1
|
Di Fulvio M, Rathod YD, Khader S. Diuretics: a review of the pharmacology and effects on glucose homeostasis. Front Pharmacol 2025; 16:1513125. [PMID: 40223924 PMCID: PMC11985539 DOI: 10.3389/fphar.2025.1513125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Thiazides, thiazide-like and loop diuretics are commonly prescribed to manage hypertension and heart failure. The main mechanism of action of these diuretics involve inhibition of Na+ reabsorption in the kidneys, leading to increased urine production. While effective, diuretics, particularly hydrochlorothiazide, have been linked to altered glucose metabolism and other metabolic issues. These disruptions in fuel homeostasis are not clearly related to their primary action of fluid management, raising concerns for patients with metabolic syndrome, in which high blood pressure coexists with obesity, insulin resistance, glucose intolerance and dyslipidemia. In this review, we conducted an extensive examination of existing literature on these classes of diuretics, covering publications from the late 1950s to the present. Our objective was to investigate the origins, development and current understanding of the widely recognized association between the use of diuretics in general and their potential negative impact on glucose homeostasis. We focused on the clinical and experimental evidence of the most commonly prescribed diuretics: hydrochlorothiazide, chlorthalidone, bumetanide and furosemide. On one hand, the clinical evidence supports the hypothesis that the metabolic effects on glucose homeostasis are primarily linked to hydrochlorothiazide, with little, if any impact observed in other diuretics. In addition, these metabolic effects do not appear to be related to their diuretic action or intended pharmacological targets, raising concerns about the long-term metabolic impact of specific diuretics, particularly in vulnerable populations, including those with metabolic syndrome. On the other hand, the experimental evidence using animal models suggest variable effects of diuretics in insulin secretion and general glucose metabolism. Although the mechanisms involved are not clearly understood, further research is needed to uncover the molecular mechanisms by which certain diuretics disrupt fuel metabolism and contribute to metabolic disturbances.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States
| | | | | |
Collapse
|
2
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
3
|
Liu J, Chen Y. Cell-cell crosstalk between fat cells and immune cells. Am J Physiol Endocrinol Metab 2024; 327:E371-E383. [PMID: 39082899 DOI: 10.1152/ajpendo.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Obesity is a metabolic disorder with pandemic-like implications, lacking viable pharmaceutical treatments currently. Thermogenic adipose tissues, including brown and beige adipose tissues, play an essential role in regulating systemic energy homeostasis and have emerged as appealing therapeutic targets for the treatment of obesity and obesity-related diseases. The function of adipocytes is subject to complex regulation by a cellular network of immune signaling pathways in response to environmental signals. However, the specific regulatory roles of immune cells in thermogenesis and relevant involving mechanisms are still not well understood. Here, we concentrate on our present knowledge of the interaction between thermogenic adipocytes and immune cells and present an overview of cellular and molecular mechanisms underlying immunometabolism in adipose tissues. We discuss cytokines, especially interleukins, which originate from widely variable sources, and their impacts on the development and function of thermogenic adipocytes. Moreover, we summarize the neuroimmune regulation in heat production and expand a new mode of intercellular communication mediated by mitochondrial transfer. The crosstalk between immune cells and adipocytes achieves adipose tissue homeostasis and systemic energy balance. A deep understanding of this intricate interaction would provide evidence for improving thermogenic efficiency by remodeling the immune microenvironment. Interventions based on these factors show a high potential to prevent adverse metabolic outcomes in patients with obesity.
Collapse
Affiliation(s)
- Jiadai Liu
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Laboratory of Endocrinology and Metabolism, Ministry of Education Key Laboratory of Vascular Aging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yong Chen
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Laboratory of Endocrinology and Metabolism, Ministry of Education Key Laboratory of Vascular Aging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, People's Republic of China
| |
Collapse
|
4
|
Zhang Y, Zhang B, Sun X. The molecular mechanism of macrophage-adipocyte crosstalk in maintaining energy homeostasis. Front Immunol 2024; 15:1378202. [PMID: 38650945 PMCID: PMC11033412 DOI: 10.3389/fimmu.2024.1378202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yudie Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Nie T, Lu J, Zhang H, Mao L. Latest advances in the regulatory genes of adipocyte thermogenesis. Front Endocrinol (Lausanne) 2023; 14:1250487. [PMID: 37680891 PMCID: PMC10482227 DOI: 10.3389/fendo.2023.1250487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
An energy imbalance cause obesity: more energy intake or less energy expenditure, or both. Obesity could be the origin of many metabolic disorders, such as type 2 diabetes and cardiovascular disease. UCP1 (uncoupling protein1), which is highly and exclusively expressed in the thermogenic adipocytes, including beige and brown adipocytes, can dissipate proton motive force into heat without producing ATP to increase energy expenditure. It is an attractive strategy to combat obesity and its related metabolic disorders by increasing non-shivering adipocyte thermogenesis. Adipocyte thermogenesis has recently been reported to be regulated by several new genes. This work provided novel and potential targets to activate adipocyte thermogenesis and resist obesity, such as secreted proteins ADISSP and EMC10, enzyme SSU72, etc. In this review, we have summarized the latest research on adipocyte thermogenesis regulation to shed more light on this topic.
Collapse
Affiliation(s)
- Tao Nie
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Jinli Lu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Zhang
- Department of Medical Iconography, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liufeng Mao
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Zhang X, Luo S, Wang M, Cao Q, Zhang Z, Huang Q, Li J, Deng Z, Liu T, Liu CL, Meppen M, Vromman A, Flavell RA, Hotamışlıgil GS, Liu J, Libby P, Liu Z, Shi GP. Differential IL18 signaling via IL18 receptor and Na-Cl co-transporter discriminating thermogenesis and glucose metabolism regulation. Nat Commun 2022; 13:7582. [PMID: 36482059 PMCID: PMC9732325 DOI: 10.1038/s41467-022-35256-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
White adipose tissue (WAT) plays a role in storing energy, while brown adipose tissue (BAT) is instrumental in the re-distribution of stored energy when dietary sources are unavailable. Interleukin-18 (IL18) is a cytokine playing a role in T-cell polarization, but also for regulating energy homeostasis via the dimeric IL18 receptor (IL18r) and Na-Cl co-transporter (NCC) on adipocytes. Here we show that IL18 signaling in metabolism is regulated at the level of receptor utilization, with preferential role for NCC in brown adipose tissue (BAT) and dominantly via IL18r in WAT. In Il18r-/-Ncc-/- mice, high-fat diet (HFD) causes more prominent body weight gain and insulin resistance than in wild-type mice. The WAT insulin resistance phenotype of the double-knockout mice is recapitulated in HFD-fed Il18r-/- mice, whereas decreased thermogenesis in BAT upon HFD is dependent on NCC deletion. BAT-selective depletion of either NCC or IL18 reduces thermogenesis and increases BAT and WAT inflammation. IL18r deletion in WAT reduces insulin signaling and increases WAT inflammation. In summary, our study contributes to the mechanistic understanding of IL18 regulation of energy metabolism and shows clearly discernible roles for its two receptors in brown and white adipose tissues.
Collapse
Affiliation(s)
- Xian Zhang
- grid.256896.60000 0001 0395 8562School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009 China ,grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Songyuan Luo
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA ,grid.413405.70000 0004 1808 0686Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000 China
| | - Minjie Wang
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Qiongqiong Cao
- grid.256896.60000 0001 0395 8562School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009 China
| | - Zhixin Zhang
- grid.256896.60000 0001 0395 8562School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009 China
| | - Qin Huang
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Jie Li
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Zhiyong Deng
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Tianxiao Liu
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Cong-Lin Liu
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA ,grid.207374.50000 0001 2189 3846Department of Nephrology, the First Affiliated Hospital, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052 China
| | - Mathilde Meppen
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Amelie Vromman
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Richard A. Flavell
- grid.47100.320000000419368710Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520 USA
| | - Gökhan S. Hotamışlıgil
- grid.38142.3c000000041936754XDepartment of Molecular Metabolism, Harvard School of Public Health, Boston, MA 02115 USA
| | - Jian Liu
- grid.256896.60000 0001 0395 8562School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009 China
| | - Peter Libby
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Zhangsuo Liu
- grid.207374.50000 0001 2189 3846Department of Nephrology, the First Affiliated Hospital, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, Henan 450052 China
| | - Guo-Ping Shi
- grid.38142.3c000000041936754XDepartment of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
7
|
Somm E, Jornayvaz FR. Interleukin-18 in metabolism: From mice physiology to human diseases. Front Endocrinol (Lausanne) 2022; 13:971745. [PMID: 36313762 PMCID: PMC9596921 DOI: 10.3389/fendo.2022.971745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a classical member of the IL-1 superfamily of cytokines. As IL-1β, IL-18 precursor is processed by inflammasome/caspase-1 into a mature and biologically active form. IL-18 binds to its specific receptor composed of two chains (IL-18Rα and IL-18Rβ) to trigger a similar intracellular signaling pathway as IL-1, ultimately leading to activation of NF-κB and inflammatory processes. Independently of this IL-1-like signaling, IL-18 also specifically induces IFN-γ production, driving the Th1 immune response. In circulation, IL-18 binds to the IL-18 binding protein (IL-18BP) with high affinity, letting only a small fraction of free IL-18 able to trigger receptor-mediated signaling. In contrast to other IL-1 family members, IL-18 is produced constitutively by different cell types, suggesting implications in normal physiology. If the roles of IL-18 in inflammatory processes and infectious diseases are well described, recent experimental studies in mice have highlighted the action of IL-18 signaling in the control of energy homeostasis, pancreatic islet immunity and liver integrity during nutritional stress. At the same time, clinical observations implicate IL-18 in various metabolic diseases including obesity, type 1 and 2 diabetes and nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). In the present review, we summarize and discuss both the physiological actions of IL-18 in metabolism and its potential roles in pathophysiological mechanisms leading to the most common human metabolic disorders, such as obesity, diabetes and NAFLD/NASH.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Innate-Immunity Genes in Obesity. J Pers Med 2021; 11:jpm11111201. [PMID: 34834553 PMCID: PMC8623883 DOI: 10.3390/jpm11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
The main functions of adipose tissue are thought to be storage and mobilization of the body’s energy reserves, active and passive thermoregulation, participation in the spatial organization of internal organs, protection of the body from lipotoxicity, and ectopic lipid deposition. After the discovery of adipokines, the endocrine function was added to the above list, and after the identification of crosstalk between adipocytes and immune cells, an immune function was suggested. Nonetheless, it turned out that the mechanisms underlying mutual regulatory relations of adipocytes, preadipocytes, immune cells, and their microenvironment are complex and redundant at many levels. One possible way to elucidate the picture of adipose-tissue regulation is to determine genetic variants correlating with obesity. In this review, we examine various aspects of adipose-tissue involvement in innate immune responses as well as variants of immune-response genes associated with obesity.
Collapse
|
9
|
Pyrina I, Chung KJ, Michailidou Z, Koutsilieris M, Chavakis T, Chatzigeorgiou A. Fate of Adipose Progenitor Cells in Obesity-Related Chronic Inflammation. Front Cell Dev Biol 2020; 8:644. [PMID: 32760729 PMCID: PMC7372115 DOI: 10.3389/fcell.2020.00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Adipose progenitor cells, or preadipocytes, constitute a small population of immature cells within the adipose tissue. They are a heterogeneous group of cells, in which different subtypes have a varying degree of commitment toward diverse cell fates, contributing to white and beige adipogenesis, fibrosis or maintenance of an immature cell phenotype with proliferation capacity. Mature adipocytes as well as cells of the immune system residing in the adipose tissue can modulate the function and differentiation potential of preadipocytes in a contact- and/or paracrine-dependent manner. In the course of obesity, the accumulation of immune cells within the adipose tissue contributes to the development of a pro-inflammatory microenvironment in the tissue. Under such circumstances, the crosstalk between preadipocytes and immune or parenchymal cells of the adipose tissue may critically regulate the differentiation of preadipocytes into white adipocytes, beige adipocytes, or myofibroblasts, thereby influencing adipose tissue expansion and adipose tissue dysfunction, including downregulation of beige adipogenesis and development of fibrosis. The present review will outline the current knowledge about factors shaping cell fate decisions of adipose progenitor cells in the context of obesity-related inflammation.
Collapse
Affiliation(s)
- Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
| | - Zoi Michailidou
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Technische Universität Dresden, Dresden, Germany
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Carson C, Lawson HA. Genetic background and diet affect brown adipose gene coexpression networks associated with metabolic phenotypes. Physiol Genomics 2020; 52:223-233. [PMID: 32338175 PMCID: PMC7311675 DOI: 10.1152/physiolgenomics.00003.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 01/10/2023] Open
Abstract
Adipose is a dynamic endocrine organ that is critical for regulating metabolism and is highly responsive to nutritional environment. Brown adipose tissue is an exciting potential therapeutic target; however, there are no systematic studies of gene-by-environment interactions affecting function of this organ. We leveraged a weighted gene coexpression network analysis to identify transcriptional networks in brown adipose tissue from LG/J and SM/J inbred mice fed high- or low-fat diets and correlate these networks with metabolic phenotypes. We identified eight primary gene network modules associated with variation in obesity and diabetes-related traits. Four modules were enriched for metabolically relevant processes such as immune and cytokine response, cell division, peroxisome functions, and organic molecule metabolic processes. The relative expression of genes in these modules is highly dependent on both genetic background and dietary environment. Genes in the immune/cytokine response and cell division modules are particularly highly expressed in high fat-fed SM/J mice, which show unique brown adipose-dependent remission of diabetes. The interconnectivity of genes in these modules is also heavily dependent on diet and strain, with most genes showing both higher expression and coexpression under the same context. We highlight several genes of interest, Col28a1, Cyp26b1, Bmp8b, and Ngef, that have distinct expression patterns among strain-by-diet contexts and fall under metabolic quantitative trait loci previously mapped in an F16 generation of an advanced intercross between LG/J and SM/J. Each of these genes have some connection to obesity and diabetes-related traits, but have not been studied in brown adipose tissue. Our results provide important insights into the relationship between brown adipose and systemic metabolism by being the first gene-by-environment study of brown adipose transcriptional networks.
Collapse
Affiliation(s)
- Caryn Carson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
11
|
Switching on the furnace: Regulation of heat production in brown adipose tissue. Mol Aspects Med 2019; 68:60-73. [DOI: 10.1016/j.mam.2019.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
13
|
Henstridge DC, Abildgaard J, Lindegaard B, Febbraio MA. Metabolic control and sex: A focus on inflammatory-linked mediators. Br J Pharmacol 2019; 176:4193-4207. [PMID: 30820935 DOI: 10.1111/bph.14642] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Men and women have many differing biological and physiological characteristics. Thus, it is no surprise that the control of metabolic processes and the mechanisms underlying metabolic-related diseases have sex-specific components. There is a clear metabolic sexual dimorphism in that up until midlife, men have a far greater likelihood of acquiring cardio-metabolic disease than women. Following menopause, however, this difference is reduced, suggestive of a protective role of the female sex hormones. Inflammatory processes have been implicated in the pathogenesis of cardio-metabolic disease with human studies correlating metabolic disease acquisition or risk with levels of various inflammatory markers. Rodent studies employing genetic modifications or novel pharmacological approaches have provided mechanistic insight into the role of these inflammatory mediators. Sex differences impact inflammatory processes and the subsequent biological response. As a consequence, this may affect how inflammation alters metabolic processes between the sexes. Recently, some of our work in the field of inflammatory genes and metabolic control identified a sexual dimorphism in a preclinical model and caused us to question the frequency and scale of such findings in the literature. This review concentrates on inflammatory-related signalling in relation to obesity, insulin resistance, and type 2 diabetes and highlights the differences observed between males and females. Differences in the activation and signalling of various inflammatory genes and proteins present another reason why studying both male and female patients or animals is important in the context of understanding and finding therapeutics for metabolic-related disease. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Darren C Henstridge
- Molecular Metabolism & Aging Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Julie Abildgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pulmonary and Infectious Diseases, Nordsjaellands Hospital, Hillerød, Denmark
| | - Mark A Febbraio
- Division of Diabetes & Metabolism, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Drug Discover Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Kurita K, Ishikawa K, Takeda K, Fujimoto M, Ono H, Kumagai J, Inoue H, Yokoh H, Yokote K. CXCL12-CXCR4 pathway activates brown adipocytes and induces insulin resistance in CXCR4-deficient mice under high-fat diet. Sci Rep 2019; 9:6165. [PMID: 30992469 PMCID: PMC6467900 DOI: 10.1038/s41598-019-42127-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Brown adipose tissue (BAT) plays a role in energy expenditure and is involved in nutrient metabolism. C-X-C chemokine ligand 12 (CXCL12)-CXCR4 pathway regulates the immune, nervous, and cardiovascular systems and affects the adipose tissue. Here, we investigated the role of this pathway as an activator of BAT. Uncoupling protein 1 mRNA and protein levels and oxygen consumption increased in the brown adipocytes treated with 100 nM CXCL12 peptide. CXCL12-mediated upregulation in P38 and extracellular signal-regulated kinase (ERK) levels was reduced by each inhibitor. Thus, the CXCL12-CXCR4 pathway activated the brown adipocytes through P38 and ERK that acted downstream of this pathway. Mice with CXCR4 defects only in the brown adipocytes were generated and fed with high-fat diet (HFD). Body weight and blood glucose after glucose injection increased in these mice. Long-term exposure to HFD deteriorated blood glucose level after glucose injection. Insulin sensitivity was exacerbated in the knockout mice fed with HFD. Serum lipid parameters and CXCL12 level in knockout mice were similar to those in control mice. These results suggest that the CXCL12-CXCR4 pathway induces brown adipocyte activity and affects nutrient metabolism under HFD load.
Collapse
Affiliation(s)
- Kenichi Kurita
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ko Ishikawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Kenji Takeda
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masanori Fujimoto
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hiraku Ono
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Jin Kumagai
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hiromi Inoue
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Hidetaka Yokoh
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
15
|
Interleukin-18 in Health and Disease. Int J Mol Sci 2019; 20:ijms20030649. [PMID: 30717382 PMCID: PMC6387150 DOI: 10.3390/ijms20030649] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4+ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells. In this review article, we will focus on the unique features of IL-18 in health and disease in experimental animals and humans.
Collapse
|
16
|
Villarroya F, Cereijo R, Gavaldà-Navarro A, Villarroya J, Giralt M. Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J Intern Med 2018; 284:492-504. [PMID: 29923291 DOI: 10.1111/joim.12803] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many of the comorbidities of obesity, including type 2 diabetes and cardiovascular diseases, are related to the low-grade chronic inflammation of white adipose tissue. Under white adipocyte stress, local infiltration of immune cells and enhanced production of pro-inflammatory cytokines together reduce metabolic flexibility and lead to insulin resistance in obesity. Whereas white adipocytes act in energy storage, brown and beige adipocytes specialize in energy expenditure. Brown and beige activity protects against obesity and associated metabolic disorders, such as hyperglycaemia and hyperlipidaemia. Compared to white fat, brown adipose tissue depots are less susceptible to developing local inflammation in response to obesity; however, strong obesogenic insults ultimately induce a locally pro-inflammatory environment in brown fat. This condition directly alters the thermogenic activity of brown fat by impairing its energy expenditure mechanism and uptake of glucose for use as a fuel substrate. Pro-inflammatory cytokines also impair beige adipogenesis, which occurs mainly in subcutaneous adipose tissue. There is evidence that inflammatory processes occurring in perivascular adipose tissues alter their brown-versus-white plasticity, impair the extent of browning in these depots and favour the local release of vasculature damaging signals. In summary, the targeting of brown and beige adipose tissues by pro-inflammatory signals and the subsequent impairment of their thermogenic and metabolite draining activities appears to represent obesity-driven disturbances that contribute to metabolic syndrome and cardiovascular alterations in obesity.
Collapse
Affiliation(s)
- F Villarroya
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - R Cereijo
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - A Gavaldà-Navarro
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - J Villarroya
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - M Giralt
- Department of Biochemistry and Molecular Biomedicine, CIBER Fisiopatología de la Obesidad y Nutrición, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
17
|
García MDC, Pazos P, Lima L, Diéguez C. Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. Int J Mol Sci 2018; 19:E2569. [PMID: 30158466 PMCID: PMC6164446 DOI: 10.3390/ijms19092569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity rates and the burden of metabolic associated diseases are escalating worldwide Energy burning brown and inducible beige adipocytes in human adipose tissues (ATs) have attracted considerable attention due to their therapeutic potential to counteract the deleterious metabolic effects of nutritional overload and overweight. Recent research has highlighted the relevance of resident and recruited ATs immune cell populations and their signalling mediators, cytokines, as modulators of the thermogenic activity of brown and beige ATs. In this review, we first provide an overview of the developmental, cellular and functional heterogeneity of the AT organ, as well as reported molecular switches of its heat-producing machinery. We also discuss the key contribution of various interleukins signalling pathways to energy and metabolic homeostasis and their roles in the biogenesis and function of brown and beige adipocytes. Besides local actions, attention is also drawn to their influence in the central nervous system (CNS) networks governing energy expenditure.
Collapse
Affiliation(s)
- María Del Carmen García
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Patricia Pazos
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Luis Lima
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| |
Collapse
|
18
|
Knuth CM, Peppler WT, Townsend LK, Miotto PM, Gudiksen A, Wright DC. Prior exercise training improves cold tolerance independent of indices associated with non-shivering thermogenesis. J Physiol 2018; 596:4375-4391. [PMID: 30109697 DOI: 10.1113/jp276228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Mammals defend against cold-induced reductions in body temperature through both shivering and non-shivering thermogenesis. The activation of non-shivering thermogenesis is primarily driven by uncoupling protein-1 in brown adipose tissue and to a lesser degree by the browning of white adipose tissue. Endurance exercise has also been shown to increase markers of white adipose tissue browning. This study aimed to determine whether prior exercise training would alter the response to a cold challenge and if this would be associated with differences in indices of non-shivering thermogenesis. It is shown that exercise training protects against cold-induced weight loss by increasing food intake. Exercise-trained mice were better able to maintain their core temperature, independent of differences in markers of non-shivering thermogenesis. ABSTRACT Shivering is one of the first defences against cold, and as skeletal muscle fatigues there is an increased reliance on non-shivering thermogenesis. Brown and beige adipose tissues are the primary thermogenic tissues regulating this process. Exercise has also been shown to increase the thermogenic capacity of subcutaneous white adipose tissue. Whether exercise has an effect on the adaptations to cold stress within adipose tissue and skeletal muscle remains to be shown. Male C57BL/6 mice were either subjected to voluntary wheel running or remained sedentary for 12 days. Exercise led to decreased body weight and increased glucose tolerance. Mice were then divided into groups kept at 25°C room temperature or a cold challenge of 4°C for 48 h. Exercised mice were protected against cold-induced reductions in weight and in parallel with increased food intake. Providing exercised mice with the same amount of food as sedentary mice eliminated the protection against cold-induced weight loss. Cold exposure led to greater reductions in rectal temperature in sedentary compared to exercised mice. This protective effect was not explained by differences in the browning of white adipose tissue or brown adipose tissue mass. Similarly, the ability of the β3 -adrenergic agonist CL 316,243 to increase energy expenditure was attenuated in previously exercised mice, suggesting that the activation of uncoupling protein-1 in brown and/or beige adipocytes is not the source of protective effects. We speculate that the protection against cold-induced reductions in rectal temperature could potentially be linked to exercise-induced alterations in skeletal muscle.
Collapse
Affiliation(s)
- Carly M Knuth
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
19
|
Carobbio S, Guénantin AC, Samuelson I, Bahri M, Vidal-Puig A. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:37-50. [PMID: 29852279 DOI: 10.1016/j.bbalip.2018.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/31/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
The adipose organ portrays adipocytes of diverse tones: white, brown and beige, each type with distinct functions. Adipocytes orchestrate their adaptation and expansion to provide storage to excess nutrients, the quick mobilisation of fuel to supply peripheral functional demands, insulation, and, in their thermogenic form, heat generation to maintain core body temperature. Thermogenic adipocytes could be targets for anti-obesity and anti-diabetic therapeutic approaches aiming to restore adipose tissue functionality and increase energy dissipation. However, for thermogenic adipose tissue to become therapeutically relevant, a better understanding of its development and origins, its progenitors and their characteristics and the composition of its niche, is essential. Also crucial is the identification of stimuli and molecules promoting its specific differentiation and activation. Here we highlight the structural/cellular differences between human and rodent brown adipose tissue and discuss how obesity and metabolic complication affects brown and beige cells as well as how they could be targeted to improve their activation and improve global metabolic homeostasis. Finally, we describe the limitations of current research models and the advantages of new emerging approaches.
Collapse
Affiliation(s)
- Stefania Carobbio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Anne-Claire Guénantin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Isabella Samuelson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Myriam Bahri
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Becker L, Nguyen L, Gill J, Kulkarni S, Pasricha PJ, Habtezion A. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut 2018; 67:827-836. [PMID: 28228489 PMCID: PMC5565713 DOI: 10.1136/gutjnl-2016-312940] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/21/2016] [Accepted: 01/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The enteric nervous system (ENS) undergoes neuronal loss and degenerative changes with age. The cause of this neurodegeneration is poorly understood. Muscularis macrophages residing in close proximity to enteric ganglia maintain neuromuscular function via direct crosstalk with enteric neurons and have been implicated in the pathogenesis of GI motility disorders like gastroparesis and postoperative ileus. The aim of this study was to assess whether ageing causes alterations in macrophage phenotype that contributes to age-related degeneration of the ENS. DESIGN Longitudinal muscle and myenteric plexus from small intestine of young, mid-aged and old mice were dissected and prepared for whole mount immunostaining, flow cytometry, Luminex immunoassays, western blot analysis, enteric neural stem cell (ENSC) isolation or conditioned media. Bone marrow derived macrophages were prepared and polarised to classic (M1) or alternative (M2) activation states. Markers for macrophage phenotype were measured using quantitative RT-PCR. RESULTS Ageing causes a shift in macrophage polarisation from anti-inflammatory 'M2' to proinflammatory 'M1' that is associated with a rise in cytokines and immune cells in the ENS. This phenotypic shift is associated with a neural response to inflammatory signals, increase in apoptosis and loss of enteric neurons and ENSCs, and delayed intestinal transit. An age-dependent decrease in expression of the transcription factor FoxO3, a known longevity gene, contributes to the loss of anti-inflammatory behaviour in macrophages of old mice, and FoxO3-deficient mice demonstrate signs of premature ageing of the ENS. CONCLUSIONS A shift by macrophages towards a proinflammatory phenotype with ageing causes inflammation-mediated degeneration of the ENS.
Collapse
Affiliation(s)
- Laren Becker
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California,Corresponding Authors Contact Information: Laren Becker, MD, PhD, Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 300 Pasteur Drive, Stanford, CA 94305, Tel: 650 721 1264, Fax: 650 723 5488, . Aida Habtezion, MD MSc, Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 300 Pasteur Drive, Stanford, CA 94305, Tel: 650 725 6511, Fax: 650 723 5488,
| | - Linh Nguyen
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Jaspreet Gill
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Subhash Kulkarni
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland
| | - Pankaj Jay Pasricha
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland
| | - Aida Habtezion
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California,Corresponding Authors Contact Information: Laren Becker, MD, PhD, Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 300 Pasteur Drive, Stanford, CA 94305, Tel: 650 721 1264, Fax: 650 723 5488, . Aida Habtezion, MD MSc, Stanford University School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 300 Pasteur Drive, Stanford, CA 94305, Tel: 650 725 6511, Fax: 650 723 5488,
| |
Collapse
|
21
|
Lindegaard B, Abildgaard J, Heywood SE, Pedersen BK, Febbraio MA. Female sex hormones are necessary for the metabolic effects mediated by loss of Interleukin 18 signaling. Mol Metab 2018; 12:89-97. [PMID: 29699928 PMCID: PMC6001917 DOI: 10.1016/j.molmet.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Interleukin (IL)-18 plays a crucial role in maintaining metabolic homeostasis and levels of this cytokine are influenced by gender, age, and sex hormones. The role of gender on IL-18 signaling, however, is unclear. We hypothesized that the presence of female sex hormone could preserve the metabolic phenotype of the IL-18R-/- animals. METHODS We studied female mice with a global deletion of the α isoform of the IL-18 receptor (IL-18R-/-) and littermates control. Three studies were done: 1) animals fed a high fat diet (HFD) for 16 weeks; 2) animals fed chow diet for 72 weeks and 3) animals (3 weeks-old) randomized to either bilateral ovariectomy (OVX) or control surgery (SHAM) and followed for 16 weeks. RESULTS Female IL-18R-/- mice gained less weight and maintained glucose homeostasis on a chow diet compared with HFD, but no differences between genotypes were observed. The maintenance of body weight and glucose homeostasis in IL-18R-/- mice was lost with aging. By 72 weeks of age, IL-18R-/- mice became heavier compared with WT mice due to an increase in both visceral and subcutaneous adiposity and displayed glucose intolerance. OVX did not affect body weight in IL-18R-/- mice but exacerbated glucose intolerance and impaired liver insulin signaling when compared with SHAM mice. CONCLUSIONS Female mice harboring a global deletion of the IL-18R, only present the same phenotype as reported in male IL-18R-/- mice if they are aged or have undergone OVX, in which circulating estrogen is likely to be blunted. The role of estrogen signaling in the protection against altered metabolic homeostasis in IL-18R-/- mice appears to be mediated by liver insulin signaling. We therefore suggest that the metabolic effects mediated by loss of IL-18 signaling are only present in a female sex hormone free environment.
Collapse
Affiliation(s)
- Birgitte Lindegaard
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital, Hillerød, Denmark.
| | - Julie Abildgaard
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Sarah E Heywood
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Cellular and Molecular Metabolism Laboratory, Division of Diabetes & Metabolism, Garvan Institute for Medical Research, Sydney, Australia
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Division of Diabetes & Metabolism, Garvan Institute for Medical Research, Sydney, Australia.
| |
Collapse
|
22
|
Zhao P, Wong KI, Sun X, Reilly SM, Uhm M, Liao Z, Skorobogatko Y, Saltiel AR. TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue. Cell 2018; 172:731-743.e12. [PMID: 29425491 PMCID: PMC5808582 DOI: 10.1016/j.cell.2018.01.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/17/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
Abstract
The noncanonical IKK family member TANK-binding kinase 1 (TBK1) is activated by pro-inflammatory cytokines, but its role in controlling metabolism remains unclear. Here, we report that the kinase uniquely controls energy metabolism. Tbk1 expression is increased in adipocytes of HFD-fed mice. Adipocyte-specific TBK1 knockout (ATKO) attenuates HFD-induced obesity by increasing energy expenditure; further studies show that TBK1 directly inhibits AMPK to repress respiration and increase energy storage. Conversely, activation of AMPK under catabolic conditions can increase TBK1 activity through phosphorylation, mediated by AMPK's downstream target ULK1. Surprisingly, ATKO also exaggerates adipose tissue inflammation and insulin resistance. TBK1 suppresses inflammation by phosphorylating and inducing the degradation of the IKK kinase NIK, thus attenuating NF-κB activity. Moreover, TBK1 mediates the negative impact of AMPK activity on NF-κB activation. These data implicate a unique role for TBK1 in mediating bidirectional crosstalk between energy sensing and inflammatory signaling pathways in both over- and undernutrition.
Collapse
Affiliation(s)
- Peng Zhao
- Division of Metabolism and Endocrinology, Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai In Wong
- Division of Metabolism and Endocrinology, Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA
| | - Xiaoli Sun
- Division of Metabolism and Endocrinology, Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA
| | - Shannon M Reilly
- Division of Metabolism and Endocrinology, Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maeran Uhm
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongji Liao
- Division of Metabolism and Endocrinology, Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA
| | - Yuliya Skorobogatko
- Division of Metabolism and Endocrinology, Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alan R Saltiel
- Division of Metabolism and Endocrinology, Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Meyer CW, Ootsuka Y, Romanovsky AA. Body Temperature Measurements for Metabolic Phenotyping in Mice. Front Physiol 2017; 8:520. [PMID: 28824441 PMCID: PMC5534453 DOI: 10.3389/fphys.2017.00520] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023] Open
Abstract
Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses.
Collapse
Affiliation(s)
- Carola W Meyer
- Department of Pharmacology, Max-Planck Institute for Heart and Lung ResearchBad Nauheim, Germany
| | - Youichirou Ootsuka
- Centre for Neuroscience, School of Medicine, Flinders University of South AustraliaAdelaide, SA, Australia
| | - Andrej A Romanovsky
- FeverLab, St. Joseph's Hospital and Medical CenterPhoenix, AZ, United States
| |
Collapse
|
24
|
Meyer-Kovac J, Kolbe I, Ehrhardt L, Leliavski A, Husse J, Salinas G, Lingner T, Tsang AH, Barclay JL, Oster H. Hepatic gene therapy rescues high-fat diet responses in circadian Clock mutant mice. Mol Metab 2017; 6:512-523. [PMID: 28580282 PMCID: PMC5444075 DOI: 10.1016/j.molmet.2017.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Circadian Clock gene mutant mice show dampened 24-h feeding rhythms and an increased sensitivity to high-fat diet (HFD) feeding. Restricting HFD access to the dark phase counteracts its obesogenic effect in wild-type mice. The extent to which altered feeding rhythms are causative for the obesogenic phenotype of Clock mutant mice, however, remains unknown. METHODS Metabolic parameters of wild-type (WT) and ClockΔ19 mutant mice (MT) were investigated under ad libitum and nighttime restricted HFD feeding. Liver circadian clock function was partially rescued by hydrodynamic tail vein delivery of WT-Clock DNA vectors in mutant mice and transcriptional, metabolic, endocrine and behavioral rhythms studied. RESULTS Nighttime-restricted feeding restored food intake, but not body weight regulation in MT mice under HFD, suggesting Clock-dependent metabolic dysregulation downstream of circadian appetite control. Liver-directed Clock gene therapy partially restored liver circadian oscillator function and transcriptome regulation without affecting centrally controlled circadian behaviors. Under HFD, MT mice with partially restored liver clock function (MT-LR) showed normalized body weight gain, rescued 24-h food intake rhythms, and WT-like energy expenditure. This was associated with decreased nighttime leptin and daytime ghrelin levels, reduced hepatic lipid accumulation, and improved glucose tolerance. Transcriptome analysis revealed that hepatic Clock rescue in MT mice affected a range of metabolic pathways. CONCLUSION Liver Clock gene therapy improves resistance against HFD-induced metabolic impairments in mice with circadian clock disruption. Restoring or stabilizing liver clock function might be a promising target for therapeutic interventions in obesity and metabolic disorders.
Collapse
Affiliation(s)
- Judit Meyer-Kovac
- Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department 1, University of Lübeck, Lübeck, Germany
| | - Lea Ehrhardt
- Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Alexei Leliavski
- Chronophysiology Group, Medical Department 1, University of Lübeck, Lübeck, Germany
- Institute for Nutrition Medicine, University of Lübeck, Lübeck, Germany
| | - Jana Husse
- Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, Institute Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, Institute Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Anthony H. Tsang
- Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Chronophysiology Group, Medical Department 1, University of Lübeck, Lübeck, Germany
| | | | - Henrik Oster
- Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Chronophysiology Group, Medical Department 1, University of Lübeck, Lübeck, Germany
| |
Collapse
|
25
|
Brandi J, Cecconi D, Cordani M, Torrens-Mas M, Pacchiana R, Dalla Pozza E, Butera G, Manfredi M, Marengo E, Oliver J, Roca P, Dando I, Donadelli M. The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition. Free Radic Biol Med 2016; 101:305-316. [PMID: 27989750 DOI: 10.1016/j.freeradbiomed.2016.10.499] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
Abstract
Several evidence indicate that metabolic alterations play a pivotal role in cancer development. Here, we report that the mitochondrial uncoupling protein 2 (UCP2) sustains the metabolic shift from mitochondrial oxidative phosphorylation (mtOXPHOS) to glycolysis in pancreas cancer cells. Indeed, we show that UCP2 sensitizes pancreas cancer cells to the treatment with the glycolytic inhibitor 2-deoxy-D-glucose. Through a bidimensional electrophoresis analysis, we identify 19 protein species differentially expressed after treatment with the UCP2 inhibitor genipin and, by bioinformatic analyses, we show that these proteins are mainly involved in metabolic processes. In particular, we demonstrate that the antioxidant UCP2 induces the expression of hnRNPA2/B1, which is involved in the regulation of both GLUT1 and PKM2 mRNAs, and of lactate dehydrogenase (LDH) increasing the secretion of L-lactic acid. We further demonstrate that the radical scavenger N-acetyl-L-cysteine reverts hnRNPA2/B1 and PKM2 inhibition by genipin indicating a role for reactive oxygen species in the metabolic reprogramming of cancer cells mediated by UCP2. We also observe an UCP2-dependent decrease in mtOXPHOS complex I (NADH dehydrogenase), complex IV (cytochrome c oxidase), complex V (ATPase) and in mitochondrial oxygen consumption, suggesting a role for UCP2 in the counteraction of pancreatic cancer cellular respiration. All these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation with the concomitant metabolic shift from mtOXPHOS to the glycolytic pathway.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona, Italy
| | - Marco Cordani
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Margalida Torrens-Mas
- Physiopathology of Obesity and Nutrition, CIBERobn (CB06/03), Carlos III Health Research Institute (ISCIII), Madrid, Spain; Palma Institute for Health Research (IdISPa), E07010 Palma, Spain; Multidisciplinar Group of Translational Oncology, University Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, E07122 Palma, Spain
| | - Raffaella Pacchiana
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanna Butera
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, University of Eastern Piedmont, Alessandria, Italy; ISALIT, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Eastern Piedmont, Alessandria, Italy
| | - Jordi Oliver
- Physiopathology of Obesity and Nutrition, CIBERobn (CB06/03), Carlos III Health Research Institute (ISCIII), Madrid, Spain; Palma Institute for Health Research (IdISPa), E07010 Palma, Spain; Multidisciplinar Group of Translational Oncology, University Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, E07122 Palma, Spain
| | - Pilar Roca
- Physiopathology of Obesity and Nutrition, CIBERobn (CB06/03), Carlos III Health Research Institute (ISCIII), Madrid, Spain; Palma Institute for Health Research (IdISPa), E07010 Palma, Spain; Multidisciplinar Group of Translational Oncology, University Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, E07122 Palma, Spain
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Massimo Donadelli
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|