1
|
Li B, Chen C, Cui M, Sun Y, Lv J, Dai C. Exploring the potential role of EPSPS mutations for enhanced glyphosate resistance in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2025; 16:1516963. [PMID: 39996113 PMCID: PMC11847837 DOI: 10.3389/fpls.2025.1516963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025]
Abstract
Glyphosate is a widely used non-selective, broad-spectrum, systemic herbicide by interfering with the biosynthesis of aromatic amino acids. However, the emergence of glyphosate-resistant weeds has driven the need for enhanced herbicide resistance in crops. In this study, we engineered two mutant variants of the tobacco EPSPS gene through amino acid substitution (TIPS-NtEPSPS and P180S-NtEPSPS). These mutated EPSPS genes were overexpressed in tobacco under the control of CaMV35S promoters. Our results demonstrate that overexpression of TIPS-NtEPSPS significantly enhances glyphosate tolerance, allowing plants to withstand up to four times the recommended dose without compromising their fitness. This research highlights the potential of the TIPS-NtEPSPS mutant to improve herbicide resistance in tobacco, offering a viable approach for effective weed management.
Collapse
Affiliation(s)
- Bingjie Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jing Lv
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changbo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
2
|
Sang S, Wang Y, Yao G, Ma T, Sun X, Zhang Y, Su N, Tan X, Abbas HMK, Ji S, Zaman QU. A Critical Review of Conventional and Modern Approaches to Develop Herbicide-Resistance in Rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14254. [PMID: 38499939 DOI: 10.1111/ppl.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Together with rice, weeds strive for nutrients and space in farmland, resulting in reduced rice yield and quality. Planting herbicide-resistant rice varieties is one of the effective ways to control weeds. In recent years, a series of breakthroughs have been made to generate herbicide-resistant germplasm, especially the emergence of biotechnological tools such as gene editing, which provides an inherent advantage for the knock-out or knock-in of the desired genes. In order to develop herbicide-resistant rice germplasm resources, gene manipulation has been conducted to enhance the herbicide tolerance of rice varieties through the utilization of techniques such as physical and chemical mutagenesis, as well as genome editing. Based on the current research and persisting problems in rice paddy fields, research on the generation of herbicide-resistant rice still needs to explore genetic mechanisms, stacking multiple resistant genes in a single genotype, and transgene-free genome editing using the CRISPR system. Current rapidly developing gene editing technologies can be used to mutate herbicide target genes, enabling targeted genes to maintain their biological functions, and reducing the binding ability of target gene encoded proteins to corresponding herbicides, ultimately resulting in herbicide-resistant crops. In this review article, we have summarized the utilization of conventional and modern approaches to develop herbicide-resistant cultivars in rice as an effective strategy for weed control in paddy fields, and discussed the technology and research directions for creating herbicide-resistant rice in the future.
Collapse
Affiliation(s)
- Shifei Sang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Yanan Wang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Guoqin Yao
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Tengyun Ma
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Xiaohan Sun
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Yijing Zhang
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Nan Su
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Xiaoyu Tan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agricultural and Forestry, Jiangsu Province, P. R. China
| | | | - Shengdong Ji
- Department of Biotechnology, College of Life Sciences, Henan Normal University, Xinxiang, Henan Province, P. R. China
| | - Qamar U Zaman
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, China
- College of Tropical Crops and Forestry, Hainan University, Haikou, China
| |
Collapse
|
3
|
Rani S, Sørensen MT, Estellé J, Noel SJ, Nørskov N, Krogh U, Foldager L, Højberg O. Gastrointestinal Microbial Ecology of Weaned Piglets Fed Diets with Different Levels of Glyphosate. Microbiol Spectr 2023; 11:e0061523. [PMID: 37318372 PMCID: PMC10433988 DOI: 10.1128/spectrum.00615-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Glyphosate possesses antimicrobial properties, and the present study investigated potential effects of feed glyphosate on piglet gastrointestinal microbial ecology. Weaned piglets were allocated to four diets (glyphosate contents [mg/kg feed]: 0 mg/kg control [CON; i.e., basal diet with no glyphosate added], 20 mg/kg as Glyphomax commercial herbicide [GM20], and 20 mg/kg [IPA20] and 200 mg/kg [IPA200] as glyphosate isopropylamine [IPA] salt). Piglets were sacrificed after 9 and 35 days of treatment, and stomach, small intestine, cecum, and colon digesta were analyzed for glyphosate, aminomethylphosphonic acid (AMPA), organic acids, pH, dry matter content, and microbiota composition. Digesta glyphosate contents reflected dietary levels (on day 35, 0.17, 16.2, 20.5, and 207.5 mg/kg colon digesta, respectively). Overall, we observed no significant glyphosate-associated effects on digesta pH, dry matter content, and-with few exceptions-organic acid levels. On day 9, only minor gut microbiota changes were observed. On day 35, we observed a significant glyphosate-associated decrease in species richness (CON, 462; IPA200, 417) and in the relative abundance of certain Bacteroidetes genera: CF231 (CON, 3.71%; IPA20, 2.33%; IPA200, 2.07%) and g_0.24 (CON, 3.69%; IPA20, 2.07%; IPA200, 1.75%) in cecum. No significant changes were observed at the phylum level. In the colon, we observed a significant glyphosate-associated increase in the relative abundance of Firmicutes (CON, 57.7%; IPA20, 69.4%; IPA200, 66.1%) and a decrease in Bacteroidetes (CON, 32.6%; IPA20, 23.5%). Significant changes were only observed for few genera, e.g., g_0.24 (CON, 7.12%; IPA20, 4.59%; IPA200, 4.00%). In conclusion, exposing weaned piglets to glyphosate-amended feed did not affect gastrointestinal microbial ecology to a degree that was considered actual dysbiosis, e.g., no potential pathogen bloom was observed. IMPORTANCE Glyphosate residues can be found in feed made from genetically modified glyphosate-resistant crops treated with glyphosate or from conventional crops, desiccated with glyphosate before harvest. If these residues affect the gut microbiota to an extent that is unfavorable to livestock health and productivity, the widespread use of glyphosate on feed crops may need to be reconsidered. Few in vivo studies have been conducted to investigate potential impact of glyphosate on the gut microbial ecology and derived health issues of animals, in particular livestock, when exposed to dietary glyphosate residues. The aim of the present study was therefore to investigate potential effects on the gastrointestinal microbial ecology of newly weaned piglets fed glyphosate-amended diets. Piglets did not develop actual gut dysbiosis when fed diets, containing a commercial herbicide formulation or a glyphosate salt at the maximum residue level, defined by the European Union for common feed crops, or at a 10-fold-higher level.
Collapse
Affiliation(s)
- Sundas Rani
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | | | - Jordi Estellé
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Samantha Joan Noel
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Natalja Nørskov
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Uffe Krogh
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Leslie Foldager
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Ole Højberg
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
4
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
5
|
Zabaloy MC, Allegrini M, Hernandez Guijarro K, Behrends Kraemer F, Morrás H, Erijman L. Microbiomes and glyphosate biodegradation in edaphic and aquatic environments: recent issues and trends. World J Microbiol Biotechnol 2022; 38:98. [PMID: 35478266 DOI: 10.1007/s11274-022-03281-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
Abstract
Glyphosate (N-(phosphonomethyl)glycine) has emerged as the top-selling herbicide worldwide because of its versatility in controlling annual and perennial weeds and the extensive use of glyphosate-resistant crops. Concerns related to the widespread use of glyphosate and its ubiquitous presence in the environment has led to a large number of studies and reviews, which examined the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA) in the environment. Because the biological breakdown of glyphosate is most likely the main elimination process, the biodegradation of glyphosate has also been the object of abundant experimental work. Importantly, glyphosate biodegradation in aquatic and soil ecosystems is affected not only by the composition and the activity of microbial communities, but also by the physical environment. However, the interplay between microbiomes and glyphosate biodegradation in edaphic and aquatic environments has rarely been considered before. The proposed minireview aims at filling this gap. We summarize the most recent work exploring glyphosate biodegradation in natural aquatic biofilms, the biological, chemical and physical factors and processes playing on the adsorption, transport and biodegradation of glyphosate at different levels of soil organization and under different agricultural managements, and its impact on soil microbial communities.
Collapse
Affiliation(s)
- María Celina Zabaloy
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marco Allegrini
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Keren Hernandez Guijarro
- Instituto Nacional de Tecnología Agropecuaria (INTA), Unidad Integrada Estación Experimental Agropecuaria Balcarce, Balcarce, Argentina
| | - Filipe Behrends Kraemer
- Cátedra de Manejo y Conservación de Suelos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
| | - Héctor Morrás
- Instituto de Suelos-CIRN-INTA, Hurlingham, Argentina
- Facultad de Ciencias Agrarias y Veterinaria, Universidad del Salvador, Pilar, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Ouyang C, Liu W, Chen S, Zhao H, Chen X, Jin X, Li X, Wu Y, Zeng X, Huang P, He X, An B. The Naturally Evolved EPSPS From Goosegrass Confers High Glyphosate Resistance to Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:756116. [PMID: 34777434 PMCID: PMC8586540 DOI: 10.3389/fpls.2021.756116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-resistant crops developed by the CP4-EPSPS gene from Agrobacterium have been planted on a massive scale globally, which benefits from the high efficiency and broad spectrum of glyphosate in weed control. Some glyphosate-resistant (GR) genes from microbes have been reported, which might raise biosafety concerns. Most of them were obtained through a hygromycin-HPT transformation system. Here we reported the plant source with 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from goosegrass endowed rice with high resistance to glyphosate. The integrations and inheritability of the transgenes in the rice genome were investigated within two generations. The EiEPSPS transgenic plants displayed similar growth and development to wild type under no glyphosate selection pressure but better reproductive performance under lower glyphosate selection pressure. Furthermore, we reconstructed a binary vector pCEiEPSPS and established the whole stage glyphosate selection using the vector. The Glyphosate-pCEiEPSPS selection system showed a significantly higher transformation efficiency compared with the hygromycin-HPT transformation system. Our results provided a promising alternative gene resource to the development of GR plants and also extended the plant transformation toolbox.
Collapse
Affiliation(s)
- Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huimin Zhao
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinyan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiongxia Jin
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinpeng Li
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Yongzhong Wu
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiang Zeng
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Peijin Huang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiuying He
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Baoguang An
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| |
Collapse
|
7
|
Griffin SL, Chekan JR, Lira JM, Robinson AE, Yerkes CN, Siehl DL, Wright TR, Nair SK, Cicchillo RM. Characterization of a Glyphosate-Tolerant Enzyme from Streptomyces svecius: A Distinct Class of 5-Enolpyruvylshikimate-3-phosphate Synthases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5096-5104. [PMID: 33826316 DOI: 10.1021/acs.jafc.1c00439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural and modified versions of the 5-enolpyruvylshikimate-3-phosphate synthase (epsps) gene have been used to confer tolerance to the broad-spectrum herbicide glyphosate in a variety of commercial crops. The most widely utilized trait was obtained from the Agrobacterium tumefaciens strain CP4 and has been commercialized in several glyphosate-tolerant crops. The EPSPS gene products are enzymes that have been divided into three classes based on sequence similarity, sensitivity to glyphosate, and steady-state catalytic parameters. Herein, we describe the informatics-guided identification and biochemical and structural characterization of a novel EPSPS from Streptomyces sviceus (DGT-28 EPSPS). The data suggest DGT-28 EPSPS and other closely related homologues exemplify a distinct new class (Class IV) of EPSPS enzymes that display intrinsic tolerance to high concentrations of glyphosate (Ki ≥ 5000 μM). We further demonstrate that dgt-28 epsps, when transformed into stable plants, provides robust (≥4× field rates) vegetative/reproductive herbicide tolerance and has utility in weed-control systems comparable to that of commercialized events.
Collapse
Affiliation(s)
- Samantha L Griffin
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Jonathan R Chekan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Justin M Lira
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Andrew E Robinson
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Carla N Yerkes
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Daniel L Siehl
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Terry R Wright
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Satish K Nair
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Robert M Cicchillo
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
8
|
Li C, Zhang J, Ren Z, Xie R, Yin C, Ma W, Zhou F, Chen H, Lin Y. Development of 'multiresistance rice' by an assembly of herbicide, insect and disease resistance genes with a transgene stacking system. PEST MANAGEMENT SCIENCE 2021; 77:1536-1547. [PMID: 33201594 DOI: 10.1002/ps.6178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Weeds, diseases and pests pose serious threats to rice production and cause significant economic losses. Cultivation of rice varieties with resistance to herbicides, diseases and pests is believed to be the most economical and environmentally friendly method to deal with these problems. RESULTS In this study, a highly efficient transgene stacking system was used to assembly the synthetic glyphosate-tolerance gene (I. variabilis-EPSPS*), lepidopteran pest resistance gene (Cry1C*), brown planthopper resistance genes (Bph14* and OsLecRK1*), bacterial blight resistance gene (Xa23*) and rice blast resistance gene (Pi9*) onto a transformable artificial chromosome vector. The construct was transferred into ZH11 (a widely used japonica rice cultivar Zhonghua 11) via Agrobacterium-mediated transformation and 'multiresistance rice' (MRR) with desirable agronomic traits was obtained. The results showed that MRR had significantly improved resistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast relative to the recipient cultivar ZH11. Besides, under the natural occurrence of pests and diseases in the field, the yield of MRR was significantly higher than that of ZH11. CONCLUSION A multigene transformation strategy was employed to successfully develop rice lines with multiresistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast, and the obtained MRR is expected to have great application potential. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanxu Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rong Xie
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Luzhou Branch of National Rice Improvement Center, Deyang, China
| | - Changxi Yin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Massot F, Gkorezis P, Van Hamme J, Marino D, Trifunovic BS, Vukovic G, d'Haen J, Pintelon I, Giulietti AM, Merini L, Vangronsveld J, Thijs S. Isolation, Biochemical and Genomic Characterization of Glyphosate Tolerant Bacteria to Perform Microbe-Assisted Phytoremediation. Front Microbiol 2021; 11:598507. [PMID: 33519737 PMCID: PMC7840833 DOI: 10.3389/fmicb.2020.598507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg–1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l–1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.
Collapse
Affiliation(s)
- Francisco Massot
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | - Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Damian Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
| | | | - Gorica Vukovic
- Department of Phytomedicine, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Jan d'Haen
- Institute for Materials Research (IMO-IMEC), Hasselt University, Diepenbeek, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Ana María Giulietti
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín, Argentina
| | | | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Achary VMM, Sheri V, Manna M, Panditi V, Borphukan B, Ram B, Agarwal A, Fartyal D, Teotia D, Masakapalli SK, Agrawal PK, Reddy MK. Overexpression of improved EPSPS gene results in field level glyphosate tolerance and higher grain yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2504-2519. [PMID: 32516520 PMCID: PMC7680544 DOI: 10.1111/pbi.13428] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 05/15/2023]
Abstract
Glyphosate is a popular, systemic, broad-spectrum herbicide used in modern agriculture. Being a structural analog of phosphoenolpyruvate (PEP), it inhibits 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) which is responsible for the biosynthesis of aromatic amino acids and various aromatic secondary metabolites. Taking a lead from glyphosate-resistant weeds, two mutant variants of the rice EPSPS gene were developed by amino acid substitution (T173I + P177S; TIPS-OsEPSPS and G172A + T173I + P177S; GATIPS-OsEPSPS). These mutated EPSPS genes were overexpressed in rice under the control of either native EPSPS or constitutive promoters (maize ubiquitin [ZmUbi] promoter). The overexpression of TIPS-OsEPSPS under the control of the ZmUbi promoter resulted in higher tolerance to glyphosate (up to threefold of the recommended dose) without affecting the fitness and related agronomic traits of plants in both controlled and field conditions. Furthermore, such rice lines produced 17%-19% more grains compared to the wild type (WT) in the absence of glyphosate application and the phenylalanine and tryptophan contents in the transgenic seeds were found to be significantly higher in comparison with WT seeds. Our results also revealed that the native promoter guided expression of modified EPSPS genes did not significantly improve the glyphosate tolerance. The present study describing the introduction of a crop-specific TIPS mutation in class I aroA gene of rice and its overexpression have potential to substantially improve the yield and field level glyphosate tolerance in rice. This is the first report to observe that the EPSPS has role to play in improving grain yield of rice.
Collapse
Affiliation(s)
- V. Mohan Murali Achary
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Vijay Sheri
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Mrinalini Manna
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Varakumar Panditi
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Bhabesh Borphukan
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Babu Ram
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Aakrati Agarwal
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Dhirendra Fartyal
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Deepa Teotia
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | | | | | - Malireddy K. Reddy
- Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| |
Collapse
|
11
|
Mesnage R, Antoniou MN. Computational modelling provides insight into the effects of glyphosate on the shikimate pathway in the human gut microbiome. Curr Res Toxicol 2020; 1:25-33. [PMID: 34345834 PMCID: PMC8320642 DOI: 10.1016/j.crtox.2020.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022] Open
Abstract
The herbicide active ingredient glyphosate can affect the growth of microorganisms, which rely on the shikimate pathway for aromatic amino acid biosynthesis. However, it is uncertain whether glyphosate exposure could lead to perturbations in the population of human gut microbiota. We have addressed this knowledge gap by analysing publicly available datasets to provide new insights into possible effects of glyphosate on the human gut microbiome. Comparison of the abundance of the shikimate pathway in 734 paired metagenomes and metatranscriptomes indicated that most gut bacteria do not possess a complete shikimate pathway, and that this pathway is mostly transcriptionally inactive in the human gut microbiome. This suggests that gut bacteria are mostly aromatic amino acid auxotrophs and thus relatively resistant to a potential growth inhibition by glyphosate. As glyphosate blocking of the shikimate pathway is via inhibition of EPSPS, we classified E. coli EPSPS enzyme homologues as class I (sensitive to glyphosate) and class II (resistant to glyphosate). Among 44 subspecies reference genomes, accounting for 72% of the total assigned microbial abundance in 2144 human faecal metagenomes, 9 subspecies have class II EPSPS. The study of publicly available gut metagenomes also indicated that glyphosate might be degraded by some Proteobacteria in the human gut microbiome using the carbon-phosphorus lyase pathway. Overall, there is limited experimental evidence available for the effects of glyphosate on the human gut microbiome. Further investigations using more advanced molecular profiling techniques are needed to ascertain whether glyphosate and glyphosate-based herbicides can alter the function of the gut microbiome with consequent health implications.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, 8th Floor, Tower Wing, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, 8th Floor, Tower Wing, Great Maze Pond, London SE1 9RT, United Kingdom
| |
Collapse
|
12
|
Zhai R, Ye S, Zhu G, Lu Y, Ye J, Yu F, Chu Q, Zhang X. Identification and integrated analysis of glyphosate stress-responsive microRNAs, lncRNAs, and mRNAs in rice using genome-wide high-throughput sequencing. BMC Genomics 2020; 21:238. [PMID: 32183693 PMCID: PMC7076996 DOI: 10.1186/s12864-020-6637-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glyphosate has become the most widely used herbicide in the world. Therefore, the development of new varieties of glyphosate-tolerant crops is a research focus of seed companies and researchers. The glyphosate stress-responsive genes were used for the development of genetically modified crops, while only the EPSPS gene has been used currently in the study on glyphosate-tolerance in rice. Therefore, it is essential and crucial to intensify the exploration of glyphosate stress-responsive genes, to not only acquire other glyphosate stress-responsive genes with clean intellectual property rights but also obtain non-transgenic glyphosate-tolerant rice varieties. This study is expected to elucidate the responses of miRNAs, lncRNAs, and mRNAs to glyphosate applications and the potential regulatory mechanisms in response to glyphosate stress in rice. RESULTS Leaves of the non-transgenic glyphosate-tolerant germplasm CA21 sprayed with 2 mg·ml- 1 glyphosate (GLY) and CA21 plants with no spray (CK) were collected for high-throughput sequencing analysis. A total of 1197 DEGs, 131 DELs, and 52 DEMs were identified in the GLY samples in relation to CK samples. Genes were significantly enriched for various biological processes involved in detoxification of plant response to stress. A total of 385 known miRNAs from 59 miRNA families and 94 novel miRNAs were identified. Degradome analysis led to the identification of 32 target genes, of which, the squamosa promoter-binding-like protein 12 (SPL12) was identified as a target of osa-miR156a_L + 1. The lncRNA-miRNA-mRNA regulatory network consisted of osa-miR156a_L + 1, two transcripts of SPL12 (LOC_Os06g49010.3 and LOC_Os06g49010.5), and 13 lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1). CONCLUSION Large-scale expression changes in coding and noncoding RNA were observed in rice mainly due to its response to glyphosate. SPL12, osa-miR156, and lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1) could be a novel ceRNA mechanism in response to glyphosate in rice by regulating transcription and metal ions binding. These findings provide a theoretical basis for breeding glyphosate-tolerant rice varieties and for further research on the biogenesis of glyphosate- tolerance in rice.
Collapse
Affiliation(s)
- Rongrong Zhai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Yanting Lu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Faming Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | | | - Xiaoming Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| |
Collapse
|
13
|
Wang L, Peng R, Tian Y, Gao J, Wang B, Yao Q. A thermostable 5-enolpyruvylshikimate-3-phosphate synthase from Thermotoga maritima enhances glyphosate tolerance in Escherichia coli and transgenic Arabidopsis. Extremophiles 2019; 23:659-667. [PMID: 31338597 DOI: 10.1007/s00792-019-01118-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) overexpression, attempting to provide excess EPSPS to combine with glyphosate, is one way to improve glyphosate resistance of plants. The EPSPS in extremophiles which is selected by nature to withstand the evolutionary pressure may possess some potential-specific biological functions. In this study, we reported the cloning, expression and enzymatic characterization of a novel Class II EPSPS AroAT. maritima from Thermotoga maritima MSB8. The enzyme showed low sequence identities with other EPSPSs, and was one of the most thermostable EPSPSs so far, which showed the optimum enzyme activity at 80 °C. The enzyme maintains the activity below 50 °C and in a wide range of pH 4.0-10, which indicated its stability under rough environment, especially in tropical regions and alkaline soil. Excellent Ki/Km value of AroAT. maritima suggested that the enzyme showed powerful competitive binding capacity of PEP over glyphosate and high glyphosate tolerance. Furthermore, aroAT. maritima gene was transformed into Arabidopsis thaliana. The transgenic lines were resistant to 15 mM glyphosate, which proved the application value in the cultivation of glyphosate-tolerant plants.
Collapse
Affiliation(s)
- Lijuan Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, China.
| |
Collapse
|
14
|
Vila-Aiub MM, Yu Q, Powles SB. Do plants pay a fitness cost to be resistant to glyphosate? THE NEW PHYTOLOGIST 2019; 223:532-547. [PMID: 30737790 DOI: 10.1111/nph.15733] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
We reviewed the literature to understand the effects of glyphosate resistance on plant fitness at the molecular, biochemical and physiological levels. A number of correlations between enzyme characteristics and glyphosate resistance imply the existence of a plant fitness cost associated with resistance-conferring mutations in the glyphosate target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). These biochemical changes result in a tradeoff between the glyphosate resistance of the EPSPS enzyme and its catalytic activity. Mutations that endow the highest resistance are more likely to decrease catalytic activity by reducing the affinity of EPSPS for its natural substrate, and/or slowing the velocity of the enzyme reaction, and are thus very likely to endow a substantial plant fitness cost. Prediction of fitness costs associated with EPSPS gene amplification and overexpression can be more problematic. The validity of cost prediction based on the theory of evolution of gene expression and resource allocation has been cast into doubt by contradictory experimental evidence. Further research providing insights into the role of the EPSPS cassette in weed adaptation, and estimations of the energy budget involved in EPSPS amplification and overexpression are required to understand and predict the biochemical and physiological bases of the fitness cost of glyphosate resistance.
Collapse
Affiliation(s)
- Martin M Vila-Aiub
- Australian Herbicide Resistance Initiative (AHRI) - School of Agriculture & Environment, University of Western Australia (UWA), Crawley, 6009, Western Australia, Australia
- IFEVA - CONICET - Faculty of Agronomy, Department of Ecology, University of Buenos Aires (UBA), Buenos Aires, 1417, Argentina
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI) - School of Agriculture & Environment, University of Western Australia (UWA), Crawley, 6009, Western Australia, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative (AHRI) - School of Agriculture & Environment, University of Western Australia (UWA), Crawley, 6009, Western Australia, Australia
| |
Collapse
|
15
|
Liu F, Cao Y. Expression of a bacterial aroA gene confers tolerance to glyphosate in tobacco plants. Turk J Biol 2019; 42:187-194. [PMID: 30814880 DOI: 10.3906/biy-1712-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glyphosate is a widely used herbicide that inhibits the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)-encoding aroA gene in the shikimate pathway. The discovery and cloning of the aroA gene with high resistance is central to breeding a transgenic glyphosate-resistant plant. A novel aroAPantoea gene from Pantoea G-1 was previously isolated and cloned. The aroA Pantoea enzyme was defined as a new class I EPSPS with glyphosate resistance. The aroA Pantoea gene was introduced into tobacco through Agrobacteriummediated transformation. The transgenic tobacco plants were confirmed by PCR, RT-PCR, and Southern blot. The analysis of glyphosate resistance also showed that the transgenic tobacco plants could survive at 15 mM glyphosate; the glyphosate resistance level of the transgenic plants is higher than the agricultural application level recommended by most manufacturers. Overall, this study shows that aroAPantoea can be used as a candidate gene for the development of genetically modified crops.
Collapse
Affiliation(s)
- Feng Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai , P. R. China
| | - Yueping Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai , P. R. China
| |
Collapse
|
16
|
First high-quality draft genome of Ochrobactrum haematophilum P6BS-III, a highly glyphosate-tolerant strain isolated from agricultural soil in Argentina. 3 Biotech 2019; 9:74. [PMID: 30800585 DOI: 10.1007/s13205-019-1606-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/01/2019] [Indexed: 10/27/2022] Open
Abstract
We report here on a high-quality draft genome sequence of Ochrobactrum haematophilum strain P6BS-III (DSM 106071), a Gram negative, non-sporulating bacterium isolated from a pastureland (Buenos Aires province, Argentina) which had been chronically exposed to the herbicide glyphosate. The genome of 5.25 Mb with a DNA G+C content of 56.63% size was estimated to contain 5,291 protein coding genes and 57 RNA genes. Genome analysis revealed the presence of the phn operon, which is involved in the phosphonate degradation pathway, and a class II 5-enolpyruvylshikimate-3-phosphate synthase (EPSP) that confers tolerance to glyphosate. Genes related to plant growth promotion traits are also present, and include genes for phosphorus metabolism, calcium phosphate and phytate solubilization, siderophore production, organic acid biosynthesis and indole acetic acid (IAA) production.
Collapse
|
17
|
Cruvinel GT, Neves HI, Spira B. Glyphosate induces the synthesis of ppGpp. Mol Genet Genomics 2019; 294:191-198. [PMID: 30284619 DOI: 10.1007/s00438-018-1499-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Glyphosate, the most widely used herbicide in both agricultural and urban areas is toxic for plants and for many bacterial species. The mechanism of action of glyphosate is through the inhibition of the EPSP synthase, a key enzyme in the biosynthetic pathway of aromatic amino acids. Here we show that glyphosate induces the stringent response in Escherichia coli. Bacteria treated with glyphosate stop growing and accumulate ppGpp. Both growth arrest and ppGpp accumulation are restored to normal levels upon addition of aromatic amino acids. Glyphosate-induced ppGpp accumulation is dependent on the presence of the (p)ppGpp synthetase RelA. However, unlike other cases of amino acid starvation, pppGpp could not be discerned. In a gppA background both ppGpp and pppGpp accumulated when exposed to glyphosate. Conversely, the wild-type strain and gppA mutant treated with serine hydroxamate accumulated high levels of both ppGpp and pppGpp. Altogether, the data indicate that glyphosate induces amino acid starvation resulting in a moderate accumulation of ppGpp and a reversible stringent response.
Collapse
Affiliation(s)
- Gabriela Torres Cruvinel
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Liu F, Cao Y. Expression of the 5-enoylpyruvylshikimate-3-phosphate synthase domain from the Acremonium sp. aroM complex enhances resistance to glyphosate. Biotechnol Lett 2018; 40:855-864. [PMID: 29478157 DOI: 10.1007/s10529-018-2529-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/17/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To discover and isolate a glyphosate-resistant gene from a microorganism through gene mining. RESULTS The full aroM gene from Acremonium sp. (named aroMA.sp.) was cloned using rapid amplification of cDNA ends. The transcriptional expression level of each domain increased significantly after glyphosate treatment in the aroMA.sp. complex and reached its maximum at 48 h. The aroA domain of the aroMA.sp. (named aroA A.sp.) was expressed in Escherichia coli BL21 (DE3) and the product was purified through Ni-NTA affinity chromatography. Furthermore, 45 KDa was indicated by SDS-PAGE and its enzyme activity was optimal at 30 °C and PH 7.0. The Ki/Km value of aroAA.sp. was 0.106, and the E. coli BL21 harboring aroAA.sp. could grow in the M9 minimal medium with 100 mM glyphosate. CONCLUSION The aroAA.sp. from the aroMA.sp. complex had high enzyme activity and glyphosate resistance. Therefore, this research offers a new strategy for improving glyphosate resistance using the aroA domain of the aroM complex in the fungi.
Collapse
Affiliation(s)
- Feng Liu
- Plant Science Department, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yueping Cao
- Plant Science Department, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
19
|
Piao Z, Wang W, Wei Y, Zonta F, Wan C, Bai J, Wu S, Wang X, Fang J. Characterization of an acetohydroxy acid synthase mutant conferring tolerance to imidazolinone herbicides in rice (Oryza sativa). PLANTA 2018; 247:693-703. [PMID: 29170911 DOI: 10.1007/s00425-017-2817-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
The acetohydroxy acid synthase S627N mutation confers herbicide tolerance in rice, and the rice variety containing this mutation produces good yields. This variety is commercially viable at Shanghai and Jiangsu regions in China. Weedy rice is a type of rice that produces lower yields and poorer quality grains than cultivated rice. It plagues commercial rice fields in many countries. One strategy to control its proliferation is to develop rice varieties that are tolerant to specific herbicides. Acetohydroxy acid synthase (AHAS) mutations have been found to confer herbicide tolerance to rice. Here, we identified a single mutation (S627N) in AHAS from an indica rice variety that conferred tolerance against imidazolinone herbicides, including imazethapyr and imazamox. A japonica rice variety (JD164) was developed to obtain herbicide tolerance by introducing the mutated indica ahas gene. Imidazolinone application was sufficient to efficiently control weedy rice in the JD164 field. Although the imazethapyr treatment caused dwarfing in the JD164 plants, it did not significantly reduce yields. To determine whether the decrease of the ahas mRNA expression caused the dwarfism of JD164 after imazethapyr application, we detected the ahas mRNA level in plants. The abundance of the ahas mRNA in JD164 increased after imidazolinone application, thus excluding the mRNA expression level as a possible cause of dwarfism. Activity assays showed that the mutated AHAS was tolerant to imidazolinone but the catalytic efficiency of the mutated AHAS decreased in its presence. Moreover, the activity of the mutated AHAS decreased more in the presence of imazethapyr than in the presence of imazamox. We observed no difference in the AHAS secondary structures, but homology modeling suggested that the S627N mutation enabled the substrate to access the active site channel in AHAS, resulting in imidazolinone tolerance. Our work combined herbicides with a rice variety to control weedy rice and showed the mechanism of herbicide tolerance in this rice variety.
Collapse
Affiliation(s)
- Zhongze Piao
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 99 Haike Rd, Shanghai, 201210, China
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 99 Haike Rd, Shanghai, 201210, China
- Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, 00015, Monterotondo, RM, Italy
| | - Changzhao Wan
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Jianjiang Bai
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Shujun Wu
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Xinqi Wang
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China
| | - Jun Fang
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agriculture Sciences, 1000 Jingqi Rd, Shanghai, 201403, China.
| |
Collapse
|
20
|
Li F, Li W, Lin YJ, Pickett JA, Birkett MA, Wu K, Wang G, Zhou JJ. Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest. PLANT, CELL & ENVIRONMENT 2018; 41:111-120. [PMID: 28370092 DOI: 10.1111/pce.12959] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 05/08/2023]
Abstract
Volatile terpenoids play a key role in plant defence against herbivory by attracting parasitic wasps. We identified seven terpene synthase genes from lima bean, Phaseolus lunatus L. following treatment with either the elicitor alamethicin or spider mites, Tetranychus cinnabarinus. Four of the genes (Pltps2, Pltps3, Pltps4 and Pltps5) were up-regulated with their derived proteins phylogenetically clustered in the TPS-g subfamily and PlTPS3 positioned at the base of this cluster. Recombinant PlTPS3 was able to convert geranyl diphosphate and farnesyl diphosphate to linalool and (E)-nerolidol, the latter being precursor of the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). Recombinant PlTPS4 showed a different substrate specificity and produced linalool and (E)-nerolidol, as well as (E,E)-geranyllinalool from geranylgeranyl diphosphate. Transgenic rice expressing Pltps3 emitted significantly more (S)-linalool and DMNT than wild-type plants, whereas transgenic rice expressing Pltps4 produced (S)-linalool, DMNT and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT). In laboratory bioassays, female Cotesia chilonis, the natural enemy of the striped rice stemborer, Chilo suppressalis, were significantly attracted to the transgenic plants and their volatiles. We further confirmed this with synthetic blends mimicking natural rice volatile composition. Our study demonstrates that the transformation of rice to produce volatile terpenoids has the potential to enhance plant indirect defence through natural enemy recruitment.
Collapse
Affiliation(s)
- Fengqi Li
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei Li
- Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Yong-Jun Lin
- Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - John A Pickett
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Michael A Birkett
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Kongming Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Guirong Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing, 100193, China
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
21
|
Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity. Sci Rep 2017; 7:17336. [PMID: 29229911 PMCID: PMC5725424 DOI: 10.1038/s41598-017-16495-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Microbes produce a variety of secondary metabolites to be explored for herbicidal activities. We investigated an endophyte Pseudomonas viridiflava CDRTc14, which impacted growth of its host Lepidium draba L., to better understand the possible genetic determinants for herbicidal and host-interaction traits. Inoculation tests with a variety of target plants revealed that CDRTc14 shows plant-specific effects ranging from beneficial to negative. Its herbicidal effect appeared to be dose-dependent and resembled phenotypically the germination arrest factor of Pseudomonas fluorescens WH6. CDRTc14 shares 183 genes with the herbicidal strain WH6 but the formylaminooxyvinylglycine (FVG) biosynthetic genes responsible for germination arrest of WH6 was not detected. CDRTc14 showed phosphate solubilizing ability, indole acetic acid and siderophores production in vitro and harbors genes for these functions. Moreover, genes for quorum sensing, hydrogen cyanide and ACC deaminase production were also found in this strain. Although, CDRTc14 is related to plant pathogens, we neither found a complete pathogenicity island in the genome, nor pathogenicity symptoms on susceptible plant species upon CDRTc14 inoculation. Comparison with other related genomes showed several unique genes involved in abiotic stress tolerance in CDRTc14 like genes responsible for heavy metal and herbicide resistance indicating recent adaptation to plant protection measures applied in vineyards.
Collapse
|
22
|
Dong Y, Jin X, Tang Q, Zhang X, Yang J, Liu X, Cai J, Zhang X, Wang X, Wang Z. Development and Event-specific Detection of Transgenic Glyphosate-resistant Rice Expressing the G2-EPSPS Gene. FRONTIERS IN PLANT SCIENCE 2017; 8:885. [PMID: 28611804 PMCID: PMC5447670 DOI: 10.3389/fpls.2017.00885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate is a widely used herbicide, due to its broad spectrum, low cost, low toxicity, high efficiency, and non-selective characteristics. Rice farmers rarely use glyphosate as a herbicide, because the crop is sensitive to this chemical. The development of transgenic glyphosate-tolerant rice could greatly improve the economics of rice production. Here, we transformed the Pseudomonas fluorescens G2 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) gene G2-EPSPS, which conferred tolerance to glyphosate herbicide into a widely used japonica rice cultivar, Zhonghua 11 (ZH11), to develop two highly glyphosate-tolerant transgenic rice lines, G2-6 and G2-7, with one exogenous gene integration. Seed germination tests and glyphosate-tolerance assays of plants grown in a greenhouse showed that the two transgenic lines could greatly improve glyphosate-tolerance compared with the wild-type; The glyphosate-tolerance field test indicated that both transgenic lines could grow at concentrations of 20,000 ppm glyphosate, which is more than 20-times the recommended concentration in the field. Isolation of the flanking sequence of transgenic rice G2-6 indicated that the 5'-terminal of T-DNA was inserted into chromosome 8 of the rice genome. An event-specific PCR test system was established and the limit of detection of the primers reached five copies. Overall, the G2-EPSPS gene significantly improved glyphosate-tolerance in transgenic rice; furthermore, it is a useful candidate gene for the future development of commercial transgenic rice.
Collapse
Affiliation(s)
- Yufeng Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xi Jin
- Department of Biochemistry, Baoding UniversityBaoding, China
| | - Qiaoling Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jiangtao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiaojing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Junfeng Cai
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiaobing Zhang
- Biology Institute, Hebei Academy of SciencesShijiazhuang, China
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
23
|
Cui Y, Huang S, Liu Z, Yi S, Zhou F, Chen H, Lin Y. Development of Novel Glyphosate-Tolerant Japonica Rice Lines: A Step Toward Commercial Release. FRONTIERS IN PLANT SCIENCE 2016; 7:1218. [PMID: 27625652 PMCID: PMC5003930 DOI: 10.3389/fpls.2016.01218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/02/2016] [Indexed: 05/19/2023]
Abstract
Glyphosate is the most widely used herbicide for its low cost and high efficiency. However, it is rarely applied directly in rice field due to its toxicity to rice. Therefore, glyphosate-tolerant rice can greatly decrease the cost of rice production and provide a more effective weed management strategy. Although, several approaches to develop transgenic rice with glyphosate tolerance have been reported, the agronomic performances of these plants have not been well evaluated, and the feasibility of commercial production has not been confirmed yet. Here, a novel glyphosate-tolerant gene cloned from the bacterium Isoptericola variabilis was identified, codon optimized (designated as I. variabilis-EPSPS (*)), and transferred into Zhonghua11, a widely used japonica rice cultivar. After systematic analysis of the transgene integration via PCR, Southern blot and flanking sequence isolation, three transgenic lines with only one intact I. variabilis-EPSPS (*) expression cassette integrated into intergenic regions were identified. Seed test results showed that the glyphosate tolerance of the transgenic rice was about 240 times that of wild type on plant medium. The glyphosate tolerance of transgenic rice lines was further evaluated based on comprehensive agronomic performances in the field with T3 and T5generations in a 2-year assay, which showed that they were rarely affected by glyphosate even when the dosage was 8400 g ha(-1). To our knowledge, this is the first demonstration of the development of glyphosate-tolerant rice lines based on a comprehensive analysis of agronomic performances in the field. Taken together, the results suggest that the selected glyphosate-tolerant rice lines are highly tolerant to glyphosate and have the possibility of commercial release. I. variabilis-EPSPS (*) also can be a promising candidate gene in other species for developing glyphosate-tolerant crops.
Collapse
Affiliation(s)
- Ying Cui
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Shuqing Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Ziduo Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Shuyuan Yi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Yongjun Lin
| |
Collapse
|