1
|
Yu ZP, Wang YK, Wang XY, Gong LN, Tan HL, Jiang MX, Wang LF, Yu GH, Deng KY, Xin HB. Smooth-Muscle-Cell-Specific Deletion of CD38 Protects Mice from AngII-Induced Abdominal Aortic Aneurysm through Inhibiting Vascular Remodeling. Int J Mol Sci 2024; 25:4356. [PMID: 38673941 PMCID: PMC11049988 DOI: 10.3390/ijms25084356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.
Collapse
MESH Headings
- Animals
- Male
- Mice
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/genetics
- Angiotensin II
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Disease Models, Animal
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
- Signal Transduction
- Vascular Remodeling/genetics
Collapse
Affiliation(s)
- Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yi-Kai Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Li-Na Gong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Mei-Xiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Ling-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
| | - Guan-Hui Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Z.-P.Y.); (Y.-K.W.); (X.-Y.W.); (L.-N.G.); (H.-L.T.); (M.-X.J.); (L.-F.W.); (G.-H.Y.)
- College of Life Science, Nanchang University, Nanchang 330031, China
- School of Pharmacy, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Purvis GSD, Aranda‐Tavio H, Channon KM, Greaves DR. Bruton's TK regulates myeloid cell recruitment during acute inflammation. Br J Pharmacol 2022; 179:2754-2770. [PMID: 34897650 PMCID: PMC9361009 DOI: 10.1111/bph.15778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Bruton's TK (BTK) is a non-receptor kinase best known for its role in B lymphocyte development that is critical for proliferation and survival of leukaemic cells in B-cell malignancies. However, BTK is expressed in myeloid cells, particularly neutrophils, monocytes and macrophages where its inhibition has been reported to cause anti-inflammatory properties. EXPERIMENTAL APPROACH We explored the role of BTK on migration of myeloid cells (neutrophils, monocytes and macrophages), in vitro using chemotaxis assays and in vivo using zymosan-induced peritonitis as model systems. KEY RESULTS Using the zymosan-induced peritonitis model of sterile inflammation, we demonstrated that acute inhibition of BTK prior to zymosan challenge reduced phosphorylation of BTK in circulating neutrophils and monocytes. Moreover, pharmacological inhibition of BTK with ibrutinib specifically inhibited neutrophil and Ly6Chi monocytes, but not Ly6Clo monocyte recruitment to the peritoneum. X-linked immunodeficient (XID) mice, which have a point mutation in the Btk gene, had reduced neutrophil and monocyte recruitment to the peritoneum following zymosan challenge. Pharmacological or genetic inhibition of BTK signalling substantially reduced human monocyte and murine macrophage chemotaxis, to a range of clinically relevant chemoattractants (C5a and CCL2). We also demonstrated that inhibition of BTK in tissue resident macrophages significantly decreases chemokine secretion by reducing NF-κB activity and Akt signalling. CONCLUSION AND IMPLICATIONS Our work has identified a new role of BTK in regulating myeloid cell recruitment via two mechanisms, reducing monocyte/macrophages' ability to undergo chemotaxis and reducing chemokine secretion, via reduced NF-κB and Akt activity in tissue resident macrophages.
Collapse
Affiliation(s)
- Gareth S. D. Purvis
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
| | | | - Keith M. Channon
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Cardiovascular Medicine, Radcliffe Department of MedicineJohn Radcliffe HospitalOxfordUK
| | - David R. Greaves
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Patel J, Douglas G, Kerr AG, Hale AB, Channon KM. Effect of irradiation and bone marrow transplantation on angiotensin II-induced aortic inflammation in ApoE knockout mice. Atherosclerosis 2018; 276:74-82. [PMID: 30048944 PMCID: PMC6143484 DOI: 10.1016/j.atherosclerosis.2018.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/25/2018] [Accepted: 07/12/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Angiotensin II (Ang II) infusion promotes the development of aortic aneurysms and accelerates atherosclerosis in ApoE-/- mice. In order to elucidate the role of hematopoietic cells in these pathologies, irradiation and bone marrow transplantation (BMT) are commonly utilized. The aim of this study was to investigate the effects of irradiation and BMT on abdominal and thoracic aortic aneurysm formation and acute leukocyte recruitment in the aortic root and descending aorta, in an experimental mouse model of aortic aneurysm formation. METHODS ApoE-/- mice were either lethally irradiated and reconstituted with ApoE-/- bone marrow or non-irradiated. Following engraftment, mice were treated with Ang II to induce aortic inflammation and accelerate atherosclerosis. RESULTS Ang II infusion (0.8 mg/kg/day) in BMT mice resulted in reduced aortic aneurysms and atherosclerosis with decreased leukocyte infiltration in the aorta compared to non-BMT mice, when receiving the same dose of Ang II. Furthermore, the reduced aortic infiltration in BMT mice was accompanied by increased levels of monocytes in the spleen and bone marrow. A dose of 3 mg/kg/day Ang II was required to achieve a similar incidence of aneurysm formation as achieved with 0.8 mg/kg/day in non-BMT mice. CONCLUSIONS This study provides evidence that BMT can alter inflammatory cell recruitment in experimental mouse models of aortic aneurysm formation and atherosclerosis and suggests that irradiation and BMT have a considerably more complex effect on vascular inflammation, which should be evaluated.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/prevention & control
- Aortic Rupture/chemically induced
- Aortic Rupture/genetics
- Aortic Rupture/metabolism
- Aortic Rupture/prevention & control
- Aortitis/chemically induced
- Aortitis/genetics
- Aortitis/metabolism
- Aortitis/prevention & control
- Atherosclerosis/chemically induced
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- Bone Marrow Transplantation
- Disease Models, Animal
- Macrophages/metabolism
- Macrophages/radiation effects
- Macrophages/transplantation
- Male
- Mice, Knockout, ApoE
- Monocytes/metabolism
- Monocytes/radiation effects
- Monocytes/transplantation
- Plaque, Atherosclerotic
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Jyoti Patel
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Alastair G Kerr
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Ashley B Hale
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
4
|
Chuaiphichai S, Rashbrook VS, Hale AB, Trelfa L, Patel J, McNeill E, Lygate CA, Channon KM, Douglas G. Endothelial Cell Tetrahydrobiopterin Modulates Sensitivity to Ang (Angiotensin) II-Induced Vascular Remodeling, Blood Pressure, and Abdominal Aortic Aneurysm. Hypertension 2018; 72:128-138. [PMID: 29844152 PMCID: PMC6012043 DOI: 10.1161/hypertensionaha.118.11144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
GTPCH (GTP cyclohydrolase 1, encoded by Gch1) is required for the synthesis of tetrahydrobiopterin; a critical regulator of endothelial NO synthase function. We have previously shown that mice with selective loss of Gch1 in endothelial cells have mild vascular dysfunction, but the consequences of endothelial cell tetrahydrobiopterin deficiency in vascular disease pathogenesis are unknown. We investigated the pathological consequence of Ang (angiotensin) II infusion in endothelial cell Gch1 deficient (Gch1fl/fl Tie2cre) mice. Ang II (0.4 mg/kg per day, delivered by osmotic minipump) caused a significant decrease in circulating tetrahydrobiopterin levels in Gch1fl/fl Tie2cre mice and a significant increase in the Nω-nitro-L-arginine methyl ester inhabitable production of H2O2 in the aorta. Chronic treatment with this subpressor dose of Ang II resulted in a significant increase in blood pressure only in Gch1fl/fl Tie2cre mice. This finding was mirrored with acute administration of Ang II, where increased sensitivity to Ang II was observed at both pressor and subpressor doses. Chronic Ang II infusion in Gch1fl/fl Tie2ce mice resulted in vascular dysfunction in resistance mesenteric arteries with an enhanced constrictor and decreased dilator response and medial hypertrophy. Altered vascular remodeling was also observed in the aorta with an increase in the incidence of abdominal aortic aneurysm formation in Gch1fl/fl Tie2ce mice. These findings indicate a specific requirement for endothelial cell tetrahydrobiopterin in modulating the hemodynamic and structural changes induced by Ang II, through modulation of blood pressure, structural changes in resistance vessels, and aneurysm formation in the aorta.
Collapse
Affiliation(s)
- Surawee Chuaiphichai
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Victoria S Rashbrook
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Ashley B Hale
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Lucy Trelfa
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Jyoti Patel
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Eileen McNeill
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Craig A Lygate
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Keith M Channon
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom.
| | - Gillian Douglas
- From the Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence and Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| |
Collapse
|
5
|
Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. J Immunol Res 2018; 2018:7213760. [PMID: 29967801 PMCID: PMC6008668 DOI: 10.1155/2018/7213760] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 12/24/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.
Collapse
|
6
|
Wang J, Wang W, Guo W, Ma Y, Ji T, Zhang B. Clinical importance of chemokines and inflammatory cytokines for patient care following percutaneous nephrolithotripsy. Exp Ther Med 2018; 15:2189-2195. [PMID: 29434824 DOI: 10.3892/etm.2017.5645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Chemokines are a class of proteins with low molecular weight that serve important roles in the progression of inflammation. Percutaneous nephrolithotripsy is a surgical technique in which lasers or ultrasound are utilized to break down and/or remove kidney stones. In order to ensure a full recovery following surgery, effective patient care and nursing are required. In the present study, a total of 348 patients with kidney stones were recruited and the clinical importance of chemokines and inflammatory cytokines for the nursing of patients during perioperative period was investigated. Plasma levels of inflammatory cytokines, as well as chemokines in the C, CC and CXC families, were analyzed in patients following percutaneous nephrolithotripsy. Correlations between chemokines and inflammatory cytokines and the urinary concentration of calcium oxalate were also investigated. The results indicated that plasma levels of C and CC chemokines were downregulated in patients following percutaneous nephrolithotripsy, whereas the plasma concentrations of CXC chemokines were upregulated. Plasma concentration levels of inflammatory cytokines interleukin (IL)-8, IL-1, IL-17 and tumor necrosis factor (TNF)-α were significantly downregulated in patients following percutaneous nephrolithotripsy; however, no significant differences were observed in plasma levels of IL-6 and IL-10 pre- and post-surgery. Regression analysis revealed that plasma concentration levels of chemokine C motif ligand, which is a C chemokine, chemokine ligand 2, which is a CC chemokine, and TNF-α were positively correlated with the urinary concentration of calcium oxalate during the perioperative period. The results of the present study indicate that plasma levels of chemokines and inflammatory cytokines are clinically important for nursing of patients who experienced percutaneous nephrolithotripsy.
Collapse
Affiliation(s)
- Junrong Wang
- Operating Room, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wei Wang
- Operating Room, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Wei Guo
- Department of Opthalmology, Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanru Ma
- Operating Room, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Tianhui Ji
- Operating Room, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Baodi Zhang
- Department of Surgery, First Branch of Mudanjiang Medical University Affiliated Hongqi Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|