1
|
Banerjee S, Fraser K, Crone DE, Patel JC, Bondos SE, Bystroff C. Challenges and Solutions for Leave-One-Out Biosensor Design in the Context of a Rugged Fitness Landscape. SENSORS (BASEL, SWITZERLAND) 2024; 24:6380. [PMID: 39409420 PMCID: PMC11478963 DOI: 10.3390/s24196380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
The leave-one-out (LOO) green fluorescent protein (GFP) approach to biosensor design combines computational protein design with split protein reconstitution. LOO-GFPs reversibly fold and gain fluorescence upon encountering the target peptide, which can be redefined by computational design of the LOO site. Such an approach can be used to create reusable biosensors for the early detection of emerging biological threats. Enlightening biophysical inferences for nine LOO-GFP biosensor libraries are presented, with target sequences from dengue, influenza, or HIV, replacing beta strands 7, 8, or 11. An initially low hit rate was traced to components of the energy function, manifesting in the over-rewarding of over-tight side chain packing. Also, screening by colony picking required a low library complexity, but designing a biosensor against a peptide of at least 12 residues requires a high-complexity library. This double-bind was solved using a "piecemeal" iterative design strategy. Also, designed LOO-GFPs fluoresced in the unbound state due to unwanted dimerization, but this was solved by fusing a fully functional prototype LOO-GFP to a fiber-forming protein, Drosophila ultrabithorax, creating a biosensor fiber. One influenza hemagglutinin biosensor is characterized here in detail, showing a shifted excitation/emission spectrum, a micromolar affinity for the target peptide, and an unexpected photo-switching ability.
Collapse
Affiliation(s)
- Shounak Banerjee
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
| | - Keith Fraser
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
| | - Donna E. Crone
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
| | - Jinal C. Patel
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
| | - Sarah E. Bondos
- Medical Physiology, Texas A&M University, College Station, TX 77843, USA;
| | - Christopher Bystroff
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.F.); (D.E.C.); (J.C.P.)
- Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
2
|
Fadini A, Hutchison CDM, Morozov D, Chang J, Maghlaoui K, Perrett S, Luo F, Kho JCX, Romei MG, Morgan RML, Orr CM, Cordon-Preciado V, Fujiwara T, Nuemket N, Tosha T, Tanaka R, Owada S, Tono K, Iwata S, Boxer SG, Groenhof G, Nango E, van Thor JJ. Serial Femtosecond Crystallography Reveals that Photoactivation in a Fluorescent Protein Proceeds via the Hula Twist Mechanism. J Am Chem Soc 2023. [PMID: 37418747 PMCID: PMC10375524 DOI: 10.1021/jacs.3c02313] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Chromophore cis/trans photoisomerization is a fundamental process in chemistry and in the activation of many photosensitive proteins. A major task is understanding the effect of the protein environment on the efficiency and direction of this reaction compared to what is observed in the gas and solution phases. In this study, we set out to visualize the hula twist (HT) mechanism in a fluorescent protein, which is hypothesized to be the preferred mechanism in a spatially constrained binding pocket. We use a chlorine substituent to break the twofold symmetry of the embedded phenolic group of the chromophore and unambiguously identify the HT primary photoproduct. Through serial femtosecond crystallography, we then track the photoreaction from femtoseconds to the microsecond regime. We observe signals for the photoisomerization of the chromophore as early as 300 fs, obtaining the first experimental structural evidence of the HT mechanism in a protein on its femtosecond-to-picosecond timescale. We are then able to follow how chromophore isomerization and twisting lead to secondary structure rearrangements of the protein β-barrel across the time window of our measurements.
Collapse
Affiliation(s)
- Alisia Fadini
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Christopher D M Hutchison
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Jeffrey Chang
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Karim Maghlaoui
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Fangjia Luo
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
| | - Jeslyn C X Kho
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - R Marc L Morgan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Christian M Orr
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot OX11 0DE, U.K
| | - Violeta Cordon-Preciado
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Takaaki Fujiwara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Nipawan Nuemket
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Kyoto 606-8501, Japan
| | - Takehiko Tosha
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
| | - Rie Tanaka
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Kyoto 606-8501, Japan
| | - Shigeki Owada
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan
| | - So Iwata
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Kyoto 606-8501, Japan
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Eriko Nango
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Jasper J van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
3
|
Adam V, Hadjidemetriou K, Jensen N, Shoeman RL, Woodhouse J, Aquila A, Banneville AS, Barends TRM, Bezchastnov V, Boutet S, Byrdin M, Cammarata M, Carbajo S, Eleni Christou N, Coquelle N, De la Mora E, El Khatib M, Moreno Chicano T, Bruce Doak R, Fieschi F, Foucar L, Glushonkov O, Gorel A, Grünbein ML, Hilpert M, Hunter M, Kloos M, Koglin JE, Lane TJ, Liang M, Mantovanelli A, Nass K, Nass Kovacs G, Owada S, Roome CM, Schirò G, Seaberg M, Stricker M, Thépaut M, Tono K, Ueda K, Uriarte LM, You D, Zala N, Domratcheva T, Jakobs S, Sliwa M, Schlichting I, Colletier JP, Bourgeois D, Weik M. Rational Control of Off-State Heterogeneity in a Photoswitchable Fluorescent Protein Provides Switching Contrast Enhancement. Chemphyschem 2022; 23:e202200192. [PMID: 35959919 DOI: 10.1002/cphc.202200192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/25/2022] [Indexed: 01/07/2023]
Abstract
Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.
Collapse
Affiliation(s)
- Virgile Adam
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | | | - Nickels Jensen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany and University Medical Center of Göttingen, Clinic for Neurology, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Joyce Woodhouse
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Andrew Aquila
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Anne-Sophie Banneville
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Victor Bezchastnov
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Martin Byrdin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Rennes, France
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Nina Eleni Christou
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Nicolas Coquelle
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Eugenio De la Mora
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Mariam El Khatib
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Tadeo Moreno Chicano
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Oleksandr Glushonkov
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mark Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jason E Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Thomas J Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Angela Mantovanelli
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Karol Nass
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Japan.,Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Christopher M Roome
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Miriam Stricker
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Michel Thépaut
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Japan.,Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Lucas M Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, 59000, France
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Ninon Zala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Tatiana Domratcheva
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany.,Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany and University Medical Center of Göttingen, Clinic for Neurology, Göttingen, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Göttingen, Germany
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, 59000, France
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | | | - Dominique Bourgeois
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| |
Collapse
|
4
|
Tang L, Fang C. Photoswitchable Fluorescent Proteins: Mechanisms on Ultrafast Timescales. Int J Mol Sci 2022; 23:6459. [PMID: 35742900 PMCID: PMC9223536 DOI: 10.3390/ijms23126459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
The advancement of super-resolution imaging (SRI) relies on fluorescent proteins with novel photochromic properties. Using light, the reversibly switchable fluorescent proteins (RSFPs) can be converted between bright and dark states for many photocycles and their emergence has inspired the invention of advanced SRI techniques. The general photoswitching mechanism involves the chromophore cis-trans isomerization and proton transfer for negative and positive RSFPs and hydration-dehydration for decoupled RSFPs. However, a detailed understanding of these processes on ultrafast timescales (femtosecond to millisecond) is lacking, which fundamentally hinders the further development of RSFPs. In this review, we summarize the current progress of utilizing various ultrafast electronic and vibrational spectroscopies, and time-resolved crystallography in investigating the on/off photoswitching pathways of RSFPs. We show that significant insights have been gained for some well-studied proteins, but the real-time "action" details regarding the bidirectional cis-trans isomerization, proton transfer, and intermediate states remain unclear for most systems, and many other relevant proteins have not been studied yet. We expect this review to lay the foundation and inspire more ultrafast studies on existing and future engineered RSFPs. The gained mechanistic insights will accelerate the rational development of RSFPs with enhanced two-way switching rate and efficiency, better photostability, higher brightness, and redder emission colors.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| |
Collapse
|
5
|
Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification. Nat Commun 2022; 13:1850. [PMID: 35387971 PMCID: PMC8986857 DOI: 10.1038/s41467-022-29508-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Genetically-encoded biosensors based on a single fluorescent protein are widely used to visualize analyte levels or enzymatic activities in cells, though usually to monitor relative changes rather than absolute values. We report photochromism-enabled absolute quantification (PEAQ) biosensing, a method that leverages the photochromic properties of biosensors to provide an absolute measure of the analyte concentration or activity. We develop proof-of-concept photochromic variants of the popular GCaMP family of Ca2+ biosensors, and show that these can be used to resolve dynamic changes in the absolute Ca2+ concentration in live cells. We also develop intermittent quantification, a technique that combines absolute aquisitions with fast fluorescence acquisitions to deliver fast but fully quantitative measurements. We also show how the photochromism-based measurements can be expanded to situations where the absolute illumination intensities are unknown. In principle, PEAQ biosensing can be applied to other biosensors with photochromic properties, thereby expanding the possibilities for fully quantitative measurements in complex and dynamic systems. Biosensors often report relative rather than absolute values. Here the authors report a method that utilises the photochromic properties of biosensors to provide an absolute measure of the analyte concentration or activity: photochromism-enabled absolute quantification (PEAQ) biosensing.
Collapse
|
6
|
Abstract
Due to its sensitivity and versatility, fluorescence is widely used to detect specifically labeled biomolecules. However, fluorescence is currently limited by label discrimination, which suffers from the broad full width of the absorption/emission bands and the narrow lifetime distribution of the bright fluorophores. We overcome this limitation by introducing extra kinetic dimensions through illuminations of reversibly photoswitchable fluorophores (RSFs) at different light intensities. In this expanded space, each RSF is characterized by a chromatic aberration-free kinetic fingerprint of photochemical reactivity, which can be recovered with limited hardware, excellent photon budget, and minimal data processing. This fingerprint was used to identify and discriminate up to 20 among 22 spectrally similar reversibly photoswitchable fluorescent proteins (RSFPs) in less than 1s. This strategy opens promising perspectives for expanding the multiplexing capabilities of fluorescence imaging. Label discrimination is challenging in fluorescence microscopy due to broad spectra and narrow lifetime distribution. Here, the authors introduce extra kinetic dimensions by illuminating reversibly photoswitchable fluorophores with different intensities, and discriminate 20 spectrally similar fluorophores.
Collapse
|
7
|
Lin CY, Romei MG, Mathews II, Boxer SG. Energetic Basis and Design of Enzyme Function Demonstrated Using GFP, an Excited-State Enzyme. J Am Chem Soc 2022; 144:3968-3978. [PMID: 35200017 PMCID: PMC9014791 DOI: 10.1021/jacs.1c12305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The past decades have witnessed an explosion of de novo protein designs with a remarkable range of scaffolds. It remains challenging, however, to design catalytic functions that are competitive with naturally occurring counterparts as well as biomimetic or nonbiological catalysts. Although directed evolution often offers efficient solutions, the fitness landscape remains opaque. Green fluorescent protein (GFP), which has revolutionized biological imaging and assays, is one of the most redesigned proteins. While not an enzyme in the conventional sense, GFPs feature competing excited-state decay pathways with the same steric and electrostatic origins as conventional ground-state catalysts, and they exert exquisite control over multiple reaction outcomes through the same principles. Thus, GFP is an "excited-state enzyme". Herein we show that rationally designed mutants and hybrids that contain environmental mutations and substituted chromophores provide the basis for a quantitative model and prediction that describes the influence of sterics and electrostatics on excited-state catalysis of GFPs. As both perturbations can selectively bias photoisomerization pathways, GFPs with fluorescence quantum yields (FQYs) and photoswitching characteristics tailored for specific applications could be predicted and then demonstrated. The underlying energetic landscape, readily accessible via spectroscopy for GFPs, offers an important missing link in the design of protein function that is generalizable to catalyst design.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Devos O, Ghaffari M, Vitale R, de Juan A, Sliwa M, Ruckebusch C. Multivariate Curve Resolution Slicing of Multiexponential Time-Resolved Spectroscopy Fluorescence Data. Anal Chem 2021; 93:12504-12513. [PMID: 34494422 DOI: 10.1021/acs.analchem.1c01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time-resolved fluorescence spectroscopy (TRFS), i.e., measurement of fluorescence decay curves for different excitation and/or emission wavelengths, provides specific and sensitive local information on molecules and on their environment. However, TRFS relies on multiexponential data fitting to derive fluorescence lifetimes from the measured decay curves and the time resolution of the technique is limited by the instrumental response function (IRF). We propose here a multivariate curve resolution (MCR) approach based on data slicing to perform tailored and fit-free analysis of multiexponential fluorescence decay curves. MCR slicing, taking as a basic framework the multivariate curve resolution-alternating least-squares (MCR-ALS) soft-modeling algorithm, relies on a hybrid bilinear/trilinear data decomposition. A key feature of the method is that it enables the recovery of individual components characterized by decay profiles that are only partially describable by monoexponential functions. For TRFS data, not only pure multiexponential tail information but also shorter time delay information can be decomposed, where the signal deviates from the ideal exponential behavior due to the limited time resolution. The accuracy of the proposed approach is validated by analyzing mixtures of three commercial dyes and characterizing the mixture composition, lifetimes, and associated contributions, even in situations where only ternary mixture samples are available. MCR slicing is also applied to the analysis of TRFS data obtained on a photoswitchable fluorescent protein (rsEGFP2). Three fluorescence lifetimes are extracted, along with the profile of the IRF, highlighting that decomposition of complex systems, for which individual isomers are characterized by different exponential decays, can also be achieved.
Collapse
Affiliation(s)
- Olivier Devos
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Mahdiyeh Ghaffari
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Raffaele Vitale
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Anna de Juan
- Chemometrics Group, Dept. of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí I Franquès, 1, 08028 Barcelona, Spain
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| |
Collapse
|
9
|
Out-of-Phase Imaging after Optical Modulation (OPIOM) for Multiplexed Fluorescence Imaging Under Adverse Optical Conditions. Methods Mol Biol 2021; 2350:191-227. [PMID: 34331287 DOI: 10.1007/978-1-0716-1593-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging has become a powerful tool for observations in biology. Yet it has also encountered limitations to overcome optical interferences of ambient light, autofluorescence, and spectrally interfering fluorophores. In this account, we first examine the current approaches which address these limitations. Then we more specifically report on Out-of-Phase Imaging after Optical Modulation (OPIOM), which has proved attractive for highly selective multiplexed fluorescence imaging even under adverse optical conditions. After exposing the OPIOM principle, we detail the protocols for successful OPIOM implementation.
Collapse
|
10
|
Grigorenko BL, Domratcheva T, Polyakov IV, Nemukhin AV. Protonation States of Molecular Groups in the Chromophore-Binding Site Modulate Properties of the Reversibly Switchable Fluorescent Protein rsEGFP2. J Phys Chem Lett 2021; 12:8263-8271. [PMID: 34424693 DOI: 10.1021/acs.jpclett.1c02415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of protonation states of the chromophore and its neighboring amino acid side chains of the reversibly switching fluorescent protein rsEGFP2 upon photoswitching is characterized by molecular modeling methods. Numerous conformations of the chromophore-binding site in computationally derived model systems are obtained using the quantum chemistry and QM/MM approaches. Excitation energies are computed using the extended multiconfigurational quasidegenerate perturbation theory (XMCQDPT2). The obtained structures and absorption spectra allow us to provide an interpretation of the observed structural and spectral properties of rsEGFP2 in the active ON and inactive OFF states. The results demonstrate that in addition to the dominating anionic and neutral forms of the chromophore, the cationic and zwitterionic forms may participate in the photoswitching of rsEGFP2. Conformations and protonation forms of the Glu223 and His149 side chains in the chromophore-binding site play an essential role in stabilizing specific protonation forms of the chromophore.
Collapse
Affiliation(s)
- Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Igor V Polyakov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
11
|
Konen T, Stumpf D, Grotjohann T, Jansen I, Bossi M, Weber M, Jensen N, Hell SW, Jakobs S. The Positive Switching Fluorescent Protein Padron2 Enables Live-Cell Reversible Saturable Optical Linear Fluorescence Transitions (RESOLFT) Nanoscopy without Sequential Illumination Steps. ACS NANO 2021; 15:9509-9521. [PMID: 34019380 PMCID: PMC8291764 DOI: 10.1021/acsnano.0c08207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Reversibly switchable fluorescent proteins (RSFPs) can be repeatedly transferred between a fluorescent on- and a nonfluorescent off-state by illumination with light of different wavelengths. Negative switching RSFPs are switched from the on- to the off-state with the same wavelength that also excites fluorescence. Positive switching RSFPs have a reversed light response, where the fluorescence excitation wavelength induces the transition from the off- to the on-state. Reversible saturable optical linear (fluorescence) transitions (RESOLFT) nanoscopy utilizes these switching states to achieve diffraction-unlimited resolution but so far has primarily relied on negative switching RSFPs by using time sequential switching schemes. On the basis of the green fluorescent RSFP Padron, we engineered the positive switching RSFP Padron2. Compared to its predecessor, it can undergo 50-fold more switching cycles while displaying a contrast ratio between the on- and the off-states of more than 100:1. Because of its robust switching behavior, Padron2 supports a RESOLFT imaging scheme that entirely refrains from sequential switching as it only requires beam scanning of two spatially overlaid light distributions. Using Padron2, we demonstrate live-cell RESOLFT nanoscopy without sequential illumination steps.
Collapse
Affiliation(s)
- Timo Konen
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Daniel Stumpf
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Tim Grotjohann
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Isabelle Jansen
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Mariano Bossi
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Michael Weber
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Nickels Jensen
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Stefan Jakobs
- Department
of NanoBiophotonics, Max Planck Institute
for Biophysical Chemistry, 37077 Göttingen, Germany
- Clinic
of Neurology, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
12
|
Christou NE, Giandoreggio-Barranco K, Ayala I, Glushonkov O, Adam V, Bourgeois D, Brutscher B. Disentangling Chromophore States in a Reversibly Switchable Green Fluorescent Protein: Mechanistic Insights from NMR Spectroscopy. J Am Chem Soc 2021; 143:7521-7530. [PMID: 33966387 DOI: 10.1021/jacs.1c02442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The photophysical properties of fluorescent proteins, including phototransformable variants used in advanced microscopy applications, are influenced by the environmental conditions in which they are expressed and used. Rational design of improved fluorescent protein markers requires a better understanding of these environmental effects. We demonstrate here that solution NMR spectroscopy can detect subtle changes in the chemical structure, conformation, and dynamics of the photoactive chromophore moiety with atomic resolution, providing such mechanistic information. Studying rsFolder, a reversibly switchable green fluorescent protein, we have identified four distinct configurations of its p-HBI chromophore, corresponding to the cis and trans isomers, with each one either protonated (neutral) or deprotonated (anionic) at the benzylidene ring. The relative populations and interconversion kinetics of these chromophore species depend on sample pH and buffer composition that alter in a complex way the strength of H-bonds that contribute in stabilizing the chromophore within the protein scaffold. We show in particular the important role of histidine-149 in stabilizing the neutral trans chromophore at intermediate pH values, leading to ground-state cis-trans isomerization with a peculiar pH dependence. We discuss the potential implications of our findings on the pH dependence of the photoswitching contrast, a critical parameter in nanoscopy applications.
Collapse
Affiliation(s)
- Nina Eleni Christou
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | | | - Isabel Ayala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Oleksandr Glushonkov
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Virgile Adam
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Dominique Bourgeois
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Bernhard Brutscher
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
13
|
Poddar H, Heyes DJ, Schirò G, Weik M, Leys D, Scrutton NS. A guide to time-resolved structural analysis of light-activated proteins. FEBS J 2021; 289:576-595. [PMID: 33864718 DOI: 10.1111/febs.15880] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
Dynamical changes in protein structures are essential for protein function and occur over femtoseconds to seconds timescales. X-ray free electron lasers have facilitated investigations of structural dynamics in proteins with unprecedented temporal and spatial resolution. Light-activated proteins are attractive targets for time-resolved structural studies, as the reaction chemistry and associated protein structural changes can be triggered by short laser pulses. Proteins with different light-absorbing centres have evolved to detect light and harness photon energy to bring about downstream chemical and biological output responses. Following light absorption, rapid chemical/small-scale structural changes are typically localised around the chromophore. These localised changes are followed by larger structural changes propagated throughout the photoreceptor/photocatalyst that enables the desired chemical and/or biological output response. Time-resolved serial femtosecond crystallography (SFX) and solution scattering techniques enable direct visualisation of early chemical change in light-activated proteins on timescales previously inaccessible, whereas scattering gives access to slower timescales associated with more global structural change. Here, we review how advances in time-resolved SFX and solution scattering techniques have uncovered mechanisms of photochemistry and its coupling to output responses. We also provide a prospective on how these time-resolved structural approaches might impact on other photoreceptors/photoenzymes that have not yet been studied by these methods.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Giorgio Schirò
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Martin Weik
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| |
Collapse
|
14
|
Fluorescent photochromic complex of 1,8-naphthalimide derivative and benzopyrane containing benzo-18-crown-6 ether. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
16
|
Peron-Cane C, Fernandez JC, Leblanc J, Wingertsmann L, Gautier A, Desprat N, Lebreton A. Fluorescent secreted bacterial effectors reveal active intravacuolar proliferation of Listeria monocytogenes in epithelial cells. PLoS Pathog 2020; 16:e1009001. [PMID: 33045003 PMCID: PMC7580998 DOI: 10.1371/journal.ppat.1009001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/22/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Real-time imaging of bacterial virulence factor dynamics is hampered by the limited number of fluorescent tools suitable for tagging secreted effectors. Here, we demonstrated that the fluorogenic reporter FAST could be used to tag secreted proteins, and we implemented it to monitor infection dynamics in epithelial cells exposed to the human pathogen Listeria monocytogenes (Lm). By tracking individual FAST-labelled vacuoles after Lm internalisation into cells, we unveiled the heterogeneity of residence time inside entry vacuoles. Although half of the bacterial population escaped within 13 minutes after entry, 12% of bacteria remained entrapped over an hour inside long term vacuoles, and sometimes much longer, regardless of the secretion of the pore-forming toxin listeriolysin O (LLO). We imaged LLO-FAST in these long-term vacuoles, and showed that LLO enabled Lm to proliferate inside these compartments, reminiscent of what had been previously observed for Spacious Listeria-containing phagosomes (SLAPs). Unexpectedly, inside epithelial SLAP-like vacuoles (eSLAPs), Lm proliferated as fast as in the host cytosol. eSLAPs thus constitute an alternative replication niche in epithelial cells that might promote the colonization of host tissues. Bacterial pathogens secrete virulence factors to subvert their hosts; however, monitoring bacterial secretion in real-time remains challenging. Here, we developed a convenient method that enabled fluorescent imaging of secreted proteins in live microscopy, and applied it to the human pathogen Listeria monocytogenes. Listeria has been described to invade cells and proliferate in their cytosol; it is first internalized inside vacuoles, from where it escapes thanks to the secretion of virulence factors that disrupt membranes. Our work revealed the existence, in human epithelial cells, of a population of Listeria that failed to escape vacuoles but instead multiplied efficiently therein, despite—and in fact, thanks to—the active secretion of a toxin that permeates membranes. This intravacuolar niche may provide Listeria with an alternative strategy to colonize its host.
Collapse
Affiliation(s)
- Caroline Peron-Cane
- Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - José-Carlos Fernandez
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Julien Leblanc
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Laure Wingertsmann
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École normale supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, Paris, France
- Institut Universitaire de France
| | - Nicolas Desprat
- Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- UFR de Physique, Université Paris-Diderot, Université de Paris, Paris, France
- * E-mail: (ND); (AL)
| | - Alice Lebreton
- Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- INRAE, IBENS, Paris, France
- * E-mail: (ND); (AL)
| |
Collapse
|
17
|
Romei MG, Lin CY, Boxer SG. Structural and spectroscopic characterization of photoactive yellow protein and photoswitchable fluorescent protein constructs containing heavy atoms. J Photochem Photobiol A Chem 2020; 401. [PMID: 32753830 PMCID: PMC7402594 DOI: 10.1016/j.jphotochem.2020.112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Photo-induced structural rearrangements of chromophore-containing proteins are essential for various light-dependent signaling pathways and optogenetic applications. Ultrafast structural and spectroscopic methods have offered insights into these structural rearrangements across many timescales. However, questions still remain about exact mechanistic details, especially regarding photoisomerization of the chromophore within these proteins femtoseconds to picoseconds after photoexcitation. Instrumentation advancements for time-resolved crystallography and ultrafast electron diffraction provide a promising opportunity to study these reactions, but achieving enough signal-to-noise is a constant challenge. Here we present four new photoactive yellow protein constructs and one new fluorescent protein construct that contain heavy atoms either within or around the chromophore and can be expressed with high yields. Structural characterization of these constructs, most at atomic resolution, show minimal perturbation caused by the heavy atoms compared to wild-type structures. Spectroscopic studies report the effects of the heavy atom identity and location on the chromophore's photophysical properties. None of the substitutions prevent photoisomerization, although certain rates within the photocycle may be affected. Overall, these new proteins containing heavy atoms are ideal samples for state-of-theart time-resolved crystallography and electron diffraction experiments to elucidate crucial mechanistic information of photoisomerization.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
De Zitter E, Ridard J, Thédié D, Adam V, Lévy B, Byrdin M, Gotthard G, Van Meervelt L, Dedecker P, Demachy I, Bourgeois D. Mechanistic Investigations of Green mEos4b Reveal a Dynamic Long-Lived Dark State. J Am Chem Soc 2020; 142:10978-10988. [PMID: 32463688 DOI: 10.1021/jacs.0c01880] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) are key players in advanced microscopy schemes such as photoactivated localization microscopy (PALM). Whereas photoconversion and red-state blinking in PCFPs have been studied intensively, their green-state photophysical behavior has received less attention. Yet dark states in green PCFPs can become strongly populated in PALM schemes and exert an indirect but considerable influence on the quality of data recorded in the red channel. Furthermore, green-state photoswitching in PCFPs can be used directly for PALM and has been engineered to design highly efficient reversibly switchable fluorescent proteins (RSFPs) amenable to various nanoscopy schemes. Here, we demonstrate that green mEos4b efficiently switches to a long-lived dark state through cis-trans isomerization of its chromophore, as do most RSFPs. However, by combining kinetic crystallography, molecular dynamics simulations, and Raman spectroscopy, we find that the dark state in green mEos4b is much more dynamic than that seen in switched-off green IrisFP, a biphotochromic PCFP engineered from the common EosFP parent. Our data suggest that H-bonding patterns maintained by the chromophore in green PCFPs and RSFPs in both their on- and off-states collectively control photoswitching quantum yields. The reduced number of H-bonds maintained by the dynamic dark chromophore in green mEos4b thus largely accounts for the observed lower switching contrast as compared to that of IrisFP. We also compare the long-lived dark states reached from green and red mEos4b, on the basis of their X-ray structures and Raman signatures. Altogether, these data provide a unifying picture of the complex photophysics of PCFPs and RSFPs.
Collapse
Affiliation(s)
- Elke De Zitter
- Department of Chemistry, KU Leuven, Heverlee 3001, Belgium
| | - Jacqueline Ridard
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Daniel Thédié
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Virgile Adam
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Bernard Lévy
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Martin Byrdin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Guillaume Gotthard
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble 38000, France
| | | | - Peter Dedecker
- Department of Chemistry, KU Leuven, Heverlee 3001, Belgium
| | - Isabelle Demachy
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| |
Collapse
|
19
|
Woodhouse J, Nass Kovacs G, Coquelle N, Uriarte LM, Adam V, Barends TRM, Byrdin M, de la Mora E, Bruce Doak R, Feliks M, Field M, Fieschi F, Guillon V, Jakobs S, Joti Y, Macheboeuf P, Motomura K, Nass K, Owada S, Roome CM, Ruckebusch C, Schirò G, Shoeman RL, Thepaut M, Togashi T, Tono K, Yabashi M, Cammarata M, Foucar L, Bourgeois D, Sliwa M, Colletier JP, Schlichting I, Weik M. Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy. Nat Commun 2020; 11:741. [PMID: 32029745 PMCID: PMC7005145 DOI: 10.1038/s41467-020-14537-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Reversibly switchable fluorescent proteins (RSFPs) serve as markers in advanced fluorescence imaging. Photoswitching from a non-fluorescent off-state to a fluorescent on-state involves trans-to-cis chromophore isomerization and proton transfer. Whereas excited-state events on the ps timescale have been structurally characterized, conformational changes on slower timescales remain elusive. Here we describe the off-to-on photoswitching mechanism in the RSFP rsEGFP2 by using a combination of time-resolved serial crystallography at an X-ray free-electron laser and ns-resolved pump–probe UV-visible spectroscopy. Ten ns after photoexcitation, the crystal structure features a chromophore that isomerized from trans to cis but the surrounding pocket features conformational differences compared to the final on-state. Spectroscopy identifies the chromophore in this ground-state photo-intermediate as being protonated. Deprotonation then occurs on the μs timescale and correlates with a conformational change of the conserved neighbouring histidine. Together with a previous excited-state study, our data allow establishing a detailed mechanism of off-to-on photoswitching in rsEGFP2. rsEGFP2 is a reversibly photoswitchable fluorescent protein used in super-resolution light microscopy. Here the authors present the structure of an rsEGFP2 ground-state intermediate after excited state-decay that was obtained by nanosecond time-resolved serial femtosecond crystallography at an X-ray free electron laser, and time-resolved absorption spectroscopy measurements complement their structural analysis.
Collapse
Affiliation(s)
- Joyce Woodhouse
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Nicolas Coquelle
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France.,Large-Scale Structures Group, Institut Laue Langevin, 71, avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - Lucas M Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000, Lille, France
| | - Virgile Adam
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Byrdin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Eugenio de la Mora
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mikolaj Feliks
- Department of Chemistry, University of Southern California, Los Angeles, USA
| | - Martin Field
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France.,Laboratoire Chimie et Biologie des Métaux, BIG, CEA-Grenoble, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Virginia Guillon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Pauline Macheboeuf
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Karol Nass
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | | | - Christopher M Roome
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000, Lille, France
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Michel Thepaut
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | | | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Rennes, France
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Dominique Bourgeois
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F59 000, Lille, France.
| | | | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany.
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000, Grenoble, France.
| |
Collapse
|
20
|
Sinha R, Shukla P. Current Trends in Protein Engineering: Updates and Progress. Curr Protein Pept Sci 2019; 20:398-407. [PMID: 30451109 DOI: 10.2174/1389203720666181119120120] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
Proteins are one of the most important and resourceful biomolecules that find applications in health, industry, medicine, research, and biotechnology. Given its tremendous relevance, protein engineering has emerged as significant biotechnological intervention in this area. Strategic utilization of protein engineering methods and approaches has enabled better enzymatic properties, better stability, increased catalytic activity and most importantly, interesting and wide range applicability of proteins. In fact, the commercialization of engineered proteins have manifested in economically beneficial and viable solutions for industry and healthcare sector. Protein engineering has also evolved to become a powerful tool contributing significantly to the developments in both synthetic biology and metabolic engineering. The present review revisits the current trends in protein engineering approaches such as rational design, directed evolution, de novo design, computational approaches etc. and encompasses the recent progresses made in this field over the last few years. The review also throws light on advanced or futuristic protein engineering aspects, which are being explored for design and development of novel proteins with improved properties or advanced applications.
Collapse
Affiliation(s)
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
21
|
Christou NE, Ayala I, Giandoreggio-Barranco K, Byrdin M, Adam V, Bourgeois D, Brutscher B. NMR Reveals Light-Induced Changes in the Dynamics of a Photoswitchable Fluorescent Protein. Biophys J 2019; 117:2087-2100. [PMID: 31733726 DOI: 10.1016/j.bpj.2019.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The availability of fluorescent proteins with distinct phototransformation properties is crucial for a wide range of applications in advanced fluorescence microscopy and biotechnology. To rationally design new variants optimized for specific applications, a detailed understanding of the mechanistic features underlying phototransformation is essential. At present, little is known about the conformational dynamics of fluorescent proteins at physiological temperature and how these dynamics contribute to the observed phototransformation properties. Here, we apply high-resolution NMR spectroscopy in solution combined with in situ sample illumination at different wavelengths to investigate the conformational dynamics of rsFolder, a GFP-derived protein that can be reversibly switched between a green fluorescent state and a nonfluorescent state. Our results add a dynamic view to the static structures obtained by x-ray crystallography. Including a custom-tailored NMR toolbox in fluorescent protein research provides new opportunities for investigating the effect of mutations or changes in the environmental conditions on the conformational dynamics of phototransformable fluorescent proteins and their correlation with the observed photochemical and photophysical properties.
Collapse
Affiliation(s)
- Nina-Eleni Christou
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Isabel Ayala
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | | | - Martin Byrdin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Virgile Adam
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
22
|
Chang J, Romei MG, Boxer SG. Structural Evidence of Photoisomerization Pathways in Fluorescent Proteins. J Am Chem Soc 2019; 141:15504-15508. [PMID: 31533429 PMCID: PMC7036281 DOI: 10.1021/jacs.9b08356] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of cis and trans rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the trans state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas, in a tighter packing (7% smaller unit cell size), the hula-twist occurs.
Collapse
Affiliation(s)
- Jeffrey Chang
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Matthew G. Romei
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
23
|
Hatlem D, Trunk T, Linke D, Leo JC. Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins. Int J Mol Sci 2019; 20:E2129. [PMID: 31052154 PMCID: PMC6539128 DOI: 10.3390/ijms20092129] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023] Open
Abstract
The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase. Here, we review the current state of the SpyCatcher-SpyTag and related technologies, with a particular emphasis on their use in vaccine development and in determining outer membrane protein localization and topology of surface proteins in bacteria.
Collapse
Affiliation(s)
- Daniel Hatlem
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Thomas Trunk
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Dirk Linke
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
24
|
Scarangella A, Soumbo M, Mlayah A, Bonafos C, Monje MC, Roques C, Marcelot C, Large N, Dammak T, Makasheva K. Detection of the conformational changes of Discosoma red fluorescent proteins adhered on silver nanoparticles-based nanocomposites via surface-enhanced Raman scattering. NANOTECHNOLOGY 2019; 30:165101. [PMID: 30654336 DOI: 10.1088/1361-6528/aaff79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Description of the relationship between protein structure and function remains a primary focus in molecular biology, biochemistry, protein engineering and bioelectronics. Moreover, the investigation of the protein conformational changes after adhesion and dehydration is of importance to tackle problems related to the interaction of proteins with solid surfaces. In this paper the conformational changes of wild-type Discosoma recombinant red fluorescent proteins (DsRed) adhered on silver nanoparticles (AgNPs)-based nanocomposites are explored via surface-enhanced Raman scattering (SERS). Originality in the present approach is to work on dehydrated DsRed thin protein layers in link with natural conditions during drying. To enable the SERS effect, plasmonic substrates consisting of a single layer of AgNPs encapsulated by an ultra-thin silica cover layer were elaborated by plasma process. The achieved enhancement of the electromagnetic field in the vicinity of the AgNPs is as high as 105. This very strong enhancement factor allowed detecting Raman signals from discontinuous layers of DsRed issued from solution with protein concentration of only 80 nM. Three different conformations of the DsRed proteins after adhesion and dehydration on the plasmonic substrates were identified. It was found that the DsRed chromophore structure of the adsorbed proteins undergoes optically assisted chemical transformations when interacting with the optical beam, which leads to reversible transitions between the three different conformations. The proposed time-evolution scenario endorses the dynamical character of the relationship between protein structure and function. It also confirms that the conformational changes of proteins with strong internal coherence, like DsRed proteins, are reversible.
Collapse
Affiliation(s)
- Adriana Scarangella
- LAPLACE, Université de Toulouse; CNRS, UPS, INPT; 118 route de Narbonne, F-31062 Toulouse, France. CEMES-CNRS; Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055 Toulouse, France. FERMaT, Université de Toulouse; CNRS, UPS, INPT, INSA; Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Christou NE, Brutscher B. BEST and SOFAST experiments for resonance assignment of histidine and tyrosine side chains in 13C/ 15N labeled proteins. JOURNAL OF BIOMOLECULAR NMR 2018; 72:115-124. [PMID: 30465113 DOI: 10.1007/s10858-018-0216-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Aromatic amino-acid side chains are essential components for the structure and function of proteins. We present herein a set of NMR experiments for time-efficient resonance assignment of histidine and tyrosine side chains in uniformly 13C/15N-labeled proteins. The use of band-selective 13C pulses allows to deal with linear chains of coupled spins, thus avoiding signal loss that occurs in branched spin systems during coherence transfer. Furthermore, our pulse schemes make use of longitudinal 1H relaxation enhancement, Ernst-angle excitation, and simultaneous detection of 1H and 13C steady-state polarization to achieve significant signal enhancements.
Collapse
|
26
|
Wang S, Shuai Y, Sun C, Xue B, Hou Y, Su X, Sun Y. Lighting Up Live Cells with Smart Genetically Encoded Fluorescence Probes from GMars Family. ACS Sens 2018; 3:2269-2277. [PMID: 30346738 DOI: 10.1021/acssensors.8b00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a special kind of delicate light-controllable genetically encoded optical device, reversibly photoswitchable fluorescent proteins (RSFPs) have been widely applied in many fields, especially various kinds of advanced nanoscopy approaches in recent years. However, there are still necessities for exploring novel RSFPs with specific biochemical or photophysical properties not only for bioimaging or biosensing applications but also for fluorescent protein (FP) mechanisms study and further knowledge-based molecular sensors or optical actuators' rational design and evolution. Besides previously reported GMars-Q and GMars-T variants, herein, we reported the development and applications of other RSFPs from GMars family, especially some featured RSFPs with desired optical properties. In the current work, in vitro FP purification, spectra measurements, and live-cell RESOLFT nanoscopy approaches were applied to characterize the basic properties and test the imaging performances of the selected RSFPs. As demonstrated, GMars variants such as GMars-A, GMars-G, or remarkable photofatigue-resistant GMars-L were found with beneficial properties to be capable of parallelized RESOLFT nanoscopy in living cells, while other featured GMars variants such as dark GMars-P may be a good candidate for further biosensor or actuator design and applications.
Collapse
Affiliation(s)
- Sheng Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yao Shuai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Chaoying Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Boxin Xue
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yingping Hou
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Xiaodong Su
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Yujie Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Storti B, Margheritis E, Abbandonato G, Domenichini G, Dreier J, Testa I, Garau G, Nifosì R, Bizzarri R. Role of Gln222 in Photoswitching of Aequorea Fluorescent Proteins: A Twisting and H-Bonding Affair? ACS Chem Biol 2018; 13:2082-2093. [PMID: 29878744 DOI: 10.1021/acschembio.8b00267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reversibly photoswitchable fluorescent proteins (RSFPs) admirably combine the genetic encoding of fluorescence with the ability to repeatedly toggle between a bright and dark state, adding a new temporal dimension to the fluorescence signal. Accordingly, in recent years RSFPs have paved the way to novel applications in cell imaging that rely on their reversible photoswitching, including many super-resolution techniques such as F-PALM, RESOLFT, and SOFI that provide nanoscale pictures of the living matter. Yet many RSFPs have been engineered by a rational approach only to a limited extent, in the absence of clear structure-property relationships that in most cases make anecdotic the emergence of the photoswitching. We reported [ Bizzarri et al. J. Am Chem Soc. 2010 , 102 , 85 ] how the E222Q replacement is a single photoswitching mutation, since it restores the intrinsic cis-trans photoisomerization properties of the chromophore in otherwise nonswitchable Aequorea proteins of different color and mutation pattern (Q-RSFPs). We here investigate the subtle role of Q222 on the excited-state photophysics of the two simplest Q-RSFPs by a combined experimental and theoretical approach, using their nonswitchable anacestor EGFP as benchmark. Our findings link indissolubly photoswitching and Q222 presence, by a simple yet elegant scenario: largely twisted chromophore structures around the double bond (including hula-twist configurations) are uniquely stabilized by Q222 via H-bonds. Likely, these H-bonds subtly modulate the electronic properties of the chromophore, enabling the conical intersection that connects the excited cis to ground trans chromophore. Thus, Q222 belongs to a restricted family of single mutations that change dramatically the functional phenotype of a protein. The capability to distinguish quantitatively T65S/E222Q EGFP ("WildQ", wQ) from the spectrally identical EGFP by quantitative Optical Lock-In Detection (qOLID) witnesses the relevance of this mutation for cell imaging.
Collapse
Affiliation(s)
- Barbara Storti
- NEST, Scuola Normale Superiore and NANO-CNR, 56127 Pisa, Italy
| | - Eleonora Margheritis
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | | | | | - Jes Dreier
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| | - Ilaria Testa
- Department of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| | - Gianpiero Garau
- Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Riccardo Nifosì
- NEST, Scuola Normale Superiore and NANO-CNR, 56127 Pisa, Italy
| | | |
Collapse
|
28
|
Scarangella A, Soumbo M, Villeneuve-Faure C, Mlayah A, Bonafos C, Monje MC, Roques C, Makasheva K. Adsorption properties of BSA and DsRed proteins deposited on thin SiO 2 layers: optically non-absorbing versus absorbing proteins. NANOTECHNOLOGY 2018; 29:115101. [PMID: 29318999 DOI: 10.1088/1361-6528/aaa68b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein adsorption on solid surfaces is of interest for many industrial and biomedical applications, where it represents the conditioning step for micro-organism adhesion and biofilm formation. To understand the driving forces of such an interaction we focus in this paper on the investigation of the adsorption of bovine serum albumin (BSA) (optically non-absorbing, model protein) and DsRed (optically absorbing, naturally fluorescent protein) on silica surfaces. Specifically, we propose synthesis of thin protein layers by means of dip coating of the dielectric surface in protein solutions with different concentrations (0.01-5.0 g l-1). We employed spectroscopic ellipsometry as the most suitable and non-destructive technique for evaluation of the protein layers' thickness and optical properties (refractive index and extinction coefficient) after dehydration, using two different optical models, Cauchy for BSA and Lorentz for DsRed. We demonstrate that the thickness, the optical properties and the wettability of the thin protein layers can be finely controlled by proper tuning of the protein concentration in the solution. These results are correlated with the thin layer morphology, investigated by AFM, FTIR and PL analyses. It is shown that the proteins do not undergo denaturation after dehydration on the silica surface. The proteins arrange themselves in a lace-like network for BSA and in a rod-like structure for DsRed to form mono- and multi-layers, due to different mechanisms driving the organization stage.
Collapse
Affiliation(s)
- A Scarangella
- LAPLACE, Université de Toulouse, CNRS, UPS, INPT, 118 route de Narbonne, F-31062, Toulouse, France. CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, F-31055, Toulouse, France. FERMaT, Université de Toulouse, CNRS, UPS, INPT, INSA, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Horiuchi Y, Laskaratou D, Sliwa M, Ruckebusch C, Hatori K, Mizuno H, Hotta JI. Frame-Insensitive Expression Cloning of Fluorescent Protein from Scolionema suvaense. Int J Mol Sci 2018; 19:ijms19020371. [PMID: 29373508 PMCID: PMC5855593 DOI: 10.3390/ijms19020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 11/16/2022] Open
Abstract
Expression cloning from cDNA is an important technique for acquiring genes encoding novel fluorescent proteins. However, the probability of in-frame cDNA insertion following the first start codon of the vector is normally only 1/3, which is a cause of low cloning efficiency. To overcome this issue, we developed a new expression plasmid vector, pRSET-TriEX, in which transcriptional slippage was induced by introducing a DNA sequence of (dT)14 next to the first start codon of pRSET. The effectiveness of frame-insensitive cloning was validated by inserting the gene encoding eGFP with all three possible frames to the vector. After transformation with one of these plasmids, E. coli cells expressed eGFP with no significant difference in the expression level. The pRSET-TriEX vector was then used for expression cloning of a novel fluorescent protein from Scolionema suvaense. We screened 3658 E. coli colonies transformed with pRSET-TriEX containing Scolionema suvaense cDNA, and found one colony expressing a novel green fluorescent protein, ScSuFP. The highest score in protein sequence similarity was 42% with the chain c of multi-domain green fluorescent protein like protein "ember" from Anthoathecata sp. Variations in the N- and/or C-terminal sequence of ScSuFP compared to other fluorescent proteins indicate that the expression cloning, rather than the sequence similarity-based methods, was crucial for acquiring the gene encoding ScSuFP. The absorption maximum was at 498 nm, with an extinction efficiency of 1.17 × 10⁵ M-1·cm-1. The emission maximum was at 511 nm and the fluorescence quantum yield was determined to be 0.6. Pseudo-native gel electrophoresis showed that the protein forms obligatory homodimers.
Collapse
Affiliation(s)
- Yuki Horiuchi
- Department of Bioengineering, Graduate School of Science and Engineering, Yamagata University, 992-8510 Yonezawa, Japan.
| | - Danai Laskaratou
- Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200g Box 2403, 3001 Leuven, Belgium.
| | - Michel Sliwa
- Laboratoire de Spectrochimie Infrarouge et Raman, Université de Lille, CNRS, UMR 8516, LASIR, F59 000 Lille, France.
| | - Cyril Ruckebusch
- Laboratoire de Spectrochimie Infrarouge et Raman, Université de Lille, CNRS, UMR 8516, LASIR, F59 000 Lille, France.
| | - Kuniyuki Hatori
- Department of Bio-System Engineering, Graduate School of Science and Engineering, Yamagata University, 992-8510 Yonezawa, Japan.
| | - Hideaki Mizuno
- Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200g Box 2403, 3001 Leuven, Belgium.
| | - Jun-Ichi Hotta
- Department of Bio-System Engineering, Graduate School of Science and Engineering, Yamagata University, 992-8510 Yonezawa, Japan.
| |
Collapse
|
30
|
Roebroek T, Duwé S, Vandenberg W, Dedecker P. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization. Int J Mol Sci 2017; 18:ijms18092015. [PMID: 28930199 PMCID: PMC5618663 DOI: 10.3390/ijms18092015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023] Open
Abstract
Reversibly switchable fluorescent proteins (RSFPs) enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties.
Collapse
Affiliation(s)
- Thijs Roebroek
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Sam Duwé
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Wim Vandenberg
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
31
|
Meiresonne NY, van der Ploeg R, Hink MA, den Blaauwen T. Activity-Related Conformational Changes in d,d-Carboxypeptidases Revealed by In Vivo Periplasmic Förster Resonance Energy Transfer Assay in Escherichia coli. mBio 2017; 8:e01089-17. [PMID: 28900026 PMCID: PMC5596342 DOI: 10.1128/mbio.01089-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 11/20/2022] Open
Abstract
One of the mechanisms of β-lactam antibiotic resistance requires the activity of d,d-carboxypeptidases (d,d-CPases) involved in peptidoglycan (PG) synthesis, making them putative targets for new antibiotic development. The activity of PG-synthesizing enzymes is often correlated with their association with other proteins. The PG layer is maintained in the periplasm between the two membranes of the Gram-negative cell envelope. Because no methods existed to detect in vivo interactions in this compartment, we have developed and validated a Förster resonance energy transfer assay. Using the fluorescent-protein donor-acceptor pair mNeonGreen-mCherry, periplasmic protein interactions were detected in fixed and in living bacteria, in single samples or in plate reader 96-well format. We show that the d,d-CPases PBP5, PBP6a, and PBP6b of Escherichia coli change dimer conformation between resting and active states. Complementation studies and changes in localization suggest that these d,d-CPases are not redundant but that their balanced activity is required for robust PG synthesis.IMPORTANCE The periplasmic space between the outer and the inner membrane of Gram-negative bacteria contains many essential regulatory, transport, and cell wall-synthesizing and -hydrolyzing proteins. To date, no assay is available to determine protein interactions in this compartment. We have developed a periplasmic protein interaction assay for living and fixed bacteria in single samples or 96-well-plate format. Using this assay, we were able to demonstrate conformation changes related to the activity of proteins that could not have been detected by any other living-cell method available. The assay uniquely expands our toolbox for antibiotic screening and mode-of-action studies.
Collapse
Affiliation(s)
- Nils Y Meiresonne
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - René van der Ploeg
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark A Hink
- Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat Chem 2017; 10:31-37. [PMID: 29256511 DOI: 10.1038/nchem.2853] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/27/2017] [Indexed: 12/23/2022]
Abstract
Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.
Collapse
|
33
|
Hutchison CDM, Cordon-Preciado V, Morgan RML, Nakane T, Ferreira J, Dorlhiac G, Sanchez-Gonzalez A, Johnson AS, Fitzpatrick A, Fare C, Marangos JP, Yoon CH, Hunter MS, DePonte DP, Boutet S, Owada S, Tanaka R, Tono K, Iwata S, van Thor JJ. X-ray Free Electron Laser Determination of Crystal Structures of Dark and Light States of a Reversibly Photoswitching Fluorescent Protein at Room Temperature. Int J Mol Sci 2017; 18:E1918. [PMID: 28880248 PMCID: PMC5618567 DOI: 10.3390/ijms18091918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/03/2023] Open
Abstract
The photochromic fluorescent protein Skylan-NS (Nonlinear Structured illumination variant mEos3.1H62L) is a reversibly photoswitchable fluorescent protein which has an unilluminated/ground state with an anionic and cis chromophore conformation and high fluorescence quantum yield. Photo-conversion with illumination at 515 nm generates a meta-stable intermediate with neutral trans-chromophore structure that has a 4 h lifetime. We present X-ray crystal structures of the cis (on) state at 1.9 Angstrom resolution and the trans (off) state at a limiting resolution of 1.55 Angstrom from serial femtosecond crystallography experiments conducted at SPring-8 Angstrom Compact Free Electron Laser (SACLA) at 7.0 keV and 10.5 keV, and at Linac Coherent Light Source (LCLS) at 9.5 keV. We present a comparison of the data reduction and structure determination statistics for the two facilities which differ in flux, beam characteristics and detector technologies. Furthermore, a comparison of droplet on demand, grease injection and Gas Dynamic Virtual Nozzle (GDVN) injection shows no significant differences in limiting resolution. The photoconversion of the on- to the off-state includes both internal and surface exposed protein structural changes, occurring in regions that lack crystal contacts in the orthorhombic crystal form.
Collapse
Affiliation(s)
- Christopher D. M. Hutchison
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Violeta Cordon-Preciado
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Rhodri M. L. Morgan
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan;
| | - Josie Ferreira
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Gabriel Dorlhiac
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Alvaro Sanchez-Gonzalez
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Allan S. Johnson
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Ann Fitzpatrick
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK;
| | - Clyde Fare
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| | - Jon P. Marangos
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK; (A.S.-G.); (A.S.J.); (J.P.M.)
| | - Chun Hong Yoon
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Mark S. Hunter
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Daniel P. DePonte
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Sébastien Boutet
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA; (C.H.Y.); (M.S.H.); (D.P.D.); (S.B.)
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148, Japan; (S.O.); (R.T.); (K.T.); (S.I.)
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (C.D.M.H.); (V.C.-P.); (J.F.); (G.D.); (C.F.)
| |
Collapse
|
34
|
Bourgeois D. Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography. Int J Mol Sci 2017; 18:ijms18061187. [PMID: 28574447 PMCID: PMC5486010 DOI: 10.3390/ijms18061187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/02/2023] Open
Abstract
Because they enable labeling of biological samples in a genetically-encoded manner, Fluorescent Proteins (FPs) have revolutionized life sciences. Photo-transformable fluorescent proteins (PTFPs), in particular, recently attracted wide interest, as their fluorescence state can be actively modulated by light, a property central to the emergence of super-resolution microscopy. PTFPs, however, exhibit highly complex photophysical behaviours that are still poorly understood, hampering the rational engineering of variants with improved performances. We show that kinetic crystallography combined with in crystallo optical spectroscopy, modeling approaches and single-molecule measurements constitutes a powerful tool to decipher processes such as photoactivation, photoconversion, photoswitching, photoblinking and photobleaching. Besides potential applications for the design of enhanced PTFPs, these investigations provide fundamental insight into photoactivated protein dynamics.
Collapse
Affiliation(s)
- Dominique Bourgeois
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, CNRS, IBS, F-38000 Grenoble, France.
| |
Collapse
|
35
|
Schirò G, Woodhouse J, Weik M, Schlichting I, Shoeman RL. Simple and efficient system for photoconverting light-sensitive proteins in serial crystallography experiments. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717006264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025] Open
Abstract
Proteins that change their structure in response to light absorption regulate many functional processes in living cells. Moreover, biotechnological approaches like optogenetics and super-resolution fluorescence microscopy recently triggered the generation of new genetically modified photosensitive proteins. Light-induced structural changes in photosensitive proteins can be studied by time-resolved serial femtosecond crystallography (SFX), an X-ray diffraction technique that allows the determination of macromolecular structures at X-ray free-electron lasers from a large number of nano- to micro-sized crystals. This article describes a simple and efficient system for converting photosensitive proteins into light-induced semi-stationary states by inline laser illumination prior to sample injection with a gas-focused liquid jet and subsequent optical pump–X-ray probe exposure. The simple setup of this device makes it suitable for integration into other liquid injectors (like electro-spinning and electro-kinetic injectors) and potentially also in high-viscosity extruders, provided that embedding microcrystals in viscous media does not alter protein photophysical properties. The functioning of the device is demonstrated with an example of a photoswitchable fluorescent protein pre-illuminated (photoactivated) for time-resolved SFX experiments. The device can be easily adapted for the conversion in time-resolved SFX experiments of other microcrystalline proteins, such as photosystems, phytochromes and rhodopsins.
Collapse
|
36
|
Chmyrov A, Leutenegger M, Grotjohann T, Schönle A, Keller-Findeisen J, Kastrup L, Jakobs S, Donnert G, Sahl SJ, Hell SW. Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy. Sci Rep 2017; 7:44619. [PMID: 28317930 PMCID: PMC5357911 DOI: 10.1038/srep44619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/10/2017] [Indexed: 01/29/2023] Open
Abstract
Fluorescence microscopy is rapidly turning into nanoscopy. Among the various nanoscopy methods, the STED/RESOLFT super-resolution family has recently been expanded to image even large fields of view within a few seconds. This advance relies on using light patterns featuring substantial arrays of intensity minima for discerning features by switching their fluorophores between 'on' and 'off' states of fluorescence. Here we show that splitting the light with a grating and recombining it in the focal plane of the objective lens renders arrays of minima with wavelength-independent periodicity. This colour-independent creation of periodic patterns facilitates coaligned on- and off-switching and readout with combinations chosen from a range of wavelengths. Applying up to three such periodic patterns on the switchable fluorescent proteins Dreiklang and rsCherryRev1.4, we demonstrate highly parallelized, multicolour RESOLFT nanoscopy in living cells for ~100 × 100 μm2 fields of view. Individual keratin filaments were rendered at a FWHM of ~60-80 nm, with effective resolution for the filaments of ~80-100 nm. We discuss the impact of novel image reconstruction algorithms featuring background elimination by spatial bandpass filtering, as well as strategies that incorporate complete image formation models.
Collapse
Affiliation(s)
- Andriy Chmyrov
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany.,Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Marcel Leutenegger
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| | - Tim Grotjohann
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| | - Andreas Schönle
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Jan Keller-Findeisen
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| | - Lars Kastrup
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Stefan Jakobs
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany.,University of Göttingen, Medical Faculty, Department of Neurology, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Gerald Donnert
- Abberior Instruments GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Steffen J Sahl
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| | - Stefan W Hell
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Abstract
Super-resolution fluorescence imaging by photoactivation or photoswitching of single fluorophores and position determination (single-molecule localization microscopy, SMLM) provides microscopic images with subdiffraction spatial resolution. This technology has enabled new insights into how proteins are organized in a cellular context, with a spatial resolution approaching virtually the molecular level. A unique strength of SMLM is that it delivers molecule-resolved information, along with super-resolved images of cellular structures. This allows quantitative access to cellular structures, for example, how proteins are distributed and organized and how they interact with other biomolecules. Ultimately, it is even possible to determine protein numbers in cells and the number of subunits in a protein complex. SMLM thus has the potential to pave the way toward a better understanding of how cells function at the molecular level. In this review, we describe how SMLM has contributed new knowledge in eukaryotic biology, and we specifically focus on quantitative biological data extracted from SMLM images.
Collapse
Affiliation(s)
- Markus Sauer
- Department of Biotechnology & Biophysics, Julius-Maximilian-University of Würzburg , 97074 Würzburg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt , 60438 Frankfurt, Germany
| |
Collapse
|
38
|
Duwé S, Vandenberg W, Dedecker P. Live-cell monochromatic dual-label sub-diffraction microscopy by mt-pcSOFI. Chem Commun (Camb) 2017; 53:7242-7245. [DOI: 10.1039/c7cc02344h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present mt-pcSOFI, live-cell monochromatic sub-diffraction imaging and illustrate the method with existing RSFPs and the newly developed ffDronpa-F.
Collapse
Affiliation(s)
- S. Duwé
- Laboratory for NanoBiology
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - W. Vandenberg
- Laboratory for NanoBiology
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| | - P. Dedecker
- Laboratory for NanoBiology
- Department of Chemistry
- KU Leuven
- 3001 Leuven
- Belgium
| |
Collapse
|
39
|
Schnorrenberg S, Grotjohann T, Vorbrüggen G, Herzig A, Hell SW, Jakobs S. In vivo super-resolution RESOLFT microscopy of Drosophila melanogaster. eLife 2016; 5. [PMID: 27355614 PMCID: PMC4927295 DOI: 10.7554/elife.15567] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of <60 nm. RESOLFT nanoscopy enabled time-lapse recordings comprising 40 images and facilitated recordings 40 µm deep within fly tissues. DOI:http://dx.doi.org/10.7554/eLife.15567.001
Collapse
Affiliation(s)
- Sebastian Schnorrenberg
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Tim Grotjohann
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gerd Vorbrüggen
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Abteilung Entwicklungsbiologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alf Herzig
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center of Göttingen, Göttingen, Germany
| |
Collapse
|