflorin significantly inhibited myeloperoxidase activities and attenuated immuno-inflammatory response and elevated Foxp3 mRNA in colon tissue. Furthermore, investigations revealed that albiflorin could inhibit adrenodoxin isoform and activate activated phosphorylated NF-κB p65 and IκBα, which consequently suppressed phosphorylated p38 MAPK, extracellular regulated protein kinase (ERK), and c-Jun N-terminal kinase (JNK). Conclusion These findings showed that albiflorin could alleviate DSS-induced murine colitis by activating inhibiting NF-κB and MAPK signaling pathways. It might be a potential therapeutic reagent for UC treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People’s Hospital, Korla, 841000, Xinjiang, China,These authors contributed eqully to this work
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China,These authors contributed eqully to this work
| | - Jinhua Tan
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People’s Hospital, Korla, 841000, Xinjiang, China
| | - Tianwen Ding
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yinzi Yue
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China,Corresponding author: Yinzi Yue. Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
10
|
Chan CH, Deng YH, Peng BY, Chiang PC, Wu LA, Lee YY, Tsao W, Mao HH, Wu CY, Deng WP. Anti-Colorectal Cancer Effects of Fucoidan Complex-Based Functional Beverage Through Retarding Proliferation, Cell Cycle and Epithelial-Mesenchymal Transition Signaling Pathways. Integr Cancer Ther 2023; 22:15347354231213613. [PMID: 38059303 PMCID: PMC10704951 DOI: 10.1177/15347354231213613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Fucus vesiculosus-derived fucoidan, a multifunctional bioactive polysaccharide sourced from marine organisms, exhibits a wide range of therapeutic properties, including its anti-tumor effects. While previous research has reported on its anti-cancer potential, limited studies have explored its synergistic capabilities when combined with other natural bioactive ingredients. In this current study, we present the development of an integrative functional beverage, denoted as VMW-FC, which is composed of a fucoidan complex (FC) along with a blend of various herbal components, including vegetables (V), mulberries and fruits (M), and spelt wheat (W). OBJECTIVE Colorectal cancer (CRC) remains a significant cause of mortality, particularly in metastatic cases. Therefore, the urgent need for novel alternative medicines that comprehensively inhibit CRC persists. In this investigation, we assess the impact of VMW-FC on CRC cell proliferation, cell cycle dynamics, metastasis, in vivo tumorigenesis, and potential side effects. METHODS Cell growth was assessed using MTT and colony formation assays, while metastatic potential was evaluated through wound healing and transwell migration assays. The underlying signaling mechanisms were elucidated through qPCR and western blot analysis. In vivo tumor formation and potential side effects were evaluated using a subcutaneous tumor-bearing NOD/SCID mouse model. RESULTS Our findings demonstrate that VMW-FC significantly impedes CRC proliferation and migration in a dose- and time-dependent manner. Furthermore, it induces sub-G1 cell cycle arrest and an increase in apoptotic cell populations, as confirmed through flow-cytometric analysis. Notably, VMW-FC also suppresses xenograft tumor growth in NOD/SCID mice without causing renal or hepatic toxicity. CONCLUSION The integrative herbal concoction VMW-FC presents a promising approach for inhibiting CRC by slowing proliferation and migration, inducing cell cycle arrest and apoptosis, and suppressing markers associated with proliferation (Ki-67, PCNA, and CDKs) and epithelial-mesenchymal transition (EMT) (Vimentin, N-cadherin, and β-catenin).
Collapse
Affiliation(s)
- Chun-Hao Chan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Pao-Chang Chiang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Dental Department, Wan Fang Hospital, Taipei Medical University, Taipei 116081, Taiwan
| | - Li-An Wu
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yen-Yung Lee
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Wen Tsao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsiang-Hsun Mao
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chia-Yu Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Life Science, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
11
|
Janpaijit S, Lertpatipanpong P, Sillapachaiyaporn C, Baek SJ, Charoenkiatkul S, Tencomnao T, Sukprasansap M. Anti-neuroinflammatory effects of Cleistocalyx nervosum var. paniala berry-seed extract in BV-2 microglial cells via inhibition of MAPKs/NF-κB signaling pathway. Heliyon 2022; 8:e11869. [DOI: 10.1016/j.heliyon.2022.e11869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
|
12
|
Sawai M, Miyauchi Y, Ishida T, Takechi S. Dihydropyrazine suppresses TLR4-dependent inflammatory responses by blocking MAPK signaling in human hepatoma HepG2 cells. J Toxicol Sci 2022; 47:381-387. [PMID: 36047112 DOI: 10.2131/jts.47.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dihydropyrazines (DHPs), including 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), are glycation products generated through non-enzymatic reactions in vivo and in food. They are recognized as compounds that are toxic to organisms as they produce radicals. However, our previous study indicated that DHP-3 suppressed Toll-like receptor 4 (TLR4) expression and decreased the phosphorylation of nuclear factor-κB (NF-κB) in lipopolysaccharide (LPS)-treated HepG2 cells. TLR4 signaling is involved in the onset of various inflammatory diseases, and NF-κB and mitogen-activated protein kinase (MAPK) play important roles in TLR4 signaling. Thus, we aimed to elucidate the effects of DHP-3 on MAPK signaling and in turn on the activated TLR4 signaling pathway. In LPS-stimulated HepG2 cells, DHP-3 reduced the phosphorylation of MAPK, extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38. The expression of c-jun, a subunit of activator protein-1, was decreased by DHP-3 treatment. Furthermore, DHP-3-induced suppression of MAPK signaling resulted in a decrease in various inflammatory regulators, such as interleukin-6, CC-chemokine ligand 2, and cyclooxygenase-2. These results suggest that DHP-3 exerts an inhibitory effect on TLR4-dependent inflammatory response by suppressing MAPK signaling.
Collapse
Affiliation(s)
- Madoka Sawai
- School of Pharmacy at Fukuoka, International University of Health and Welfare
| | - Yuu Miyauchi
- Faculty of Pharmaceutical Sciences, Sojo University
| | - Takumi Ishida
- School of Pharmacy at Fukuoka, International University of Health and Welfare
| | | |
Collapse
|
13
|
Mechanism of Cornus Officinalis in Treating Diabetic Kidney Disease Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1799106. [PMID: 35855831 PMCID: PMC9288281 DOI: 10.1155/2022/1799106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
Diabetic kidney disease (DKD), one of the most important diabetic complications, is a great clinical challenge. It still lacks proper therapeutic strategies without side effects due to the complex pathological mechanisms. Cornus officinalis (CO) is a common traditional Chinese medicine, which has been used in the treatment of DKD and takes beneficial effects in therapy. However, the mechanism of CO in treating DKD is not clear yet. In this study, network pharmacology was applied to illustrate the potential mechanism of CO and the interaction between targets of CO and targets of disease. First, the active ingredients of CO and related targets were screened from the online database. Second, the intersection network between CO and disease was constructed, and protein–protein interaction analysis was done. Third, GO and KEGG analysis were employed to figure out the key targets of CO. Finally, molecular docking was carried out in the software SYBYL to verify the effectiveness of the ingredients and targets selected. According to GO and KEGG analysis, drug metabolism-cytochrome P450, sphingolipid signaling pathway, HIF-1 signaling pathway, TGF-beta signaling pathway, cGMP-PKG signaling pathway, estrogen signaling pathway, and TNF signaling pathway were most closely related to the pathogenesis of DKD. Moreover, NOS3, TNF, ROCK1, PPARG, KDR, and HIF1A were identified as key targets in regulating the occurrence and development of the disease. This study provides evidence to elucidate the mechanism of CO comprehensively and systematically and lays the foundation for further research on CO.
Collapse
|
14
|
Hao J, Gao Y, Xue J, Yang Y, Yin J, Wu T, Zhang M. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022; 11:1170. [PMID: 35454757 PMCID: PMC9028580 DOI: 10.3390/foods11081170] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are numerous varieties of mulberry, and each has high medicinal value and is regarded as a promising source of traditional medicines and functional foods. Nevertheless, the nutrients and uses of mulberry differ from species (Morus alba L., Morus nigra L. and Morus rubra L.). Phenolic compounds are prominent among the biologically active ingredients in mulberry, especially flavonoids, anthocyanins and phenolic acids. Epidemiologic studies suggest that mulberry contains a rich, effective chemical composition and a wide range of biological activity, such as antioxidant, anti-inflammatory, anti-tumor and so on. However, compared with other berries, there has been a lack of systematic research on mulberry, and this hinders its further expansion as a functional fruit. The main purpose of this review is to provide the latest data regarding the effective chemical constituents and pharmacological effects of mulberry to support its further therapeutic potential and health functions.
Collapse
Affiliation(s)
- Junyu Hao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yufang Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Jiabao Xue
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yunyun Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
15
|
Ye L, Xin Y, Wu ZY, Sun HJ, Huang DJ, Sun ZQ. A Newly Synthesized Flavone from Luteolin Escapes from COMT-Catalyzed Methylation and Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages via JNK, p38 and NF-κB Signaling Pathways. J Microbiol Biotechnol 2022; 32:15-26. [PMID: 34099595 PMCID: PMC9628824 DOI: 10.4014/jmb.2104.04027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Luteolin is a common dietary flavone possessing potent anti-inflammatory activities. However, when administrated in vivo, luteolin becomes methylated by catechol-O-methyltransferases (COMT) owing to the catechol ring in the chemical structure, which largely diminishes its anti-inflammatory effect. In this study, we made a modification on luteolin, named LUA, which was generated by the chemical reaction between luteolin and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Without a catechol ring in the chemical structure, this new flavone could escape from the COMT-catalyzed methylation, thus affording the potential to exert its functions in the original form when administrated in the organism. Moreover, an LPS-stimulated RAW cell model was applied to detect the anti-inflammatory properties. LUA showed much more superior inhibitory effect on LPS-induced production of NO than diosmetin (a major methylated form of luteolin) and significantly suppressed upregulation of iNOS and COX-2 in macrophages. LUA treatment dramatically reduced LPS-stimulated reactive oxygen species (ROS) and mRNA levels of pro-inflammatory mediators such as IL-1β, IL-6, IL-8 and IFN-β. Furthermore, LUA significantly reduced the phosphorylation of JNK and p38 without affecting that of ERK. LUA also inhibited the activation of NF-κB through suppression of p65 phosphorylation and nuclear translocation.
Collapse
Affiliation(s)
- Lin Ye
- School of Pharmacy, Changzhou University, Changzhou 213164, P.R. China,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Xin
- Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117597, Singapore
| | - Zhi-yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Hai-jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - De-jian Huang
- Food Science and Technology Program, Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117597, Singapore,National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi-qin Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, P.R. China,Changzhou Second People's Hospital, Changzhou 213000, P.R. China,Corresponding author Phone: +13861285688 E-mail:
| |
Collapse
|
16
|
Perri MR, Romano C, Marrelli M, Zicarelli L, Toma CC, Basta D, Conforti F, Statti G. Beneficial Role of Fruits, Their Juices, and Freeze-Dried Powders on Inflammatory Bowel Disease and Related Dysbiosis. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010004. [PMID: 35009009 PMCID: PMC8747592 DOI: 10.3390/plants11010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of complex chronic inflammatory conditions affecting the gastrointestinal tract. It is linked to a number of genetic and environmental factors able to perturb the immune-microbiome axis. Diet is the most investigated variable both for its role in the etiology of IBD and for its beneficial potential in the treatment of the symptoms. Dietary products may influence intestinal inflammation through different mechanisms of action, such as the modulation of inflammatory mediators, the alteration of gene expression, changes in gut permeability, and modifications in enteric flora composition. A consisting number of studies deal with the link between nutrition and microbial community, and particular attention is paid to plant-based foods. The effects of the dietary intake of different fruits have been investigated so far. This review aims to present the most recent studies concerning the beneficial potential of fruit consumption on human gut microbiota. Investigated plant species are described, and obtained results are presented and discussed in order to provide an overview of both in vitro and in vivo effects of fruits, their juices, and freeze-dried powders.
Collapse
Affiliation(s)
- Maria Rosaria Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| | - Carmen Romano
- SIACSA Società Italiana degli Analisti del Comportamento in campo Sperimentale ed Applicativo, 87100 Cosenza, RC, Italy;
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| | | | - Claudia-Crina Toma
- Pharmacognosy Department, Faculty of Pharmacy, Vasile Goldis Western University of Arad, 87 L. Rebreanu Str., 310045 Arad, Romania;
| | - Daniele Basta
- University Sport Center, University of Calabria, 87036 Rende, CS, Italy;
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| |
Collapse
|
17
|
Lee D, Lee SR, Kang KS, Kim KH. Bioactive Phytochemicals from Mulberry: Potential Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Int J Mol Sci 2021; 22:8120. [PMID: 34360887 PMCID: PMC8348635 DOI: 10.3390/ijms22158120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023] Open
Abstract
The fruits of the mulberry tree (Morus alba L.), known as white mulberry, have been consumed in various forms, including tea, beverages, and desserts, worldwide. As part of an ongoing study to discover bioactive compounds from M. alba fruits, the anti-inflammatory effect of compounds from M. alba were evaluated in lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages. Phytochemical analysis of the ethanol extract of the M. alba fruits led to the isolation of 22 compounds. Among the isolated compounds, to the best of our knowledge, compounds 1, 3, 5, 7, 11, 12, and 14-22 were identified from M. alba fruits for the first time in this study. Inhibitory effects of 22 compounds on the production of the nitric oxide (NO) known as a proinflammatory mediator in LPS-stimulated RAW 264.7 macrophages were evaluated using NO assays. Western blot analysis was performed to evaluate the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5). We evaluated whether the anti-inflammatory effects of cyclo(L-Pro-L-Val) (5) following LPS stimulation in RAW 264.7 macrophages occurred because of phosphorylation of IκB kinase alpha (IKKα), IκB kinase beta (IKKβ), inhibitor of kappa B alpha (IκBα), nuclear factor kappa B (NF-κB) and activations of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Cyclo(L-Pro-L-Val) (5) significantly suppressed phosphorylations of IKKα, IKKβ, IκBα, and NF-κB and activations of iNOS and COX-2 in a concentration-dependent manner. Taken together, these results indicate that cyclo(L-Pro-L-Val) (5) can be considered a potential therapeutic agent for the treatment of inflammation-associated disorders.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| |
Collapse
|
18
|
Zhang Y, Zhang H, Li Y, Wang M, Qian F. β-Caryophyllene attenuates lipopolysaccharide-induced acute lung injury via inhibition of the MAPK signalling pathway. J Pharm Pharmacol 2021; 73:1319-1329. [PMID: 34313776 DOI: 10.1093/jpp/rgab074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Acute lung injury (ALI) is a pulmonary manifestation of an acute systemic inflammatory response, which is associated with high morbidity and mortality. Accordingly, from the perspective of treating ALI, it is important to identify effective agents and elucidate the underlying modulatory mechanisms. β-Caryophyllene (BCP) is a naturally occurring bicyclic sesquiterpene that has anti-cancer and anti-inflammatory activities. However, the effects of BCP on ALI have yet to be ascertained. METHODS ALI was induced intratracheally, injected with 5 mg/kg LPS and treated with BCP. The bone marrow-derived macrophages (BMDMs) were obtained and cultured then challenged with 100 ng/ml LPS for 4 h, with or without BCP pre-treatment for 30 min. KEY FINDINGS BCP significantly ameliorates LPS-induced mouse ALI, which is related to an alleviation of neutrophil infiltration and reduction in cytokine production. In vitro, BCP was found to reduce the expression of interleukin-6, interleukin-1β and tumour necrosis factor-α, and suppresses the MAPK signalling pathway in BMDMs, which is associated with the inhibition of TAK1 phosphorylation and an enhancement of MKP-1 expression. CONCLUSIONS Our data indicate that BCP protects against inflammatory responses and is a potential therapeutic agent for the treatment of LPS-induced acute lung injury.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Haibo Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
| | - Muqun Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Feng Qian
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China.,Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Truong VL, Manochai B, Pham TT, Jeong WS. Antioxidant and Anti-Inflammatory Activities of Zingiber montanum Oil in HepG2 Cells and Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. J Med Food 2021; 24:595-605. [PMID: 34077680 DOI: 10.1089/jmf.2021.k.0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Improvement of antioxidant and anti-inflammatory functions is believed to be an effective strategy for protection against various diseases such as cancer, aging, and neurodegenerative disease. This study focused on investigating antioxidant and anti-inflammatory abilities of Zingiber montanum oil (ZMO) extracted by the supercritical CO2 fluid system in HepG2 cells and lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Ten predominant constituents of ZMO were identified, in which triquinacene, 1,4-bis (methoxy), terpinen-4-ol, triquinacene, 1,4,7-tris (methoxy), α-terpinene, sabinene hydrate, and (E and Z)-1-(3,4-dimethoxyphenyl)butadiene account for 86.47%. ZMO exhibited anti-inflammatory capacity by inhibiting the formation of pro-inflammatory markers such as nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1 in LPS-treated macrophages. The LPS-induced stimulation of nuclear factor-kappa B, signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) pathways as evident from increased phosphorylation of IKKα/β, IκBα, p65, Stat3, ERK, JNK, and p38 MAPK was also suppressed by ZMO pretreatment. Further, ZMO enhanced the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1), and concurrently, reduced intracellular reactive oxygen species accumulation in LPS-treated RAW 264.7 cells. In addition, ZMO treatment markedly upregulated the expression of Nrf2 as well as its target genes, HO-1 and NAD(P)H:quinone oxidoreductase 1 in HepG2 cells. These data propose that ZMO may be a potent candidate for prevention and/or treatment of inflammatory and oxidative conditions.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea.,Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| | - Benya Manochai
- Department of Horticulture, Kasetsart University, Bangkok, Thailand
| | - Thu-Trang Pham
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| | - Woo-Sik Jeong
- Food and Bio-industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea.,Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| |
Collapse
|
20
|
Chen G, Li Y, Li X, Zhou D, Wang Y, Wen X, Wang C, Liu X, Feng Y, Li B, Li N. Functional foods and intestinal homeostasis: The perspective of in vivo evidence. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Chi H, Wang D, Chen M, Lin J, Zhang S, Yu F, Zhou J, Zheng X, Zou Y. Shaoyao Decoction Inhibits Inflammation and Improves Intestinal Barrier Function in Mice With Dextran Sulfate Sodium-Induced Colitis. Front Pharmacol 2021; 12:524287. [PMID: 33959000 PMCID: PMC8093868 DOI: 10.3389/fphar.2021.524287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Shaoyao decoction (SYD), a classical traditional Chinese medicine formula, is effective for the treatment of inflammatory bowel disease (IBD). This study was designed to investigate the therapeutic effects of SYD on IBD and possible mechanisms. Dextran sulfate sodium (DSS, 3.5%) was used to induce colitis in C57BL/6 mice. Disease phenotypes were investigated based on disease activity index (DAI), colon length, and microscopic and macroscopic scores. Additionally, the presence of proinflammatory cytokines, immune cell infiltrates, intestinal cell proliferation, apoptosis, epithelial permeability, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-κB (NF-κB) signaling, as well as the intestinal mucosal barrier function, were investigated. The administration of SYD significantly ameliorated the clinical signs, suppressed the levels of proinflammatory cytokines, and reduced immune cell infiltrates into colonic tissues of DSS-induced colitis model mice. SYD also significantly reduced the DSS-induced activation of STAT3 and NF-κB signaling. Furthermore, SYD promoted epithelial integrity by regulating epithelial cell apoptosis and epithelial permeability. Finally, we demonstrated that SYD protected the intestinal barrier function by significantly regulating the mucus layer genes Muc1, Muc2, Muc4, and Tff3, as well as the epithelial barrier genes Z O -1 and Occludin. Our results indicate that SYD has a protective effect on DSS-induced colitis, which is attributable to its anti-inflammatory activity and intestinal barrier function-enhancing effects. These results provide valuable insights into the pharmacological actions of SYD for the treatment of IBD.
Collapse
Affiliation(s)
- Honggang Chi
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, China.,Department of Traditional Chinese Medicine, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Dan Wang
- Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Mengting Chen
- Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Shuhua Zhang
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Fengyan Yu
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuebao Zheng
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, China
| | - Ying Zou
- Department of Traditional Chinese Medicine, The Second Clinical Medical College, Guangdong Medical University, Dongguan, China.,Department of Traditional Chinese Medicine, Dongguan Liaobu Hospital, Dongguan, China
| |
Collapse
|
22
|
Transcriptome Analysis Reveals Possible Immunomodulatory Activity Mechanism of Chlorella sp. Exopolysaccharides on RAW264.7 Macrophages. Mar Drugs 2021; 19:md19040217. [PMID: 33919822 PMCID: PMC8070752 DOI: 10.3390/md19040217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, the exopolysaccharides of Chlorella sp. (CEP) were isolated to obtain the purified fraction CEP4. Characterization results showed that CEP4 was a sulfated heteropolysaccharide. The main monosaccharide components of CEP4 are glucosamine hydrochloride (40.8%) and glucuronic acid (21.0%). The impact of CEP4 on the immune activity of RAW264.7 macrophage cytokines was detected, and the results showed that CEP4 induced the production of nitric oxide (NO), TNF-α, and IL-6 in a dose-dependent pattern within a range of 6 μg/mL. A total of 4824 differentially expressed genes (DEGs) were obtained from the results of RNA-seq. Gene enrichment analysis showed that immune-related genes such as NFKB1, IL-6, and IL-1β were significantly upregulated, while the genes RIPK1 and TLR4 were significantly downregulated. KEGG pathway enrichment analysis showed that DEGs were significantly enriched in immune-related biological processes, including toll-like receptor (TLR) signaling pathway, cytosolic DNA-sensing pathway, and C-type lectin receptor signaling pathway. Protein–protein interaction (PPI) network analysis showed that HSP90AB1, Rbx1, ISG15, Psmb6, Psmb3, Psmb8, PSMA7, Polr2f, Rpsa, and NEDD8 were the hub genes with an essential role in the immune activity of CEP4. The preliminary results of the present study revealed the potential mechanism of CEP4 in the immune regulation of RAW264.7 macrophages, suggesting that CEP4 is a promising immunoregulatory agent.
Collapse
|
23
|
Zhai L, Huang T, Xiao HT, Wu PG, Lin CY, Ning ZW, Zhao L, Kwan HYA, Hu XJ, Wong HLX, Li XQ, Bian ZX. Berberine Suppresses Colonic Inflammation in Dextran Sulfate Sodium-Induced Murine Colitis Through Inhibition of Cytosolic Phospholipase A2 Activity. Front Pharmacol 2021; 11:576496. [PMID: 33658925 PMCID: PMC7919193 DOI: 10.3389/fphar.2020.576496] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Ulcerative colitis (UC) causes chronic inflammation and damage to the colonic mucosal layer. Recent studies have reported significant changes in phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) in UC patients and oral administration of PC has considerable therapeutic effects against UC, suggesting the metabolism of phosphatidylcholine may be involved in the UC development. Our previous work has demonstrated that berberine effectively suppresses inflammation and protects colonic mucosa injury in DSS-induced colitic mice. However, whether the therapeutic effects of berberine are attributed to its action on the PC metabolism remains unknown. In the present study, we have shown that berberine significantly reduces the lysophosphatidylcholine (LPC) levels in the sera of DSS-induced experimental colitis mice and LPS-stimulated macrophage RAW 264.7 cells. The cytosolic phospholipase A2a (PLA2G4A), an enzyme for hydrolyzing PC to LPC, was found to be up-regulated in the colon tissue of experimental colitis mice and inflamed macrophage RAW 264.7 cells. We then demonstrated berberine inhibits the phosphorylation of cytosolic phospholipase A2a (PLA2G4A) in the colon tissue of experimental colitis mice and inflamed macrophage RAW 264.7 cells. Subsequently, we revealed berberine suppressed the expression of pro-inflammatory factors including TNF-alpha and IL-6 through regulating PLA2G4A dysfunction in macrophage RAW 264.7 cells. Mechanistically, we found that berberine directly binds to PLA2G4A and inhibits MAPK/JNK signaling pathway to inhibit PLA2G4A activity in inflammatory status. Therefore, we concluded that berberine inhibits colonic PLA2G4A activity to ameliorate colonic inflammation in experimental colitic mice, suggesting modulation of the PC metabolism via PLA2G4A might be beneficial for establishing new therapies strategy for UC.
Collapse
Affiliation(s)
- Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Tao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Hai-Tao Xiao
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, China
| | - Pei-Gen Wu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Cheng-Yuan Lin
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zi-Wan Ning
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ling Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Hiu Yee Anna Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Xian-Jing Hu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | | | - Xian-Qian Li
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
24
|
Zobeiri M, Momtaz S, Parvizi F, Tewari D, Farzaei MH, Nabavi SM. Targeting Mitogen-Activated Protein Kinases by Natural Products: A Novel Therapeutic Approach for Inflammatory Bowel Diseases. Curr Pharm Biotechnol 2020; 21:1342-1353. [PMID: 31840607 DOI: 10.2174/1389201021666191216122555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
An increase in the prevalence of Inflammatory Bowel Diseases (IBD) as a multifactorial intestinal chronic inflammation as well as the absence of a certain cure, has created an innovative era in the management of IBD by molecule/pathway-based anti-inflammatory approaches. There are credible documentations that demonstrate Mitogen-Activated Protein Kinases (MAPK) acts as IBD regulator. Upon the activation of MAPK signalling pathway, the transcription and expression of various encoding inflammatory molecules implicated in IBD are altered, thereby exacerbating the inflammation development. The current pharmacological management of IBD, including drug and biological therapies are expensive, possess temporary relief and some adverse effects. In this context, a variety of dietary fruits or medicinal herbs have received worldwide attention versus the development of IBD. Infact, natural ingredients, such as Flavaglines, Fisetin, Myricitrin, Cardamonin, Curcumin, Octacosanol and Mangiferin possess protective and therapeutic effects against IBD via modulation of different segments of MAPK signaling pathway. This review paper calls attention to the role of MAPK signaling triggered by natural products in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Mehdi Zobeiri
- Internal Medicine Department, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Parvizi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144 411, India
| | - Mohammad H Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Yao L, Yang P, Luo W, Li S, Wu Y, Cai N, Bi D, Li H, Han Q, Xu X. Macrophage-stimulating activity of European eel (Anguilla anguilla) peptides in RAW264.7 cells mediated via NF-κB and MAPK signaling pathways. Food Funct 2020; 11:10968-10978. [PMID: 33283791 DOI: 10.1039/d0fo02497j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
European eel (Anguilla anguilla) is considered to be a vital commercial fish species. In this study, the effect and molecular mechanism of bioactive peptides from European eel on macrophage-stimulating activity in RAW264.7 cells were investigated. Eel peptide (EP) markedly induced NO and iNOS production and promoted TNF-α and IL-6 secretion in a concentration-dependent manner. Moreover, EP dose-dependently activated NF-κB and MAPK signaling pathways in RAW264.7 cells. In addition, EP was purified using a Sephadex A-25 column and a Bio-Gel P-6 column, and the fraction (Fr-1-1) showing the strongest NO-inducing activity was obtained. Then, the molecular weights of the components in Fr-1-1 were analyzed by LC-MS/MS and found to range from 700 to 1900 Da for the majority of components, which suggested that Fr-1-1 mainly consisted of peptides containing 8-20 amino acid residues. Overall, our results indicated that EP from Anguilla anguilla activated macrophages and could be used as a potential nutraceutical or pharmaceutical.
Collapse
Affiliation(s)
- Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li WH, Han JR, Ren PP, Xie Y, Jiang DY. Exploration of the mechanism of Zisheng Shenqi decoction against gout arthritis using network pharmacology. Comput Biol Chem 2020; 90:107358. [PMID: 33243703 DOI: 10.1016/j.compbiolchem.2020.107358] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND In this study, the network pharmacological methods were used to predict the target of effective components of compounds in Zisheng Shenqi Decoction (ZSD, or Nourishing Kidney Qi Decoction) in the treatment of gouty arthritis (GA). METHOD The main effective components and corresponding key targets of herbs in the ZSD were discerned through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP), Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM) database. UniProt database and Swiss Target Prediction (STP) database was used to rectify and unify the target names and supply the target information. The targets related to GA were obtained by using GeneCards database. After we discovered the potential common targets between ZSD and GA, the interaction network diagram of "ZSD-component-GA-target" was constructed by Cytoscape software (Version 3.7.1). Subsequently, the Protein-protein interaction (PPI) network of ZSD effective components-targets and GA-related targets was constructed by Search Tool for the Retrieval of Interacting Genes Database (STRING). Bioconductor package "org.Hs.eg.db" and "cluster profiler" package were installed in R software (Version 3.6.0) which used for Gene Ontology analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis. RESULTS 146 components and 613 targets of 11 herbal medicines in the ZSD were got from TCMSP database and BATMAN-TCM database. 987 targets of GA were obtained from GeneCards database. After intersected and removed duplications, 132 common targets between ZSD and GA were screened out by Cytoscape software (Version 3.7.1). These common targets derived from 81 effective components of 146 components, such as quercetin, stigmasterol and kaempferol. They were closely related to anti-inflammatory, analgesic and anti oxidative stress and the principal targets comprised of Purinergic receptor P2X, ligand-gated ion channel 7 (P2x7R), Nod-like receptor protein 3 (NLRP3) and IL-1β. GO enrichment analysis and KEGG pathway enrichment analysis by R software (Version 3.6.0) showed that the key target genes had close relationship with oxidative stress, reactive oxygen species (ROS) metabolic process and leukocyte migration in aspects of biological process, cell components and molecular function. It also indicated that ZSD could decrease inflammatory reaction, alleviate ROS accumulation and attenuate pain by regulating P2 × 7R and NOD like receptor signaling pathway of inflammatory reaction. CONCLUSION A total of 81 effective components and 132 common target genes between ZSD and GA were screened by network pharmacology. The PPI network, GO enrichment analysis and KEGG pathway enrichment analysis suggested that ZSD can exerte anti-inflammatory and analgesic effects on the treatment of GA by reducing decreasing inflammatory reaction, alleviating ROS accumulation, and attenuating pain. The possible molecular mechanism of it mainly involved multiple components, multiple targets and multiple signaling pathways, which provided a comprehensive understanding for further study. In general, the network pharmacological method applied in this study provides an alternative strategy for the mechanism of ZSD in the treatment of GA.
Collapse
Affiliation(s)
- Wen-Hao Li
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Jie-Ru Han
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Peng-Peng Ren
- Department of Integrated Chinese and Western medicine, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Ying Xie
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - De-You Jiang
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
27
|
Kang K, Liao X, Li Q, Chen J, Niu Y, Zeng Y, Xia S, Zeng L, Liu S, Gou D. A novel tonicity-responsive microRNA miR-23a-5p modulates renal cell survival under osmotic stress through targeting heat shock protein 70 HSPA1B. Am J Physiol Cell Physiol 2020; 320:C225-C239. [PMID: 33206547 DOI: 10.1152/ajpcell.00441.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is growing evidence that microRNAs (miRNAs) are implicated in cellular adaptation to osmotic stress, but the underlying osmosignaling pathways are still not completely understood. In this study, we found that a passenger strand miRNA, miR-23a-5p, was significantly downregulated in response to high NaCl treatment in mouse inner medullary collecting duct cells (mIMCD3) through an miRNA profiling assay. The decrease of miR-23a-5p is hypertonicity-dependent and osmotolerant cell type-specific. Knockdown of miR-23a-5p increased cellular survival and proliferation in mIMCD3. In contrast, miR-23a-5p overexpression repressed cell viability and proliferation under hypertonic stress. RNA deep-sequencing revealed that a heat shock protein 70 (HSP70) isoform, HSP70 member 1B (HSPA1B), was significantly increased under hypertonic treatment. Based on the prediction analysis by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and TargetScan, and a further validation via a dual-luciferase assay, HSPA1B was identified as a potential target of miR-23a-5p. Overexpressed miR-23a-5p suppressed HSPA1B, whereas downregulated miR-23a-5p promoted HSPA1B expression in mIMCD3. In addition, an in vivo study demonstrated that there is a reverse correlation between the levels of miR-23a-5p and HSPA1B in mouse renal inner medulla (papilla) that is exposed to extremely high osmolality. In summary, this study elucidates that passenger strand miR-23a-5p is a novel tonicity-responsive miRNA. The downregulation of miR-23a-5p facilitates cellular adaptation to hypertonic stress in mammalian renal cells through modulating HSPA1B.
Collapse
Affiliation(s)
- Kang Kang
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China
| | - Xiaoyun Liao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Qing Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Yan Zeng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Sijian Xia
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Le Zeng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Shide Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| | - Deming Gou
- Department of Biochemistry and Molecular Biology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, People's Republic of China.,Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
28
|
Esaki M, Ishida T, Miyauchi Y, Takechi S. The effect of dihydropyrazines on lipopolysaccharide-stimulated human hepatoma HepG2 cells via regulating the TLR4-MyD88-mediated NF-κB signaling pathway. J Toxicol Sci 2020; 45:401-409. [PMID: 32612008 DOI: 10.2131/jts.45.401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dihydropyrazines (DHPs), including 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), are glycation products that are spontaneously generated in vivo and ingested via food. DHPs generate various radicals and reactive oxygen species (ROS), which can induce the expression of several antioxidant genes in HepG2 cells. However, detailed information on DHP-response pathways remains elusive. To address this issue, we investigated the effects of DHP-3 on the nuclear factor-κB (NF-κB) pathway, a ROS-sensitive signaling pathway. In lipopolysaccharide-stimulated (LPS-stimulated) HepG2 cells, DHP-3 decreased phosphorylation levels of inhibitor of NF-κB (IκB) and NF-κB p65, and nuclear translocation of NF-κB p65. In addition, DHP-3 reduced the expression of Toll-like receptor 4 (TLR4) and the adaptor protein myeloid differentiation primary response gene 88 (MyD88). Moreover, DHP-3 suppressed the mRNA expression of tumor necrosis factor-alpha (TNFα), and interleukin-1 beta (IL-1β). Taken together, these results suggest that DHP-3 acts as a negative regulator of the TLR4-MyD88-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Madoka Esaki
- Faculty of Pharmaceutical Sciences, Sojo University
| | | | - Yuu Miyauchi
- Faculty of Pharmaceutical Sciences, Sojo University
| | | |
Collapse
|
29
|
Gu I, Brownmiller C, Stebbins NB, Mauromoustakos A, Howard L, Lee SO. Berry Phenolic and Volatile Extracts Inhibit Pro-Inflammatory Cytokine Secretion in LPS-Stimulated RAW264.7 Cells through Suppression of NF-κB Signaling Pathway. Antioxidants (Basel) 2020; 9:antiox9090871. [PMID: 32942640 PMCID: PMC7554842 DOI: 10.3390/antiox9090871] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are a rich source of phytochemicals, especially phenolics well known for protective activity against many chronic diseases. Berries also contain a complex mixture of volatile compounds that are responsible for the unique aromas of berries. However, there is very limited information on the composition and potential health benefits of berry volatiles. In this study, we isolated phenolic and volatile fractions from six common berries and characterized them by HPLC/HPLC-MS and GC/GC-MS, respectively. Berry phenolic and volatile fractions were evaluated for an anti-inflammatory effect using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells by measuring levels of pro-inflammatory cytokines and the nuclear factor-kappa B (NF-κB) signaling pathway. Results showed that LPS-induced excessive production of nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which were inhibited by berry phenolic and volatile extracts. Moreover, berry phenolic and volatile extracts reduced the nuclear translocation of NF-κB by blocking the phosphorylation of p65 and degradation of IκBα. These findings showed that berry volatiles from six berries had comparable anti-inflammatory effects to berry phenolics through the suppression of pro-inflammatory mediators and cytokines expression via NF-κB down-regulation, despite being present in the fruit at a lower concentration.
Collapse
Affiliation(s)
- Inah Gu
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Cindi Brownmiller
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Nathan B. Stebbins
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Andy Mauromoustakos
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Luke Howard
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
| | - Sun-Ok Lee
- Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; (I.G.); (C.B.); (N.B.S.); (L.H.)
- Correspondence: ; Tel.: +1-479-575-6921
| |
Collapse
|
30
|
Xu X, Huang Y, Xu J, He X, Wang Y. Anti-neuroinflammatory and antioxidant phenols from mulberry fruit (Morus alba L.). J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Ibrahim YF, Fadl RR, Ibrahim S, Gayyed MF, Bayoumi A, Refaie M. Protective effect of febuxostat in sepsis-induced liver and kidney injuries after cecal ligation and puncture with the impact of xanthine oxidase, interleukin 1 β, and c-Jun N-terminal kinases. Hum Exp Toxicol 2020; 39:906-919. [PMID: 32054342 DOI: 10.1177/0960327120905957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sepsis is one of the most common causes of death among hospitalized patients. Activity of xanthine oxidase (XO), a reactive oxygen species-producing enzyme, is known to be elevated in septic patients. Our aim was to investigate the possible protective role of XO inhibitor, febuxostat (FEB), in a rat model of sepsis-induced liver and kidney injures. Adult male albino rats were divided into four groups (n = 12 each): sham control, sham + FEB, cecal ligation and puncture (CLP), and CLP + FEB groups. FEB (10 mg/kg per os (p.o.)) was given once daily for 2 days and 30 min prior to laparotomy with CLP. CLP was associated with a high mortality rate accompanied by significant liver and kidney injuries indicated by elevated serum alanine aminotransferase, aspartate aminotransferase, urea, and creatinine levels and confirmed by histopathological tissue injury. Moreover, there was an increase in neutrophil gelatinase-associated lipocalin, uric acid, malondialdehyde, and nitric oxide levels and with decreased superoxide dismutase activity and total antioxidant capacity. In addition, CLP caused increased expression of the inflammatory markers tumor necrosis factor alpha, interleukin 1beta protein levels, and nuclear factor kappa B immunoexpression. Finally, CLP operated rats exhibited an upregulation in the apoptotic mediators, caspase 3, and P-C-Jun N-terminal kinases (JNK) proteins. FEB treatment of CLP rats caused a significant improvement and normalization in all measured parameters. Moreover, FEB amerliorates degenerative histopathological changes and improves the overall survival rate. In conclusion, FEB exhibited a protective effect in sepsis-induced liver and kidney injuries most probably through its anti-inflammatory, antioxidant, and antiapoptotic properties and attenuating JNK signaling pathway secondary to its XO enzyme inhibitory activity.
Collapse
Affiliation(s)
- Y F Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - R R Fadl
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sae Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - M F Gayyed
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Ama Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Mmm Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
32
|
Yuan J, Cheng W, Zhang G, Ma Q, Li X, Zhang B, Hu T, Song G. Protective effects of iridoid glycosides on acute colitis via inhibition of the inflammatory response mediated by the STAT3/NF-кB pathway. Int Immunopharmacol 2020; 81:106240. [PMID: 32044657 DOI: 10.1016/j.intimp.2020.106240] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Morroniside and loganin are iridoid glycosides extracted from Cornus officinalis, a plant species widely used in traditional Chinese medicine. However, the anti-inflammatory effects of morroniside and loganin in colitis are barely understood. The aim of the present study was to explore the effects of morroniside and loganin on the dextran sodium sulfate (DSS)-induced murine model of colitis and an LPS-induced colorectal cancer (CRC) cell inflammation model, and to clarify the underlying mechanisms. We found that morroniside and loganin were able to ameliorate clinical features, including disease activity index (DAI), histological inflammation score and periodic acid-Schiff staining (PAS). In the mouse model, morroniside and loganin treatment increased expression of tight junction proteins (TJs) and decreased pro-inflammatory cytokine production. Moreover, our findings showed that the expression of p-STAT3 and p-p65 were suppressed compared to the disease group. In in vitro experiments, treatment with morroniside and loganin had no obvious effects on proliferative activity in HCT116 cells and HIEC-6 cells. Expression of pro-inflammatory cytokines was inhibited by morroniside and loganin treatment in comparison with the LPS-treated group. Taken together, morroniside and loganin have beneficial effects on colitis in vivo and are anti-inflammatory in vitro. Possible mechanisms of the anti-inflammatory response may include blockade of the STAT3/NF-κB pathway.
Collapse
Affiliation(s)
- Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weipeng Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Qiujuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Bing Zhang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
33
|
Önen T, Karakuş MÖ, Coşkun R, Çetin H. Reaching stability at DSSCs with new type gel electrolytes. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure. Foods 2019; 8:foods8110582. [PMID: 31744147 PMCID: PMC6915509 DOI: 10.3390/foods8110582] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023] Open
Abstract
Phytosterols, found in many commonly consumed foods, exhibit a broad range of physiological activities including anti-inflammatory effects. In this study, the anti-inflammatory effects of ergosterol, β-sitosterol, stigmasterol, campesterol, and ergosterol acetate were investigated in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Results showed that all phytosterol compounds alleviated the inflammatory reaction in LPS-induced macrophage models; cell phagocytosis, nitric oxide (NO) production, release of tumor necrosis factor-α (TNF-α), and expression and activity of pro-inflammatory mediator cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated extracellular signal-regulated protein kinase (p-ERK) were all inhibited. The anti-inflammatory activity of β-sitosterol was higher than stigmasterol and campesterol, which suggests that phytosterols without a double bond on C-22 and with ethyl on C-24 were more effective. However, inconsistent results were observed upon comparison of ergosterol and ergosterol acetate (hydroxy or ester group on C-3), which suggest that additional research is still needed to ascertain the contribution of structure to their anti-inflammatory effects.
Collapse
|
35
|
Berberis lycium fruit extract attenuates oxi-inflammatory stress and promotes mucosal healing by mitigating NF-κB/c-Jun/MAPKs signalling and augmenting splenic Treg proliferation in a murine model of dextran sulphate sodium-induced ulcerative colitis. Eur J Nutr 2019; 59:2663-2681. [DOI: 10.1007/s00394-019-02114-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
|
36
|
Andrographolide Derivative AL-1 Ameliorates Dextran Sodium Sulfate-Induced Murine Colitis by Inhibiting NF- κB and MAPK Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6138723. [PMID: 31687082 PMCID: PMC6800948 DOI: 10.1155/2019/6138723] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
Abstract
Trinitrobenzenesulfonic acid (TNBS) and dextran sodium sulfate (DSS) are commonly used to induce experimental murine ulcerative colitis (UC). Our recent study has demonstrated that a novel andrographolide derivative, AL-1, ameliorated TNBS-induced colitis in mice. However, the effect of AL-1 on DSS-induced murine colitis and the underlying mechanisms are yet unknown. In the present study, we aimed to investigate the therapeutic potential of AL-1 against DSS-induced UC in mice and to define its mechanisms of action. Oral administration of AL-1 attenuated body weight loss, reduced colon length shortening, lowered the disease activity index score, and alleviated colon histological damage. AL-1 significantly inhibited myeloperoxidase activity and suppressed immune inflammatory responses in colonic tissues. Moreover, AL-1 reversed DSS-altered expression of inflammatory cytokines in DSS-induced colitis mice. Importantly, the efficacy of 45 mg/kg of AL-1 was higher than that of 100 mg/kg of the positive control drugs 5-aminosalicylic acid and mesalazine. AL-1 decreased lipopolysaccharide-induced generation of reactive oxygen species and nitric oxide in cultured macrophages in vitro; it also reversed the altered expression of inflammatory cytokines. In both in vivo and in vitro studies, Western blot analysis revealed that AL-1 reduced the expression of phosphorylated NF-κB p65 and IκBα, downregulated the expression of iNOS and COX-2, and attenuated the expression of phosphorylated p38 mitogen-activated protein kinase (MAPK), ERK, and JNK. In conclusion, AL-1 alleviated DSS-induced murine colitis by inhibiting activation of the NF-κB and MAPK signaling pathways. Our data suggest that AL-1 could be a potential new treatment for UC.
Collapse
|
37
|
White mulberry fruit polysaccharides enhance endothelial nitric oxide production to relax arteries in vitro and reduce blood pressure in vivo. Biomed Pharmacother 2019; 116:109022. [DOI: 10.1016/j.biopha.2019.109022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 01/15/2023] Open
|
38
|
Kang N, Yuan R, Huang L, Liu Z, Huang D, Huang L, Gao H, Liu Y, Xu QM, Yang S. Atypical Nitrogen-Containing Flavonoid in the Fruits of Cumin ( Cuminum cyminum L.) with Anti-inflammatory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8339-8347. [PMID: 31291543 DOI: 10.1021/acs.jafc.9b02879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The dried seeds of Cuminum cyminum L. have been traditionally used as food and medicine. To explore its chemical composition and anti-inflammatory activity, four new compounds (1-4) along with five known compounds (5-9) were isolated from the seeds in the present study. The chemical structures of the new compounds were identified as follows: methyl 3-((7H-purin-2-yl) amino)-3-(4-isopropylphenyl) propanoate (1), 8-(amino(4-isopropylphenyl)methyl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4-oxo-4H-chromene-6-carboxylic acid (2), (3,4,5-trihydroxy-6-((4-isopropylbenzyl)oxy)tetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-propoxyphenyl)acrylate (3), and (3,4,5-trihydroxy-6-((5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-yl)oxy)tetrahydro-2H-pyran-2-yl)methyl 3-(4-isopropylphenyl)-2-methoxypropanoate (4). Compound 2, an atypical nitrogen-containing flavonoid, exhibited the most active inhibitory effect on nitride oxide, with IC50 of 5.25 μM in the lipopolysaccharide-stimulated RAW264.7 cell assay. Compound 2 was found to suppress the expression levels of inducible nitric oxide synthase and cyclooxygenase-2. Furthermore, it was revealed that both nuclear factor κB and mitogen-activated protein kinase were involved in the anti-inflammatory process of compound 2.
Collapse
Affiliation(s)
- Naixin Kang
- College of Pharmaceutical Science , Soochow University , Suzhou , Jiangsu 215123 , People's Republic of China
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning , Guangxi 530000 , People's Republic of China
| | - Renyikun Yuan
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning , Guangxi 530000 , People's Republic of China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment , Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi 330004 , People's Republic of China
| | - Liting Huang
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning , Guangxi 530000 , People's Republic of China
| | - Zhenjie Liu
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning , Guangxi 530000 , People's Republic of China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development , Nanning , Guangxi 530000 , People's Republic of China
| | - Dan Huang
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning , Guangxi 530000 , People's Republic of China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development , Nanning , Guangxi 530000 , People's Republic of China
| | - Lu Huang
- College of Pharmaceutical Science , Soochow University , Suzhou , Jiangsu 215123 , People's Republic of China
| | - Hongwei Gao
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning , Guangxi 530000 , People's Republic of China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development , Nanning , Guangxi 530000 , People's Republic of China
| | - Yanli Liu
- College of Pharmaceutical Science , Soochow University , Suzhou , Jiangsu 215123 , People's Republic of China
| | - Qiong-Ming Xu
- College of Pharmaceutical Science , Soochow University , Suzhou , Jiangsu 215123 , People's Republic of China
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning , Guangxi 530000 , People's Republic of China
| | - Shilin Yang
- College of Pharmacy , Guangxi University of Chinese Medicine , Nanning , Guangxi 530000 , People's Republic of China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment , Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi 330004 , People's Republic of China
| |
Collapse
|
39
|
Shirmohamadi M, Eghbali E, Najjary S, Mokhtarzadeh A, Kojabad AB, Hajiasgharzadeh K, Lotfinezhad P, Baradaran B. Regulatory mechanisms of microRNAs in colorectal cancer and colorectal cancer stem cells. J Cell Physiol 2019; 235:776-789. [PMID: 31264216 DOI: 10.1002/jcp.29042] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most lethal and hard-to-treat cancers in the world, which in its advanced stages, surgery and chemotherapy are the main common treatment approaches. The microRNAs (miRNAs), as novel markers for CRC detection, promote their regulatory effects via the 3'-untranslated binding region (3'-UTR) of target messenger RNA in posttranscriptional regulation of genes and also play a pivotal role in modulating resistance to chemotherapeutic agents. These small noncoding RNAs have also a critical role in CRC stem cells (CRCSCs) regulation, comprising self-renewal, differentiation, and tumorigenesis. Cancer stem cells (CSCs) are distinctive cell types inside a tumor tissue that are believed to derive from normal somatic stem cells. The CSCs have self-renewal abilities, angiogenesis, as well as specific surface markers expression characteristics. Furthermore, they are frequently criticized for tumor maintenance, treatment resistance, tumor development, and distant metastasis. In this review, we discuss the current understandings of CRCSCs and their environment with a focus on the role of miRNAs on the regulation of CSCs and their targeting application in CRC treatment.
Collapse
Affiliation(s)
- Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Eghbali
- Medical Radiation Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Najjary
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Parisa Lotfinezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Kang K, Huang L, Li Q, Liao X, Dang Q, Yang Y, Luo J, Zeng Y, Li L, Gou D. An improved Tet-on system in microRNA overexpression and CRISPR/Cas9-mediated gene editing. J Anim Sci Biotechnol 2019; 10:43. [PMID: 31198556 PMCID: PMC6556963 DOI: 10.1186/s40104-019-0354-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tetracycline (Tet)-regulated expression system has become a widely applied tool to control gene activity. This study aimed to improve the Tet-on system with superior regulatory characteristics. Results By comprehensively comparing factors of transactivators, Tet-responsive elements (TREs), orientations of induced expression cassette, and promoters controlling the transactivator, we developed an optimal Tet-on system with enhanced inducible efficiency and lower leakiness. With the system, we successfully performed effective inducible and reversible expression of microRNA, and presented a more precise and easily reproducible fine-tuning for confirming the target of a miRNA. Finally, the system was applied in CRISPR/Cas9-mediated knockout of nuclear factor of activated T cells-5 (NFAT5), a protective transcription factor in cellular osmoregulation. Conclusions This study established an improved Tet-on system for powerful and stringent gene regulation in functional genetic studies. Electronic supplementary material The online version of this article (10.1186/s40104-019-0354-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kang Kang
- 1Department of Biochemistry and Molecular Biology, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060 People's Republic of China
| | - Lian Huang
- 2Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People's Republic of China
| | - Qing Li
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Xiaoyun Liao
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Quanjin Dang
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Yi Yang
- 1Department of Biochemistry and Molecular Biology, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060 People's Republic of China
| | - Jun Luo
- 2Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 People's Republic of China
| | - Yan Zeng
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Li Li
- 3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| | - Deming Gou
- 1Department of Biochemistry and Molecular Biology, Carson International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518060 People's Republic of China.,3Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Xueyuan Ave 1066, Shenzhen, Guangdong 518060 People's Republic of China
| |
Collapse
|
41
|
Jung S, Lee MS, Choi AJ, Kim CT, Kim Y. Anti-Inflammatory Effects of High Hydrostatic Pressure Extract of Mulberry ( Morus alba) Fruit on LPS-Stimulated RAW264.7 Cells. Molecules 2019; 24:molecules24071425. [PMID: 30978947 PMCID: PMC6480515 DOI: 10.3390/molecules24071425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Mulberry fruit (Morus alba L.) contains abundant bioactive compounds, including anthocyanins and flavonols, and has been reported to possess potent beneficial properties including anticancer, antidiabetic, and anti-oxidant effects. High hydrostatic pressure (HHP) processing, a nonthermal food processing technology, is suitable for the extraction of bioactive compounds from plants. Nevertheless, the anti-inflammatory effects of HHP extract of mulberry fruit (HM) in RAW264.7 cells remain unclear. The present study aimed to investigate the anti-inflammatory effects of HM on lipopolysaccharide (LPS)-induced inflammation in vitro. RAW264.7 cells were treated with various concentrations (0.1-1 μg/mL) of HM in the presence or absence of LPS. HM inhibited the inflammatory mediator, nitric oxide (NO) release, and mRNA expression of nitric oxide synthase 2 (NOS2) in LPS-induced RAW264.7 cells. In addition, HM suppressed both mRNA and protein expressions of prostaglandin-endoperoxide synthase 2 (PTGS2). Moreover, it reduced the LPS-induced secretion of proinflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α. These results revealed that HM exerts anti-inflammatory effects by inhibiting several mediators and cytokines involved in the inflammatory process.
Collapse
Affiliation(s)
- Sunyoon Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Ae-Jin Choi
- Functional Food & Nutrition Division, National Institute of Agricultural Science (NIAS), Rural Development Administration (RDA), Wanju 55365, Korea.
| | - Chong-Tai Kim
- R&D Center, EastHill Corporation, Gwonseon-gu, Suwon-si, Gyeonggi-do 16642, Korea.
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
42
|
Truong VL, Bak MJ, Jeong WS. Chemopreventive Activity of Red Ginseng Oil in a Mouse Model of Azoxymethane/Dextran Sulfate Sodium-Induced Inflammation-Associated Colon Carcinogenesis. J Med Food 2019; 22:578-586. [PMID: 30864851 DOI: 10.1089/jmf.2018.4328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our previous studies have demonstrated antioxidant and cytoprotective properties of red ginseng oil (RGO). However, the role of RGO in models of intestinal inflammation has not been elucidated. In this study, we evaluated the chemopreventive effect of RGO in a mouse model of azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis and explored its underlying mechanisms. Male C57BL/6 mice were intraperitoneally injected with a single dose of AOM (10 mg/kg), followed by 1.5% DSS in drinking water for 7 days to produce colon carcinogenesis. RGO at 10 or 100 mg/kg was orally given for 17 weeks. RGO supplementation reduced the plasma nitric oxide (NO) concentration as well as lipid peroxidation and inhibited the production of proinflammatory factors such as inducible NO synthase, cyclooxygenase-2, interleukin 1β, IL-6, and tumor necrosis factor-α in the mouse colitis tissue. Increased phosphorylation levels of p65 and IκB by AOM/DSS exposure were attenuated by the presence of RGO. In addition, RGO supplementation induced the activity of primary antioxidant enzymes such as superoxide dismutase and catalase as well as the expression of nuclear factor erythroid 2-related factor 2-mediated antioxidant enzyme hemeoxygenase-1 in the colons of AOM/DSS-treated mice. These findings indicate that RGO may be a potent natural chemopreventive agent for ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Van-Long Truong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| | - Min Ji Bak
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea.,2 Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Woo-Sik Jeong
- 1 Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae, Korea
| |
Collapse
|
43
|
Shen P, Zhang Z, Zhu K, Cao H, Liu J, Lu X, Li Y, Jing Y, Yuan X, Fu Y, Cao Y, Zhang N. Evodiamine prevents dextran sulfate sodium-induced murine experimental colitis via the regulation of NF-κB and NLRP3 inflammasome. Biomed Pharmacother 2019; 110:786-795. [PMID: 30554117 DOI: 10.1016/j.biopha.2018.12.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Evodiamine (EVO), an extraction from the traditional Chinese medicine Evodia rutaecarpa, has been reported to possess anti-inflammatory, anti-tumor and other pharmacological activities. However, the effectiveness of EVO to relieve dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) has not been evaluated. In this study, the protective effects and mechanisms of EVO on DSS-induced UC mice were investigated. The results indicated that treatment with EVO ameliorated DSS-induced UC mice body weight loss, disease activity index (DAI), colon length shortening, colonic pathological damage, and myeloperoxidase (MPO) activity. The production of TNF-α, IL-1β and IL-6 was also significantly inhibited by EVO. Further mechanistic results showed that EVO restrained the inflammation by regulating NF-κB signal and NLRP3 inflammasome. Furthermore, results also showed that EVO contributed to the tight junction (TJ) architecture integrity by modulating the expression of zonula occludens-1 (ZO-1) and occludin during colitis. Surprisingly, treatment with EVO reduced the concentration of plasmatic lipopolysaccharide (LPS) and re-balanced the levels of Escherichia coli and Lactobacillus. These findings suggested that EVO may have a potential protective effect on DSS-induced colitis and may be useful for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Peng Shen
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key laboratory for Zoonosis, Ministry of Education, Changchun, 130062, People's Republic of China
| | - Kunpeng Zhu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Hongyang Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Jiuxi Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xiaojie Lu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yanxin Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yue Jing
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Xin Yuan
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
44
|
Tseng HC, Tsai PM, Chou YH, Lee YC, Lin HH, Chen JH. In Vitro and In Vivo Protective Effects of Flavonoid-Enriched Lotus Seedpod Extract on Lipopolysaccharide-Induced Hepatic Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:153-176. [PMID: 30612458 DOI: 10.1142/s0192415x19500083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endotoxin lipopolysaccharide (LPS) plays an important role in the acceleration of hepatic inflammation. Natural medicinal plants that can prevent inflammation by targeting LPS have potential therapeutic clinical application. The aim of the study is to examine the anti-inflammatory effects of lotus seedpod extract (LSE), used as a traditional Chinese herbal medicine with hemostasis function and for eliminating bruise, on the LPS-induced hepatic inflammation and its underlying molecular mechanisms in vitro and in vivo. In vitro, LSE and its purified compound (-)-epigallocatechin (EGC) dose-dependently inhibited the expressions of pro-inflammatory cytokines and mediators, including tumor necrosis factor (TNF)- α , interleukin (IL)-6, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), without affecting cell viability in LPS-stimulated human hepatoma cell line HepG2. Molecular studies showed the anti-LPS effect of HLP or EGC might be mediated via downregulation of Toll-like receptor 4. (TLR4)-mediated both NF- κ B and p38 signaling, as demonstrated by the usage of pyrrolidine dithiocarbamate (PDTC), a specific NF- κ B inhibitor. In vivo, LPS-induced hepatic inflammation was significantly ameliorated in LSE-fed mice as gauged by dose-dependent inhibition of serum levels of biochemical markers of liver damage, the changes of hepatic lobular architecture and the secretion of pro-inflammatory mediators, as well as induction of anti-oxidant enzymes. As a result, our data presented the first evidence of EGC-enriched LSE as an anti-inflammatory agent in LPS-stimulated HepG2 cells and mice, and these findings may open interesting perspectives to the strategy in treatment for hepatic inflammation.
Collapse
Affiliation(s)
- Hsien-Chun Tseng
- * Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan.,† Department of Radiation Oncology, School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Pei-Min Tsai
- * Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan.,‡ Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Ying-Hsiang Chou
- * Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Yueh-Chun Lee
- * Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Hui-Hsuan Lin
- * Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan.,§ Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Jing-Hsien Chen
- * Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan.,‡ Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan
| |
Collapse
|
45
|
Su CC, Chen NC, Chyau CC, Tseng HC, Chou FP. Induction of Mitotic Catastrophe via Inhibition of Aurora B by Ionizing Radiation With Additive of Mulberry Water Extract in Human Bladder Cancer Cells. Integr Cancer Ther 2018; 18:1534735418808586. [PMID: 30428726 PMCID: PMC7290068 DOI: 10.1177/1534735418808586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mulberry fruit water extract (MWE) has been reported to synergistically enhance the cytotoxic effect of paclitaxel by promoting mitotic catastrophe to induce apoptosis in bladder cancer cells in our previous work. The aim of this study was to evaluate and to mechanistically explore the effects of MWE on bladder cancer responses to ionizing radiation (IR) by treating TSGH 8301 bladder carcinoma cells with MWE after exposing to IR. The results of MTT assay showed a synergistic cytotoxicity of IR with the co-treatment of MWE (IR/MWE) by inducing G2/M phase arrest as demonstrated by flow cytometry analysis in TSGH 8301, HT1367 and HT1197 bladder carcinoma cells lines. The IR/MWE-treated cells expressed increased levels of the G2/M phase arrest-related proteins cdc2/cyclin B1 and displayed giant multinucleated morphology, a typical characteristic of mitotic catastrophe. Immunofluorescent confocal microscopy revealed that the combined strategy inhibited Aurora B phosphorylation through Ras/Raf/MEK/ERK signaling cascade as demonstrated by Western blotting analysis. IR/MWE also caused an inhibitory effect on Plk1 and the subsequent downstream regulator RhoA repression and Cep55 induction, which would influence cell cycle progression in the early steps of cytokinesis. A profound tumor growth suppression and inactivation of Aurora B activity in the tumor tissues by IR/MWE treatment were confirmed in the TSGH 8301 xenograft model in vivo. These data demonstrated that MWE could be an effective auxiliary to synergize with radiation on the anticancer efficacy by promoting mitotic catastrophe through inhibition of Aurora B, providing a novel and effective therapeutic option for bladder cancer management.
Collapse
Affiliation(s)
- Chia-Cheng Su
- 1 Chi Mei Medical Center, Tainan City, Taiwan.,2 Chia Nan University of Pharmacy & Science, Tainan City, Taiwan
| | | | | | - Hsien-Chun Tseng
- 3 Chung Shan Medical University, Taichung City, Taiwan.,5 Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Fen-Pi Chou
- 3 Chung Shan Medical University, Taichung City, Taiwan.,5 Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
46
|
Bi D, Yu B, Han Q, Lu J, White WL, Lai Q, Cai N, Luo W, Gu L, Li S, Xu H, Hu Z, Nie S, Xu X. Immune Activation of RAW264.7 Macrophages by Low Molecular Weight Fucoidan Extracted from New Zealand Undaria pinnatifida. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10721-10728. [PMID: 30257559 DOI: 10.1021/acs.jafc.8b03698] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, has been shown to possess various bioactivities. In particular, low molecular weight fucoidan (LMWF) has been shown to have better bioactivities. In this study, a LMWF (<10 kDa) was extracted from New Zealand Undaria pinnatifida and investigated for its immune modulation effects. LMWF at a concentration range from 1 to 50 μg/mL exerted an effective immune activation in RAW264.7 macrophages. LMWF treatment promoted significant NO release, iNOS expression, and TNF-α and IL-6 secretion in a concentration-dependent manner. It also significantly stimulated the activation of NF-κB and MAPK signaling pathways, and specific inhibitors of NF-κB and MAPK pathways diminished the stimulation, confirming the activation pathways. These results indicate that LMWF possesses potential health benefits through immune-stimulation, which may lead to future pharmaceutical development.
Collapse
Affiliation(s)
- Decheng Bi
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Boming Yu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Qingguo Han
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Jun Lu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences , Auckland University of Technology , Auckland 1142 , New Zealand
| | - William Lindsey White
- School of Science and School of Interprofessional Health Studies, Faculty of Health and Environmental Sciences , Auckland University of Technology , Auckland 1142 , New Zealand
| | - Qiuxian Lai
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Nan Cai
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Wenqi Luo
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Liang Gu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Sheng Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , Jiangxi , PR China
| | - Xu Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology , Shenzhen University , Shenzhen 518060 , PR China
| |
Collapse
|
47
|
Farzaei MH, El-Senduny FF, Momtaz S, Parvizi F, Iranpanah A, Tewari D, Naseri R, Abdolghaffari AH, Rezaei N. An update on dietary consideration in inflammatory bowel disease: anthocyanins and more. Expert Rev Gastroenterol Hepatol 2018; 12:1007-1024. [PMID: 30136591 DOI: 10.1080/17474124.2018.1513322] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder. A wealth of data pointed out that various aspects of chronic inflammation may be affected by several specific dietary factors. This paper calls attention to anthocyanins enriched plant food and anthocyanin dietary supplements, whose role in the management of IBD and its associated oncogenesis deems crucial. Area covered: We updated the most relevant dietary anthocyanins with potential anti-colitis and preventive effect on inflammatory associated colorectal cancer based on the recent animal and human researches along with revealing the major cellular and molecular mechanisms of action. Mounting evidence reported that anthocyanins enriched plant foods perform their protective role on IBD and inflammatory-induced colorectal cancer via different cellular transduction signaling pathways, including inflammatory transcription factors, SAPK/JNK and p38 MAPK cascade, JAK/STAT signaling, NF-kB/pERK/MAPK, Wnt signaling pathway, Nrf2 cytoprotective pathway as well as AMPK pathway and autophagy. Expert commentary: Combination of anthocyanins enriched dietary supplements with existing medications can provide new therapeutic options for IBD patients. Further, well-designed randomized control trials (RCTs) are essential to evaluate the role of anthocyanins enriched medicinal foods as well as isolated anthocyanin components as promising preventive and therapeutic dietary agents for IBD and its associated oncogenesis.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- a Pharmaceutical Sciences Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Fardous F El-Senduny
- b Biochemistry division, Chemistry Department , Mansoura University , Mansoura , Egypt
| | - Saeideh Momtaz
- c Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran , Iran
- d Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Fatemeh Parvizi
- e Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Amin Iranpanah
- f Students research Committee, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
- g PhytoPharmacology Interest Group (PPIG) , Universal Scientific Education and Research Network (USERN) , Kermanshah , Iran
| | - Devesh Tewari
- h Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus , Kumaun University , Nainital , Uttarakhand , India
| | - Rozita Naseri
- a Pharmaceutical Sciences Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Amir Hossein Abdolghaffari
- c Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran , Iran
- d Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran , Iran
- i Department of Pharmacology, Pharmaceutical Sciences Branch , Islamic Azad University , Tehran , Iran
- j Gastrointestinal Pharmacology Interest Group (GPIG) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Nima Rezaei
- k Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
- l Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
- m Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
48
|
|
49
|
Gao H, Huang L, Ding F, Yang K, Feng Y, Tang H, Xu QM, Feng J, Yang S. Simultaneous purification of dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA from Salvia miltiorrhiza and their anti-inflammatory activities investigation. Sci Rep 2018. [PMID: 29855534 DOI: 10.1038/s41598-018-26828-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA are major lipid-soluble constituents isolated from Salvia miltiorrhiza Bunge (Danshen). In the present study, a systematic method was developed to simultaneously isolate and purify those compounds using macroporous adsorption resins and semi-preparative HPLC with a dynamic axial compress (DAC) system. The Danshen extract (95% alcohol) was divided into three fractions using different concentrations of alcohol (0%, 45%, and 90%) on D101 column. The content of total tanshinones of 90% alcohol eluent (TTS) was over 97%. Furthermore, the anti-inflammatory effects of those samples were investigated on LPS-stimulated RAW264.7 cells and three animal models. The results showed that the anti-inflammatory effect of TTS in vitro was superior to the one of any other sample including 0% and 45% eluent, and total tanshinones capsules. In addition, TTS exhibited a stronger anti-inflammatory effect than that of dihydrotanshinone, tanshinone IIA, cryptotanshinone, and tanshinone I, respectively. For animal models, TTS could significantly suppress xylene-induced ear oedema and rescue LPS-induced septic death and acute kidney injury in mice. In summary, the separation process developed in the study was high-efficiency, economic, and low-contamination, which was fit to industrial producing. TTS is a potential agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hongwei Gao
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liting Huang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Fang Ding
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Ke Yang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Hongzhen Tang
- Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Qiong-Ming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Jianfang Feng
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shilin Yang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
50
|
Simultaneous purification of dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA from Salvia miltiorrhiza and their anti-inflammatory activities investigation. Sci Rep 2018; 8:8460. [PMID: 29855534 PMCID: PMC5981213 DOI: 10.1038/s41598-018-26828-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023] Open
Abstract
Dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA are major lipid-soluble constituents isolated from Salvia miltiorrhiza Bunge (Danshen). In the present study, a systematic method was developed to simultaneously isolate and purify those compounds using macroporous adsorption resins and semi-preparative HPLC with a dynamic axial compress (DAC) system. The Danshen extract (95% alcohol) was divided into three fractions using different concentrations of alcohol (0%, 45%, and 90%) on D101 column. The content of total tanshinones of 90% alcohol eluent (TTS) was over 97%. Furthermore, the anti-inflammatory effects of those samples were investigated on LPS-stimulated RAW264.7 cells and three animal models. The results showed that the anti-inflammatory effect of TTS in vitro was superior to the one of any other sample including 0% and 45% eluent, and total tanshinones capsules. In addition, TTS exhibited a stronger anti-inflammatory effect than that of dihydrotanshinone, tanshinone IIA, cryptotanshinone, and tanshinone I, respectively. For animal models, TTS could significantly suppress xylene-induced ear oedema and rescue LPS-induced septic death and acute kidney injury in mice. In summary, the separation process developed in the study was high-efficiency, economic, and low-contamination, which was fit to industrial producing. TTS is a potential agent for the treatment of inflammatory diseases.
Collapse
|