1
|
Abdullah AR, Seliem MA, Khidr EG, Sobhy AM, El-Shiekh RA, Hafeez MSAE, El-Husseiny AA. A comprehensive review on diabetic cardiomyopathy (DCM): histological spectrum, diagnosis, pathogenesis, and management with conventional treatments and natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03980-9. [PMID: 40100371 DOI: 10.1007/s00210-025-03980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Diabetic complications are among the most pressing health issues currently. Cardiovascular problems, particularly diabetic cardiomyopathy (DCM), are responsible for almost 80% of diabetic deaths. Because of the increasing prevalence of diabetes and the increased threat of death from its consequences, researchers are searching for new pharmaceutical targets to delay or cure it. Currently, there are a few medicines available for the treatment of DCM, some of which have serious side effects. To address this issue, researchers are focusing on natural products. Thus, in this review, we discuss the prevalence, incidence, risk factors, histological spectrum, diagnosis, pathogenic pathways of DCM, genetic and epigenetic mechanisms involved in DCM, the current treatments, and the beneficial effects of natural product-based therapeutics. Natural treatments range from single doses to continuous regimens lasting weeks or months. Flavonoids are the largest class of natural compounds reported for the treatment of DCM. Natural regimens may cover the way for new treatment strategies for DCM for being multi-target agents in the treatment of DCM, with the ability to play a variety of functions via distinct signaling pathways.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Mahmoud A Seliem
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
| | - Ayah M Sobhy
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Mohamed S Abd El Hafeez
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
2
|
Wan JZ, Li CQ, Li YN, Li AZ, Yang QL, Kang M, Cao JH, Ran HJ, Liu QL, Wan Y, Zhai S, Xi MM, Tang HF, Qin XJ, Bian K. Chikusetsu saponin IVa attenuates aging by improving autophagy and mitophagy. Free Radic Biol Med 2025; 230:17-32. [PMID: 39894375 DOI: 10.1016/j.freeradbiomed.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Chikusetsu saponin IVa (CHS) is an essential active triterpenoid saponin found in various medicinal herbs, such as Aralia taibaiensis, Panax japonicus, and Aralia elata. While multiple health benefits have been documented, the effect of CHS on aging remains unclear. By employing the D-galactose-induced aging mice and the replicative senescence of primary mouse embryonic fibroblasts (MEFs) as the aging models, we found that CHS significantly attenuated aging both in vitro and in vivo. RNA sequencing analysis revealed that CHS greatly improved autophagy and mitophagy. Corresponding to the improved mitophagy, CHS remarkably reduced mitochondrial ROS and enhanced mitochondrial respiratory function. Mitophagy inhibition and Atg 7 genetic knockout (KO) almost abolished the anti-aging effect of CHS. AMPK pathway was activated during the attenuation of aging by CHS treatment, and a specific AMPK inhibitor reversed the induction of mitophagy and autophagy, as well as the attenuation of aging by CHS. Molecular docking data indicated AMPK as the direct binding target of CHS. In conclusion, our study initially demonstrates that CHS exhibits a potent anti-aging effect both in vitro and in vivo. CHS may directly bind to AMPK and activate the AMPK-dependent pathway to enhance autophagy and mitophagy, thereby reducing mitochondrial ROS and improving mitochondrial respiratory function, contributing to the anti-aging effect. These findings offer a new clue for the promising application of CHS in the improvement of aging and aging-related diseases in the future.
Collapse
Affiliation(s)
- Jing-Zhi Wan
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Cheng-Quan Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Na Li
- People's Hospital of Zhuhai High-tech Industrial Development Zone, Zhuhai, 519085, China
| | - Ao-Zhong Li
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Qi-Long Yang
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Meng Kang
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jia-Hao Cao
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Hui-Jie Ran
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qi-Ling Liu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yi Wan
- Department of Health Services, The Fourth Military Medical University, Xi'an, 710032, China
| | - Song Zhai
- Department of Infectious Diseases, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Miao-Miao Xi
- TANK Medicinal Biology Institute of Xi'an, Xi'an, 710032, China; National Drug Clinical Trial Institute, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Hai-Feng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Xu-Jun Qin
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Ka Bian
- Department of Otorhinolaryngology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Li Z, Liu Y, Liu K, Tao X, Hu N, Li W, Duan J. Saponins from Aralia taibaiensis protect against brain ischemia/reperfusion injuries by regulating the apelin/AMPK pathway. Chin J Nat Med 2025; 23:299-310. [PMID: 40122660 DOI: 10.1016/s1875-5364(25)60841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/07/2024] [Accepted: 05/10/2024] [Indexed: 03/25/2025]
Abstract
Aralia taibaiensi, widely distributed in western China, particularly in the Qinba Mountains, has been utilized as a folk medicine for treating diabetes, gastropathy, rheumatism, and cardiovascular diseases. Saponins from A. taibaiensis (sAT) have demonstrated protective effects against oxidative stress and mitochondrial dysfunction induced by ischemia/reperfusion (I/R). However, the underlying mechanisms remain unclear. In vivo, middle cerebral artery occlusion/reperfusion (MCAO/R) induced inflammatory infiltration, neuronal injury, cell apoptosis, mitochondrial dysfunction, and oxidative stress in the ischaemic penumbra, which were effectively mitigated by sAT. sAT increased the mRNA and protein expression levels of apelin and its receptor apelin/apelin receptors (ARs) both in vivo and in vitro. (Ala13)-Apelin-13 (F13A) and small interfering RNA (siRNA) abolished the regulatory effects of sAT on neuroprotection mediated by adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/protein kinase B (Akt). Furthermore, sAT induced apelin/AR expression by simultaneously inhibiting P38 mitogen-activated protein kinase (P38 MAPK)/activating transcription factor 4 (ATF4) and upregulating hypoxia-inducible factor-1α (HIF-1α). Our findings indicate that sAT regulates apelin/AR/AMPK by inhibiting P38 MAPK/ATF4 and upregulating HIF-1a, thereby suppressing oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhengrong Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuwen Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kedi Liu
- TANK Medicinal Biology Institute of Xi'an, Xi'an 710065, China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Naping Hu
- Department of Pharmacy, General Hospital of Xinjiang Production and Construction Corps, Urumqi 830092, China
| | - Wangting Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jialin Duan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China; Shanghai Minhang Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai 201108, China.
| |
Collapse
|
4
|
Peng D, Wang A, Shi W, Lin L. Pentacyclic triterpenes, potential novel therapeutic approaches for cardiovascular diseases. Arch Pharm Res 2024; 47:709-735. [PMID: 39048758 DOI: 10.1007/s12272-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs.
Collapse
Affiliation(s)
- Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Aizan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
5
|
Bu Y, Liu Y, Liu M, Yan C, Wang J, Wu H, Song H, Zhang D, Xu K, Liu D, Han Y. TRIM55 Aggravates Cardiomyocyte Apoptosis After Myocardial Infarction via Modulation of the Nrf2/HO-1 Pathway. JACC Basic Transl Sci 2024; 9:1104-1122. [PMID: 39444927 PMCID: PMC11494394 DOI: 10.1016/j.jacbts.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 10/25/2024]
Abstract
Tripartite motif-containing 55 (Trim55) is mainly expressed in myocardium and skeletal muscle, which plays an important role in promoting the embryonic development of the mouse heart. We investigated the role of Trim55 in myocardial infarction and the associated molecular mechanisms. We studied both gain and loss of function in vivo and in vitro. The results showed that Trim55 knockout improved cardiac function and apoptosis after myocardial infarction, and overexpression aggravated cardiac function damage. The mechanism is that Trim55 interacts with nuclear factor, erythroid derived 2 (Nrf2) to accelerate its degradation and inhibit the expression of heme oxygenase 1, thereby promoting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
| | | | - Meili Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hanlin Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dali Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
6
|
Zhang J, Wang QH, Miao BB, Wu RX, Li QQ, Tang BG, Liang ZB, Niu SF. Liver transcriptome analysis reveal the metabolic and apoptotic responses of Trachinotus ovatus under acute cold stress. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109476. [PMID: 38447780 DOI: 10.1016/j.fsi.2024.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Trachinotus ovatus is an economically important fish and has been recommended as a high-quality aquaculture fish breed for the high-quality development of sea ranches in the South China Sea. However, T. ovatus shows intolerance to low temperature, greatly limiting the extension of farming scale, reducing production efficiency in winter, and increasing farming risks. In this study, liver transcriptome analysis was investigated in T. ovatus under acute low temperature conditions (20 and 15 °C) using RNA sequencing (RNA-Seq) technology. Inter-groups differential expression analysis and trend analysis screened 1219 DEGs and four significant profiles (profiles 0, 3, 4, and 7), respectively. GO enrichment analysis showed that these DEGs were mainly related to metabolic process and cell growth and death process. KEGG enrichment analysis found that DEGs were mainly associated with lipid metabolism, carbohydrate metabolism, and cell growth and death, such as gluconeogenesis, glycolysis, fatty acid oxidation, cholesterol biosynthesis, p53 signaling pathway, cell cycle arrest, and apoptotic cell death. Moreover, protein-protein interaction networks identified two hub genes (FOS and JUNB) and some important genes related to metabolic process and cell growth and death process, that corresponding to enrichment analysis. Overall, gluconeogenesis, lipid mobilization, and fatty acid oxidation in metabolic process and cell cycle arrest and apoptotic cell death in cell growth and death process were enhanced, while glycolysis, liver glycogen synthesis and cholesterol biosynthesis in metabolic process were inhibited. The enhancement or attenuatment of metabolic process and cell growth and death process is conducive to maintain energy balance, normal fluidity of cell membrane, normal physiological functions of liver cell, enhancing the tolerance of T. ovatus to cold stress. These results suggested that metabolic process and cell growth and death process play important roles in response to acute cold stress in the liver of T. ovatus. Gene expreesion level analysis showed that acute cold stress at 15 °C was identified as a critical temperature point for T. ovatus in term of cellular metabolism alteration and apoptosis inducement, and rewarming intervention should be timely implemented above 15 °C. Our study can provide theoretical support for breeding cold-tolerant cultivars of T. ovatus, which is contributed to high-quality productions fish production.
Collapse
Affiliation(s)
- Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
7
|
Yao P, Yang X, Qiao Y. A Review on the Natural Products in Treatment of Diabetic Cardiomyopathy (DCM). Rev Cardiovasc Med 2024; 25:165. [PMID: 39076497 PMCID: PMC11267204 DOI: 10.31083/j.rcm2505165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 07/31/2024] Open
Abstract
Diabetic cardiomyopathy is an insidious and fatal disease, imposing major financial and social burdens on affected individuals. Among the various methods proposed for the treatment of diabetic cardiomyopathy (DCM), treatments with natural products have achieved promising results due to their high efficiency and minimal side-effects. Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, Excerpt Medica, Science Direct, and Springer. In this study, we reviewed the DCM-related studies on 72 representative natural products. These natural products have been confirmed to be applicable in the therapeutic intervention of DCM, acting through various mechanisms such as the amelioration of metabolic abnormalities, protecting the mitochondrial structure and function, anti-oxidant stress, anti-inflammatory, anti-fibrosis, regulation of Ca 2 + homeostasis and regulation of programmed cell death. The nuclear factor kappa B (NF- κ B), nuclear factor erythroid 2-related factor 2 (Nrf-2), and transforming growth factor- β (TGF- β ) have been extensively studied as high frequency signaling pathways for natural product intervention in DCM. The effectiveness of natural products in treating DCM has been revealed and studied, which provides a reference for DCM-specific drug discovery.
Collapse
Affiliation(s)
- Pengyu Yao
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000 Jinan, Shandong, China
| | - Xiaoni Yang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), 250014 Jinan, Shandong, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| |
Collapse
|
8
|
Saadh MJ, Castillo-Acobo RY, Baher H, Narayanan J, Palacios Garay JP, Yamaguchi MNV, Arias-Gonzáles JL, Cotrina-Aliaga JC, Akram SV, Lakshmaiya N, Amin AH, Mohany M, Al-Rejaie SS, Ahsan M, Bahrami A, Akhavan-Sigari R. The protective role of sulforaphane and Homer1a in retinal ischemia-reperfusion injury: Unraveling the neuroprotective interplay. Life Sci 2023; 329:121968. [PMID: 37487941 DOI: 10.1016/j.lfs.2023.121968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
AIMS Retinal ischemia/reperfusion (I/R) injury is a common pathological basis for various ophthalmic diseases. This study aimed to investigate the potential of sulforaphane (SFN) and Homer1a in regulating cell apoptosis induced by retinal I/R injury and to explore the underlying regulatory mechanism between them. MATERIALS AND METHODS In in vivo experiments, C57BL/6J mice and Homer1flox/-/Homer1a+/-/Nestin-Cre+/- mice were used to construct retinal I/R injury models. In vitro experiments utilized the oxygen-glucose deprivation-reperfusion (OGD/R) injury model with primary retinal ganglion cells (RGCs). The effects of Homer1a and SFN on cell apoptosis were observed through pathological analyses, flow cytometry, and visual electrophysiological assessments. KEY FINDINGS We discovered that after OGD/R injury, apoptosis of RGCs and intracellular Ca2+ activity significantly increased. However, these changes were reversed upon the addition of SFN, and similar observations were reproduced in in vivo studies. Furthermore, both in vivo and in vitro studies confirmed the upregulation of Homer1a after I/R, which could be further enhanced by the administration of SFN. Moreover, upregulation of Homer1a resulted in a reduction in cell apoptosis and pro-apoptotic proteins, while downregulation of Homer1a had the opposite effect. Flash visual evoked potential, oscillatory potentials, and escape latency measurements in mice supported these findings. Furthermore, the addition of SFN strengthened the neuroprotective effects in the OGD/R + H+ group but weakened them in Homer1flox/-/Homer1a+/-/Nestin-Cre+/- mice. SIGNIFICANCE These results indicate that Homer1a plays a significant role in the therapeutic potential of sulforaphane for retinal I/R injury, thereby providing a theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman 11152, Jordan
| | | | - Hala Baher
- Department of Radiology and Ultrasonography Techniques, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, BC, Canada
| | | | - Shaik Vaseem Akram
- Uttaranchal Institute of Technology, Division of research and Innovation, Uttaranchal University, Dehradun, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Muhammad Ahsan
- Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, 44-100, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
| | - Abolfazl Bahrami
- Department of Cell Biology, Tuebingen University, Tuebingen, Germany; Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Reza Akhavan-Sigari
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Poland; Department of Neurosurgery, University Medical Center Tuebingen, Germany
| |
Collapse
|
9
|
Furuichi T, Muto Y, Sadakata T, Sato Y, Hayashi K, Shiraishi-Yamaguchi Y, Shinoda Y. The physiological role of Homer2a and its novel short isoform, Homer2e, in NMDA receptor-mediated apoptosis in cerebellar granule cells. Mol Brain 2021; 14:90. [PMID: 34118975 PMCID: PMC8199691 DOI: 10.1186/s13041-021-00804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 11/10/2022] Open
Abstract
Homer is a postsynaptic scaffold protein, which has long and short isoforms. The long form of Homer consists of an N-terminal target-binding domain and a C-terminal multimerization domain, linking multiple proteins within a complex. The short form of Homer only has the N-terminal domain and likely acts as a dominant negative regulator. Homer2a, one of the long form isoforms of the Homer family, expresses with a transient peak in the early postnatal stage of mouse cerebellar granule cells (CGCs); however, the functions of Homer2a in CGCs are not fully understood yet. In this study, we investigated the physiological roles of Homer2a in CGCs using recombinant adenovirus vectors. Overexpression of the Homer2a N-terminal domain construct, which was made structurally reminiscent with Homer1a, altered NMDAR1 localization, decreased NMDA currents, and promoted the survival of CGCs. These results suggest that the Homer2a N-terminal domain acts as a dominant negative protein to attenuate NMDAR-mediated excitotoxicity. Moreover, we identified a novel short form N-terminal domain-containing Homer2, named Homer2e, which was induced by apoptotic stimulation such as ischemic brain injury. Our study suggests that the long and short forms of Homer2 are involved in apoptosis of CGCs.
Collapse
Affiliation(s)
- Teiichi Furuichi
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
- JST-CREST, Kawaguchi, Saitama, 332-0012, Japan.
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan.
| | - Yuko Muto
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Tetsushi Sadakata
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- JST-CREST, Kawaguchi, Saitama, 332-0012, Japan
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Yumi Sato
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Laboratory of Proteome Research, Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Kanehiro Hayashi
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- JST-CREST, Kawaguchi, Saitama, 332-0012, Japan
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoko Shiraishi-Yamaguchi
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Developing Human Resources for R&D Programs, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-8666, Japan
| | - Yo Shinoda
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
- JST-CREST, Kawaguchi, Saitama, 332-0012, Japan.
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
10
|
Huang K, Yang C, Zheng J, Liu X, Liu J, Che D, Xue Y, An P, Wang D, Ruan X, Yu B. Effect of circular RNA, mmu_circ_0000296, on neuronal apoptosis in chronic cerebral ischaemia via the miR-194-5p/Runx3/Sirt1 axis. Cell Death Discov 2021; 7:124. [PMID: 34052838 PMCID: PMC8164632 DOI: 10.1038/s41420-021-00507-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic cerebral ischaemia (CCI) is a common pathological disorder, which is associated with various diseases, such as cerebral arteriosclerosis and vascular dementia, resulting in neurological dysfunction. As a type of non-coding RNA, circular RNA is involved in regulating the occurrence and development of diseases, such as ischaemic brain injury. Here, we found that HT22 cells and hippocampus treated with CCI had low expression of circ_0000296, Runx3, Sirt1, but high expression of miR-194-5p. Overexpression of circ_0000296, Runx3, Sirt1, and silenced miR-194-5p significantly inhibited neuronal apoptosis induced by CCI. This study demonstrated that circ_0000296 specifically bound to miR-194-5p; miR-194-5p bound to the 3'UTR region of Runx3 mRNA; Runx3 directly bound to the promoter region of Sirt1, enhancing its transcriptional activity. Overexpression of circ_0000296 by miR-194-5p reduced the negative regulatory effect of miR-194-5p on Runx3, promoted the transcriptional effect of Runx3 on Sirt1, and inhibited neuronal apoptosis induced by CCI. mmu_circ_0000296 plays an important role in regulating neuronal apoptosis induced by CCI through miR-194-5p/Runx3/Sirt1 pathway.
Collapse
Affiliation(s)
- Keyu Huang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Jie Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Dongfang Che
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Bo Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China. .,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China. .,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.
| |
Collapse
|
11
|
IRS-2/Akt/GSK-3 β/Nrf2 Pathway Contributes to the Protective Effects of Chikusetsu Saponin IVa against Lipotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8832318. [PMID: 33884100 PMCID: PMC8041533 DOI: 10.1155/2021/8832318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022]
Abstract
Chronic hyperlipidemia leads to pancreatic β-cell apoptosis and dysfunction through inducing oxidative stress. Chikusetsu saponin IVa (CHS) showed antioxidant and antidiabetic properties in our previous studies; however, its protective effects against lipotoxicity-induced β-cell oxidative stress and dysfunction are not clear. This study was designed to investigate the effects of CHS against lipotoxicity-induced β-cell injuries and its possible mechanism involved. High-fat (HF) diet and a low dose of streptozotocin- (STZ-) induced type 2 diabetes mellitus (T2DM) model in vivo and βTC3 cells subjected to 0.5 mM palmitate (PA) to imitate the lipotoxic model in vitro were performed. Pancreatic functions, ROS, and antioxidant protein measurements were performed to evaluate the effects of CHS on cell injuries. Protein expression levels were measured by Western blotting. Furthermore, siRNA-targeted Nrf2, PI3K/Akt inhibitor (LY294002), or GSK-3β inhibitor (LiCl) was used to investigate the crosstalk relationships between proteins. As the results showed, CHS treatment inhibited apoptosis, promoted insulin release, and reduced oxidative stress. CHS treatment significantly increased the expression of Nrf2 in the cytoplasm and nuclear protein. The antioxidative and benefit effects of CHS were inhibited by siNrf2. The phosphorylation of IRS-2, PI3K, Akt, and GSK-3β was markedly increased by CHS which were inhibited by PA. In addition, inhibition of PI3K/Akt or GSK-3β with specific inhibitors dramatically abrogated the protective effects of CHS, revealing that the IRS-2/Akt/GSK-3β signaling axis was involved in the protective effects of CHS. These results demonstrate that CHS protected βTC3 cells against PA-induced oxidative stress and cell dysfunction through Nrf2 by the IRS-2/Akt/GSK-3β-mediated pathway.
Collapse
|
12
|
Taohuajing reduces oxidative stress and inflammation in diabetic cardiomyopathy through the sirtuin 1/nucleotide-binding oligomerization domain-like receptor protein 3 pathway. BMC Complement Med Ther 2021; 21:78. [PMID: 33637069 PMCID: PMC7913206 DOI: 10.1186/s12906-021-03218-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Oxidative stress and inflammation promote the development of diabetic cardiomyopathy (DCM). Therefore, inhibiting these processes may show beneficial effects in the treatment of patients with DCM. Taohuajing (THJ) is prepared using Persicae semen (Taoren), Polygonatum sibiricum (Huangjing), and Carthami flos (Honghua) and may have applications in the treatment of DCM. However, the protective effects of THJ have not been thoroughly assessed. Accordingly, in this study, we aimed to investigate the protective effects of THJ in a model of DCM and further clarify the potential mechanisms. Methods A type 2 diabetes mellitus model was generated using male C57BL/6 mice. Echocardiography and histopathology were used to evaluate cardiac function. The expression levels of cytokines were measured using enzyme-linked immunosorbent assays. Western blotting and small interfering RNA were used to evaluate the targets of THJ. Results Compared with the control group, DCM mice showed cardiac dysfunction, metabolic disorder, fibrosis, and disorganized ultrastructure, and THJ treatment significantly inhibited these changes significantly. THJ treatment also inhibited the production of reactive oxygen species (ROS) and malondialdehyde (MDA), induced the production of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), decreased the levels of pro-inflammatory cytokines, and suppressed the activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome. These protective effects were abolished by sirtinol, an inhibitor of sirtuin1 (SIRT1). Conclusions Overall, THJ protected the heart from hyperglycemia-induced oxidative stress and inflammation in DCM mice via a mechanism involving SIRT1-mediated antioxidant proteins and suppression of the NLRP3 inflammasome.
Collapse
|
13
|
Wang XJ, Xie Q, Liu Y, Jiang S, Li W, Li B, Wang W, Liu CX. Panax japonicus and chikusetsusaponins: A review of diverse biological activities and pharmacology mechanism. CHINESE HERBAL MEDICINES 2021; 13:64-77. [PMID: 36117758 PMCID: PMC9476776 DOI: 10.1016/j.chmed.2020.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/13/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Panax japonicus, which in the Tujia dialect is known as “Baisan Qi” and “Zhujieshen”, is a classic “qi” drug of Tujia ethnomedicine and it has unique effects on disease caused by “qi” stagnation and blood stasis. This paper serves as the basis of further scientific research and development of Panax japonicus. The pharmacology effects of molecular pharmacology were discussed and summarized. P. japonicus plays an important role on several diseases, such as rheumatic arthritis, cancer, cardiovascular agents, and this review provides new insights into P. japonicus as promising agents to substitute ginseng and notoginseng.
Collapse
|
14
|
Xu G, Lei H, Yuan Q, Chen H, Su J. Inhibition of chikusetsusaponin IVa on inflammatory responses in RAW264.7 cell line via MAPK pathway. ACTA ACUST UNITED AC 2020; 76:103-110. [PMID: 32986614 DOI: 10.1515/znc-2019-0107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/08/2020] [Indexed: 01/23/2023]
Abstract
Chikusetsusaponin IVa (CHS-IVa), a saponin from herb Panacis japonicas, possesses extensive biological activities. However, the roles and underlying mechanisms of CHS-IVa on inflammation have not been fully clarified in the setting of murine macrophages. In this study, we found that CHS-IVa effectively reduced the expression of inflammatory mediators, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), interleukin-1β (IL-1β), cyclooxygenase (COX-2), inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells. Meanwhile, CHS-IVa could also evidently bate the contents of nitric oxide (NO) and prostaglandin E2 (PGE2) in cell culture supernatants. Furthermore, the anti-inflammatory activity of CHS-IVa may be via diminishing the phosphorylation of extracellular regulated protein kinases (ERK), p38, and c-Jun N-terminal kinase (JNK). Collectively, these findings will help to understand of the anti-inflammatory effects and mechanisms of P. japonicas deeply, and suggest a validated therapeutic use as an anti-inflammatory medication.
Collapse
Affiliation(s)
- Guangren Xu
- Department of Basical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan410128, PR China
| | - Hongyu Lei
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan410128, PR China
| | - Qiaoling Yuan
- Department of Basical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan410128, PR China
| | - Huiyu Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan410128, PR China
| | - Jianming Su
- Department of Basical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan410128, PR China
| |
Collapse
|
15
|
Yan W, Sun W, Fan J, Wang H, Han S, Li J, Yin Y. Sirt1-ROS-TRAF6 Signaling-Induced Pyroptosis Contributes to Early Injury in Ischemic Mice. Neurosci Bull 2020; 36:845-859. [PMID: 32253651 PMCID: PMC7410906 DOI: 10.1007/s12264-020-00489-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/04/2019] [Indexed: 01/01/2023] Open
Abstract
Stroke is an acute cerebro-vascular disease with high incidence and poor prognosis, most commonly ischemic in nature. In recent years, increasing attention has been paid to inflammatory reactions as symptoms of a stroke. However, the role of inflammation in stroke and its underlying mechanisms require exploration. In this study, we evaluated the inflammatory reactions induced by acute ischemia and found that pyroptosis occurred after acute ischemia both in vivo and in vitro, as determined by interleukin-1β, apoptosis-associated speck-like protein, and caspase-1. The early inflammation resulted in irreversible ischemic injury, indicating that it deserves thorough investigation. Meanwhile, acute ischemia decreased the Sirtuin 1 (Sirt1) protein levels, and increased the TRAF6 (TNF receptor associated factor 6) protein and reactive oxygen species (ROS) levels. In further exploration, both Sirt1 suppression and TRAF6 activation were found to contribute to this pyroptosis. Reduced Sirt1 levels were responsible for the production of ROS and increased TRAF6 protein levels after ischemic exposure. Moreover, N-acetyl-L-cysteine, an ROS scavenger, suppressed the TRAF6 accumulation induced by oxygen-glucose deprivation via suppression of ROS bursts. These phenomena indicate that Sirt1 is upstream of ROS, and ROS bursts result in increased TRAF6 levels. Further, the activation of Sirt1 during the period of ischemia reduced ischemia-induced injury after 72 h of reperfusion in mice with middle cerebral artery occlusion. In sum, these results indicate that pyroptosis-dependent machinery contributes to the neural injury during acute ischemia via the Sirt1-ROS-TRAF6 signaling pathway. We propose that inflammatory reactions occur soon after oxidative stress and are detrimental to neuronal survival; this provides a promising therapeutic target against ischemic injuries such as a stroke.
Collapse
Affiliation(s)
- Weijie Yan
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Wei Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiahui Fan
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Haiqing Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Song Han
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Junfa Li
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Yanling Yin
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
16
|
Hegedűs C, Muresan M, Badale A, Bombicz M, Varga B, Szilágyi A, Sinka D, Bácskay I, Popoviciu M, Magyar I, Szarvas MM, Szőllősi E, Németh J, Szilvássy Z, Pallag A, Kiss R. SIRT1 Activation by Equisetum Arvense L. (Horsetail) Modulates Insulin Sensitivity in Streptozotocin Induced Diabetic Rats. Molecules 2020; 25:molecules25112541. [PMID: 32486051 PMCID: PMC7321376 DOI: 10.3390/molecules25112541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND: Equisetum arvense L., commonly known as field horsetail is a perennial fern of which extracts are rich sources of phenolic compounds, flavonoids, and phenolic acids. Activation of SIRT1 that was shown to be involved in well-known signal pathways of diabetic cardiomyopathy has a protective effect against oxidative stress, inflammatory processes, and apoptosis that are the basis of diseases such as obesity, diabetes mellitus, or cardiovascular diseases. The aim of our study was to evaluate the antidiabetic and cardioprotective effects of horsetail extract in streptozotocin induced diabetic rats. METHODS: Diabetes was induced by a single intraperitoneal injection of 45 mg/kg streptozotocin. In the control groups (healthy and diabetic), rats were administered with vehicle, whilst in the treated groups, animals were administered with 50, 100, or 200 mg/kg horsetail extract, respectively, for six weeks. Blood glucose levels, glucose tolerance, and insulin sensitivity were determined, and SIRT1 levels were measured from the cardiac muscle. RESULTS: The horsetail extract showed moderate beneficial changes in blood glucose levels and exhibited a tendency to elevate SIRT1 levels in cardiomyocytes, furthermore a 100 mg/kg dose also improved insulin sensitivity. CONCLUSIONS: Altogether our results suggest that horsetail extract might have potential in ameliorating manifested cardiomyopathy acting on SIRT1.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (C.H.); (A.B.); (M.B.); (B.V.); (A.S.); (J.N.); (Z.S.)
| | - Mariana Muresan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410068 Oradea, Romania; (M.M.); (I.M.)
| | - Andrea Badale
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (C.H.); (A.B.); (M.B.); (B.V.); (A.S.); (J.N.); (Z.S.)
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (C.H.); (A.B.); (M.B.); (B.V.); (A.S.); (J.N.); (Z.S.)
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (C.H.); (A.B.); (M.B.); (B.V.); (A.S.); (J.N.); (Z.S.)
| | - Anna Szilágyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (C.H.); (A.B.); (M.B.); (B.V.); (A.S.); (J.N.); (Z.S.)
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (I.B.)
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (D.S.); (I.B.)
| | - Mihaela Popoviciu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410068 Oradea, Romania;
| | - Ioan Magyar
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410068 Oradea, Romania; (M.M.); (I.M.)
| | - Mária Magdolna Szarvas
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.M.S.); (E.S.)
| | - Erzsébet Szőllősi
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.M.S.); (E.S.)
| | - József Németh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (C.H.); (A.B.); (M.B.); (B.V.); (A.S.); (J.N.); (Z.S.)
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (C.H.); (A.B.); (M.B.); (B.V.); (A.S.); (J.N.); (Z.S.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410068 Oradea, Romania;
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (C.H.); (A.B.); (M.B.); (B.V.); (A.S.); (J.N.); (Z.S.)
- Correspondence: ; Tel.: +36-70-650-0947; Fax: +36-(52)-427-899
| |
Collapse
|
17
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
18
|
Chikusetsu saponin IVa alleviated sevoflurane-induced neuroinflammation and cognitive impairment by blocking NLRP3/caspase-1 pathway. Pharmacol Rep 2020; 72:833-845. [PMID: 32124392 DOI: 10.1007/s43440-020-00078-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuroinflammation plays a dominant role in the progression of postoperative cognitive dysfunction (POCD). This study was carried out to explore the neuroprotective effect of Chikusetsu saponin IVa (ChIV) against sevoflurane-induced neuroinflammation and cognitive impairment. METHODS The neuroprotective activity of ChIV against sevoflurane-induced cognitive dysfunction in aged rats was evaluated by Morris water maze, NOR test and Y-maze test, respectively. The expression of NLRP3, ASC and caspase-1, pro-inflammatory cytokines and apoptotic-related protein were detected in the hippocampus and primary neurons using western blot. TUNEL assay and immunohistochemistry staining were applied to assess the apoptotic cell and number of NLRP3-positive cells in the hippocampus. The oxiSelectIn Vitro ROS/RNS assay kit was used to detect the ROS level. The CCK-8 assay was applied to measure the viability of primary neurons. Flow cytometry was carried out to determine cell apoptosis. RESULTS Pretreatment with ChIV significantly alleviated neurological dysfunction in aged rat exposure to sevoflurane. Mechanistically, ChIV treatment significantly alleviated sevoflurane-induced apoptotic cell and neuroinflammation. Of note, the neuroprotective effect of ChIV against sevoflurane-induced neurotoxicity through blocking NLRP3/caspase-1 pathway. In consistent with in vivo studies, ChIV was also able to repress sevoflurane-induced apoptosis and neuroinflammation in primary neurons. Furthermore, pretreatment with NLRP3/caspase-1 pathway inhibitor (MCC950) significantly augmented the neuroprotective effect of ChIV. CONCLUSION Our finding confirmed that ChIV provides a neuroprotective effect against sevoflurane-induced neuroinflammation and cognitive impairment by blocking the NLRP3/caspase-1 pathway, which may be an effective strategy for the clinical treatment of elderly patients with POCD induced by anesthesia.
Collapse
|
19
|
Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, Weng Y, Wei G, Yin Y, Wen A, Qiao B. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY) 2020; 12:1591-1609. [PMID: 31969494 PMCID: PMC7053639 DOI: 10.18632/aging.102702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
Islet β cell mass reduction induced by glucose fluctuation is crucial for the development and progression of T2DM. Chikusetsu saponin IVa (CHS) had protective effects against DM and related injuries. Here we aimed to investigate the role of CHS in β cell injuries and its possible mechanism involved. Isolated rat islets, βTC3 cells and T2DM mice were used in this study. The results showed that CHS restored the secretion activity, promoted β cell survival by increasing β cell proliferation and decreasing apoptosis which induced by intermittent high glucose (IHG). In vivo, CHS protected β cell apoptosis to normalize blood glucose and improve insulin sensitivity in DM mice. Further studies showed that CHS activated Wnt3a signaling, inhibited HBP1, promoted β-catenin nuclear translocation, enhanced expressions of TCF7L2, GIPR and GLP-1R, inhibited p53, p27 and p21. The protective effect of CHS was remarkably suppressed by siRNAs against TCF7L2 or XAV-939 (a Wnt/β-catenin antagonist) in vitro and in β-catenin-/- mice. In conclusion, we identified a novel role of CHS in protecting β cell survival and regeneration by mechanisms involving the activation of Wnt3a/β-catenin/TCF7L2 signaling. Our results indicated the potential value of CHS as a possible intervention drug for T2DM.
Collapse
Affiliation(s)
- Jia Cui
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.,Department of Chinese Medicine, School of Life Science, Northwestern University, Xi'an 710032, Shaanxi, China
| | - Jianjie Chu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yi Li
- Department of Pharmacy, Chongqing Dazu District Hospital of Traditional Chinese Medicine, Chongqing 402360, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Boling Qiao
- Department of Chinese Medicine, School of Life Science, Northwestern University, Xi'an 710032, Shaanxi, China
| |
Collapse
|
20
|
Duan J, Cui J, Zheng H, Xi M, Guo C, Weng Y, Yin Y, Wei G, Cao J, Wang Y, Wen A, Qiao B. Aralia taibaiensis Protects against I/R-Induced Brain Cell Injury through the Akt/SIRT1/FOXO3a Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7609765. [PMID: 31214282 PMCID: PMC6535894 DOI: 10.1155/2019/7609765] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/27/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Saponin from Aralia taibaiensis (sAT) showed excellent antioxidative effects in several models; however, its effects on brain cells were unknown to us. The present study was designed to evaluate the protective effects of sAT on ischemia/reperfusion- (I/R-) induced injury and clarify its mechanisms. METHODS In vitro, HT22 cells were pretreated with sAT and then subjected to I/R. Apoptosis rate, mitochondrial function, and antioxidant proteins were measured. To clarify the mechanisms, siRNA were used. In vivo, sAT was pretreated through intragastric administration for 7 days and the I/R model was induced. The neurobehavioral scores, infarction volumes, and some cytokines in the brain were measured. Protein levels were investigated by Western blotting. RESULTS The results showed that sAT treatment significantly protected cells from I/R-induced cell apoptosis and mitochondrial dysfunction. The antioxidant protein levels were increased in a dose-dependent manner. Further study revealed that sAT induced the deacetylation and phosphorylation of PGC-1α and FOXO3a. sAT treatment also induced the phosphorylation levels of Akt and the expression levels of SIRT1. Using the specific targeted siRNA transfection, the interplay relationship between Akt, SIRT1, PGC-1α, and FOXO3a was verified. Furthermore, the same protective effects were also observed in rats subjected to I/R. CONCLUSION sAT protected brain cells from I/R-induced mitochondrial oxidative stress and dysfunction through regulating the Akt/SIRT1/FOXO3a/PGC-1α pathway.
Collapse
Affiliation(s)
- Jialin Duan
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Science, Northwest University, Xi'an 710069, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jia Cui
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hongnan Zheng
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Boling Qiao
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
21
|
Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4278658. [PMID: 30881591 PMCID: PMC6381575 DOI: 10.1155/2019/4278658] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF.
Collapse
|
22
|
Rais J, Arshad M, Jafri A, Bano S, Shivnath N, Tripathi M. Anti-proliferative and apoptotic effects of Rheum emodi on human breast adenocarcinoma, MCF-7 Cells, and antimicrobial effectiveness against selected bacterial strains. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_674_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Yin J, Seo CS, Hwang IH, Lee MW, Song KH. Anti-Obesity Activities of Chikusetsusaponin IVa and Dolichos lablab L. Seeds. Nutrients 2018; 10:nu10091221. [PMID: 30177649 PMCID: PMC6164478 DOI: 10.3390/nu10091221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity, a condition where excess body fat accumulates to the extent, causes a negative effect on health. Previously, we reported the extract of Dolichos lablab L. (DLL-Ex) inhibited high-fat diet (HFD)-induced increases in body weight and body fat mass and ameliorated increases in body weight. In the present work, we studyed the molecular mechanism for the inhibitory effect of DLL-Ex or Chikusetsusaponin IVa (CS-IVa), as isolated from Dolichos lablab L. (DLL) seeds extract, on adipocyte differentiation. We evaluated the effect of DLL-Ex, an anti-obesity agent, and CS-IVa, an active component of DLL-Ex, on 3T3-L1 cell differentiation via Oil red O assay and Q-PCR, along with their effects on CCAAT element binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS), and fatty acid-binding protein 4 (FABP4) mRNA transcriptions. FAS and FABP4 protein expression levels after exposure to CS-IVa were also tested. The results showed that DLL-Ex and CS-IVa have potent inhibitory activity on adipocyte differentiation. Therefore, DLL and CS-IVa may be developed as a functional food material to treat obesity.
Collapse
Affiliation(s)
- Jun Yin
- Laboratory of Pharmacognosy and Natural Product-based Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| | - Chang-Seob Seo
- Herbal Medicine Research Division, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - In Hyeok Hwang
- Laboratory of Pharmacognosy and Natural Product-based Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| | - Min Won Lee
- Laboratory of Pharmacognosy and Natural Product-based Medicine, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| | - Kwang Hoon Song
- Herbal Medicine Research Division, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
- Korean Medicine Life Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-333, Korea.
| |
Collapse
|
24
|
Fang X, Han Q, Li S, Zhao Y, Luo A. Chikusetsu saponin IVa attenuates isoflurane-induced neurotoxicity and cognitive deficits via SIRT1/ERK1/2 in developmental rats. Am J Transl Res 2017; 9:4288-4299. [PMID: 28979702 PMCID: PMC5622271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Inhalation anesthetics isoflurane may increase the risk of neurotoxicity and cognitive deficiency at postnatal and childhood. Chikusetsu saponin IVa (chIV) is a plant extract compound, which could possessed extensive pharmacological actions of central nervous system, cardia-cerebrovascular system, immunologic system and treatment and prevention of tumor. In our study, we investigated the neuroprotective effect of chIV on isoflurane-induced hippocampal neurotoxicity and cognitive function impairment in neonatal rats. ChIV or saline intraperitoneal injected into seven-day old rats 30 min prior to isoflurane exposure. We found that, anesthesia with 1.8% isoflurane for 6 h significantly decreased the expression of SIRT1 in hippocampus. ChIV increased SIRT1, p-ERK1/2, PSD95 level in hippocampus, decreased hippocampal neuron apoptosis and lactate dehydrogenase (LDH) release after isoflurane exposure. Furthermore, chIV improved adolescent spatial memory of rats after their neonatal exposure to isoflurane by Morris Water Maze (MWM) test. In addition, SIRT1 inhibitor sirtinol decreased the expression of SIRT1 and its downstream of p-ERK1/2. Taken together, our date suggested that chIV could ameliorate isoflurane-induced neurotoxicity and cognitive impairment. The neuroprotective effect of chIV might be associated with up-regulation of SIRT1/ERK1/2. Moreover, chIV appeared to be a potential therapeutic target for isoflurane induced developmental neurotoxicity as well as subsequent cognitive impairment.
Collapse
Affiliation(s)
- Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Qiang Han
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| |
Collapse
|
25
|
Khan F, Khan I, Farooqui A, Ansari IA. Carvacrol Induces Reactive Oxygen Species (ROS)-mediated Apoptosis Along with Cell Cycle Arrest at G0/G1 in Human Prostate Cancer Cells. Nutr Cancer 2017; 69:1075-1087. [DOI: 10.1080/01635581.2017.1359321] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fahad Khan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Imran Khan
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Arshi Farooqui
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Irfan A. Ansari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
26
|
Kim JI, Jeon SG, Kim KA, Kim JJ, Song EJ, Jeon Y, Kim E, Lee KB, Kwak JH, Moon M. Platycodon grandiflorus Root Extract Improves Learning and Memory by Enhancing Synaptogenesis in Mice Hippocampus. Nutrients 2017; 9:nu9070794. [PMID: 28737698 PMCID: PMC5537907 DOI: 10.3390/nu9070794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A.DC. (PG) has long been used as an ingredient of foods and is known to have beneficial effects on cognitive functions as well. The present study examined the effect of each PG extract (PGE) from root, aerial part, and seeds on cognitive functions in mice. Changes in spatial learning and memory using a Y-maze test, and markers of adult hippocampal neurogenesis and synaptogenesis were examined. Moreover, changes in neuritogenesis and activation of the ERK1/2 pathway were investigated. Results indicated that mice administered PGE (root) showed increased spontaneous alternation in the Y-maze test and synaptogenesis in the hippocampus. In addition, PGE (root) and platycodin D, the major bioactive compound from the PG root, significantly stimulated neuritic outgrowth by phosphorylation of the ERK1/2 signaling pathway in vitro. These results indicate that the PGE (root), containing platycodin D, enhances cognitive function through synaptogenesis via activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Korea.
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Kyoung Ah Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Jwa-Jin Kim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk 28024, Korea.
- Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 34134, Korea.
- LES Corporation Inc., 4 Munhwawon-ro 46beon-gil Yuseong-gu, Daejeon 34167, Korea.
| | - Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yukyoung Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Korea.
| | - Eunbin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Korea.
| | - Kyung Bok Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| |
Collapse
|
27
|
Karbasforooshan H, Karimi G. The role of SIRT1 in diabetic cardiomyopathy. Biomed Pharmacother 2017; 90:386-392. [PMID: 28380414 DOI: 10.1016/j.biopha.2017.03.056] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/27/2022] Open
Abstract
The prevalence of diabetes mellitus (DM) has been increasing worldwide. Diabetic cardiomyopathy (DCP) is the major risk for diabetes associated morbidity and mortality. Hyperglycemia and hyperinsulinemia play an indispensable role in underlying mechanisms of DCP. They increase advanced glycation end products (AGEs) following a series of events leading to myocardial damage and cardiomyopathy which include oxidative stress, increased inflammation, fibrosis, hypertrophy and apoptosis. SIRT1 is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase that removes acetyl groups from proteins which can be implicated in DCP. SIRT1 modulate different proteins related to hyperglycemia. SIRT1 inhibits transcriptional factors, such as p300, NF-κB, P38MAPK, Histone 3, MMP-9, FOXO3a and p53. On the other hand, it increases SERCA2a, ERK1/2/Homer1, eNOS, PGC-1α and AMPK. Therefore, SIRT1 attenuate cardiac dysfunction and improve DCP. This review focus on the role of SIRT1 in diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Mishra T, Arya RK, Meena S, Joshi P, Pal M, Meena B, Upreti DK, Rana TS, Datta D. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark. PLoS One 2016; 11:e0159430. [PMID: 27453990 PMCID: PMC4959718 DOI: 10.1371/journal.pone.0159430] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/01/2016] [Indexed: 11/24/2022] Open
Abstract
Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB), in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA), oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A). Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer.
Collapse
Affiliation(s)
- Tripti Mishra
- Phytochemistry Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, India
| | - Rakesh Kumar Arya
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Sanjeev Meena
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Pushpa Joshi
- Department of chemistry, D.S.B. Campus Kumaun University, Nainital, 263002, India
| | - Mahesh Pal
- Phytochemistry Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, India
| | - Baleshwar Meena
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - D. K. Upreti
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - T. S. Rana
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Dipak Datta
- Biochemistry Division, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| |
Collapse
|
29
|
Zhang B, Chen Y, Shen Q, Liu G, Ye J, Sun G, Sun X. Myricitrin Attenuates High Glucose-Induced Apoptosis through Activating Akt-Nrf2 Signaling in H9c2 Cardiomyocytes. Molecules 2016; 21:molecules21070880. [PMID: 27399653 PMCID: PMC6274128 DOI: 10.3390/molecules21070880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, as well as diabetes mellitus, has been shown to trigger cardiac cell apoptosis. We have previously demonstrated that myricitrin prevents endothelial cell apoptosis. However, whether myricitrin can attenuate H9c2 cell apoptosis remains unknown. In this study, we established an experiment model in H9c2 cells exposed to high glucose. We tested the hypothesis that myricitrin may inhibit high glucose (HG)-induced cardiac cell apoptosis as determined by TUNEL staining. Furthermore, myricitrin promoted antioxidative enzyme production, suppressed high glucose-induced reactive oxygen species (ROS) production and decreased mitochondrial membrane potential (MMP) in H9c2 cells. This agent significantly inhibited apoptotic protein expression, activated Akt and facilitated the transcription of NF-E2-related factor 2 (Nrf2)-mediated protein (heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO-1) expression as determined by Western blotting. Significantly, an Akt inhibitor (LY294002) or HO-1 inhibitor (ZnPP) not only inhibited myricitrin-induced HO-1/NQO-1 upregulation but also alleviated its anti-apoptotic effects. In summary, these observations demonstrate that myricitrin activates Nrf2-mediated anti-oxidant signaling and attenuates H9c2 cell apoptosis induced by high glucose via activation of Akt signaling.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Yaping Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Qiang Shen
- Center of Research and Development on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China.
| | - Guiyan Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|