1
|
Liaw K, Konrath KM, Trachtman AR, Tursi NJ, Gary EN, Livingston C, Flowers K, Chu JD, Hojecki CE, Laenger N, McCanna ME, Agostino CJ, Chokkalingam N, Bayruns K, Kriete S, Kim A, Park J, Monastra C, Pardo LA, Jenison S, Huang J, Mulka K, Patel A, Kulp DW, Weiner DB. DNA co-delivery of seasonal H1 influenza hemagglutinin nanoparticle vaccines with chemokine adjuvant CTACK induces potent immunogenicity for heterologous protection in vivo. Vaccine 2025; 59:127231. [PMID: 40398322 DOI: 10.1016/j.vaccine.2025.127231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
Current influenza vaccines induce mostly strain-specific immunity necessitating annual reformulation and dosing. Here, we developed an improved seasonal influenza vaccine based on A/H1N1/Wisconsin/588/2019. We designed a DNA-launched self-assembling nanoparticle that displayed seven Wisconsin/588/2019 hemagglutinin (HA) head domains (WI19-7mer). WI19-7mer nanovaccine improved heterologous HAI titers and CD8+ cellular responses in mice than DNA encoded HA trimer (WI19 HA). In human antibody repertoire mice, WI19-7mer induced superior breadth to a diverse panel of H1 HAs compared to WI19 HA immunized animals. Cross-reactive HAI titers were maintained better in mice immunized with WI19-7mer than WI19 HA. The WI19-7mer induced improved antibody binding breadth and provided superior protection in a heterologous challenge compared to challenge-matched HA trimer. Addition of the cytokine adjuvant (CTACK) to WI19-7mer significantly improved breadth, HAI, peripheral responses, and protection in heterologous challenge. These data demonstrate that combining nucleic acid delivery, immune focusing, low valency nanoparticle, and mucosal adjuvant for enhanced vaccine effectiveness has broader applications for other viruses.
Collapse
Affiliation(s)
- Kevin Liaw
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kylie M Konrath
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abigail R Trachtman
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ebony N Gary
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Cory Livingston
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kaitlyn Flowers
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jacqueline D Chu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Casey E Hojecki
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Niklas Laenger
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Biology Department, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Madison E McCanna
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Colby J Agostino
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neethu Chokkalingam
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kelly Bayruns
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sinja Kriete
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Amber Kim
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Joyce Park
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Cara Monastra
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lucas A Pardo
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sarah Jenison
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jinwei Huang
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Kathleen Mulka
- Penn Vet Comparative Pathology Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Zhao X, Zhang Y, Trejo-Cerro O, Kaplan E, Li Z, Albertsboer F, El Hammiri N, Mariz FC, Banks L, Ottonello S, Müller M. A safe and potentiated multi-type HPV L2-E7 nanoparticle vaccine with combined prophylactic and therapeutic activity. NPJ Vaccines 2024; 9:119. [PMID: 38926425 PMCID: PMC11208501 DOI: 10.1038/s41541-024-00914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is widely recognized as the primary cause of cervical and other malignant cancers. There are six licensed prophylactic vaccines available against HPV, but none of them shows any significant therapeutic effect on pre-existing infections or lesions. Thus, a prophylactic vaccine also endowed with therapeutic activity would afford protection regardless of the vaccine recipients HPV-infection status. Here, we describe the refinement and further potentiation of a dual-purpose HPV nanoparticle vaccine (hereafter referred to as cPANHPVAX) relying on eight different HPV L2 peptide epitopes and on the E7 oncoantigens from HPV16 and 18. cPANHPVAX not only induces anti-HPV16 E7 cytotoxic T-cell responses in C57BL/6 mice, but also anti-HPV18 E7 T-cell responses in transgenic mice with the A2.DR1 haplotype. These cytotoxic responses add up to a potent, broad-coverage humoral (HPV-neutralizing) response. cPANHPVAX safety was further improved by deletion of the pRb-binding domains of E7. Our dual-purpose vaccine holds great potential for clinical translation as an immune-treatment capable of targeting active infections as well as established HPV-related malignancies, thus benefiting both uninfected and infected individuals.
Collapse
Affiliation(s)
- Xueer Zhao
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| | - Yueru Zhang
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ecem Kaplan
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Zhe Li
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Femke Albertsboer
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Neyla El Hammiri
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Filipe Colaço Mariz
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martin Müller
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
3
|
Rajneesh, Tiwari R, Singh VK, Kumar A, Gupta RP, Singh AK, Gautam V, Kumar R. Advancements and Challenges in Developing Malaria Vaccines: Targeting Multiple Stages of the Parasite Life Cycle. ACS Infect Dis 2023; 9:1795-1814. [PMID: 37708228 DOI: 10.1021/acsinfecdis.3c00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Malaria, caused by Plasmodium species, remains a major global health concern, causing millions of deaths annually. While the introduction of the RTS,S vaccine has shown promise, there is a pressing need for more effective vaccines due to the emergence of drug-resistant parasites and insecticide-resistant vectors. However, the complex life cycle and genetic diversity of the parasite, technical obstacles, limited funding, and the impact of the 2019 pandemic have hindered progress in malaria vaccine development. This review focuses on advancements in malaria vaccine development, particularly the ongoing clinical trials targeting antigens from different stages of the Plasmodium life cycle. Additionally, we discuss the rationale, strategies, and challenges associated with vaccine design, aiming to enhance the immune response and protective efficacy of vaccine candidates. A cost-effective and multistage vaccine could hold the key to controlling and eradicating malaria.
Collapse
Affiliation(s)
- Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vishal K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rohit P Gupta
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Applied Microbiology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh K Singh
- Faculty of Dental Science, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Tursi NJ, Xu Z, Kulp DW, Weiner DB. Gene-encoded nanoparticle vaccine platforms for in vivo assembly of multimeric antigen to promote adaptive immunity. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1880. [PMID: 36807845 PMCID: PMC10665986 DOI: 10.1002/wnan.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
Nanoparticle vaccines are a diverse category of vaccines for the prophylaxis or treatment of various diseases. Several strategies have been employed for their optimization, especially to enhance vaccine immunogenicity and generate potent B-cell responses. Two major modalities utilized for particulate antigen vaccines include using nanoscale structures for antigen delivery and nanoparticles that are themselves vaccines due to antigen display or scaffolding-the latter of which we will define as "nanovaccines." Multimeric antigen display has a variety of immunological benefits compared to monomeric vaccines mediated through potentiating antigen-presenting cell presentation and enhancing antigen-specific B-cell responses through B-cell activation. The majority of nanovaccine assembly is done in vitro using cell lines. However, in vivo assembly of scaffolded vaccines potentiated using nucleic acids or viral vectors is a burgeoning modality of nanovaccine delivery. Several advantages to in vivo assembly exist, including lower costs of production, fewer production barriers, as well as more rapid development of novel vaccine candidates for emerging diseases such as SARS-CoV-2. This review will characterize the methods for de novo assembly of nanovaccines in the host using methods of gene delivery including nucleic acid and viral vectored vaccines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Nicholas J. Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel W. Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Sorokina J, Sokolova I, Majorina M, Ungur A, Troitskiy V, Tukhvatulin A, Melnik B, Belyi Y. Oligomerization and Adjuvant Activity of Peptides Derived from the VirB4-like ATPase of Clostridioides difficile. Biomolecules 2023; 13:1012. [PMID: 37371592 DOI: 10.3390/biom13061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In a previous study, we demonstrated that the Clostridioides difficile VirB4-like ATPase forms oligomers in vitro. In the current investigation, to study the observed phenomenon in more detail, we prepared a library of VirB4-derived peptides (delVirB4s) fused to a carrier maltose-binding protein (MBP). Using gel chromatography and polyacrylamide gel electrophoresis, we found a set of overlapping fragments that contribute most significantly to protein aggregation, which were represented as water-soluble oligomers with molecular masses ranging from ~300 kD to several megadaltons. Membrane filtration experiments, sucrose gradient ultracentrifugation, and dynamic light scattering measurements indicated the size of the soluble complex to be 15-100 nm. It was sufficiently stable to withstand treatment with 1 M urea; however, it dissociated in a 6 M urea solution. As shown by the changes in GFP fluorescence and the circular dichroism spectra, the attachment of the delVirB4 peptide significantly altered the structure of the partner MBP. The immunization of mice with the hybrid consisting of the selected VirB4-derived peptide and MBP, GST, or GFP resulted in increased production of specific antibodies compared to the peptide-free carrier proteins, suggesting significant adjuvant activity of the VirB4 fragment. This feature could be useful for the development of new vaccines, especially in the case of "weak" antigens that are unable to elicit a strong immune response by themselves.
Collapse
Affiliation(s)
- Julya Sorokina
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Irina Sokolova
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Mariya Majorina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastasia Ungur
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Vasiliy Troitskiy
- Department of Infectious Diseases, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 2 Bolshaya Pirogovskaya St., Moscow 119435, Russia
| | - Amir Tukhvatulin
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Bogdan Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Pushchino Branch, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Yury Belyi
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| |
Collapse
|
6
|
Siddiqui AJ, Bhardwaj J, Saxena J, Jahan S, Snoussi M, Bardakci F, Badraoui R, Adnan M. A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines (Basel) 2023; 11:vaccines11040792. [PMID: 37112704 PMCID: PMC10146311 DOI: 10.3390/vaccines11040792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Malaria and schistosomiasis are two major parasitic diseases that remain leading causes of morbidity and mortality worldwide. Co-infections of these two parasites are common in the tropics, where both diseases are endemic. The clinical consequences of schistosomiasis and malaria are determined by a variety of host, parasitic, and environmental variables. Chronic schistosomiasis causes malnutrition and cognitive impairments in children, while malaria can cause fatal acute infections. There are effective drugs available to treat malaria and schistosomiasis. However, the occurrence of allelic polymorphisms and the rapid selection of parasites with genetic mutations can confer reduced susceptibility and lead to the emergence of drug resistance. Moreover, the successful elimination and complete management of these parasites are difficult due to the lack of effective vaccines against Plasmodium and Schistosoma infections. Therefore, it is important to highlight all current vaccine candidates undergoing clinical trials, such as pre-erythrocytic and erythrocytic stage malaria, as well as a next-generation RTS,S-like vaccine, the R21/Matrix-M vaccine, that conferred 77% protection against clinical malaria in a Phase 2b trial. Moreover, this review also discusses the progress and development of schistosomiasis vaccines. Furthermore, significant information is provided through this review on the effectiveness and progress of schistosomiasis vaccines currently under clinical trials, such as Sh28GST, Sm-14, and Sm-p80. Overall, this review provides insights into recent progress in malarial and schistosomiasis vaccines and their developmental approaches.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Ludhiana—Chandigarh State Hwy, Mohali 140413, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaharHaddas BP74, Monastir 5000, Tunisia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1017, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
7
|
Recent Advances in the Development of Adenovirus-Vectored Vaccines for Parasitic Infections. Pharmaceuticals (Basel) 2023; 16:ph16030334. [PMID: 36986434 PMCID: PMC10058461 DOI: 10.3390/ph16030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Vaccines against parasites have lagged centuries behind those against viral and bacterial infections, despite the devastating morbidity and widespread effects of parasitic diseases across the globe. One of the greatest hurdles to parasite vaccine development has been the lack of vaccine strategies able to elicit the complex and multifaceted immune responses needed to abrogate parasitic persistence. Viral vectors, especially adenovirus (AdV) vectors, have emerged as a potential solution for complex disease targets, including HIV, tuberculosis, and parasitic diseases, to name a few. AdVs are highly immunogenic and are uniquely able to drive CD8+ T cell responses, which are known to be correlates of immunity in infections with most protozoan and some helminthic parasites. This review presents recent developments in AdV-vectored vaccines targeting five major human parasitic diseases: malaria, Chagas disease, schistosomiasis, leishmaniasis, and toxoplasmosis. Many AdV-vectored vaccines have been developed for these diseases, utilizing a wide variety of vectors, antigens, and modes of delivery. AdV-vectored vaccines are a promising approach for the historically challenging target of human parasitic diseases.
Collapse
|
8
|
Hasyim AA, Iyori M, Mizuno T, Abe YI, Yamagoshi I, Yusuf Y, Syafira I, Sakamoto A, Yamamoto Y, Mizukami H, Shida H, Yoshida S. Adeno-associated virus-based malaria booster vaccine following attenuated replication-competent vaccinia virus LC16m8Δ priming. Parasitol Int 2022; 92:102652. [PMID: 36007703 DOI: 10.1016/j.parint.2022.102652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
We previously demonstrated that boosting with adeno-associated virus (AAV) type 1 (AAV1) can induce highly effective and long-lasting protective immune responses against malaria parasites when combined with replication-deficient adenovirus priming in a rodent model. In the present study, we compared the efficacy of two different AAV serotypes, AAV1 and AAV5, as malaria booster vaccines following priming with the attenuated replication-competent vaccinia virus strain LC16m8Δ (m8Δ), which harbors the fusion gene encoding both the pre-erythrocytic stage protein, Plasmodium falciparum circumsporozoite (PfCSP) and the sexual stage protein (Pfs25) in a two-dose heterologous prime-boost immunization regimen. Both regimens, m8Δ/AAV1 and m8Δ/AAV5, induced robust anti-PfCSP and anti-Pfs25 antibodies. To evaluate the protective efficacy, the mice were challenged with sporozoites twice after immunization. At the first sporozoite challenge, m8Δ/AAV5 achieved 100% sterile protection whereas m8Δ/AAV1 achieved 70% protection. However, at the second challenge, 100% of the surviving mice from the first challenge were protected in the m8Δ/AAV1 group whereas only 55.6% of those in the m8Δ/AAV5 group were protected. Regarding the transmission-blocking efficacy, we found that both immunization regimens induced high levels of transmission-reducing activity (>99%) and transmission-blocking activity (>95%). Our data indicate that the AAV5-based multistage malaria vaccine is as effective as the AAV1-based vaccine when administered following an m8Δ-based vaccine. These results suggest that AAV5 could be a viable alternate vaccine vector as a malaria booster vaccine.
Collapse
Affiliation(s)
- Ammar A Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Tetsushi Mizuno
- Department of Global Infectious Diseases, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Yu-Ichi Abe
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Iroha Yamagoshi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Yenni Yusuf
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Sulawesi Selatan 90245, Indonesia
| | - Intan Syafira
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaro Yamamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Mizukami
- Division of Gene Therapy, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
9
|
Jagannath DK, Valiyaparambil A, Viswanath VK, Hurakadli MA, Kamariah N, Jafer AC, Patole C, Pradhan S, Kumar N, Lakshminarasimhan A. Refolding and characterization of a diabody against Pfs25, a vaccine candidate of Plasmodium falciparum. Anal Biochem 2022; 655:114830. [DOI: 10.1016/j.ab.2022.114830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022]
|
10
|
Cao Y, Hayashi CTH, Zavala F, Tripathi AK, Simonyan H, Young CN, Clark LC, Usuda Y, Van Parys JM, Kumar N. Effective Functional Immunogenicity of a DNA Vaccine Combination Delivered via In Vivo Electroporation Targeting Malaria Infection and Transmission. Vaccines (Basel) 2022; 10:1134. [PMID: 35891298 PMCID: PMC9323668 DOI: 10.3390/vaccines10071134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum circumsporozoite protein (PfCSP) and Pfs25 are leading candidates for the development of pre-erythrocytic and transmission-blocking vaccines (TBV), respectively. Although considerable progress has been made in developing PfCSP- and Pfs25-based vaccines, neither have elicited complete protection or transmission blocking in clinical trials. The combination of antigens targeting various life stages is an alternative strategy to develop a more efficacious malaria vaccine. In this study, female and male mice were immunized with DNA plasmids encoding PfCSP and Pfs25, administered alone or in combination via intramuscular in vivo electroporation (EP). Antigen-specific antibodies were analyzed for antibody titers, avidity and isotype by ELISA. Immune protection against sporozoite challenge, using transgenic P. berghei expressing PfCSP and a GFP-luciferase fusion protein (PbPfCSP-GFP/Luc), was assessed by in vivo bioluminescence imaging and blood-stage parasite growth. Transmission reducing activity (TRA) was evaluated in standard membrane feeding assays (SMFA). High levels of PfCSP- and Pfs25-specific antibodies were induced in mice immunized with either DNA vaccine alone or in combination. No difference in antibody titer and avidity was observed for both PfCSP and Pfs25 between the single DNA and combined DNA immunization groups. When challenged by PbPfCSP-GFP/Luc sporozoites, mice immunized with PfCSP alone or combined with Pfs25 revealed significantly reduced liver-stage parasite loads as compared to mice immunized with Pfs25, used as a control. Furthermore, parasite liver loads were negatively correlated with PfCSP-specific antibody levels. When evaluating TRA, we found that immunization with Pfs25 alone or in combination with PfCSP elicited comparable significant transmission reduction. Our studies reveal that the combination of PfCSP and Pfs25 DNAs into a vaccine delivered by in vivo EP in mice does not compromise immunogenicity, infection protection and transmission reduction when compared to each DNA vaccine individually, and provide support for further evaluation of this DNA combination vaccine approach in larger animals and clinical trials.
Collapse
Affiliation(s)
- Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Clifford T. H. Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Fidel Zavala
- Department of Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (F.Z.); (A.K.T.)
| | - Abhai K. Tripathi
- Department of Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (F.Z.); (A.K.T.)
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA; (H.S.); (C.N.Y.)
| | - Colin N. Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA; (H.S.); (C.N.Y.)
| | - Leor C. Clark
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Yukari Usuda
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Jacob M. Van Parys
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (Y.C.); (C.T.H.H.); (L.C.C.); (Y.U.); (J.M.V.P.)
| |
Collapse
|
11
|
Mulamba C, Williams C, Kreppel K, Ouedraogo JB, Olotu AI. Evaluation of the Pfs25-IMX313/Matrix-M malaria transmission-blocking candidate vaccine in endemic settings. Malar J 2022; 21:159. [PMID: 35655174 PMCID: PMC9161629 DOI: 10.1186/s12936-022-04173-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
Malaria control relies heavily on the use of anti-malarial drugs and insecticides against malaria parasites and mosquito vectors. Drug and insecticide resistance threatens the effectiveness of conventional malarial interventions; alternative control approaches are, therefore, needed. The development of malaria transmission-blocking vaccines that target the sexual stages in humans or mosquito vectors is among new approaches being pursued. Here, the immunological mechanisms underlying malaria transmission blocking, status of Pfs25-based vaccines are viewed, as well as approaches and capacity for first in-human evaluation of a transmission-blocking candidate vaccine Pfs25-IMX313/Matrix-M administered to semi-immune healthy individuals in endemic settings. It is concluded that institutions in low and middle income settings should be supported to conduct first-in human vaccine trials in order to stimulate innovative research and reduce the overdependence on developed countries for research and local interventions against many diseases of public health importance.
Collapse
Affiliation(s)
- Charles Mulamba
- Interventions & Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Nelson Mandela African Institution of Science and Technology, Tengeru, P. O. Box 447, Arusha, Tanzania
| | - Chris Williams
- The Jenner Institute, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Katharina Kreppel
- Nelson Mandela African Institution of Science and Technology, Tengeru, P. O. Box 447, Arusha, Tanzania
| | | | - Ally I Olotu
- Interventions & Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
| |
Collapse
|
12
|
Ochwedo KO, Onyango SA, Omondi CJ, Orondo PW, Ondeto BM, Lee MC, Atieli HE, Ogolla SO, Githeko AK, Otieno ACA, Mukabana WR, Yan G, Zhong D, Kazura JW. Signatures of selection and drivers for novel mutation on transmission-blocking vaccine candidate Pfs25 gene in western Kenya. PLoS One 2022; 17:e0266394. [PMID: 35390042 PMCID: PMC8989228 DOI: 10.1371/journal.pone.0266394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/20/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Leading transmission-blocking vaccine candidates such as Plasmodium falciparum surface protein 25 (Pfs25 gene) may undergo antigenic alterations which may render them ineffective or allele-specific. This study examines the level of genetic diversity, signature of selection and drivers of Pfs25 polymorphisms of parasites population in regions of western Kenya with varying malaria transmission intensities. METHODS Dry blood spots (DBS) were collected in 2018 and 2019 from febrile outpatients with malaria at health facilities in malaria-endemic areas of Homa Bay, Kisumu (Chulaimbo) and the epidemic-prone highland area of Kisii. Parasites DNA were extracted from DBS using Chelex method. Species identification was performed using real-time PCR. The 460 base pairs (domains 1-4) of the Pfs25 were amplified and sequenced for a total of 180 P. falciparum-infected blood samples. RESULTS Nine of ten polymorphic sites were identified for the first time. Overall, Pfs25 exhibited low nucleotide diversity (0.04×10-2) and low mutation frequencies (1.3% to 7.7%). Chulaimbo had the highest frequency (15.4%) of mutated sites followed by Kisii (6.7%) and Homa Bay (5.1%). Neutrality tests of Pfs25 variations showed significant negative values of Tajima's D (-2.15, p<0.01) and Fu's F (-10.91, p<0.001) statistics tests. Three loci pairs (123, 372), (364, 428) and (390, 394) were detected to be under linkage disequilibrium and none had history of recombination. These results suggested that purifying selection and inbreeding might be the drivers of the observed variation in Pfs25. CONCLUSION Given the low level of nucleotide diversity, it is unlikely that a Pfs25 antigen-based vaccine would be affected by antigenic variations. However, continued monitoring of Pfs25 immunogenic domain 3 for possible variants that might impact vaccine antibody binding is warranted.
Collapse
Affiliation(s)
- Kevin O. Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Shirley A. Onyango
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- School of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Collince J. Omondi
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Pauline W. Orondo
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Benyl M. Ondeto
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Harrysone E. Atieli
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - Sidney O. Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew K. Githeko
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Antony C. A. Otieno
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Sub-Saharan Africa International Centre for Excellence in Malaria Research, Homa Bay, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, California, United States of America
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, California, United States of America
| | - James W. Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
13
|
Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2. J Microbiol 2022; 60:335-346. [PMID: 35089583 PMCID: PMC8795728 DOI: 10.1007/s12275-022-1608-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
The global spread of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has provoked an urgent need for prophylactic measures. Several innovative vaccine platforms have been introduced and billions of vaccine doses have been administered worldwide. To enable the creation of safer and more effective vaccines, additional platforms are under development. These include the use of nanoparticle (NP) and virus-like particle (VLP) technology. NP vaccines utilize self-assembling scaffold structures designed to load the entire spike protein or receptor-binding domain of SARS-CoV-2 in a trimeric configuration. In contrast, VLP vaccines are genetically modified recombinant viruses that are considered safe, as they are generally replication-defective. Furthermore, VLPs have indigenous immunogenic potential due to their microbial origin. Importantly, NP and VLP vaccines have shown stronger immunogenicity with greater protection by mimicking the physicochemical characteristics of SARS-CoV-2. The study of NP- and VLP-based coronavirus vaccines will help ensure the development of rapid-response technology against SARS-CoV-2 variants and future coronavirus pandemics.
Collapse
|
14
|
Obeng EM, Dzuvor CKO, Danquah MK. Anti-SARS-CoV-1 and -2 nanobody engineering towards avidity-inspired therapeutics. NANO TODAY 2022; 42:101350. [PMID: 34840592 PMCID: PMC8608585 DOI: 10.1016/j.nantod.2021.101350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 05/15/2023]
Abstract
In the past two decades, the emergence of coronavirus diseases has been dire distress on both continental and global fronts and has resulted in the search for potent treatment strategies. One crucial challenge in this search is the recurrent mutations in the causative virus spike protein, which lead to viral escape issues. Among the current promising therapeutic discoveries is the use of nanobodies and nanobody-like molecules. While these nanobodies have demonstrated high-affinity interaction with the virus, the unpredictable spike mutations have warranted the need for avidity-inspired therapeutics of potent inhibitors such as nanobodies. This article discusses novel approaches for the design of anti-SARS-CoV-1 and -2 nanobodies to facilitate advanced innovations in treatment technologies. It further discusses molecular interactions and suggests multivalent protein nanotechnology and chemistry approaches to translate mere molecular affinity into avidity.
Collapse
Affiliation(s)
- Eugene M Obeng
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
15
|
Scaria PV, Anderson C, Muratova O, Alani N, Trinh HV, Nadakal ST, Zaidi I, Lambert L, Beck Z, Barnafo EK, Rausch KM, Rowe C, Chen B, Matyas GR, Rao M, Alving CR, Narum DL, Duffy PE. Malaria transmission-blocking conjugate vaccine in ALFQ adjuvant induces durable functional immune responses in rhesus macaques. NPJ Vaccines 2021; 6:148. [PMID: 34887448 PMCID: PMC8660773 DOI: 10.1038/s41541-021-00407-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Malaria transmission-blocking vaccines candidates based on Pfs25 and Pfs230 have advanced to clinical studies. Exoprotein A (EPA) conjugate of Pfs25 in Alhydrogel® developed functional immunity in humans, with limited durability. Pfs230 conjugated to EPA (Pfs230D1-EPA) with liposomal adjuvant AS01 is currently in clinical trials in Mali. Studies with these conjugates revealed that non-human primates are better than mice to recapitulate the human immunogenicity and functional activity. Here, we evaluated the effect of ALFQ, a liposomal adjuvant consisting of TLR4 agonist and QS21, on the immunogenicity of Pfs25-EPA and Pfs230D1-EPA in Rhesus macaques. Both conjugates generated strong antibody responses and functional activity after two vaccinations though activity declined rapidly. A third vaccination of Pfs230D1-EPA induced functional activity lasting at least 9 months. Antibody avidity increased with each vaccination and correlated strongly with functional activity. IgG subclass analysis showed induction of Th1 and Th2 subclass antibody levels that correlated with activity.
Collapse
Affiliation(s)
- Puthupparampil V. Scaria
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Charles Anderson
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Olga Muratova
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Nada Alani
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Hung V. Trinh
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817 USA
| | - Steven T. Nadakal
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Irfan Zaidi
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Lynn Lambert
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Zoltan Beck
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817 USA ,grid.410513.20000 0000 8800 7493Present Address: Pfizer, Vaccine Research and Development, Pearl River, NY USA
| | - Emma K. Barnafo
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Kelly M. Rausch
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Chris Rowe
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Beth Chen
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Gary R. Matyas
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Mangala Rao
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - Carl R. Alving
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910 USA
| | - David L. Narum
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| | - Patrick E. Duffy
- grid.419681.30000 0001 2164 9667Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, 29 Lincoln Drive, Building 29B, Bethesda, MD 20892-2903 USA
| |
Collapse
|
16
|
Zaric M, Marini A, Nielsen CM, Gupta G, Mekhaiel D, Pham TP, Elias SC, Taylor IJ, de Graaf H, Payne RO, Li Y, Silk SE, Williams C, Hill AVS, Long CA, Miura K, Biswas S. Poor CD4 + T Cell Immunogenicity Limits Humoral Immunity to P. falciparum Transmission-Blocking Candidate Pfs25 in Humans. Front Immunol 2021; 12:732667. [PMID: 34659219 PMCID: PMC8515144 DOI: 10.3389/fimmu.2021.732667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission.
Collapse
Affiliation(s)
- Marija Zaric
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carolyn M Nielsen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Gaurav Gupta
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Thao P Pham
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J Taylor
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E Silk
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris Williams
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V S Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Yang JI, Kim KH. Fusion of Streptococcus iniae α-enolase to IMX313 enhanced antibody titer and survival rate in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2021; 115:70-74. [PMID: 34089887 DOI: 10.1016/j.fsi.2021.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The polymerization of monomeric antigens can be a strategy to overcome the low immunogenicity of subunit vaccines. IMX313 is a hybrid oligomerization domain of chicken C4bp, and has been demonstrated to have potent activity as adjuvants for the fused antigens in mammals. In the present study, we investigated whether the oligomerization of α-enolase of Streptococcus iniae by fusion with IMX313 affected on antibody induction and on protection against S. iniae infection in olive flounder (Paralichthys olivaceus). The oligomerization of S. iniae enolase by fusion with IMX313 (enolase-IMX313) was verified by non-reducing PAGE, and the antibody titer against enolase in olive flounder immunized with enolase-IMX313 was significantly higher than that in fish immunized with enolase alone. Furthermore, although the survival of olive flounder immunized with enolase alone was low, fish immunized with enolase-IMX313 showed much higher survival (RPS 50%) in accordance with higher serum antibody titer, suggesting that fusion of antigens with IMX313 can be an effective way to enhance protective efficacy of subunit vaccines in olive flounder.
Collapse
Affiliation(s)
- Jeong In Yang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
18
|
de Graaf H, Payne RO, Taylor I, Miura K, Long CA, Elias SC, Zaric M, Minassian AM, Silk SE, Li L, Poulton ID, Baker M, Draper SJ, Gbesemete D, Brendish NJ, Martins F, Marini A, Mekhaiel D, Edwards NJ, Roberts R, Vekemans J, Moyle S, Faust SN, Berrie E, Lawrie AM, Hill F, Hill AVS, Biswas S. Safety and Immunogenicity of ChAd63/MVA Pfs25-IMX313 in a Phase I First-in-Human Trial. Front Immunol 2021; 12:694759. [PMID: 34335606 PMCID: PMC8318801 DOI: 10.3389/fimmu.2021.694759] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transmission blocking vaccines targeting the sexual-stages of the malaria parasite could play a major role to achieve elimination and eradication of malaria. The Plasmodium falciparum Pfs25 protein (Pfs25) is the most clinically advanced candidate sexual-stage antigen. IMX313, a complement inhibitor C4b-binding protein that forms heptamers with the antigen fused to it, improve antibody responses. This is the first time that viral vectors have been used to induce antibodies in humans against an antigen that is expressed only in the mosquito vector. Methods Clinical trial looking at safety and immunogenicity of two recombinant viral vectored vaccines encoding Pfs25-IMX313 in healthy malaria-naive adults. Replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding Pfs25-IMX313, were delivered by the intramuscular route in a heterologous prime-boost regimen using an 8-week interval. Safety data and samples for immunogenicity assays were taken at various time-points. Results The reactogenicity of the vaccines was similar to that seen in previous trials using the same viral vectors encoding other antigens. The vaccines were immunogenic and induced both antibody and T cell responses against Pfs25, but significant transmission reducing activity (TRA) was not observed in most volunteers by standard membrane feeding assay. Conclusion Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. However, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine formulation. Trial Registration Clinicaltrials.gov NCT02532049.
Collapse
Affiliation(s)
- Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona Taylor
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Carol A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marija Zaric
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Sarah E Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Lee Li
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Diane Gbesemete
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan J Brendish
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Filipa Martins
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Arianna Marini
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Sarah Moyle
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Saul N Faust
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Alison M Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Nguyen B, Tolia NH. Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines 2021; 6:70. [PMID: 33986287 PMCID: PMC8119681 DOI: 10.1038/s41541-021-00330-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
Modern vaccine design has sought a minimalization approach, moving to the isolation of antigens from pathogens that invoke a strong neutralizing immune response. This approach has created safer vaccines but may limit vaccine efficacy due to poor immunogenicity. To combat global diseases such as COVID-19, malaria, and AIDS there is a clear urgency for more effective next-generation vaccines. One approach to improve the immunogenicity of vaccines is the use of nanoparticle platforms that present a repetitive array of antigen on its surface. This technology has been shown to improve antigen presenting cell uptake, lymph node trafficking, and B-cell activation through increased avidity and particle size. With a focus on design, we summarize natural platforms, methods of antigen attachment, and advancements in generating self-assembly that have led to new engineered platforms. We further examine critical parameters that will direct the usage and development of more effective platforms.
Collapse
Affiliation(s)
- Brian Nguyen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Pirahmadi S, Zakeri S, Djadid ND, Mehrizi AA. A review of combination adjuvants for malaria vaccines: a promising approach for vaccine development. Int J Parasitol 2021; 51:699-717. [PMID: 33798560 DOI: 10.1016/j.ijpara.2021.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Distaffen HE, Jones CW, Abraham BL, Nilsson BL. Multivalent display of chemical signals on
self‐assembled
peptide scaffolds. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
The Versatile Manipulations of Self-Assembled Proteins in Vaccine Design. Int J Mol Sci 2021; 22:ijms22041934. [PMID: 33669238 PMCID: PMC7919822 DOI: 10.3390/ijms22041934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Protein assemblies provide unique structural features which make them useful as carrier molecules in biomedical and chemical science. Protein assemblies can accommodate a variety of organic, inorganic and biological molecules such as small proteins and peptides and have been used in development of subunit vaccines via display parts of viral pathogens or antigens. Such subunit vaccines are much safer than traditional vaccines based on inactivated pathogens which are more likely to produce side-effects. Therefore, to tackle a pandemic and rapidly produce safer and more effective subunit vaccines based on protein assemblies, it is necessary to understand the basic structural features which drive protein self-assembly and functionalization of portions of pathogens. This review highlights recent developments and future perspectives in production of non-viral protein assemblies with essential structural features of subunit vaccines.
Collapse
|
23
|
Federizon J, Feugmo CGT, Huang WC, He X, Miura K, Razi A, Ortega J, Karttunen M, Lovell JF. Experimental and Computational Observations of Immunogenic Cobalt Porphyrin Lipid Bilayers: Nanodomain-Enhanced Antigen Association. Pharmaceutics 2021; 13:pharmaceutics13010098. [PMID: 33466686 PMCID: PMC7828809 DOI: 10.3390/pharmaceutics13010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Cobalt porphyrin phospholipid (CoPoP) can incorporate within bilayers to enable non-covalent surface-display of antigens on liposomes by mixing with proteins bearing a polyhistidine tag (his-tag); however, the mechanisms for how this occurs are poorly understood. These were investigated using the his-tagged model antigen Pfs25, a protein antigen candidate for malaria transmission-blocking vaccines. Pfs25 was found to associate with the small molecule aquocobalamin, a form of vitamin B12 and a cobalt-containing corrin macrocycle, but without particle formation, enabling comparative assessment. Relative to CoPoP liposomes, binding and serum stability studies indicated a weaker association of Pfs25 to aquocobalamin or cobalt nitrilotriacetic acid (Co-NTA) liposomes, which have cobalt displayed in the aqueous phase on lipid headgroups. Antigen internalization by macrophages was enhanced with Pfs25 bound to CoPoP liposomes. Immunization in mice with Pfs25 bound to CoPoP liposomes elicited antibodies that recognized ookinetes and showed transmission-reducing activity. To explore the physical mechanisms involved, we employed molecular dynamics (MD) simulations of bilayers containing phospholipid, cholesterol, as well as either CoPoP or NTA-functionalized lipids. The results show that the CoPoP-containing bilayer creates nanodomains that allow access for a limited but sufficient amount of water molecules that could be replaced by his-tags due to their favorable free energy properties allowing for stabilization. The position of the metal center within the NTA liposomes was much more exposed to the aqueous environment, which could explain its limited capacity for stabilizing Pfs25. This study illustrates the impact of CoPoP-induced antigen particleization in enhancing vaccine efficacy, and provides molecular insights into the CoPoP bilayer properties that enable this.
Collapse
Affiliation(s)
- Jasmin Federizon
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.F.); (W.-C.H.); (X.H.)
| | | | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.F.); (W.-C.H.); (X.H.)
| | - Xuedan He
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.F.); (W.-C.H.); (X.H.)
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA;
| | - Aida Razi
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; (A.R.); (J.O.)
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; (A.R.); (J.O.)
| | - Mikko Karttunen
- Department of Chemistry, the University of Western Ontario, London, ON N6A 3K7, Canada;
- Centre for Advanced Materials and Biomaterials Research, the University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Applied Mathematics, the University of Western Ontario, London, ON N6A 5B7, Canada
- Correspondence: (M.K.); (J.F.L.)
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; (J.F.); (W.-C.H.); (X.H.)
- Correspondence: (M.K.); (J.F.L.)
| |
Collapse
|
24
|
Zhao X, Yang F, Mariz F, Osen W, Bolchi A, Ottonello S, Müller M. Combined prophylactic and therapeutic immune responses against human papillomaviruses induced by a thioredoxin-based L2-E7 nanoparticle vaccine. PLoS Pathog 2020; 16:e1008827. [PMID: 32886721 PMCID: PMC7498061 DOI: 10.1371/journal.ppat.1008827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/17/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Global burden of cervical cancer, the most common cause of mortality caused by human papillomavirus (HPV), is expected to increase during the next decade, mainly because current alternatives for HPV vaccination and cervical cancer screening programs are costly to be established in low-and-middle income countries. Recently, we described the development of the broadly protective, thermostable vaccine antigen Trx-8mer-OVX313 based on the insertion of eight different minor capsid protein L2 neutralization epitopes into a thioredoxin scaffold from the hyperthermophilic archaeon Pyrococcus furiosus and conversion of the resulting antigen into a nanoparticle format (median radius ~9 nm) upon fusion with the heptamerizing OVX313 module. Here we evaluated whether the engineered thioredoxin scaffold, in addition to humoral immune responses, can induce CD8+ T-cell responses upon incorporation of MHC-I-restricted epitopes. By systematically examining the contribution of individual antigen modules, we demonstrated that B-cell and T-cell epitopes can be combined into a single antigen construct without compromising either immunogenicity. While CD8+ T-cell epitopes had no influence on B-cell responses, the L2 polytope (8mer) and OVX313-mediated heptamerization of the final antigen significantly increased CD8+ T-cell responses. In a proof-of-concept experiment, we found that vaccinated mice remained tumor-free even after two consecutive tumor challenges, while unvaccinated mice developed tumors. A cost-effective, broadly protective vaccine with both prophylactic and therapeutic properties represents a promising option to overcome the challenges associated with prevention and treatment of HPV-caused diseases. Currently, there are three licensed prophylactic vaccines available against HPV, but none of them shows a therapeutic effect on pre-existing infections. Thus, a prophylactic vaccine also endowed with a therapeutic activity presents application potentials to individuals regardless of their HPV-infection status. Such a dual-purpose vaccine would be particularly valuable for post-exposure prophylaxis and shields population from recurrent HPV infections. Here, we constructed a combined vaccine relying on L2- and E7-specific epitopes grafted onto the surface of a hyper-stable thioredoxin scaffold. The resulting antigen was converted into a nanoparticle format with the use of a heptamerization domain. Our data document that the modular design of the antigen allows combination of B-cell and T-cell epitopes in one antigen without compromising either’s immunogenicity. The antigen retains its ability to provide broad protection against different HPV types but also presents strong therapeutic effects in a mouse tumor model. Therefore, the vaccine is potentially capable of resolving productive infection as well as HPV-related malignancies, and thus benefitting both uninfected and already infected individuals. Moreover, our vaccine utilizes E. coli as protein producer and distribution does not require cold-chain, which reduces costs making it applicable to less-affluent countries.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/pharmacology
- Antigens, Viral/chemistry
- Antigens, Viral/pharmacology
- Archaeal Proteins/chemistry
- Archaeal Proteins/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cancer Vaccines/chemistry
- Cancer Vaccines/pharmacology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/pharmacology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/pharmacology
- Female
- Humans
- Immunity, Cellular/drug effects
- Mice
- Mice, Inbred BALB C
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Papillomaviridae/chemistry
- Papillomaviridae/immunology
- Papillomavirus Vaccines/chemistry
- Papillomavirus Vaccines/pharmacology
- Pyrococcus furiosus/chemistry
- Thioredoxins/chemistry
- Thioredoxins/pharmacology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/virology
Collapse
Affiliation(s)
- Xueer Zhao
- German Cancer Research Center, Heidelberg, Germany
| | - Fan Yang
- German Cancer Research Center, Heidelberg, Germany
| | - Filipe Mariz
- German Cancer Research Center, Heidelberg, Germany
| | - Wolfram Osen
- German Cancer Research Center, Heidelberg, Germany
| | - Angelo Bolchi
- Department of Chemical Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Simone Ottonello
- Department of Chemical Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martin Müller
- German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
25
|
Mabrouk MT, Huang WC, Deng B, Li-Purcell N, Seffouh A, Ortega J, Ekin Atilla-Gokcumen G, Long CA, Miura K, Lovell JF. Lyophilized, antigen-bound liposomes with reduced MPLA and enhanced thermostability. Int J Pharm 2020; 589:119843. [PMID: 32890653 DOI: 10.1016/j.ijpharm.2020.119843] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022]
Abstract
Thermostability and decreased component costs are desirable features for adjuvanted, recombinant vaccines. We previously showed that a model malaria transmission-blocking vaccine candidate antigen, Pfs25, can be rendered more immunogenic when mixed with liposomes containing cobalt porphyrin-phospholipid (CoPoP) and a synthetic monophosphoryl lipid A (MPLA) variant. CoPoP can induce stable particle formation of recombinant antigens based on interaction with their polyhistidine tag. In the present work, different synthetic MPLA variants and concentrations were assessed in CoPoP liposomes. Long-term biophysical stability and immunogenicity were not adversely impacted by a 60% reduction in MPLA content. When admixed with Pfs25, the adjuvant formulations effectively induced functional antibodies in immunized mice and rabbits. Lyophilized, antigen-bound liposomes were formed using sucrose and trehalose cryoprotectants, which improved vaccine reconstitution for a variety of model antigens. Compared to liquid storage, the lyophilized Pfs25 and CoPoP liposomes exhibited thermostability with respect to size, biochemical integrity, binding capacity, protein folding and immunogenicity. Following 6 weeks of storage at 60 °C, the most extended storage period assessed, the lyophilized formulation induced functional antibodies in mice with immunization.
Collapse
Affiliation(s)
- Moustafa T Mabrouk
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Nasi Li-Purcell
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A 0C7, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec H3A 0C7, Canada
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
26
|
Abstract
Immunity to malaria has been linked to the availability and function of helper CD4+ T cells, cytotoxic CD8+ T cells and γδ T cells that can respond to both the asymptomatic liver stage and the symptomatic blood stage of Plasmodium sp. infection. These T cell responses are also thought to be modulated by regulatory T cells. However, the precise mechanisms governing the development and function of Plasmodium-specific T cells and their capacity to form tissue-resident and long-lived memory populations are less well understood. The field has arrived at a point where the push for vaccines that exploit T cell-mediated immunity to malaria has made it imperative to define and reconcile the mechanisms that regulate the development and functions of Plasmodium-specific T cells. Here, we review our current understanding of the mechanisms by which T cell subsets orchestrate host resistance to Plasmodium infection on the basis of observational and mechanistic studies in humans, non-human primates and rodent models. We also examine the potential of new experimental strategies and human infection systems to inform a new generation of approaches to harness T cell responses against malaria.
Collapse
|
27
|
de Jong RM, Tebeje SK, Meerstein‐Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage Plasmodium falciparum and Plasmodium vivax parasites. Immunol Rev 2020; 293:190-215. [PMID: 31840844 PMCID: PMC6973022 DOI: 10.1111/imr.12828] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
The efficient spread of malaria from infected humans to mosquitoes is a major challenge for malaria elimination initiatives. Gametocytes are the only Plasmodium life stage infectious to mosquitoes. Here, we summarize evidence for naturally acquired anti-gametocyte immunity and the current state of transmission blocking vaccines (TBV). Although gametocytes are intra-erythrocytic when present in infected humans, developing Plasmodium falciparum gametocytes may express proteins on the surface of red blood cells that elicit immune responses in naturally exposed individuals. This immune response may reduce the burden of circulating gametocytes. For both P. falciparum and Plasmodium vivax, there is a solid evidence that antibodies against antigens present on the gametocyte surface, when co-ingested with gametocytes, can influence transmission to mosquitoes. Transmission reducing immunity, reducing the burden of infection in mosquitoes, is a well-acknowledged but poorly quantified phenomenon that forms the basis for the development of TBV. Transmission enhancing immunity, increasing the likelihood or intensity of transmission to mosquitoes, is more speculative in nature but is convincingly demonstrated for P. vivax. With the increased interest in malaria elimination, TBV and monoclonal antibodies have moved to the center stage of malaria vaccine development. Methodologies to prioritize and evaluate products are urgently needed.
Collapse
MESH Headings
- Antibodies, Blocking/immunology
- Antibodies, Protozoan/immunology
- Host-Parasite Interactions/immunology
- Humans
- Immunity
- Immunomodulation
- Life Cycle Stages
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/transmission
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Plasmodium vivax/growth & development
- Plasmodium vivax/immunology
Collapse
Affiliation(s)
- Roos M. de Jong
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Lisette Meerstein‐Kessel
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Centre for Molecular and Biomolecular InformaticsRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Fitsum G. Tadesse
- Armauer Hansen Research InstituteAddis AbabaEthiopia
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthijs M. Jore
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Will Stone
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| | - Teun Bousema
- Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Department of Immunology and InfectionLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
28
|
Marini A, Zhou Y, Li Y, Taylor IJ, Leneghan DB, Jin J, Zaric M, Mekhaiel D, Long CA, Miura K, Biswas S. A Universal Plug-and-Display Vaccine Carrier Based on HBsAg VLP to Maximize Effective Antibody Response. Front Immunol 2019; 10:2931. [PMID: 31921185 PMCID: PMC6921968 DOI: 10.3389/fimmu.2019.02931] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/28/2019] [Indexed: 01/26/2023] Open
Abstract
Development of effective malaria vaccines requires delivery platforms to enhance the immunogenicity and efficacy of the target antigens. This is particularly challenging for transmission-blocking malaria vaccines (TBVs), and specifically for those based on the Pfs25 antigen, that need to elicit very high antibody titers to stop the parasite development in the mosquito host and its transmission. Presenting antigens to the immune system on virus-like particles (VLPs) is an efficient way to improve the quantity and quality of the immune response generated. Here we introduce for the first time a new VLP vaccine platform, based on the well-established hepatitis B surface antigen (HBsAg) fused to the SpyCatcher protein, so that the antigen of interest, linked to the SpyTag peptide, can be easily displayed on it (Plug-and-Display technology). As little as 10% of the SpyCatcher::HBsAg VLPs decorated with Pfs25::SpyTag (molar ratio) induces a higher antibody response and transmission-reducing activity in mice compared to the soluble protein, with 50 and 90% of the VLP coupled to the antigen further enhancing the response. Importantly, using this carrier that is a vaccine antigen itself could be beneficial, as we show that anti-HBsAg IgG antibodies are induced without interfering with the Pfs25-specific immune response generated. Furthermore, pre-existing anti-HBsAg immunity does not affect the antigen-specific response to Pfs25::SpyTag-SpyCatcher::HBsAg, suggesting that these VLPs can have a broad use as a vaccine platform.
Collapse
Affiliation(s)
- Arianna Marini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yu Zhou
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J. Taylor
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Darren B. Leneghan
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jing Jin
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marija Zaric
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Grubor-Bauk B, Wijesundara DK, Masavuli M, Abbink P, Peterson RL, Prow NA, Larocca RA, Mekonnen ZA, Shrestha A, Eyre NS, Beard MR, Gummow J, Carr J, Robertson SA, Hayball JD, Barouch DH, Gowans EJ. NS1 DNA vaccination protects against Zika infection through T cell-mediated immunity in immunocompetent mice. SCIENCE ADVANCES 2019; 5:eaax2388. [PMID: 31844662 PMCID: PMC6905874 DOI: 10.1126/sciadv.aax2388] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/08/2019] [Indexed: 05/08/2023]
Abstract
The causal association of Zika virus (ZIKV) with microcephaly, congenital malformations in infants, and Guillain-Barré syndrome in adults highlights the need for effective vaccines. Thus far, efforts to develop ZIKV vaccines have focused on the viral envelope. ZIKV NS1 as a vaccine immunogen has not been fully explored, although it can circumvent the risk of antibody-dependent enhancement of ZIKV infection, associated with envelope antibodies. Here, we describe a novel DNA vaccine encoding a secreted ZIKV NS1, that confers rapid protection from systemic ZIKV infection in immunocompetent mice. We identify novel NS1 T cell epitopes in vivo and show that functional NS1-specific T cell responses are critical for protection against ZIKV infection. We demonstrate that vaccine-induced anti-NS1 antibodies fail to confer protection in the absence of a functional T cell response. This highlights the importance of using NS1 as a target for T cell-based ZIKV vaccines.
Collapse
Affiliation(s)
- B. Grubor-Bauk
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
- Corresponding author.
| | - D. K. Wijesundara
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - M. Masavuli
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - P. Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - R. L. Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - N. A. Prow
- Experimental Therapeutics Laboratory, Cancer Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - R. A. Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Z. A. Mekonnen
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - A. Shrestha
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| | - N. S. Eyre
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - M. R. Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. Gummow
- Gene Silencing and Expression Core Facility, Adelaide Health and Medical Sciences, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - S. A. Robertson
- Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - J. D. Hayball
- Experimental Therapeutics Laboratory, Cancer Research Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5000, Australia
- Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - D. H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - E. J. Gowans
- Discipline of Surgery, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5005, Australia
| |
Collapse
|
30
|
Prospects for Malaria Vaccines: Pre-Erythrocytic Stages, Blood Stages, and Transmission-Blocking Stages. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9751471. [PMID: 31687404 PMCID: PMC6794966 DOI: 10.1155/2019/9751471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/06/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022]
Abstract
Malaria is a disease of public health importance in many parts of the world. Currently, there is no effective way to eradicate malaria, so developing safe, efficient, and cost-effective vaccines against this disease remains an important goal. Current research on malaria vaccines is focused on developing vaccines against pre-erythrocytic stage parasites and blood-stage parasites or on developing a transmission-blocking vaccine. Here, we briefly describe the progress made towards a vaccine against Plasmodium falciparum, the most pathogenic of the malaria parasite species to infect humans.
Collapse
|
31
|
Lim SI. Site-specific bioconjugation and self-assembly technologies for multi-functional biologics: on the road to the clinic. Drug Discov Today 2019; 25:168-176. [PMID: 31610287 DOI: 10.1016/j.drudis.2019.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 01/02/2023]
Abstract
The expanding portfolio of biotherapeutics both in the research and development (R&D) and market sectors is shaping new opportunities towards multifunctional biologics (MFBs). The combination of new or pre-existing therapeutic agents into a single multifunctional format makes it possible to develop new pharmacological actions to significantly improve their efficacy and safety. In this review, I focus on novel platform technologies that are being exploited in the biotech industry to produce MFBs with potential therapeutic benefits that include half-life extension, targeted delivery, T cell engagement, and improved vaccination. In this regard, technologies of key importance are site-specific bioconjugation and self-assembly, which allow homogeneous, defined, and scalable process developments for several MFBs that are advancing towards clinical applications.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
32
|
Tentokam BCN, Amaratunga C, Alani NAH, MacDonald NJ, Narum DL, Salinas ND, Kwan JL, Suon S, Sreng S, Pereira DB, Tolia NH, Fujiwara RT, Bueno LL, Duffy PE, Coelho CH. Naturally Acquired Antibody Response to Malaria Transmission Blocking Vaccine Candidate Pvs230 Domain 1. Front Immunol 2019; 10:2295. [PMID: 31636633 PMCID: PMC6788386 DOI: 10.3389/fimmu.2019.02295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/11/2019] [Indexed: 01/27/2023] Open
Abstract
Plasmodium vivax malaria incidence has increased in Latin America and Asia and is responsible for nearly 74.1% of malaria cases in Latin America. Immune responses to P. vivax are less well characterized than those to P. falciparum, partly because P. vivax is more difficult to cultivate in the laboratory. While antibodies are known to play an important role in P. vivax disease control, few studies have evaluated responses to P. vivax sexual stage antigens. We collected sera or plasma samples from P. vivax-infected subjects from Brazil (n = 70) and Cambodia (n = 79) to assess antibody responses to domain 1 of the gametocyte/gamete stage protein Pvs230 (Pvs230D1M). We found that 27.1% (19/70) and 26.6% (21/79) of subjects from Brazil and Cambodia, respectively, presented with detectable antibody responses to Pvs230D1M antigen. The most frequent subclasses elicited in response to Pvs230D1M were IgG1 and IgG3. Although age did not correlate significantly with Pvs230D1M antibody levels overall, we observed significant differences between age strata. Hemoglobin concentration inversely correlated with Pvs230D1M antibody levels in Brazil, but not in Cambodia. Additionally, we analyzed the antibody response against Pfs230D1M, the P. falciparum ortholog of Pvs230D1M. We detected antibodies to Pfs230D1M in 7.2 and 16.5% of Brazilian and Cambodian P. vivax-infected subjects. Depletion of Pvs230D1M IgG did not impair the response to Pfs230D1M, suggesting pre-exposure to P. falciparum, or co-infection. We also analyzed IgG responses to sporozoite protein PvCSP (11.4 and 41.8% in Brazil and Cambodia, respectively) and to merozoite protein PvDBP-RII (67.1 and 48.1% in Brazil and Cambodia, respectively), whose titers also inversely correlated with hemoglobin concentration only in Brazil. These data establish patterns of seroreactivity to sexual stage Pvs230D1M and show similar antibody responses among P. vivax-infected subjects from regions of differing transmission intensity in Brazil and Cambodia.
Collapse
Affiliation(s)
- Bergeline C Nguemwo Tentokam
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Rockville, MD, United States
| | - Nada A H Alani
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nicholas J MacDonald
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nichole D Salinas
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jennifer L Kwan
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Seila Suon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Sokunthea Sreng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ricardo T Fujiwara
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lilian L Bueno
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Camila H Coelho
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
33
|
Miura K, Tachibana M, Takashima E, Morita M, Kanoi BN, Nagaoka H, Baba M, Torii M, Ishino T, Tsuboi T. Malaria transmission-blocking vaccines: wheat germ cell-free technology can accelerate vaccine development. Expert Rev Vaccines 2019; 18:1017-1027. [PMID: 31566026 PMCID: PMC11000147 DOI: 10.1080/14760584.2019.1674145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Highly effective malaria vaccines are essential component toward malaria elimination. Although the leading malaria vaccine, RTS,S/AS01, with modest efficacy is being evaluated in a pilot feasibility trial, development of a malaria transmission-blocking vaccine (TBV) could make a major contribution toward malaria elimination. Only a few TBV antigens have reached pre-clinical or clinical development but with several challenges including difficulties in the expression of malaria recombinant proteins and low immunogenicity in humans. Therefore, novel approaches to accelerate TBV research to preclinical development are critical to generate an efficacious TBV.Areas covered: PubMed was searched to review the progress and future prospects of malaria TBV research and development. We also reviewed registered trials at ClinicalTrials.gov as well as post-genome TBV candidate discovery research including our efforts.Expert opinion: Wheat germ cell-free protein synthesis technology can accelerate TBV development by overcoming some current challenges of TBV research.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Minami Baba
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
34
|
McLeod B, Miura K, Scally SW, Bosch A, Nguyen N, Shin H, Kim D, Volkmuth W, Rämisch S, Chichester JA, Streatfield S, Woods C, Schief WR, Emerling D, King CR, Julien JP. Potent antibody lineage against malaria transmission elicited by human vaccination with Pfs25. Nat Commun 2019; 10:4328. [PMID: 31551421 PMCID: PMC6760140 DOI: 10.1038/s41467-019-11980-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/14/2019] [Indexed: 01/13/2023] Open
Abstract
Transmission-blocking vaccines have the potential to be key contributors to malaria elimination. Such vaccines elicit antibodies that inhibit parasites during their development in Anopheles mosquitoes, thus breaking the cycle of transmission. To date, characterization of humoral responses to Plasmodium falciparum transmission-blocking vaccine candidate Pfs25 has largely been conducted in pre-clinical models. Here, we present molecular analyses of human antibody responses generated in a clinical trial evaluating Pfs25 vaccination. From a collection of monoclonal antibodies with transmission-blocking activity, we identify the most potent transmission-blocking antibody yet described against Pfs25; 2544. The interactions of 2544 and three other antibodies with Pfs25 are analyzed by crystallography to understand structural requirements for elicitation of human transmission-blocking responses. Our analyses provide insights into Pfs25 immunogenicity and epitope potency, and detail an affinity maturation pathway for a potent transmission-blocking antibody in humans. Our findings can be employed to guide the design of improved malaria transmission-blocking vaccines. Pfs25 is a transmission-blocking vaccine candidate for Plasmodium. Here, McLeod et al. analyze the antibody response to Pfs25 in sera from a clinical trial evaluating a Pfs25 vaccine candidate, identify a potent transmission-blocking antibody and determine recognized epitopes on Pfs25.
Collapse
Affiliation(s)
- Brandon McLeod
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Ngan Nguyen
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Hanjun Shin
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Dongkyoon Kim
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Wayne Volkmuth
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Sebastian Rämisch
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica A Chichester
- Gene Therapy Program & Orphan Disease Center, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen Streatfield
- Fraunhofer USA Center for Molecular Biotechnology CMB, 9 Innovation Way, Newark, DE, 19711, USA
| | - Colleen Woods
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue NW Suite 1000, Washington, DC, 20001, USA
| | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Daniel Emerling
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - C Richter King
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue NW Suite 1000, Washington, DC, 20001, USA
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
35
|
Wetzel D, Chan JA, Suckow M, Barbian A, Weniger M, Jenzelewski V, Reiling L, Richards JS, Anderson DA, Kouskousis B, Palmer C, Hanssen E, Schembecker G, Merz J, Beeson JG, Piontek M. Display of malaria transmission-blocking antigens on chimeric duck hepatitis B virus-derived virus-like particles produced in Hansenula polymorpha. PLoS One 2019; 14:e0221394. [PMID: 31483818 PMCID: PMC6726142 DOI: 10.1371/journal.pone.0221394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum is one of the major threats to human health globally. Despite huge efforts in malaria control and eradication, highly effective vaccines are urgently needed, including vaccines that can block malaria transmission. Chimeric virus-like particles (VLP) have emerged as a promising strategy to develop new malaria vaccine candidates. METHODS We developed yeast cell lines and processes for the expression of malaria transmission-blocking vaccine candidates Pfs25 and Pfs230 as VLP and VLP were analyzed for purity, size, protein incorporation rate and expression of malaria antigens. RESULTS In this study, a novel platform for the display of Plasmodium falciparum antigens on chimeric VLP is presented. Leading transmission-blocking vaccine candidates Pfs25 and Pfs230 were genetically fused to the small surface protein (dS) of the duck hepatitis B virus (DHBV). The resulting fusion proteins were co-expressed in recombinant Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) strains along with the wild-type dS as the VLP scaffold protein. Through this strategy, chimeric VLP containing Pfs25 or the Pfs230-derived fragments Pfs230c or Pfs230D1M were purified. Up to 100 mg chimeric VLP were isolated from 100 g dry cell weight with a maximum protein purity of 90% on the protein level. Expression of the Pfs230D1M construct was more efficient than Pfs230c and enabled VLP with higher purity. VLP showed reactivity with transmission-blocking antibodies and supported the surface display of the malaria antigens on the native VLP. CONCLUSION The incorporation of leading Plasmodium falciparum transmission-blocking antigens into the dS-based VLP scaffold is a promising novel strategy for their display on nano-scaled particles. Competitive processes for efficient production and purification were established in this study.
Collapse
Affiliation(s)
- David Wetzel
- ARTES Biotechnology GmbH, Langenfeld, Germany
- Laboratory of Plant and Process Design, Technical University of Dortmund, Dortmund, Germany
| | - Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | - Andreas Barbian
- Düsseldorf University Hospital, Institute for Anatomy I, Düsseldorf, Germany
| | | | | | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Jack S. Richards
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - David A. Anderson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Betty Kouskousis
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Catherine Palmer
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Eric Hanssen
- The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Gerhard Schembecker
- Laboratory of Plant and Process Design, Technical University of Dortmund, Dortmund, Germany
| | - Juliane Merz
- Evonik Technology & Infrastructure GmbH, Hanau, Germany
| | - James G. Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
36
|
Techawiwattanaboon T, Barnier-Quer C, Palaga T, Jacquet A, Collin N, Sangjun N, Komanee P, Piboonpocanun S, Patarakul K. Reduced Renal Colonization and Enhanced Protection by Leptospiral Factor H Binding Proteins as a Multisubunit Vaccine Against Leptospirosis in Hamsters. Vaccines (Basel) 2019; 7:vaccines7030095. [PMID: 31443566 PMCID: PMC6789851 DOI: 10.3390/vaccines7030095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Subunit vaccines conferring complete protection against leptospirosis are not currently available. The interactions of factor H binding proteins (FHBPs) on pathogenic leptospires and host factor H are crucial for immune evasion by inhibition of complement-mediated killing. The inhibition of these interactions may be a potential strategy to clear leptospires in the host. This study aimed to evaluate a multisubunit vaccine composed of four known leptospiral FHBPs: LigA domain 7–13 (LigAc), LenA, LcpA, and Lsa23, for its protective efficacy in hamsters. The mono and multisubunit vaccines formulated with LMQ adjuvant, a combination of neutral liposome, monophosphoryl lipid A, and Quillaja saponaria fraction 21, induced high and comparable specific antibody (IgG) production against individual antigens. Hamsters immunized with the multisubunit vaccine showed 60% survival following the challenge by 20× LD50 of Leptospira interrogans serovar Pomona. No significant difference in survival rate and pathological findings of target organs was observed after vaccinations with multisubunit or mono-LigAc vaccines. However, the multisubunit vaccine significantly reduced leptospiral burden in surviving hamsters in comparison with the monosubunit vaccines. Therefore, the multisubunit vaccine conferred partial protection and reduced renal colonization against virulence Leptospira infection in hamsters. Our multisubunit formulation could represent a promising vaccine against leptospirosis.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alain Jacquet
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Nicolas Collin
- Vaccine Formulation Laboratory (VFL), University of Lausanne, 1066 Epalinges, Switzerland
| | - Noppadon Sangjun
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand
| | - Pat Komanee
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand
| | - Surapon Piboonpocanun
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Outer membrane protein complex as a carrier for malaria transmission blocking antigen Pfs230. NPJ Vaccines 2019; 4:24. [PMID: 31312527 PMCID: PMC6614402 DOI: 10.1038/s41541-019-0121-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Malaria transmission blocking vaccines (TBV) target the mosquito stage of parasite development by passive immunization of mosquitoes feeding on a vaccinated human. Through uptake of vaccine-induced antibodies in a blood meal, mosquito infection is halted and hence transmission to another human host is blocked. Pfs230 is a gametocyte and gamete surface antigen currently under clinical evaluation as a TBV candidate. We have previously shown that chemical conjugation of poorly immunogenic TBV antigens to Exoprotein A (EPA) can enhance their immunogenicity. Here, we assessed Outer Membrane Protein Complex (OMPC), a membrane vesicle derived from Neisseria meningitidis, as a carrier for Pfs230. We prepared Pfs230-OMPC conjugates with varying levels of antigen load and examined immunogenicity in mice. Chemical conjugation of Pfs230 to OMPC enhanced immunogenicity and functional activity of the Pfs230 antigen, and OMPC conjugates achieved 2-fold to 20-fold higher antibody titers than Pfs230-EPA/AdjuPhos® at different doses. OMPC conjugates were highly immunogenic even at low doses, indicating a dose-sparing effect. EPA conjugates induced an IgG subclass profile biased towards a Th2 response, whereas OMPC conjugates induced a strong Th1-biased immune response with high levels of IgG2, which can benefit Pfs230 antibody functional activity, which depends on complement activation. OMPC is a promising carrier for Pfs230 vaccines. Malaria transmission blocking vaccines (TBV) target Plasmodium stages that transmit between human and mosquitos in order to interrupt the parasite’s life cycle and reduce spread. One TBV antigen currently under clinical development is Pf230, which is expressed on sexual Plasmodium stages. In this study, led by Patrick Duffy from the NIAID, researchers improve immunogenicity of Pf230. They chemically conjugate a part of Pf230 to membrane vesicles derived from bacteria, so-called outer membrane protein complexes (OMPC). Immunization of mice with Pf230-OMPC elicits a higher antibody response and a more balanced IgG subclass profile than control immunizations. Serum from Pf230-OMPC-vaccinated mice efficiently blocks infection of mosquitoes. These results with mice encourage further pre-clinical and clinical characterization of OMPC as a carrier for TBV antigens.
Collapse
|
38
|
Masavuli MG, Wijesundara DK, Underwood A, Christiansen D, Earnest-Silveira L, Bull R, Torresi J, Gowans EJ, Grubor-Bauk B. A Hepatitis C Virus DNA Vaccine Encoding a Secreted, Oligomerized Form of Envelope Proteins Is Highly Immunogenic and Elicits Neutralizing Antibodies in Vaccinated Mice. Front Immunol 2019; 10:1145. [PMID: 31178869 PMCID: PMC6543710 DOI: 10.3389/fimmu.2019.01145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) persistently infects approximately 71 million people globally. To prevent infection a vaccine which elicits neutralizing antibodies against the virus envelope proteins (E1/E2) which are required for entry into host cells is desirable. DNA vaccines are cost-effective to manufacture globally and despite recent landmark studies highlighting the therapeutic efficacy of DNA vaccines in humans against cervical cancer, DNA vaccines encoding E1/E2 developed thus far are poorly immunogenic. We now report a novel and highly immunogenic DNA vaccination strategy that incorporates secreted E1 and E2 (sE1 and sE2) into oligomers by fusion with the oligomerization domain of the C4b-binding protein, IMX313P. The FDA approved plasmid, pVax, was used to encode sE1, sE2, or sE1E2 with or without IMX313P, and intradermal prime-boost vaccination studies in BALB/c mice showed that vaccines encoding IMX313P were the most effective in eliciting humoral and cell-mediated immunity against the envelope proteins. Further boosting with recombinant E1E2 proteins but not DNA nor virus-like particles (VLPs) expressing E1E2 increased the immunogenicity of the DNA prime-boost regimen. Nevertheless, the antibodies generated by the homologous DNA prime-boost vaccinations more effectively inhibited the binding of VLPs to target cells and neutralized transduction with HCV pseudoparticles (HCVpp) derived from different genotypes including genotypes 1, 2, 3, 4, 5, and 6. This report provides the first evidence that IMX313P can be used as an adjuvant for E1/E2-based DNA vaccines and represents a translatable approach for the development of a HCV DNA vaccine.
Collapse
Affiliation(s)
- Makutiro Ghislain Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Alexander Underwood
- Faculty of Medicine, The Kirby Institute, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Rowena Bull
- Faculty of Medicine, The Kirby Institute, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
39
|
Abstract
In the progression of the life cycle of Plasmodium falciparum, a small proportion of asexual parasites differentiate into male or female sexual forms called gametocytes. Just like their asexual counterparts, gametocytes are contained within the infected host's erythrocytes (RBCs). However, unlike their asexual partners, they do not exit the RBC until they are taken up in a blood meal by a mosquito. In the mosquito midgut, they are stimulated to emerge from the RBC, undergo fertilization, and ultimately produce tens of thousands of sporozoites that are infectious to humans. This transmission cycle can be blocked by antibodies targeting proteins exposed on the parasite surface in the mosquito midgut, a process that has led to the development of candidate transmission-blocking vaccines (TBV), including some that are in clinical trials. Here we review the leading TBV antigens and highlight the ongoing search for additional gametocyte/gamete surface antigens, as well as antigens on the surfaces of gametocyte-infected erythrocytes, which can potentially become a new group of TBV candidates.
Collapse
|
40
|
Shrestha AC, Wijesundara DK, Masavuli MG, Mekonnen ZA, Gowans EJ, Grubor-Bauk B. Cytolytic Perforin as an Adjuvant to Enhance the Immunogenicity of DNA Vaccines. Vaccines (Basel) 2019; 7:vaccines7020038. [PMID: 31052178 PMCID: PMC6630607 DOI: 10.3390/vaccines7020038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
DNA vaccines present one of the most cost-effective platforms to develop global vaccines, which have been tested for nearly three decades in preclinical and clinical settings with some success in the clinic. However, one of the major challenges for the development of DNA vaccines is their poor immunogenicity in humans, which has led to refinements in DNA delivery, dosage in prime/boost regimens and the inclusion of adjuvants to enhance their immunogenicity. In this review, we focus on adjuvants that can enhance the immunogenicity of DNA encoded antigens and highlight the development of a novel cytolytic DNA platform encoding a truncated mouse perforin. The application of this innovative DNA technology has considerable potential in the development of effective vaccines.
Collapse
Affiliation(s)
- Ashish C Shrestha
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Danushka K Wijesundara
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Makutiro G Masavuli
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Zelalem A Mekonnen
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Eric J Gowans
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| | - Branka Grubor-Bauk
- Virology Laboratory, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research and University of Adelaide, Adelaide 5011, Australia.
| |
Collapse
|
41
|
Andersson AMC, Buldun CM, Pattinson DJ, Draper SJ, Howarth M. SnoopLigase peptide-peptide conjugation enables modular vaccine assembly. Sci Rep 2019; 9:4625. [PMID: 30874593 PMCID: PMC6420506 DOI: 10.1038/s41598-019-40985-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
For many infectious diseases there is still no vaccine, even though potential protective antigens have been identified. Suitable platforms and conjugation routes are urgently needed to convert the promise of such antigens into broadly protective and scalable vaccines. Here we apply a newly established peptide-peptide ligation approach, SnoopLigase, for specific and irreversible coupling of antigens onto an oligomerization platform. SnoopLigase was engineered from a Streptococcus pneumoniae adhesin and enables isopeptide bond formation between two peptide tags: DogTag and SnoopTagJr. We expressed in bacteria DogTag linked to the self-assembling coiled-coil nanoparticle IMX313. This platform was stable over months at 37 °C when lyophilized, remaining reactive even after boiling. IMX-DogTag was efficiently coupled to two blood-stage malarial proteins (from PfEMP1 or CyRPA), with SnoopTagJr fused at the N- or C-terminus. We also showed SnoopLigase-mediated coupling of a telomerase peptide relevant to cancer immunotherapy. SnoopLigase-mediated nanoassembly enhanced the antibody response to both malaria antigens in a prime-boost model. Including or depleting SnoopLigase from the conjugate had little effect on the antibody response to the malarial antigens. SnoopLigase decoration represents a promising and accessible strategy for modular plug-and-display vaccine assembly, as well as providing opportunities for robust nanoconstruction in synthetic biology.
Collapse
Affiliation(s)
| | - Can M Buldun
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
42
|
Fougeroux C, Turner L, Bojesen AM, Lavstsen T, Holst PJ. Modified MHC Class II-Associated Invariant Chain Induces Increased Antibody Responses against Plasmodium falciparum Antigens after Adenoviral Vaccination. THE JOURNAL OF IMMUNOLOGY 2019; 202:2320-2331. [PMID: 30833346 DOI: 10.4049/jimmunol.1801210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/01/2019] [Indexed: 01/04/2023]
Abstract
Adenoviral vectors can induce T and B cell immune responses to Ags encoded in the recombinant vector. The MHC class II invariant chain (Ii) has been used as an adjuvant to enhance T cell responses to tethered Ag encoded in adenoviral vectors. In this study, we modified the Ii adjuvant by insertion of a furin recognition site (Ii-fur) to obtain a secreted version of the Ii. To test the capacity of this adjuvant to enhance immune responses, we recombined vectors to encode Plasmodium falciparum virulence factors: two cysteine-rich interdomain regions (CIDR) α1 (IT4var19 and PFCLINvar30 var genes), expressed as a dimeric Ag. These domains are members of a highly polymorphic protein family involved in the vascular sequestration and immune evasion of parasites in malaria. The Ii-fur molecule directed secretion of both Ags in African green monkey cells and functioned as an adjuvant for MHC class I and II presentation in T cell hybridomas. In mice, the Ii-fur adjuvant induced a similar T cell response, as previously demonstrated with Ii, accelerated and enhanced the specific Ab response against both CIDR Ags, with an increased binding capacity to the cognate endothelial protein C receptor, and enhanced the breadth of the response toward different CIDRs. We also demonstrate that the endosomal sorting signal, secretion, and the C-terminal part of Ii were needed for the full adjuvant effect for Ab responses. We conclude that engineered secretion of Ii adjuvant-tethered Ags establishes a single adjuvant and delivery vehicle platform for potent T and B cell-dependent immunity.
Collapse
Affiliation(s)
- Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Louise Turner
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| |
Collapse
|
43
|
Kengne-Ouafo JA, Sutherland CJ, Binka FN, Awandare GA, Urban BC, Dinko B. Immune Responses to the Sexual Stages of Plasmodium falciparum Parasites. Front Immunol 2019; 10:136. [PMID: 30804940 PMCID: PMC6378314 DOI: 10.3389/fimmu.2019.00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria infections remain a serious global health problem in the world, particularly among children and pregnant women in Sub-Saharan Africa. Moreover, malaria control and elimination is hampered by rapid development of resistance by the parasite and the vector to commonly used antimalarial drugs and insecticides, respectively. Therefore, vaccine-based strategies are sorely needed, including those designed to interrupt disease transmission. However, a prerequisite for such a vaccine strategy is the understanding of both the human and vector immune responses to parasite developmental stages involved in parasite transmission in both man and mosquito. Here, we review the naturally acquired humoral and cellular responses to sexual stages of the parasite while in the human host and the Anopheles vector. In addition, updates on current anti-gametocyte, anti-gamete, and anti-mosquito transmission blocking vaccines are given. We conclude with our views on some important future directions of research into P. falciparum sexual stage immunity relevant to the search for the most appropriate transmission-blocking vaccine.
Collapse
Affiliation(s)
- Jonas A Kengne-Ouafo
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Colin J Sutherland
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fred N Binka
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Britta C Urban
- Faculty of Biological Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
44
|
Abstract
The development of highly effective and durable vaccines against the human malaria parasites Plasmodium falciparum and P. vivax remains a key priority. Decades of endeavor have taught that achieving this goal will be challenging; however, recent innovation in malaria vaccine research and a diverse pipeline of novel vaccine candidates for clinical assessment provides optimism. With first-generation pre-erythrocytic vaccines aiming for licensure in the coming years, it is important to reflect on how next-generation approaches can improve on their success. Here we review the latest vaccine approaches that seek to prevent malaria infection, disease, and transmission and highlight some of the major underlying immunological and molecular mechanisms of protection. The synthesis of rational antigen selection, immunogen design, and immunization strategies to induce quantitatively and qualitatively improved immune effector mechanisms offers promise for achieving sustained high-level protection.
Collapse
|
45
|
Wilson KL, Flanagan KL, Prakash MD, Plebanski M. Malaria vaccines in the eradication era: current status and future perspectives. Expert Rev Vaccines 2019; 18:133-151. [PMID: 30601095 DOI: 10.1080/14760584.2019.1561289] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The challenge to eradicate malaria is an enormous task that will not be achieved by current control measures, thus an efficacious and long-lasting malaria vaccine is required. The licensing of RTS, S/AS01 is a step forward in providing some protection, but a malaria vaccine that protects across multiple transmission seasons is still needed. To achieve this, inducing beneficial immune responses while minimising deleterious non-targeted effects will be essential. AREAS COVERED This article discusses the current challenges and advances in malaria vaccine development and reviews recent human clinical trials for each stage of infection. Pubmed and ScienceDirect were searched, focusing on cell mediated immunity and how T cell subsets might be targeted in future vaccines using novel adjuvants and emerging vaccine technologies. EXPERT COMMENTARY Despite decades of research there is no highly effective licensed malaria vaccine. However, there is cause for optimism as new adjuvants and vaccine systems emerge, and our understanding of correlates of protection increases, especially regarding cellular immunity. The new field of heterologous (non-specific) effects of vaccines also highlights the broader consequences of immunization. Importantly, the WHO led Malaria Vaccine Technology Roadmap illustrates that there is a political will among the global health community to make it happen.
Collapse
Affiliation(s)
- K L Wilson
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - K L Flanagan
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia.,c School of Medicine, Faculty of Health Sciences , University of Tasmania , Launceston , Australia
| | - M D Prakash
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - M Plebanski
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| |
Collapse
|
46
|
Del Campo J, Pizzorno A, Djebali S, Bouley J, Haller M, Pérez-Vargas J, Lina B, Boivin G, Hamelin ME, Nicolas F, Le Vert A, Leverrier Y, Rosa-Calatrava M, Marvel J, Hill F. OVX836 a recombinant nucleoprotein vaccine inducing cellular responses and protective efficacy against multiple influenza A subtypes. NPJ Vaccines 2019; 4:4. [PMID: 30701093 PMCID: PMC6344521 DOI: 10.1038/s41541-019-0098-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022] Open
Abstract
Inactivated influenza vaccines (IIVs) lack broad efficacy. Cellular immunity to a conserved internal antigen, the nucleoprotein (NP), has been correlated to protection against pandemic and seasonal influenza and thus could have the potential to broaden vaccine efficacy. We developed OVX836, a recombinant protein vaccine based on an oligomerized NP, which shows increased uptake by dendritic cells and immunogenicity compared with NP. Intramuscular immunization in mice with OVX836 induced strong NP-specific CD4+ and CD8+ T-cell systemic responses and established CD8+ tissue memory T cells in the lung parenchyma. Strikingly, OVX836 protected mice against viral challenge with three different influenza A subtypes, isolated several decades apart and induced a reduction in viral load. When co-administered with IIV, OVX836 was even more effective in reducing lung viral load. Circulating influenza A virus (IAV) strains differ in their surface proteins each year, and vaccines eliciting an immune response to these proteins are often only partially protective. Internal viral proteins, such as the nucleoprotein (NP), are highly conserved, and cellular immunity to NP has been correlated with protection from diverse strains. However, current IAV vaccines induce a poor immune response to NP. In this study, led by Fergal Hill from Osivax, researchers develop an oligomeric version of NP with improved immunogenicity. Vaccination of mice with oligomeric NP results in an improved NP-specific T-cell response, including CD8+ tissue memory T cells in the lung, and protects mice against three different IAV subtypes. Co-administration with the currently used inactivated influenza vaccine further improves protection against virus infection in mice. These results encourage further pre-clinical and clinical development for this vaccine candidate.
Collapse
Affiliation(s)
| | - Andres Pizzorno
- 2Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1. Université de Lyon, Lyon, F- 69008 France
| | - Sophia Djebali
- 3Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon. Université de Lyon, F-69007 Lyon, France
| | | | | | - Jimena Pérez-Vargas
- Osivax, 99, rue de Gerland, 69007 Lyon, France.,6Present Address: Enveloped Viruses, Vectors and Immunotherapy Team, Centre International de Recherché en Infectiologie (CIRI), INSERM U1111, Université de Lyon, Lyon, France
| | - Bruno Lina
- 2Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1. Université de Lyon, Lyon, F- 69008 France.,Hospices Civils de Lyon, Centre National de Référence des Virus Influenza France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, Lyon, France
| | - Guy Boivin
- 5Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | - Marie-Eve Hamelin
- 5Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | | | | | - Yann Leverrier
- 3Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon. Université de Lyon, F-69007 Lyon, France
| | - Manuel Rosa-Calatrava
- 2Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1. Université de Lyon, Lyon, F- 69008 France
| | - Jacqueline Marvel
- 3Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon. Université de Lyon, F-69007 Lyon, France
| | - Fergal Hill
- Osivax, 99, rue de Gerland, 69007 Lyon, France
| |
Collapse
|
47
|
Brod F, Miura K, Taylor I, Li Y, Marini A, Salman AM, Spencer AJ, Long CA, Biswas S. Combination of RTS,S and Pfs25-IMX313 Induces a Functional Antibody Response Against Malaria Infection and Transmission in Mice. Front Immunol 2018; 9:2780. [PMID: 30564231 PMCID: PMC6288435 DOI: 10.3389/fimmu.2018.02780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
The last two decades saw a dramatic reduction in malaria incidence rates, but this decrease has been stalling recently, indicating control measures are starting to fail. An effective vaccine, particularly one with a marked effect on disease transmission, would undoubtedly be an invaluable tool for efforts to control and eliminate malaria. RTS,S/AS01, the most advanced malaria vaccine to date, targets the parasite before it invades the liver and has the potential to prevent malaria disease as well as transmission by preventing blood stage infection and therefore gametocytogenesis. Unfortunately efficacy in a phase III clinical trial was limited and it is widely believed that a malaria vaccine needed to contain multiple antigens from different life-cycle stages to have a realistic chance of success. A recent study in mice has shown that partially efficacious interventions targeting the pre-erythrocytic and the sexual lifecycle stage synergise in eliminating malaria from a population over multiple generations. Hence, the combination of RTS,S/AS01 with a transmission blocking vaccine (TBV) is highly appealing as a pragmatic and powerful way to increase vaccine efficacy. Here we demonstrate that combining Pfs25-IMX313, one of the TBV candidates currently in clinical development, with RTS,S/AS01 readily induces a functional immune response against both antigens in outbred CD1 mice. Formulation of Pfs25-IMX313 in AS01 significantly increased antibody titres when compared to formulation in Alhydrogel, resulting in improved transmission reducing activity in standard membrane feeding assays (SMFA). Upon co-formulation of Pfs25-IMX313 with RTS,S/AS01, the immunogenicity of both vaccines was maintained, and functional assessment of the induced antibody response by SMFA and inhibition of sporozoite invasion assay (ISI) showed no reduction in biological activity against parasites of both lifecycle stages. Should this findings be translatable to human vaccination this could greatly aid efforts to eliminate and eventually eradicate malaria.
Collapse
Affiliation(s)
- Florian Brod
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Iona Taylor
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Yuanyuan Li
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ahmed M Salman
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, United States
| | - Sumi Biswas
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Huang WC, Deng B, Lin C, Carter KA, Geng J, Razi A, He X, Chitgupi U, Federizon J, Sun B, Long CA, Ortega J, Dutta S, King CR, Miura K, Lee SM, Lovell JF. A malaria vaccine adjuvant based on recombinant antigen binding to liposomes. NATURE NANOTECHNOLOGY 2018; 13:1174-1181. [PMID: 30297818 PMCID: PMC6286227 DOI: 10.1038/s41565-018-0271-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/03/2018] [Indexed: 05/04/2023]
Abstract
Pfs25 is a malaria transmission-blocking vaccine antigen candidate, but its apparently limited immunogenicity in humans has hindered clinical development. Here, we show that recombinant, polyhistidine-tagged (his-tagged) Pfs25 can be mixed at the time of immunization with pre-formed liposomes containing cobalt porphyrin-phospholipid, resulting in spontaneous nanoliposome antigen particleization (SNAP). Antigens are stably presented in uniformly orientated display via his-tag insertion in the cobalt porphyrin-phospholipid bilayer, without covalent modification or disruption of antigen conformation. SNAP immunization of mice and rabbits is well tolerated with minimal local reactogenicity, and results in orders-of-magnitude higher functional antibody generation compared with other 'mix-and-inject' adjuvants. Serum-stable antigen binding during transit to draining lymph nodes leads to enhanced antigen uptake by phagocytic antigen-presenting cells, with subsequent generation of long-lived, antigen-specific plasma cells. Seamless multiplexing with four additional his-tagged Plasmodium falciparum polypeptides induces strong and balanced antibody production, illustrating the simplicity of developing multistage particulate vaccines with SNAP immunization.
Collapse
Affiliation(s)
- Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bingbing Deng
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Cuiyan Lin
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Aida Razi
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec, Canada
| | - Xuedan He
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jasmin Federizon
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Boyang Sun
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University Montreal, Quebec, Canada
| | - Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative, Washington, DC, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
49
|
Cockburn IA, Seder RA. Malaria prevention: from immunological concepts to effective vaccines and protective antibodies. Nat Immunol 2018; 19:1199-1211. [PMID: 30333613 DOI: 10.1038/s41590-018-0228-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023]
Abstract
Development of a malaria vaccine remains a critical priority to decrease clinical disease and mortality and facilitate eradication. Accordingly, RTS,S, a protein-subunit vaccine, has completed phase III clinical trials and confers ~30% protection against clinical infection over 4 years. Whole-attenuated-sporozoite and viral-subunit vaccines induce between 20% and 100% protection against controlled human malaria infection, but there is limited published evidence to date for durable, high-level efficacy (>50%) against natural exposure. Importantly, fundamental scientific advances related to the potency, durability, breadth and location of immune responses will be required for improving vaccine efficacy with these and other vaccine approaches. In this Review, we focus on the current understanding of immunological mechanisms of protection from animal models and human vaccine studies, and on how these data should inform the development of next-generation vaccines. Furthermore, we introduce the concept of using passive immunization with monoclonal antibodies as a new approach to prevent and eliminate malaria.
Collapse
Affiliation(s)
- Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Bruun TJ, Andersson AMC, Draper SJ, Howarth M. Engineering a Rugged Nanoscaffold To Enhance Plug-and-Display Vaccination. ACS NANO 2018; 12:8855-8866. [PMID: 30028591 PMCID: PMC6158681 DOI: 10.1021/acsnano.8b02805] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
Nanoscale organization is crucial to stimulating an immune response. Using self-assembling proteins as multimerization platforms provides a safe and immunogenic system to vaccinate against otherwise weakly immunogenic antigens. Such multimerization platforms are generally based on icosahedral viruses and have led to vaccines given to millions of people. It is unclear whether synthetic protein nanoassemblies would show similar potency. Here we take the computationally designed porous dodecahedral i301 60-mer and rationally engineer this particle, giving a mutated i301 (mi3) with improved particle uniformity and stability. To simplify the conjugation of this nanoparticle, we employ a SpyCatcher fusion of mi3, such that an antigen of interest linked to the SpyTag peptide can spontaneously couple through isopeptide bond formation (Plug-and-Display). SpyCatcher-mi3 expressed solubly to high yields in Escherichia coli, giving more than 10-fold greater yield than a comparable phage-derived icosahedral nanoparticle, SpyCatcher-AP205. SpyCatcher-mi3 nanoparticles showed high stability to temperature, freeze-thaw, lyophilization, and storage over time. We demonstrate approximately 95% efficiency coupling to different transmission-blocking and blood-stage malaria antigens. Plasmodium falciparum CyRPA was conjugated to SpyCatcher-mi3 nanoparticles and elicited a high avidity antibody response, comparable to phage-derived virus-like particles despite their higher valency and RNA cargo. The simple production, precise derivatization, and exceptional ruggedness of this nanoscaffold should facilitate broad application for nanobiotechnology and vaccine development.
Collapse
Affiliation(s)
- Theodora
U. J. Bruun
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anne-Marie C. Andersson
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Simon J. Draper
- Jenner
Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Mark Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|