1
|
Chiu Y, Yan S, Fan Y, Chang C, Hung R, Liu Y, Yang TO, Chuang Y. Aβ-reactive T cell polyfunctionality response as a new biomarker for mild cognitive impairment. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70042. [PMID: 39758054 PMCID: PMC11696027 DOI: 10.1002/dad2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025]
Abstract
Introduction Alzheimer's disease (AD) involves neuroinflammation and amyloid plaque deposition, yet the role of amyloid-reactive immune response in neurodegeneration remains unclear. We investigate amyloid-reactive T cell levels in the Epidemiology of Mild Cognitive Impairment Study in Taiwan (EMCIT) and Taiwan Precision Medicine Initiative of Cognitive Impairment and Dementia (TPMIC) cohorts. Method Using diverse amyloid peptide formulations, we established a polyfunctionality assay for five T cell functions and compared mild cognitive impairment (MCI) patients to control subjects in both cohorts. Results In both cohorts, MCI individuals exhibit higher amyloid-reactive T cell responses than controls. In the TPMIC cohort, CD4+ and CD8+ total response frequencies are notably elevated in MCI (CD4: 1.3%, CD8: 1.91%) versus controls (CD4: 0.15%, CD8: 0.28%; both p < 0.001). Amyloid-reactive T cell response outperforms plasma phosphorylated tau 181 (p-tau181) in discriminating MCI (area under the receiver operating characteristic curve CD4+: 0.97; CD8+: 0.96; p-tau181: 0.72; both p < 0.001). Discussion Amyloid-reactive T cell polyfunctional response distinguishes MCI from normal aging and could serve as a novel MCI biomarker. Highlights Amyloid-reactive polyfunctional T cell responses can be detected in the peripheral circulation.Amyloid-reactive T cell response is significantly enhanced in individuals with mild cognitive impairment compared to age-matched, cognitively unimpaired individuals.The unique discriminative accuracy of amyloid-reactive T cell response is significantly higher than phosphorylated tau181 and is not a result of overall T cell hyperreactivity.Future studies are needed to determine the predictive role of amyloid-reactive T cell responses in disease progression and if the amyloid-reactive immune response could be a therapeutic target for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Yen‐Ling Chiu
- Graduate Institute of MedicineYuan Ze UniversityTaoyuan CityTaiwan
- Program of Biomedical InformaticsYuan Ze UniversityTaoyuan CityTaiwan
- Department of Medical ResearchFar Eastern Memorial HospitalNew TaipeiTaiwan
- Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipei CityTaiwan
| | - Sui‐Hing Yan
- Department of NeurologyFar Eastern Memorial HospitalNew Taipei CityTaiwan
| | - Yang‐Teng Fan
- Graduate Institute of MedicineYuan Ze UniversityTaoyuan CityTaiwan
| | - Chiung‐Fang Chang
- Department of Medical ResearchFar Eastern Memorial HospitalNew TaipeiTaiwan
| | - Ruo‐Wei Hung
- Department of Medical ResearchFar Eastern Memorial HospitalNew TaipeiTaiwan
| | - Yi‐Chien Liu
- Department of NeurologyCardinal Tien HospitalNew Taipei CityTaiwan
- School of Medicine, Fu‐Jen UniversityNew Taipei CityTaiwan
| | - TienYu Owen Yang
- Science Officer, Cancer Epidemiology UnitNuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Yi‐Fang Chuang
- Department of PsychiatryFar Eastern Memorial HospitalNew Taipei CityTaiwan
- International Health Program and Department of EpidemiologyNational Yang Ming Chiao Tung University School of Public HealthTaipei CityTaiwan
| |
Collapse
|
2
|
Mancebo FJ, Nuévalos M, Lalchandani J, Martín Galiano AJ, Fernández-Ruiz M, Aguado JM, García-Ríos E, Pérez-Romero P. Cytomegalovirus UL44 protein induces a potent T-cell immune response in mice. Antiviral Res 2024; 227:105914. [PMID: 38759930 DOI: 10.1016/j.antiviral.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Due to the severity of CMV infection in immunocompromised individuals the development of a vaccine has been declared a priority. However, despite the efforts made there is no yet a vaccine available for clinical use. We designed an approach to identify new CMV antigens able to inducing a broad immune response that could be used in future vaccine formulations. We have used serum samples from 28 kidney transplant recipients, with a previously acquired CMV-specific immune response to identify viral proteins that were recognized by the antibodies present in the patient serum samples by Western blot. A band of approximately 45 kDa, identified as UL44, was detected by most serum samples. UL44 immunogenicity was tested in BALB/c mice that received three doses of the UL44-pcDNA DNA vaccine. UL44 elicited both, a strong antibody response and CMV-specific cellular response. Using bioinformatic analysis we demonstrated that UL44 is a highly conserved protein and contains epitopes that are able to activate CD8 lymphocytes of the most common HLA alleles in the world population. We constructed a UL44 ORF deletion mutant virus that produced no viral progeny, suggesting that UL44 is an essential viral protein. In addition, other authors have demonstrated that UL44 is one of the most abundant viral proteins after infection and have suggested an essential role of UL44 in viral replication. Altogether, our data suggests that UL44 is a potent antigen, and favored by its abundance, it may be a good candidate to include in a vaccine formulation.
Collapse
Affiliation(s)
- Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Jaanam Lalchandani
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | | | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Estéfani García-Ríos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Pilar Pérez-Romero
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
3
|
Benmelech S, Le T, McKay M, Nam J, Subramaniam K, Tellez D, Vlasak G, Mak M. Biophysical and biochemical aspects of immune cell-tumor microenvironment interactions. APL Bioeng 2024; 8:021502. [PMID: 38572312 PMCID: PMC10990568 DOI: 10.1063/5.0195244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
The tumor microenvironment (TME), composed of and influenced by a heterogeneous set of cancer cells and an extracellular matrix, plays a crucial role in cancer progression. The biophysical aspects of the TME (namely, its architecture and mechanics) regulate interactions and spatial distributions of cancer cells and immune cells. In this review, we discuss the factors of the TME-notably, the extracellular matrix, as well as tumor and stromal cells-that contribute to a pro-tumor, immunosuppressive response. We then discuss the ways in which cells of the innate and adaptive immune systems respond to tumors from both biochemical and biophysical perspectives, with increased focus on CD8+ and CD4+ T cells. Building upon this information, we turn to immune-based antitumor interventions-specifically, recent biophysical breakthroughs aimed at improving CAR-T cell therapy.
Collapse
Affiliation(s)
- Shoham Benmelech
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Thien Le
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maggie McKay
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Jungmin Nam
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Krupakar Subramaniam
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Daniela Tellez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Grace Vlasak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
4
|
Essa S, Safar HA, Raghupathy R. Cytokine responses to major human Cytomegalovirus antigens in mouse model. Cytokine 2024; 176:156546. [PMID: 38359558 DOI: 10.1016/j.cyto.2024.156546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Human cytomegalovirus (CMV) continues to be a source of severe complications in immunologically immature and immunocompromised hosts. Effective CMV vaccines that help diminish CMV disease in transplant patients and avoid congenital infection are essential. Though the exact roles of defense mechanisms are unidentified, virus-specific antibodies and cytokine responses are known to be involved in controlling CMV infections. Identifying the CMV antigens that trigger these protective immune responses will help us choose the most suitable CMV-related proteins for future vaccines. CMV envelope glycoprotein B (UL55/gB), matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and assembly protein UL80a/pp38 are known to be targets for antiviral immune responses. We immunized mice intraperitoneally with these five CMV-related proteins for their ability to induce specific antibody responses and cytokine production in a mouse model. We observed a significant CMV-antigen-specific antibody response to UL80a/pp38 and UL83/pp65 (E/C>2.0). Mice immunized with UL80a/pp38 had significantly higher concentrations of GM-CSF, IFN-γ, IL-2, IL-4, IL-5, and IL-17A (p<0.05). Mice immunized with UL83/pp65 showed significantly higher concentrations of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF-α. Ratios of Th1 to Th2 cytokines revealed a Th1 cytokine bias in mice immunized with UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB. We suggest that stimulation with multiple CMV-related proteins, which include UL80a/pp38, UL83/pp65, UL32/pp150, and UL55/gB antigens, will allow both humoral and cellular immune responses to be efficiently activated, thus serving as appropriate CMV antigens for future novel vaccines and immune-based therapeutic design.
Collapse
Affiliation(s)
- Sahar Essa
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait.
| | - Hussain A Safar
- OMICS Research Unit, Health Science Center, Kuwait University, Kuwait City, Kuwait.
| | - Raj Raghupathy
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
5
|
Wang LT, Chen YH, Cheng Y, Fan HL, Chen TW, Shih YL, Hsieh TY, Huang WY, Huang WC. Clinical implications of hepatitis B virus core antigen-mediated immunopathologic T cell responses in chronic hepatitis B. J Med Virol 2024; 96:e29515. [PMID: 38469923 DOI: 10.1002/jmv.29515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Hepatitis B virus (HBV) infection significantly impacts Asian populations. The influences of continuous HBV antigen and inflammatory stimulation to T cells in chronic hepatitis B (CHB) remain unclear. In this study, we first conducted bioinformatics analysis to assess T-cell signaling pathways in CHB patients. In a Taiwanese cohort, we examined the phenotypic features of HBVcore -specific T cells and their correlation with clinical parameters. We used core protein overlapping peptides from the Taiwan prevalent genotype B HBV to investigate the antiviral response and the functional implication of HBV-specific T cells. In line with Taiwanese dominant HLA-alleles, we also evaluated ex vivo HBVcore -specific T cells by pMHC-tetramers targeting epitopes within HBV core protein. Compared to healthy subjects, we disclosed CD8 T cells from CHB patients had higher activation marker CD38 levels but showed an upregulation in the inhibitory receptor PD-1. Our parallel study showed HBV-specific CD8 T cells were more activated with greater PD-1 expression than CMV-specific subset and bulk CD8 T cells. Moreover, our longitudinal study demonstrated a correlation between the PD-1 fluctuation pattern of HBVcore -specific CD8 T cells and liver inflammation in CHB patients. Our research reveals the HBV core antigen-mediated immunopathologic profile of CD8 T cells in chronic HBV infection. Our findings suggest the PD-1 levels of HBVcore -specific CD8 T cells can be used as a valuable indicator of personal immune response for clinical application in hepatitis management.
Collapse
Affiliation(s)
- Li-Tzu Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hong Chen
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yang Cheng
- Division of Infectious Disease & Immunology, Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Lung Fan
- Department of Surgery, Division of Organ Transplantation Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Teng-Wei Chen
- Department of Surgery, Division of Organ Transplantation Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Lueng Shih
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsai-Yuan Hsieh
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chen Huang
- Department of Internal Medicine, Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
7
|
Malyshkina A, Brüggemann A, Paschen A, Dittmer U. Cytotoxic CD4 + T cells in chronic viral infections and cancer. Front Immunol 2023; 14:1271236. [PMID: 37965314 PMCID: PMC10642198 DOI: 10.3389/fimmu.2023.1271236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alicia Brüggemann
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Human Cytomegalovirus pUL11, a CD45 Ligand, Disrupts CD4 T Cell Control of Viral Spread in Epithelial Cells. mBio 2022; 13:e0294622. [PMID: 36445084 PMCID: PMC9765415 DOI: 10.1128/mbio.02946-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes numerous immunomodulatory genes that facilitate its persistence. Previously described mechanisms by which HCMV avoids T cell control typically involve evasion of detection by infected cells. Here, we show that the virus also inhibits T cells directly via an interaction between the pUL11 glycoprotein on infected cells and the CD45 phosphatase on T cells. The antiviral functions of CD4 T cells are impaired as a result of this interaction, largely via induced interleukin 10 (IL-10) secretion in the CD4 T cell central memory compartment, resulting in enhanced viral spread. This establishes CD45 as an inhibitory receptor that regulates antiviral T cell functions and has parallels with the manipulation of natural killer (NK) cells by HCMV. By coculturing donor T cells with HCMV-infected epithelial cells, we observed that CD4 T cells can respond to epithelial cell antigen presentation and can control HCMV spread via cytolytic and cytokine-dependent mechanisms. pUL11 impairs both mechanisms. We showed that pUL11-induced IL-10 secretion requires IL-2, mTOR, and T cell receptor signaling. This characterization of the effects of the pUL11-CD45 interaction may allow for the development of new antiviral therapies and treatments for inflammatory disorders. IMPORTANCE Human cytomegalovirus (HCMV) is adept at avoiding its host's immune defenses, both by evading detection and by directly inhibiting immune cells. This can lead to a loss of control of the infection, and dangerous disease can result, particularly in cases in which an individual's immune system is immature, weak, or suppressed. T cells form a crucial part of the response to HCMV and are used in cellular HCMV therapies. We show that an interaction between a viral glycoprotein (pUL11) and a T cell surface receptor (CD45) impairs T cell memory functions and allows for increased viral spread. This defines a new immunomodulatory strategy for the virus as well as a new T cell regulatory mechanism. These results are important, as they increase our understanding of how T cells function and how HCMV disrupts them. This will allow for the development of new antiviral therapies that restore T cell functions and indicates a new target for controlling pathological T cell disorders.
Collapse
|
9
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
10
|
Unger PPA, Oja AE, Khemai-Mehraban T, Ouwendijk WJD, Hombrink P, Verjans GMGM. T-cells in human trigeminal ganglia express canonical tissue-resident memory T-cell markers. J Neuroinflammation 2022; 19:249. [PMID: 36203181 PMCID: PMC9535861 DOI: 10.1186/s12974-022-02611-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Trigeminal ganglia (TG) neurons are the main site of lifelong latent herpes simplex virus type 1 (HSV-1) infection. T-cells in ganglia contribute to long-term control of latent HSV-1 infection, but it is unclear whether these cells are bona fide tissue-resident memory T-cells (TRM). We optimized the processing of human post-mortem nervous tissue to accurately phenotype T-cells in human TG ex vivo and in situ. METHODS Peripheral blood mononuclear cells (PBMC; 5 blood donors) were incubated with several commercial tissue digestion enzyme preparations to determine off-target effect on simultaneous detection of 15 specific T-cell subset markers by flow cytometry. Next, optimized enzymatic digestion was applied to ex vivo phenotype T-cells in paired PBMC, normal appearing white matter (NAWM) and TG of 8 deceased brain donors obtained < 9 h post-mortem by flow cytometry. Finally, the phenotypic and functional markers, and spatial orientation of T-cells in relation to neuronal somata, were determined in TG tissue sections of five HSV-1-latently infected individuals by multiparametric in situ analysis. RESULTS Collagenase IV digestion of human nervous tissue was most optimal to obtain high numbers of viable T-cells without disrupting marker surface expression. Compared to blood, majority T-cells in paired NAWM and TG were effector memory T-cells expressing the canonical TRM markers CD69, CXCR6 and the immune checkpoint marker PD1, and about half co-expressed CD103. A trend of relatively higher TRM frequencies were detected in TG of latently HSV-1-infected compared to HSV-1 naïve individuals. Subsequent in situ analysis of latently HSV-1-infected TG showed the presence of cytotoxic T-cells (TIA-1+), which occasionally showed features of proliferation (KI-67+) and activation (CD137+), but without signs of degranulation (CD107a+) nor damage (TUNEL+) of TG cells. Whereas majority T-cells expressed PD-1, traits of T-cell senescence (p16INK4a+) were not detected. CONCLUSIONS The human TG represents an immunocompetent environment in which both CD4 and CD8 TRM are established and retained. Based on our study insights, we advocate for TRM-targeted vaccine strategies to bolster local HSV-1-specific T-cell immunity, not only at the site of recurrent infection but also at the site of HSV-1 latency.
Collapse
Affiliation(s)
- Peter-Paul A Unger
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Anna E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamana Khemai-Mehraban
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Werner J D Ouwendijk
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Xia J, Li X, Gui G, Wu J, Gong S, Shang Y, Fan J. Early immune surveillance to predict cytomegalovirus outcomes after allogeneic hematopoietic stem cell transplantation. Front Cell Infect Microbiol 2022; 12:954420. [PMID: 35992173 PMCID: PMC9382130 DOI: 10.3389/fcimb.2022.954420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThere is no method of predicting human cytomegalovirus (HCMV) outcomes in allogeneic hematopoietic stem cell transplant recipients clinically, leading in some cases to excessive or insufficient antiviral therapy. We evaluated the early immune response of recipients with disparate HCMV outcomes.MethodsThe HCMV outcomes of recipients were determined by long-term monitoring of HCMV DNA levels posttransplant. HCMV IgG and IgM concentrations at 1 week before and 1 week after transplantation, absolute lymphocyte counts, and HCMV-specific IFN-γ secreting cells at 1 month posttransplant were evaluated based on HCMV outcome.ResultsAll recipients were negative for HCMV IgM. Significant differences between recipients with and without HCMV reactivation were observed in pre- and post-transplant HCMV IgG antibody levels, absolute lymphocyte counts, and HCMV-specific IFN-γ secreting cells (P < 0.05). HCMV IgG antibody levels significantly increased after transplantation in recipients with HCMV reactivation (P = 0.032), but not in those without reactivation. Multivariate analysis revealed that except for the absolute lymphocyte count these biomarkers were related to HCMV reactivation, independent of other clinical factors. In time-to-event analyses, lower levels of these biomarkers were associated with an increased 150-day cumulative incidence of HCMV reactivation (log-rank P < 0.05). In recipients with HCMV reactivation, the duration of HCMV DNAemia had negative correlation with HCMV-specific IFN-γ-secreting cells (P = 0.015, r = -0.372). The relationships between the peak HCMV DNA load and absolute lymphocyte count and HCMV-specific IFN-γ-secreting cells followed the same trends (P = 0.026, r = -0.181 and P = 0.010, r = -0.317).ConclusionsHCMV IgG, absolute lymphocyte count, and HCMV-specific IFN-γ secreting cells represent the humoral and cellular immune response. Early monitoring of these immune markers could enable prediction of HCMV outcomes posttransplant and assessment of the severity of HCMV DNAemia.
Collapse
Affiliation(s)
- Jintao Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Genyong Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shengnan Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxin Shang
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London South Kensington Campus, London, United Kingdom
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jun Fan,
| |
Collapse
|
12
|
Multiple modes of antigen exposure induce clonotypically diverse epitope-specific CD8+ T cells across multiple tissues in nonhuman primates. PLoS Pathog 2022; 18:e1010611. [PMID: 35797339 PMCID: PMC9262242 DOI: 10.1371/journal.ppat.1010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Antigen-specific CD8+ T cells play a key role in the host’s antiviral response. T cells recognize viral epitopes via the T cell receptor (TCR), which contains the complementarity-determining region-3 (CDR3), comprising the variable, diversity and joining regions of the TCRβ gene. During chronic simian immunodeficiency virus (SIV) infection of Asian macaque nonhuman primates, tissue-specific clonotypes are identifiable among SIV-specific CD8+ T cells. Here, we sought to determine level of antigen exposure responsible for the tissue-specific clonotypic structure. We examined whether the priming event and/or chronic antigen exposure is response for tissue-specific TCR repertoires. We evaluated the TCR repertoire of SIV-specific CD8+ T cells after acute antigen exposure following inoculation with a SIV DNA vaccine, longitudinally during the acute and chronic phases of SIV, and after administration of antiretrovirals (ARVs). Finally, we assessed the TCR repertoire of cytomegalovirus (CMV)-specific CD8+ T cells to establish if TCR tissue-specificity is shared among viruses that chronically replicate. TCR sequences unique to anatomical sites were identified after acute antigen exposure via vaccination and upon acute SIV infection. Tissue-specific clones also persisted into chronic infection and the clonotypic structure continued to evolve after ARV administration. Finally, tissue-specific clones were also observed in CMV-specific CD8+ T cells. Together, these data suggest that acute antigen priming is sufficient to induce tissue-specific clones and that this clonal hierarchy can persist when antigen loads are naturally or therapeutically reduced, providing mechanistic insight into tissue-residency. During viral infection, CD8+ T cells that bind a specific viral particle through their T cell receptor (TCR) can help control viral replication. Infection with simian immunodeficiency virus (SIV) in nonhuman primates is a commonly used animal model of HIV infection. Here we assess the TCR sequences of CD8+ T cells specific for the SIV gag gene during vaccination with an experimental SIV vaccine and throughout SIV infection, including during treatment with antiretroviral drugs. We identified unique TCR sequences in specific tissues, which were not identified in the blood or in other tissues, both in response to vaccination and throughout SIV infection with and without antiretroviral treatment. We also observed tissue-specific TCR sequences in CD8+ T cells specific for Cytomegalovius, another virus that causes a chronic infection in humans. Together, our findings identify the conditions required to form a tissue-specific TCR repertoire.
Collapse
|
13
|
Pickering H, Schaenman J, Rossetti M, Ahn R, Sunga G, Liang EC, Bunnapradist S, Reed EF. T cell senescence and impaired CMV-specific response are associated with infection risk in kidney transplant recipients. Hum Immunol 2022; 83:273-280. [PMID: 35190203 PMCID: PMC9462879 DOI: 10.1016/j.humimm.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023]
Abstract
Older kidney transplant recipients demonstrate increased rates of infection, and lower rates of rejection, compared with younger kidney transplant recipients. However, the mechanism behind this observation remains unknown. To develop a multifaceted view of age-associated immune dysfunction, we determined the function and phenotype of T cells predisposing to vulnerability to infection on a molecular level. Overlapping peptide pools representing the dominant CMV antigens were used to stimulate PBMC collected from 51 kidney transplant recipients, using cytokine secretion to determine specificity and intensity of response. Staphylococcal endotoxin B (SEB) was analyzed in parallel. To define immune cell subsets, we used single cell RNA sequencing (scRNAseq) to evaluate cellular surface markers and gene expression. We found increased frequency of SEB- and CMV-specific T cells was associated with freedom from infection, especially in older patients. Spatialized t-SNE analysis revealed decreased frequency of naïve T cells, increased frequency of TEMRA cells, and decreased frequency of IFNγ secreting T cells in patients with infection. Application of scRNAseq analysis revealed increased frequency of terminally differentiated T cells expressing NK-associated receptors and inhibitory markers. These findings offer unique insight into the mechanism behind vulnerability to infection in the kidney transplant recipient, revealing a specific T cell subtype of impaired antigen response and terminal effector phenotype as markers of T cell senescence.
Collapse
Affiliation(s)
| | | | | | - Richard Ahn
- Quantitative and Computational Biosciences, USA
| | | | | | - Suphamai Bunnapradist
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, USA
| |
Collapse
|
14
|
CD8 + T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int J Mol Sci 2022; 23:ijms23063374. [PMID: 35328795 PMCID: PMC8955595 DOI: 10.3390/ijms23063374] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.
Collapse
|
15
|
Sung BY, Lin YH, Kong Q, Shah PD, Glick Bieler J, Palmer S, Weinhold KJ, Chang HR, Huang H, Avery RK, Schneck J, Chiu YL. Wnt activation promotes memory T cell polyfunctionality via epigenetic regulator PRMT1. J Clin Invest 2022; 132:e140508. [PMID: 35040433 PMCID: PMC8759796 DOI: 10.1172/jci140508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
T cell polyfunctionality is a hallmark of protective immunity against pathogens and cancer, yet the molecular mechanism governing it remains mostly elusive. We found that canonical Wnt agonists inhibited human memory CD8+ T cell differentiation while simultaneously promoting the generation of highly polyfunctional cells. Downstream effects of Wnt activation persisted after removal of the drug, and T cells remained polyfunctional following subsequent cell division, indicating the effect is epigenetically regulated. Wnt activation induced a gene expression pattern that is enriched with stem cell-specific gene signatures and upregulation of protein arginine methyltransferase 1 (PRMT1), a known epigenetic regulator. PRMT1+CD8+ T cells are associated with enhanced polyfunctionality, especially the ability to produce IL-2. In contrast, inhibition of PRMT1 ameliorated the effects of Wnt on polyfunctionality. Chromatin immunoprecipitation revealed that H4R3me2a, a permissive transcription marker mediated by PRMT1, increased at the IL-2 promoter loci following Wnt activation. In vivo, Wnt-treated T cells exhibited superior polyfunctionality and persistence. When applied to cytomegalovirus (CMV) donor-seropositive, recipient-seronegative patients (D+/R-) lung transplant patient samples, Wnt activation enhanced CMV-specific T cell polyfunctionality, which is important in controlling CMV diseases. These findings reveal a molecular mechanism governing T cell polyfunctionality and identify PRMT1 as a potential target for T cell immunotherapy.
Collapse
Affiliation(s)
- Bo-Yi Sung
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Microbiology and Immunology
- Department of Biomedical Engineering, and
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, and
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Pali D. Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joan Glick Bieler
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Kent J. Weinhold
- Department of Surgery, and Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan Schneck
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland. USA
| | - Yen-Ling Chiu
- Institute of Cell Engineering and
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
16
|
Carvalho-Gomes Â, Cubells A, Pallarés C, Corpas-Burgos F, Berenguer M, Aguilera V, López-Labrador FX. Cytomegalovirus specific polyfunctional T-cell responses expressing CD107a predict control of CMV infection after liver transplantation. Cell Immunol 2021; 371:104455. [PMID: 34864514 DOI: 10.1016/j.cellimm.2021.104455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022]
Abstract
Cytomegalovirus (CMV) viral load after liver transplantation (LT) is controlled by cell mediated immune responses (CMI). Quantification of CMV-specific T-cells may identify patients who control CMV spontaneously and avoid expensive and potentially toxic antiviral therapies. Prospective post-LT clinical, virological and immunological monitoring was carried out up to 1-year post-LT in a cohort of adult recipients. The CMV-specific T-cell response was characterized using flow cytometry intracellular cytokine staining in 49 LT recipients-R (79.6% R+, 20.4% R-). CMV infection occurred in 24 patients (18 D+/R+ and 6 D+/R-). Only patients with undetectable polyfunctional CMV-specific CD4+ T-cells developed CMV infection. Predictive models showed that polyfunctional CMV-specific CD4+ T-cells pre-existing before LT are protective for CMV reactivation posttransplantation. Quantitation of CD4+ T-cell responses to CMV may be a useful marker for spontaneous control of viral replication to tailor antiviral prophylaxis after LT.
Collapse
Affiliation(s)
- Ângela Carvalho-Gomes
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain.
| | - Almudena Cubells
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain
| | - Carmina Pallarés
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain
| | - Francisca Corpas-Burgos
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Public Health), Av. Catalunya, 21, 46020 Valencia, Spain; CIBEResp, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Berenguer
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain; Liver Transplantation and Hepatology Unit, Hospital Universitario y Politécnico La Fe, València, Spain; Department of Medicine, University of Valencia Medical School, Valencia, Spain
| | - Victoria Aguilera
- Liver Transplantation and Hepatology Laboratory, Hepatology, HBP Surgery and Transplant Unit, Instituto Investigación Sanitaria La Fe, Hospital U. y P. La Fe, València, Spain; CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Spain; Liver Transplantation and Hepatology Unit, Hospital Universitario y Politécnico La Fe, València, Spain
| | - F Xavier López-Labrador
- CIBEResp, Instituto de Salud Carlos III, Madrid, Spain; Virology Laboratory, Genomics and Health Area, Centro Superior de Salud Pública, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Public Health), Conselleria de Sanitat, València, Spain
| |
Collapse
|
17
|
Shirakawa K, Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells 2021; 10:cells10092435. [PMID: 34572084 PMCID: PMC8464832 DOI: 10.3390/cells10092435] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Although advances in preventive medicine have greatly improved prognosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. This clearly indicates that there remain residual cardiovascular risks that have not been targeted by conventional therapies. The results of multiple animal studies and clinical trials clearly indicate that inflammation is the most important residual risk and a potential target for CVD prevention. The immune cell network is intricately regulated to maintain homeostasis. Ageing associated changes to the immune system occurs in both innate and adaptive immune cells, however T cells are most susceptible to this process. T-cell changes due to thymic degeneration and homeostatic proliferation, metabolic abnormalities, telomere length shortening, and epigenetic changes associated with aging and obesity may not only reduce normal immune function, but also induce inflammatory tendencies, a process referred to as immunosenescence. Since the disruption of biological homeostasis by T cell immunosenescence is closely related to the development and progression of CVD via inflammation, senescent T cells are attracting attention as a new therapeutic target. In this review, we discuss the relationship between CVD and T cell immunosenescence associated with aging and obesity.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 1138421, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 1608582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
18
|
Choi KY, McGregor A. A Fully Protective Congenital CMV Vaccine Requires Neutralizing Antibodies to Viral Pentamer and gB Glycoprotein Complexes but a pp65 T-Cell Response Is Not Necessary. Viruses 2021; 13:v13081467. [PMID: 34452332 PMCID: PMC8402731 DOI: 10.3390/v13081467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
A vaccine against congenital cytomegalovirus infection is a high priority. Guinea pig cytomegalovirus (GPCMV) is the only congenital CMV small animal model. GPCMV encodes essential glycoprotein complexes for virus entry (gB, gH/gL/gO, gM/gN) including a pentamer complex (gH/gL/GP129/GP131/GP133 or PC) for endocytic cell entry. The cohorts for protection against congenital CMV are poorly defined. Neutralizing antibodies to the viral glycoprotein complexes are potentially more important than an immunodominant T-cell response to the pp65 protein. In GPCMV, GP83 (pp65 homolog) is an evasion factor, and the GP83 mutant GPCMV has increased sensitivity to type I interferon. Although GP83 induces a cell-mediated response, a GP83-only-based vaccine strategy has limited efficacy. GPCMV attenuation via GP83 null deletion mutant in glycoprotein PC positive or negative virus was evaluated as live-attenuated vaccine strains (GP83dPC+/PC-). Vaccinated animals induced antibodies to viral glycoprotein complexes, and PC+ vaccinated animals had sterilizing immunity against wtGPCMV challenge. In a pre-conception vaccine (GP83dPC+) study, dams challenged mid-2nd trimester with wtGPCMV had complete protection against congenital CMV infection without detectable virus in pups. An unvaccinated control group had 80% pup transmission rate. Overall, gB and PC antibodies are key for protection against congenital CMV infection, but a response to pp65 is not strictly necessary.
Collapse
|
19
|
Zhang W, Morris AB, Peek EV, Karadkhele G, Robertson JM, Kissick HT, Larsen CP. CMV Status Drives Distinct Trajectories of CD4+ T Cell Differentiation. Front Immunol 2021; 12:620386. [PMID: 33936035 PMCID: PMC8081907 DOI: 10.3389/fimmu.2021.620386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cytomegalovirus (CMV) is one of the most commonly recognized opportunistic pathogens and remains the most influential known parameter in shaping an individual's immune system. As such, T cells induced by CMV infection could have a long-term impact on subsequent immune responses. Accumulating evidence indicates that memory T cells developed during past bacterial and viral infection can cross-react with unrelated pathogens, including transplant antigens, and can alter responses to de novo infections, vaccines, cancers, or rejection. Therefore, careful examination of T cell responses elicited by CMV is warranted to understand their potentially beneficial or harmful roles in future major immune events. Our detailed exploration of the distribution, phenotype, TCR repertoire and transcriptome of CD4+ T cells within CMV seropositive healthy individuals using high-dimensional flow cytometry and single cell multi-omics sequencing reveals that CMV seropositivity has highly significant age-independent effects, leading to a reduction in CD4+ naïve T cells and an expansion of CD4+ effector memory T cells and CD45RA+ effector memory T cells. These induced CD4+ effector memory T cells undergo a specific differentiation trajectory resulting in a subpopulation of CD57+CD27-CD28-CD244+ CD4+ T cells with cytotoxic function and TCR oligoclonality for optimal controlled coexistence with cytomegalovirus. Through gene set enrichment analysis, we found that this subpopulation is similar to virus-specific CD8+ T cells and T cells that mediate acute rejection in patients using tacrolimus and belatacept, a selective costimulation blocker. Together, these data suggest that memory CD4+ T cells induced by cytomegalovirus are formed via a distinct differentiation program to acquire cytotoxic function and can be potentially detrimental to transplant patients adopting costimulation blockade immunosuppressive regimen.
Collapse
Affiliation(s)
- Weiwen Zhang
- Xiangya School of Medicine, Central South University, Changsha, China.,Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Anna B Morris
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Erica V Peek
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Geeta Karadkhele
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer M Robertson
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, United States
| | - Christian P Larsen
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Wu CS, Chyuan IT, Chiu YL, Chen WL, Shen CY, Hsu PN. Preserved specific anti-viral T-cell response but associated with decreased lupus activity in SLE patients with cytomegalovirus infection. Rheumatology (Oxford) 2021; 59:3340-3349. [PMID: 32306043 DOI: 10.1093/rheumatology/keaa143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/26/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES SLE is an autoimmune disease characterized by aberrant autoantibody production and immune dysfunctions. Whether the anti-CMV immunity is impaired in SLE patients is poorly understood. We investigated the specific anti-viral T-cell response in SLE patients with CMV infection and its possible impacts on clinical manifestations in lupus. METHODS CD28 null T-cell percentages were measured by flow cytometry in 89 SLE patients and 58 healthy controls. A specific anti-CMV CD8 T-cell response was assessed ex vivo by the production of intracellular cytokines in response to CMV phosphoprotein 65 (pp65) by flow cytometry. Clinical manifestations and immune parameters were analysed in SLE patients according to their CMV serostatus. RESULTS CD28 null T cells were significantly expanded in SLE patients. When the anti-CMV pp65 CD8 polyfunctional T cell response was analysed, as defined by production of at least three of four functional cytokines or effectors (intracellular IFN-γ, IL-2, TNF-α and surface CD107a), the results demonstrated that it was not impaired in SLE patients. In contrast, when comparing clinical manifestations, there were lower anti-ds-DNA levels and decreased SLEDAI in SLE patients with CMV infection. Furthermore, the expansion of CD4+CD28 null T cells was negatively associated with anti-ds-DNA levels and SLEDAI in these lupus patients. CONCLUSION In SLE patients with CMV infection, the specific anti-CMV CD8 T-cell response is preserved but is associated with decreased disease activity and lower anti-DNA levels among these patients, suggesting CMV infection may mitigate lupus activity.
Collapse
Affiliation(s)
- Chien-Sheng Wu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City
| | - I-Tsu Chyuan
- Department of Internal Medicine.,Department of Medical Research, Cathay General Hospital, Taipei.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City
| | - Yen-Ling Chiu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City.,Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan City
| | - Wen-Lin Chen
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City
| | | | - Ping-Ning Hsu
- Department of Internal Medicine.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Min GJ, Kim HJ, Kim TG, Hyun YS, Hyun SJ, Baek IC, Yoon SY, Park SS, Park S, Yoon JH, Lee SE, Cho BS, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Kim DW, Lee JW. Specific donor HLA allotypes as predictors of cytomegalovirus disease risk in acute myeloid leukemia. HLA 2020; 96:445-455. [PMID: 32506817 DOI: 10.1111/tan.13966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Some HLA alleles have been shown to be associated with susceptibility to cytomegalovirus (CMV) disease incidence in vitro. The objective of this study was to identify correlations between donor HLA allotypes and CMV disease incidence in patients with acute myeloid leukemia who had undergone allogeneic hematopoietic stem cell transplantation (HSCT). Methods and materials we retrospectively analyzed the medical records of 613 donors and recipients with acute myeloid leukemia who had received an allogeneic HSCT from matched sibling (n = 260), unrelated (n = 168), or haploidentical (n = 186) donors, from 2012 to 2017. The HLA-A, -B, -C, and -DRB1 allotypes in the donors were determined using sequence-based typing. Overall, CMV disease incidence was significantly associated with three genotype alleles, HLA-A*30:04:01G, -B*51:01:01G, and -DRB1*09:01:02G. In the donor CMV IgG seropositive subgroup, CMV disease incidence was significantly associated with HLA-B*51:01:01G and -DRB1*09:01:02G. In the IgG seropositive donors in the unrelated allo-HSCT subgroup CMV disease incidence was also significantly associated with HLA-B*51:01:01G. In the CMV seropositive donors in the haploidentical allo-HSCT subgroup, the incidence of CMV disease was significantly associated with HLA-A*24:02:01G and -DRB1*09:01:02G. HLA-DRB1*13:02:01G was a protective marker among IgG seropositive donors in the unrelated allo-HSCT recipient category. Discussion and conclusions The incidence of CMV disease among HSCT recipients varies according to donor HLA alleles and the donor CMV IgG serostatus. Certain donor HLA alleles can be considered to be risk or protective markers. Donors' HLA types and CMV IgG serostatus should be considered in donor selection.
Collapse
Affiliation(s)
- Gi-June Min
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Joo Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Cheol Baek
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seug Yun Yoon
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Soo Park
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Silvia Park
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Ho Yoon
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Eun Lee
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Sik Cho
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Seong Eom
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo-Jin Kim
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Lee
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang-Ki Min
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Wook Kim
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Wook Lee
- Department of Internal Medicine, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
22
|
Hsieh AH, Kuo CF, Chou IJ, Tseng WY, Chen YF, Yu KH, Luo SF. Human cytomegalovirus pp65 peptide-induced autoantibodies cross-reacts with TAF9 protein and induces lupus-like autoimmunity in BALB/c mice. Sci Rep 2020; 10:9662. [PMID: 32541894 PMCID: PMC7295797 DOI: 10.1038/s41598-020-66804-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Human cytomegalovirus (HCMV) has been linked to the triggering of systemic lupus erythematosus (SLE). We proposed that B cell epitope region of HCMV phosphoprotein 65 (HCMVpp65)422-439 mimics an endogenous antigen and initiates lupus-like autoimmunity. Amino acid homology between HCMVpp65422-439 and TAF9134-144 (TATA-box binding protein associated factor 9, TAF9) was investigated using a similarity search in NCBI protein BLAST program (BLASTP). A murine model was used to confirm their antigenicity and ability to induce lupus-like symptoms. HCMVpp65422-439 induced immune responses with the presence of specific antibodies against HCMVpp65422-439 and TAF9134-144, as well as anti-nuclear and anti-double-stranded (ds)DNA antibodies that are characteristic of SLE. In addition, the majority of HCMVpp65422-439 and TAF9134-144 immunized mice developed proteinuria, and their renal pathology revealed glomerulonephritis with typical abnormalities, such as mesangial hypercellularity and immune complex deposition. Immunoglobulin eluted from the glomeruli of HCMVpp65422-439 immunized mice showed cross-reactivity with TAF9134-144 and dsDNA. Increased anti-TAF9 antibody activity was also observed in the sera from SLE patients compared with healthy people and disease controls. Molecular mimicry between HCMVpp65 peptide and host protein has the potential to drive lupus-like autoimmunity. This proof-of-concept study highlights the mechanisms underlying the link between HCMV infection and the induction of SLE.
Collapse
Affiliation(s)
- Ao-Ho Hsieh
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chang-Fu Kuo
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,School of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - I-Jun Chou
- Division of Clinical Neurology, School of Medicine, University of Nottingham, Nottingham, UK.,Division of Paediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Yi Tseng
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Keelung, Taiwan.,Kennedy Institute, University of Oxford, Oxford, UK
| | - Yen-Fu Chen
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuang-Hui Yu
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shue-Fen Luo
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
23
|
Sandonís V, García-Ríos E, McConnell MJ, Pérez-Romero P. Role of Neutralizing Antibodies in CMV Infection: Implications for New Therapeutic Approaches. Trends Microbiol 2020; 28:900-912. [PMID: 32448762 DOI: 10.1016/j.tim.2020.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) infection elicits a potent immune response that includes the stimulation of antibodies with neutralizing activity. Recent studies have focused on elucidating the role of neutralizing antibodies in protecting against CMV infection and disease and characterizing viral antigens against which neutralizing antibodies are directed. Here, we provide a synthesis of recent data regarding the role of neutralizing antibodies in protection against CMV infection/disease. We consider the role of humoral immunity in the context of the global CMV-specific immune response, and the implications that recent findings have for vaccine and antibody-based therapy design.
Collapse
Affiliation(s)
- Virginia Sandonís
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael J McConnell
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
24
|
Maehara T, Kaneko N, Perugino CA, Mattoo H, Kers, J, Allard-Chamard H, Mahajan VS, Liu H, Murphy SJ, Ghebremichael M, Fox D, Payne AS, Lafyatis R, Stone JH, Khanna D, Pillai S. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. J Clin Invest 2020; 130:2451-2464. [PMID: 31990684 PMCID: PMC7190971 DOI: 10.1172/jci131700] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disease whose pathogenesis is poorly understood and lacks effective therapies. We undertook quantitative analyses of T cell infiltrates in the skin of 35 untreated patients with early diffuse SSc and here show that CD4+ cytotoxic T cells and CD8+ T cells contribute prominently to these infiltrates. We also observed an accumulation of apoptotic cells in SSc tissues, suggesting that recurring cell death may contribute to tissue damage and remodeling in this fibrotic disease. HLA-DR-expressing endothelial cells were frequent targets of apoptosis in SSc, consistent with the prominent vasculopathy seen in patients with this disease. A circulating effector population of cytotoxic CD4+ T cells, which exhibited signatures of enhanced metabolic activity, was clonally expanded in patients with systemic sclerosis. These data suggest that cytotoxic T cells may induce the apoptotic death of endothelial and other cells in systemic sclerosis. Cell loss driven by immune cells may be followed by overly exuberant tissue repair processes that lead to fibrosis and tissue dysfunction.
Collapse
Affiliation(s)
- Takashi Maehara
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naoki Kaneko
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Cory A. Perugino
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hamid Mattoo
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Immunology and Inflammation Therapeutic Area, Sanofi, Cambridge Massachusetts, USA
| | - Jesper Kers,
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Amsterdam Infection & Immunity Institute (AI&II) and
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, and
- Van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Hugues Allard-Chamard
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Division of Rheumatology, Faculté de médecine et des sciences de la santé, Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada
| | - Vinay S. Mahajan
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Hang Liu
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, First Affiliated Hospital of China, Shenyang, China
| | - Samuel J.H. Murphy
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| | - Musie Ghebremichael
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| | - David Fox
- Division of Rheumatology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Aimee S. Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John H. Stone
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dinesh Khanna
- Division of Rheumatology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiv Pillai
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
25
|
J. Heath J, D. Grant M. The Immune Response Against Human Cytomegalovirus Links Cellular to Systemic Senescence. Cells 2020; 9:cells9030766. [PMID: 32245117 PMCID: PMC7140628 DOI: 10.3390/cells9030766] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Aging reflects long-term decline in physiological function and integrity. Changes arise at a variable pace governed by time-dependent and -independent mechanisms that are themselves complex, interdependent and variable. Molecular decay produces inferior cells that eventually dominate over healthy counterparts in tissues they comprise. In a form of biological entropy, progression from molecular through cellular to tissue level degeneration culminates in organ disease or dysfunction, affecting systemic health. To better understand time-independent contributors and their potential modulation, common biophysical bases for key molecular and cellular changes underlying age-related physiological deterioration must be delineated. This review addresses the potential contribution of cytomegalovirus (CMV)-driven T cell proliferation to cellular senescence and immunosenescence. We first describe molecular processes imposing cell cycle arrest, the foundation of cellular senescence, then focus on the unique distribution, phenotype and function of CMV-specific CD8+ T cells in the context of cellular senescence and "inflammaging". Their features position CMV infection as a pathogenic accelerant of immune cell proliferation underlying immune senescence. In human immunodeficiency virus (HIV) infection, where increased inflammation and exaggerated anti-CMV immune responses accelerate immune senescence, CMV infection has emerged as a major factor in unhealthy aging. Thus, we speculate on mechanistic links between CMV-specific CD8+ T-cell expansion, immune senescence and prevalence of age-related disorders in HIV infection.
Collapse
Affiliation(s)
- John J. Heath
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
- Lady Davis Institute for Medical Research, Jewish General Hospital, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Michael D. Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada;
- Correspondence:
| |
Collapse
|
26
|
Deep Profiling of the CD8+ T-cell Compartment Identifies Activated Cell Subsets and Multifunctional Responses Associated With Control of Cytomegalovirus Viremia. Transplantation 2019; 103:613-621. [PMID: 30028417 DOI: 10.1097/tp.0000000000002373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a common opportunistic pathogen in transplant recipients. Patterns of viremia and reactivation are influenced by the host immune response, including CD8 T cells. However, the cellular deficits or phenotypic differences that account for differential outcomes during HCMV viremia are incompletely understood. METHODS Peripheral blood mononuclear cells were collected from 20 transplant recipients (10 viremia controllers and 10 noncontrollers) at onset of HCMV viremia and 4 weeks postonset. We used mass cytometry to perform in-depth characterization of cell surface and intracellular CD8 T cell markers and to compare frequencies of these cells between groups. RESULTS Deep profiling identified 2 central memory T cell subsets at onset and 5 terminally differentiated memory T (TEMRA) cell subsets at 4 weeks that were associated with control of HCMV viremia, in addition to 6 TEMRA subsets at onset and 4 weeks associated with relapsing or remitting HCMV viremia. In general, CD8 T-cell clusters associated with poorly controlled HCMV viremia lacked markers of activation or terminal differentiation including CD38, CD69, CD25, CD57, and HLA-DR. We also measured the production of 8 HCMV-specific effector molecules (TNFα, IFNγ, interleukin 2, granzyme B, perforin, macrophage inflammatory protein 1β, interleukin 10, and CD107a) in CD8 T cells. Viremia controllers had greater diversity of HCMV-specific multifunctional responses at both time points, including significantly higher frequencies of HCMV-specific TNFαIFNγ CD8 T cells at onset. These multifunctional cells had a phenotype consistent with activated TEM/TEMRA cells. CONCLUSIONS Uncontrolled CMV viremia is associated with specific clusters of memory T-cell subsets and lower frequencies of HCMV-specific multifunctional CD8 T cells.
Collapse
|
27
|
Yang TO, Chuang YF, Chiu YL. T-cell aging in end-stage renal disease: an evolving story with CMV. Med Microbiol Immunol 2019; 208:281-287. [PMID: 30903371 DOI: 10.1007/s00430-019-00596-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Established evidence from the last decade has suggested that chronic cytomegalovirus infection has strong impact on the human immune system, resulting in aggravated aging-associated T-cell changes that are associated with poorer vaccination responses, cardiovascular disease and shortened survival. Patients with end-stage renal disease (ESRD), the most severe form of chronic kidney disease, exhibit premature aging phenotypes in almost all organ systems, including the immune system. Longitudinal studies of T-cell aging in healthy humans have been scanty because it requires a large number of study subjects and a study duration for decades. In recent years, it became clear that ESRD patients with cytomegalovirus (CMV) infection exhibit enhanced aging-related immune changes than CMV-seropositive individuals without renal disease, including chronic inflammation, decreased numbers of naïve CD4+ and CD8+ T cells, increased clonality of memory T cells with skewed repertoire and shortened telomeres. These findings lead to the hypothesis that the uremic milieu and treatment for renal failure can lead to premature aging of T cells independent from CMV infection and suggest that ESRD can be an important disease model for studying human aging. Future studies deciphering the underlying mechanisms of accelerated T cell aging in ESRD patients may eventually reveal additional insights into T-cell persistence and function during aging in CMV-seropositive, non-ESRD individuals.
Collapse
Affiliation(s)
- TienYu Owen Yang
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Wycombe Hospital, Buckinghamshire Healthcare NHS Trust, High Wycombe, UK
| | - Yi-Fang Chuang
- International Health Program, National Yang Ming University School of Public Health, Taipei, Taiwan
- Department of Epidemiology, National Yang Ming University School of Public Health, Taipei, Taiwan
| | - Yen-Ling Chiu
- Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan.
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| |
Collapse
|
28
|
Chiu YL, Shu KH, Yang FJ, Chou TY, Chen PM, Lay FY, Pan SY, Lin CJ, Litjens NHR, Betjes MGH, Bermudez S, Kao KC, Chia JS, Wang G, Peng YS, Chuang YF. A comprehensive characterization of aggravated aging-related changes in T lymphocytes and monocytes in end-stage renal disease: the iESRD study. IMMUNITY & AGEING 2018; 15:27. [PMID: 30455721 PMCID: PMC6223078 DOI: 10.1186/s12979-018-0131-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Abstract
Background Patients with end-stage renal disease (ESRD) exhibit a premature aging phenotype of the immune system. Nevertheless, the etiology and impact of these changes in ESRD patients remain unknown. Results Compared to healthy individuals, ESRD patients exhibit accelerated immunosenescence in both T cell and monocyte compartments, characterized by a dramatic reduction in naïve CD4+ and CD8+ T cell numbers but increase in CD8+ TEMRA cell and proinflammatory monocyte numbers. Notably, within ESRD patients, aging-related immune changes positively correlated not only with increasing age but also with longer dialysis vintage. In multivariable-adjusted logistic regression models, the combination of high terminally differentiated CD8+ T cell level and high intermediate monocyte level, as a composite predictive immunophenotype, was independently associated with prevalent coronary artery disease as well as cardiovascular disease, after adjustment for age, sex, systemic inflammation and presence of diabetes. Levels of terminally differentiated CD8+ T cells also positively correlated with the level of uremic toxin p-cresyl sulfate. Conclusions Aging-associated adaptive and innate immune changes are aggravated in ESRD and are associated with cardiovascular diseases. For the first time, our study demonstrates the potential link between immunosenescence in ESRD and duration of exposure to the uremic milieu. Electronic supplementary material The online version of this article (10.1186/s12979-018-0131-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yen-Ling Chiu
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.,2Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan.,3Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan
| | - Kai-Hsiang Shu
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.,4Graduate Institute of Immunology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Feng-Jung Yang
- 2Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan.,5Department of Medicine, National Taiwan University Hospital Yun Lin Branch, Douliu, Taiwan
| | - Tzu-Ying Chou
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Ping-Min Chen
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Fang-Yun Lay
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Cheng-Jui Lin
- 6Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Nicolle H R Litjens
- 7Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Michiel G H Betjes
- 7Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Selma Bermudez
- 8International Health Program, National Yang Ming University School of Public Health, Taipei, Taiwan
| | - Kung-Chi Kao
- 4Graduate Institute of Immunology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Jean-San Chia
- 4Graduate Institute of Immunology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - George Wang
- 9Biology of Healthy Aging Program, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yu-Sen Peng
- 1Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Yi-Fang Chuang
- 8International Health Program, National Yang Ming University School of Public Health, Taipei, Taiwan.,10Institute of Public Health, National Yang Ming University School of Public Health, Taipei, Taiwan.,11Preventive Medicine Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Luo XH, Meng Q, Rao M, Liu Z, Paraschoudi G, Dodoo E, Maeurer M. The impact of inflationary cytomegalovirus-specific memory T cells on anti-tumour immune responses in patients with cancer. Immunology 2018; 155:294-308. [PMID: 30098205 DOI: 10.1111/imm.12991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitous, persistent beta herpesvirus. CMV infection contributes to the accumulation of functional antigen-specific CD8+ T-cell pools with an effector-memory phenotype and enrichment of these immune cells in peripheral organs. We review here this 'memory T-cell inflation' phenomenon and associated factors including age and sex. 'Collateral damage' due to CMV-directed immune reactivity may occur in later stages of life - arising from CMV-specific immune responses that were beneficial in earlier life. CMV may be considered an age-dependent immunomodulator and a double-edged sword in editing anti-tumour immune responses. Emerging evidence suggests that CMV is highly prevalent in patients with a variety of cancers, particularly glioblastoma. A better understanding of CMV-associated immune responses and its implications for immune senescence, especially in patients with cancer, may aid in the design of more clinically relevant and tailored, personalized treatment regimens. 'Memory T-cell inflation' could be applied in vaccine development strategies to enrich for immune reactivity where long-term immunological memory is needed, e.g. in long-term immune memory formation directed against transformed cells.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Haematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qingda Meng
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Paraschoudi
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Yang FJ, Shu KH, Chen HY, Chen IY, Lay FY, Chuang YF, Wu CS, Tsai WC, Peng YS, Hsu SP, Chiang CK, Wang G, Chiu YL. Anti-cytomegalovirus IgG antibody titer is positively associated with advanced T cell differentiation and coronary artery disease in end-stage renal disease. IMMUNITY & AGEING 2018; 15:15. [PMID: 29988679 PMCID: PMC6029034 DOI: 10.1186/s12979-018-0120-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023]
Abstract
Background Accumulating evidence indicates that persistent human cytomegalovirus (HCMV) infection is associated with several health-related adverse outcomes including atherosclerosis and premature mortality in individuals with normal renal function. Patients with end-stage renal disease (ESRD) exhibit impaired immune function and thus may face higher risk of HCMV-related adverse outcomes. Whether the level of anti-HCMV immune response may be associated with the prognosis of hemodialysis patients is unknown. Results Among 412 of the immunity in ESRD study (iESRD study) participants, 408 were HCMV seropositive and were analyzed. Compared to 57 healthy individuals, ESRD patients had higher levels of anti-HCMV IgG. In a multivariate-adjusted logistic regression model, the log level of anti-HCMV IgG was independently associated with prevalent coronary artery disease (OR = 1.93, 95% CI = 1.2~ 3.2, p = 0.01) after adjusting for age, sex, hemoglobin, diabetes, calcium phosphate product and high sensitivity C-reactive protein. Levels of anti-HCMV IgG also positively correlated with both the percentage and absolute number of terminally differentiated CD8+ and CD4+ CD45RA+ CCR7- TEMRA cells, indicating that immunosenescence may participate in the development of coronary artery disease. Conclusion This is the first study showing that the magnitude of anti-HCMV humoral immune response positively correlates with T cell immunosenescence and coronary artery disease in ESRD patients. The impact of persistent HCMV infection should be further investigated in this special patient population. Electronic supplementary material The online version of this article (10.1186/s12979-018-0120-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feng-Jung Yang
- 1Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,2Department of Internal Medicine, National Taiwan University Hospital Yun Lin Branch, Douliu, Taiwan
| | - Kai-Hsiang Shu
- 3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,4Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Yuan Chen
- 3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - I-Yu Chen
- 3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Fang-Yun Lay
- 3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,4Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Fang Chuang
- 5Institute of Public Health, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chien-Sheng Wu
- 3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Wan-Chuan Tsai
- 3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yu-Sen Peng
- 3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shih-Ping Hsu
- 3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chih-Kang Chiang
- 6Department of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - George Wang
- 7Biology of Healthy Aging Program, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yen-Ling Chiu
- 1Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,8Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan City, Taiwan
| |
Collapse
|
31
|
Cura Daball P, Ventura Ferreira MS, Ammann S, Klemann C, Lorenz MR, Warthorst U, Leahy TR, Conlon N, Roche J, Soler-Palacín P, Garcia-Prat M, Fuchs I, Fuchs S, Beier F, Brümmendorf TH, Speckmann C, Olbrich P, Neth O, Schwarz K, Ehl S, Rensing-Ehl A. CD57 identifies T cells with functional senescence before terminal differentiation and relative telomere shortening in patients with activated PI3 kinase delta syndrome. Immunol Cell Biol 2018; 96:1060-1071. [PMID: 29790605 DOI: 10.1111/imcb.12169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
Premature T-cell immunosenescence with CD57+ CD8+ T-cell accumulation has been linked to immunodeficiency and autoimmunity in primary immunodeficiencies including activated PI3 kinase delta syndrome (APDS). To address whether CD57 marks the typical senescent T-cell population seen in adult individuals or identifies a distinct population in APDS, we compared CD57+ CD8+ T cells from mostly pediatric APDS patients to those of healthy adults with similarly prominent senescent T cells. CD57+ CD8+ T cells from APDS patients were less differentiated with more CD27+ CD28+ effector memory T cells showing increased PD1 and Eomesodermin expression. In addition, transition of naïve to CD57+ CD8+ T cells was not associated with the characteristic telomere shortening. Nevertheless, they showed the increased interferon-gamma secretion, enhanced degranulation and reduced in vitro proliferation typical of senescent CD57+ CD8+ T cells. Thus, hyperactive PI3 kinase signaling favors premature accumulation of a CD57+ CD8+ T-cell population, which shows most functional features of typical senescent T cells, but is different in terms of differentiation and relative telomere shortening. Initial observations indicate that this specific differentiation state may offer the opportunity to revert premature T-cell immunosenescence and its potential contribution to inflammation and immunodeficiency in APDS.
Collapse
Affiliation(s)
- Paola Cura Daball
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Monica Sofia Ventura Ferreira
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Sandra Ammann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Christian Klemann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Myriam R Lorenz
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ursula Warthorst
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Niall Conlon
- Department of Immunology, St James' Hospital and Trinity College, Dublin, Ireland
| | - Justin Roche
- South Tipperary General Hospital, Clonmel, Ireland
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ilka Fuchs
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Olaf Neth
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Klaus Schwarz
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Württemberg-Hessen, Ulm, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Ballegaard V, Brændstrup P, Pedersen KK, Kirkby N, Stryhn A, Ryder LP, Gerstoft J, Nielsen SD. Cytomegalovirus-specific T-cells are associated with immune senescence, but not with systemic inflammation, in people living with HIV. Sci Rep 2018; 8:3778. [PMID: 29491459 PMCID: PMC5830877 DOI: 10.1038/s41598-018-21347-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
In people living with HIV (PLWHIV), coinfection with cytomegalovirus (CMV) has been associated with inflammation, immunological ageing, and increased risk of severe non-AIDS related comorbidity. The effect of CMV-specific immune responses on systemic inflammation, immune activation and T-cell senescence was evaluated in 53 PLWHIV treated with combination antiretroviral therapy (cART). Activated-, terminally differentiated-, naïve-, and senescent T-cells were assessed by flow cytometry, and plasma levels of CMV IgG, interleukin-6, tumor necrosis factor-α, high-sensitivity C-reactive protein and soluble-CD14 were measured. In PLWHIV, expression of interleukin-2, tumor necrosis factor-α and interferon-γ was measured by intracellular-cytokine-staining after stimulation of T-cells with CMV-pp65, CMV-IE1, and CMV-gB. Increased CMV-specific T-cell responses were associated with a higher ratio of terminally differentiated/naïve CD8+ T-cells and with increased proportions of senescent CD8+ T-cells, but not with systemic inflammation or sCD14. Increased CMV-specific CD4+ T-cell responses were associated with increased proportions of activated CD8+ T-cells. In PLWHIV with expansion of CMV-specific T-cells or increased T-cell senescence, CMV-specific polyfunctionality was maintained. That the magnitude of the CMV-specific T-cell response was associated with a senescent immune phenotype, suggests that a dysregulated immune response against CMV may contribute to the immunological ageing often described in PLWHIV despite stable cART.
Collapse
Affiliation(s)
- Vibe Ballegaard
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Peter Brændstrup
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Herlev University Hospital, Herlev, Denmark
| | - Karin Kaereby Pedersen
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Nikolai Kirkby
- Department of Medical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars P Ryder
- Department of Clinical Immunology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Jan Gerstoft
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Hosie L, Pachnio A, Zuo J, Pearce H, Riddell S, Moss P. Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 + T-Cell Repertoire in Older People. Front Immunol 2017; 8:1776. [PMID: 29312307 PMCID: PMC5732243 DOI: 10.3389/fimmu.2017.01776] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Cytomegalovirus (CMV) infection elicits a strong T-cell immune response, which increases further during aging in a process termed "memory inflation." CMV downregulates the expression of HLA-A and HLA-B on the surface of infected cells to limit presentation of viral peptides to T-cells although HLA-C is relatively spared as it also engages with inhibitory killer immunoglobulin receptor receptors and therefore reduces lysis by natural killer cells. We investigated the magnitude and functional properties of CMV-specific CD8+ T-cells specific for 10 peptides restricted by HLA-C in a cohort of 53 donors between the age of 23 and 91 years. This was achieved via peptide stimulation of PBMCs followed by multicolor flow cytometry. Three peptides, derived from proteins generated in the immediate-early period of viral replication and restricted by HLA-Cw*0702, elicited strong immune responses, which increased substantially with age such that the average aggregate response represented 37% of the CD8+ T-cell pool within donors above 70 years of age. Remarkably, a single response represented 70% of the total CD8+ T-cell pool within a 91-year-old donor. HLA-Cw*0702-restricted CD8+ T-cell responses were immunodominant over HLA-A and HLA-B-restricted CMV-specific responses and did not show features of exhaustion such as PD-1 or CD39 expression. Indeed, such CTL exhibit a polyfunctional cytokine profile with co-expression of IFN-γ and TNF-α and a strong cytotoxic phenotype with intracellular expression of perforin and granzymeB. Functionally, HLA-Cw*0702-restricted CTL show exceptionally high avidity for cognate peptide-HLA and demonstrate very early and efficient recognition of virally infected cells. These observations indicate that CD8+ T-cells restricted by HLA-C play an important role in the control of persistent CMV infection and could represent a novel opportunity for CD8+ T-cell therapy of viral infection within immunosuppressed patients. In addition, the findings provide further evidence for the importance of HLA-C-restricted T-cells in the control of chronic viral infection.
Collapse
Affiliation(s)
- Louise Hosie
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Annette Pachnio
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Hayden Pearce
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Paul Moss
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
34
|
Hyun SJ, Sohn HJ, Lee HJ, Lee SD, Kim S, Sohn DH, Hong CH, Choi H, Cho HI, Kim TG. Comprehensive Analysis of Cytomegalovirus pp65 Antigen-Specific CD8 + T Cell Responses According to Human Leukocyte Antigen Class I Allotypes and Intraindividual Dominance. Front Immunol 2017; 8:1591. [PMID: 29209324 PMCID: PMC5702484 DOI: 10.3389/fimmu.2017.01591] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022] Open
Abstract
To define whether individual human leukocyte antigen (HLA) class I allotypes are used preferentially in human cytomegalovirus (CMV)-specific cytotoxic T lymphocyte responses, CD8+ T cell responses restricted by up to six HLA class I allotypes in an individual were measured in parallel using K562-based artificial antigen-presenting cells expressing both CMV pp65 antigen and one of 32 HLA class I allotypes (7 HLA-A, 14 HLA-B, and 11 HLA-C) present in 50 healthy Korean donors. The CD8+ T cell responses to pp65 in the HLA-C allotypes were lower than responses to those in HLA-A and -B allotypes and there was no difference between the HLA-A and HLA-B loci. HLA-A*02:01, -B*07:02, and -C*08:01 showed the highest magnitude and frequency of immune responses to pp65 at each HLA class I locus. However, HLA-A*02:07, -B*59:01, -B*58:01, -B*15:11, -C*03:02, and -C*02:02 did not show any immune responses. Although each individual has up to six different HLA allotypes, 46% of the donors showed one allotype, 24% showed two allotypes, and 2% showed three allotypes that responded to pp65. Interestingly, the frequencies of HLA-A alleles were significantly correlated with the positivity of specific allotypes. Our results demonstrate that specific HLA class I allotypes are preferentially used in the CD8+ T cell immune response to pp65 and that a hierarchy among HLA class I allotypes is present in an individual.
Collapse
Affiliation(s)
- Seung-Joo Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Joo Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Duk Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sueon Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dae-Hee Sohn
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Cheol-Hwa Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Il Cho
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
35
|
Souquette A, Frere J, Smithey M, Sauce D, Thomas PG. A constant companion: immune recognition and response to cytomegalovirus with aging and implications for immune fitness. GeroScience 2017. [PMID: 28647907 DOI: 10.1007/s11357-017-9982-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Approximately 50% of individuals aged 6-49 years in the United States are infected with cytomegalovirus (CMV), with seroprevalence increasing with age, reaching 85-90% by 75-80 years according to Bate et al. (Clin Infect Dis 50 (11): 1439-1447, 2010) and Pawelec et al. (Curr Opin Immunol 24:507-511, 2012). Following primary infection, CMV establishes lifelong latency with periodic reactivation. Immunocompetent hosts experience largely asymptomatic infection, but CMV can cause serious illness in immunocompromised populations, such as transplant patients and the elderly. Control of CMV requires constant immune surveillance, and recent discoveries suggest this demand alters general features of the immune system in infected individuals. Here, we review recent advances in the understanding of the immune response to CMV and the role of CMV in immune aging and fitness, while highlighting the importance of potential confounding factors that influence CMV studies. Understanding how CMV contributes to shaping "baseline" immunity has important implications for a host's ability to mount effective responses to diverse infections and vaccination.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin Frere
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Sorbonne Universités, UPMC DHU FAST, Paris, France.,Arizona Center on Aging, Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Megan Smithey
- Arizona Center on Aging, Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Delphine Sauce
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Sorbonne Universités, UPMC DHU FAST, Paris, France
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
36
|
Aiello AE, Chiu YL, Frasca D. How does cytomegalovirus factor into diseases of aging and vaccine responses, and by what mechanisms? GeroScience 2017. [PMID: 28624868 DOI: 10.1007/s11357-017-9983-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytomegalovirus (CMV) is an important pathogen for both clinical and population settings. There is a growing body of research implicating CMV in multiple health outcomes across the life course. At the same time, there is mounting evidence that individuals living in poverty are more likely to be exposed to CMV and more likely to experience many of the chronic conditions for which CMV has been implicated. Further research on the causal role of CMV for health and well-being is needed. However, the strong evidence implicating CMV in type 2 diabetes, autoimmunity, cancer, cardiovascular disease, vaccination, and age-related alterations in immune function warrants clinical and public health action. This imperative is even higher among individuals living in socioeconomically disadvantaged settings and those exposed to high levels of chronic psychosocial stress.
Collapse
Affiliation(s)
- Allison E Aiello
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Ling Chiu
- Department of Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.,Graduate Program of Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Room #3146A, P.O. Box 016960 (R-138), Miami, FL, 33101, USA.
| |
Collapse
|
37
|
Muraro E, Merlo A, Martorelli D, Cangemi M, Dalla Santa S, Dolcetti R, Rosato A. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:197. [PMID: 28289418 PMCID: PMC5327441 DOI: 10.3389/fimmu.2017.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | | | - Riccardo Dolcetti
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| |
Collapse
|
38
|
|
39
|
Bajwa M, Vita S, Vescovini R, Larsen M, Sansoni P, Terrazzini N, Caserta S, Thomas D, Davies KA, Smith H, Kern F. Functional Diversity of Cytomegalovirus-Specific T Cells Is Maintained in Older People and Significantly Associated With Protein Specificity and Response Size. J Infect Dis 2016; 214:1430-1437. [PMID: 27521364 PMCID: PMC5079367 DOI: 10.1093/infdis/jiw371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022] Open
Abstract
Background. Parallel upregulation of several T-cell effector functions (ie, polyfunctionality) is believed to be critical for the protection against viruses but thought to decrease in large T-cell expansions, in particular at older ages. The factors determining T-cell polyfunctionality are incompletely understood. Here we revisit the question of cytomegalovirus (CMV)–specific T-cell polyfunctionality, including a wide range of T-cell target proteins, response sizes, and participant ages. Methods. Polychromatic flow cytometry was used to analyze the functional diversity (ie, CD107, CD154, interleukin 2, tumor necrosis factor, and interferon γ expression) of CD4+ and CD8+ T-cell responses to 19 CMV proteins in a large group of young and older United Kingdom participants. A group of oldest old people (age >85 years) was included to explore these parameters in exceptional survivors. Polyfunctionality was assessed for each protein-specific response subset, by subset and in aggregate, across all proteins by using the novel polyfunctionality index. Results. Polyfunctionality was not reduced in healthy older people as compared to young people. However, it was significantly related to target protein specificity. For each protein, it increased with response size. In the oldest old group, overall T-cell polyfunctionality was significantly lower. Discussion. Our results give a new perspective on T-cell polyfunctionality and raise the question of whether maintaining polyfunctionality of CMV-specific T cells at older ages is necessarily beneficial.
Collapse
Affiliation(s)
| | - Serena Vita
- Institute Pasteur, Cenci-Bolognetti Foundation, Department of Public Health and Infectious Diseases, University Sapienza of Rome
| | - Rosanna Vescovini
- Dipartimento di Medicina Interna e Scienze Biomediche, Università di Parma, Italy
| | - Martin Larsen
- Inserm UMR-S1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris).,AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Paolo Sansoni
- Dipartimento di Medicina Interna e Scienze Biomediche, Università di Parma, Italy
| | - Nadia Terrazzini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, United Kingdom
| | | | | | | | - Helen Smith
- Division of Primary Care and Public Health Brighton and Sussex Medical School, United Kingdom
| | | |
Collapse
|