1
|
Flores-Fernández CN, O'Callaghan CA. Bacterial DNA methylases as novel molecular and synthetic biology tools: recent developments. Appl Microbiol Biotechnol 2025; 109:60. [PMID: 40047928 PMCID: PMC11885376 DOI: 10.1007/s00253-025-13442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Bacterial DNA methylases are a diverse group of enzymes which have been pivotal in the development of technologies with applications including genetic engineering, bacteriology, biotechnology and agriculture. This review describes bacterial DNA methylase types, the main technologies for targeted methylation or demethylation and the recent roles of these enzymes in molecular and synthetic biology. Bacterial methylases can be exocyclic or endocyclic and can exist as orphan enzymes or as a part of the restriction-modifications (R-M) systems. As a group, they display a rich diversity of sequence-specificity. Additional technologies for targeting methylation involve using fusion proteins combining a methylase and a DNA-binding protein (DNBP) such as a zinc-finger (ZF), transcription activator-like effector (TALE) or CRISPR/dCas9. Bacterial methylases have contributed significantly to the creation of novel DNA assembly techniques, to the improvement of bacterial transformation and to crop plant engineering. Future studies to define the characteristics of more bacterial methylases have potential to identify new tools of value in synthetic and molecular biology and with widespread applications. KEY POINTS: • Bacterial methylases can be used to direct methylation to specific sequences in target DNA • DNA methylation using bacterial methylases has been applied to improve DNA assembly and to increase the efficiency of bacterial transformation • Site-selective methylation using bacterial methylases can alter plant gene expression and phenotype.
Collapse
Affiliation(s)
- Carol N Flores-Fernández
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chris A O'Callaghan
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
2
|
Schlotawa L, Lopez A, Sanchez-Elexpuru G, Tyrkalska SD, Rubinsztein DC, Fleming A. An inducible expression system for the manipulation of autophagic flux in vivo. Autophagy 2023; 19:1582-1595. [PMID: 36310368 PMCID: PMC10240996 DOI: 10.1080/15548627.2022.2135824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/18/2023] Open
Abstract
Much of our understanding of the intracellular regulation of macroautophagy/autophagy comes from in vitro studies. However, there remains a paucity of knowledge about how this process is regulated within different tissues during development, aging and disease in vivo. Because upregulation of autophagy is considered a promising therapeutic strategy for the treatment of diverse disorders, it is vital that we understand how this pathway functions in different tissues and this is best done by in vivo analysis. Similarly, to understand the role of autophagy in the pathogenesis of disease, it is important to study this process in the whole animal to investigate how tissue-specific changes in flux and cell-autonomous versus non-cell-autonomous effects alter disease progression. To this end, we have developed an inducible expression system to up- or downregulate autophagy in vivo, in zebrafish. We have used a modified version of the Gal4-UAS expression system to allow inducible expression of autophagy up- or downregulating transgenes by addition of tamoxifen. Using this inducible expression system, we have tested which transgenes robustly up- or downregulate autophagy and have validated these tools using Lc3-II blots and puncta analysis and disease rescue in a zebrafish model of neurodegeneration. These tools allow the temporal control of autophagy via the administration of tamoxifen and spatial control via tissue or cell-specific ERT2-Gal4 driver lines and will enable the investigation of how cell- or tissue-specific changes in autophagic flux affect processes such as aging, inflammation and neurodegeneration in vivo.Abbreviations: ANOVA: analysis of variance; Atg: autophagy related; Bcl2l11/Bim: BCL2 like 11; d.p.f.: days post-fertilization; Cryaa: crystallin, alpha a: DMSO: dimethyl sulfoxide; Elavl3: ELAV like neuron-specific RNA binding protein 3; ER: estrogen receptor; ERT2: modified ligand-binding domain of human ESR1/estrogen receptor α; Gal4: galactose-responsive transcription factor 4; GFP: green fluorescent protein; h.p.f.: hours post-fertilization; HSP: heat-shock protein; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; RFP: red fluorescent protein; SD: standard deviation; SEM: standard error of the mean; UAS: upstream activating sequence; Ubb: ubiquitin b.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gentzane Sanchez-Elexpuru
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sylwia D. Tyrkalska
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, the Keith Peters Building, Cambridge, UK
| | - Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical, Research, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, the Keith Peters Building, Cambridge, UK
| |
Collapse
|
3
|
Bird J, Marles-Wright J, Giachino A. A User's Guide to Golden Gate Cloning Methods and Standards. ACS Synth Biol 2022; 11:3551-3563. [PMID: 36322003 PMCID: PMC9680027 DOI: 10.1021/acssynbio.2c00355] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/06/2022]
Abstract
The continual demand for specialized molecular cloning techniques that suit a broad range of applications has driven the development of many different cloning strategies. One method that has gained significant traction is Golden Gate assembly, which achieves hierarchical assembly of DNA parts by utilizing Type IIS restriction enzymes to produce user-specified sticky ends on cut DNA fragments. This technique has been modularized and standardized, and includes different subfamilies of methods, the most widely adopted of which are the MoClo and Golden Braid standards. Moreover, specialized toolboxes tailored to specific applications or organisms are also available. Still, the quantity and range of assembly methods can constitute a barrier to adoption for new users, and even experienced scientists might find it difficult to discern which tools are best suited toward their goals. In this review, we provide a beginner-friendly guide to Golden Gate assembly, compare the different available standards, and detail the specific features and quirks of commonly used toolboxes. We also provide an update on the state-of-the-art in Golden Gate technology, discussing recent advances and challenges to inform existing users and promote standard practices.
Collapse
Affiliation(s)
- Jasmine
E. Bird
- School
of Computing, Faculty of Science Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Jon Marles-Wright
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Andrea Giachino
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
- School
of Science, Engineering & Environment, University of Salford, Salford, M5 4NT, United Kingdom
| |
Collapse
|
4
|
Konovalova LN, Strelnikova SR, Zlobin NE, Kharchenko PN, Komakhin RA. Efficiency of Transient Expression in Protoplasts of Various Potato Cultivars. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821070048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Young R, Haines M, Storch M, Freemont PS. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab Eng 2020; 63:81-101. [PMID: 33301873 DOI: 10.1016/j.ymben.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.
Collapse
Affiliation(s)
- Rosanna Young
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Matthew Haines
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Marko Storch
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK
| | - Paul S Freemont
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK; UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
6
|
Yang X, Medford JI, Markel K, Shih PM, De Paoli HC, Trinh CT, McCormick AJ, Ployet R, Hussey SG, Myburg AA, Jensen PE, Hassan MM, Zhang J, Muchero W, Kalluri UC, Yin H, Zhuo R, Abraham PE, Chen JG, Weston DJ, Yang Y, Liu D, Li Y, Labbe J, Yang B, Lee JH, Cottingham RW, Martin S, Lu M, Tschaplinski TJ, Yuan G, Lu H, Ranjan P, Mitchell JC, Wullschleger SD, Tuskan GA. Plant Biosystems Design Research Roadmap 1.0. BIODESIGN RESEARCH 2020; 2020:8051764. [PMID: 37849899 PMCID: PMC10521729 DOI: 10.34133/2020/8051764] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 10/19/2023] Open
Abstract
Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - June I. Medford
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Henrique C. De Paoli
- Department of Biodesign, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cong T. Trinh
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1858, Frederiksberg, Copenhagen, Denmark
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology and the Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jessy Labbe
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Jun Hyung Lee
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
7
|
Yuan G, Hassan MM, Liu D, Lim SD, Yim WC, Cushman JC, Markel K, Shih PM, Lu H, Weston DJ, Chen JG, Tschaplinski TJ, Tuskan GA, Yang X. Biosystems Design to Accelerate C 3-to-CAM Progression. BIODESIGN RESEARCH 2020; 2020:3686791. [PMID: 37849902 PMCID: PMC10521703 DOI: 10.34133/2020/3686791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/21/2020] [Indexed: 10/19/2023] Open
Abstract
Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C3 or C4 photosynthesis. CAM plants are derived from C3 photosynthesis ancestors. However, it is extremely unlikely that the C3 or C4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C3-to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C3-to-CAM transition in plants using synthetic biology toolboxes.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md. Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
8
|
Lin D, O'Callaghan CA. MetClo: methylase-assisted hierarchical DNA assembly using a single type IIS restriction enzyme. Nucleic Acids Res 2019; 46:e113. [PMID: 29986052 PMCID: PMC6212791 DOI: 10.1093/nar/gky596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Efficient DNA assembly is of great value in biological research and biotechnology. Type IIS restriction enzyme-based assembly systems allow assembly of multiple DNA fragments in a one-pot reaction. However, large DNA fragments can only be assembled by alternating use of two or more type IIS restriction enzymes in a multi-step approach. Here, we present MetClo, a DNA assembly method that uses only a single type IIS restriction enzyme for hierarchical DNA assembly. The method is based on in vivo methylation-mediated on/off switching of type IIS restriction enzyme recognition sites that overlap with site-specific methylase recognition sequences. We have developed practical MetClo systems for the type IIS enzymes BsaI, BpiI and LguI, and demonstrated hierarchical assembly of large DNA fragments up to 218 kb. The MetClo approach substantially reduces the need to remove internal restriction sites from components to be assembled. The use of a single type IIS enzyme throughout the different stages of DNA assembly allows novel and powerful design schemes for rapid large-scale hierarchical DNA assembly. The BsaI-based MetClo system is backward-compatible with component libraries of most of the existing type IIS restriction enzyme-based assembly systems, and has potential to become a standard for modular DNA assembly.
Collapse
Affiliation(s)
- Da Lin
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christopher A O'Callaghan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
9
|
Page MT, Parry MA, Carmo‐Silva E. A high-throughput transient expression system for rice. PLANT, CELL & ENVIRONMENT 2019; 42:2057-2064. [PMID: 30938460 PMCID: PMC6618034 DOI: 10.1111/pce.13542] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 05/18/2023]
Abstract
Rice is an important global crop and represents a vital source of calories for many food insecure regions. Efforts to improve this crop by improving yield, nutritional content, stress tolerance, or resilience to climate change are certain to include biotechnological approaches, which rely on the expression of transgenes in planta. The throughput and cost of currently available transgenic expression systems is frequently incompatible with modern, high-throughput molecular cloning methods. Here, we present a protocol for isolating high yields of green rice protoplasts and for PEG-mediated transformation of isolated protoplasts. Factors affecting transformation efficiency were investigated, and the resulting protocol is fast, cheap, robust, high-throughput, and does not require specialist equipment. When coupled to a high-throughput modular cloning system such as Golden Gate, this transient expression system provides a valuable resource to help break the "design-build-test" bottleneck by permitting the rapid screening of large numbers of transgenic expression cassettes prior to stable plant transformation. We used this system to rapidly assess the expression level, subcellular localisation, and protein aggregation pattern of nine single-gene expression cassettes, which represent the essential component parts of the β-cyanobacterial carboxysome.
Collapse
Affiliation(s)
- Mike T. Page
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | | | | |
Collapse
|
10
|
Walsh DI, Pavan M, Ortiz L, Wick S, Bobrow J, Guido NJ, Leinicke S, Fu D, Pandit S, Qin L, Carr PA, Densmore D. Standardizing Automated DNA Assembly: Best Practices, Metrics, and Protocols Using Robots. SLAS Technol 2019; 24:282-290. [PMID: 30768372 PMCID: PMC6819997 DOI: 10.1177/2472630318825335] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The advancement of synthetic biology requires the ability to create new DNA sequences to produce unique behaviors in biological systems. Automation is increasingly employed to carry out well-established assembly methods of DNA fragments in a multiplexed, high-throughput fashion, allowing many different configurations to be tested simultaneously. However, metrics are required to determine when automation is warranted based on factors such as assembly methodology, protocol details, and number of samples. The goal of our synthetic biology automation work is to develop and test protocols, hardware, and software to investigate and optimize DNA assembly through quantifiable metrics. We performed a parameter analysis of DNA assembly to develop a standardized, highly efficient, and reproducible MoClo protocol, suitable to be used both manually and with liquid-handling robots. We created a key DNA assembly metric (Q-metric) to characterize a given automation method's advantages over conventional manual manipulations with regard to researchers' highest-priority parameters: output, cost, and time. A software tool called Puppeteer was developed to formally capture these metrics, help define the assembly design, and provide human and robotic liquid-handling instructions. Altogether, we contribute to a growing foundation of standardizing practices, metrics, and protocols for automating DNA assembly.
Collapse
Affiliation(s)
- David I. Walsh
- Bioengineering Systems and Technologies, MIT-Lincoln Laboratory, Lexington, MA, USA
- Synthetic Biology Center at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marilene Pavan
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Luis Ortiz
- Biological Design Center, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA, USA
| | - Scott Wick
- Bioengineering Systems and Technologies, MIT-Lincoln Laboratory, Lexington, MA, USA
- Synthetic Biology Center at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johanna Bobrow
- Bioengineering Systems and Technologies, MIT-Lincoln Laboratory, Lexington, MA, USA
- Synthetic Biology Center at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas J. Guido
- Bioengineering Systems and Technologies, MIT-Lincoln Laboratory, Lexington, MA, USA
- Synthetic Biology Center at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Leinicke
- Hariri Institute for Computing, Boston University, Boston, MA, USA
| | - Dany Fu
- Hariri Institute for Computing, Boston University, Boston, MA, USA
| | - Shreya Pandit
- Hariri Institute for Computing, Boston University, Boston, MA, USA
| | - Lucy Qin
- Hariri Institute for Computing, Boston University, Boston, MA, USA
| | - Peter A. Carr
- Bioengineering Systems and Technologies, MIT-Lincoln Laboratory, Lexington, MA, USA
- Synthetic Biology Center at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas Densmore
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
11
|
Liu D, Palla KJ, Hu R, Moseley RC, Mendoza C, Chen M, Abraham PE, Labbé JL, Kalluri UC, Tschaplinski TJ, Cushman JC, Borland AM, Tuskan GA, Yang X. Perspectives on the basic and applied aspects of crassulacean acid metabolism (CAM) research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:394-401. [PMID: 30080627 DOI: 10.1016/j.plantsci.2018.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 05/24/2023]
Abstract
Due to public concerns about the decreasing supply of blue water and increasing heat and drought stress on plant growth caused by urbanization, increasing human population and climate change, interest in crassulacean acid metabolism (CAM), a specialized type of photosynthesis enhancing water-use efficiency (WUE) and drought tolerance, has increased markedly. Significant progress has been achieved in both basic and applied research in CAM plants since the beginning of this century. Here we provide a brief overview of the current status of CAM research, and discuss future needs and opportunities in a wide range of areas including systems biology, synthetic biology, and utilization of CAM crops for human benefit, with a focus on the following aspects: 1) application of genome-editing technology and high-throughput phenotyping to functional genomics research in model CAM species and genetic improvement of CAM crops, 2) challenges for multi-scale metabolic modeling of CAM systems, 3) opportunities and new strategies for CAM pathway engineering to enhance WUE and drought tolerance in C3 (and C4) photosynthesis crops, 4) potential of CAM species as resources for food, feed, natural products, pharmaceuticals and biofuels, and 5) development of CAM crops for ecological and aesthetic benefits.
Collapse
Affiliation(s)
- Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Kaitlin J Palla
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA; The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Robert C Moseley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA; The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Christopher Mendoza
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mei Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jessy L Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Udaya C Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Anne M Borland
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA; School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA; The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
12
|
van Dolleweerd CJ, Kessans SA, Van de Bittner KC, Bustamante LY, Bundela R, Scott B, Nicholson MJ, Parker EJ. MIDAS: A Modular DNA Assembly System for Synthetic Biology. ACS Synth Biol 2018; 7:1018-1029. [PMID: 29620866 DOI: 10.1021/acssynbio.7b00363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.
Collapse
Affiliation(s)
- Craig J. van Dolleweerd
- Protein Science & Engineering, Callaghan Innovation, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Sarah A. Kessans
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Kyle C. Van de Bittner
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| | - Leyla Y. Bustamante
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| | - Rudranuj Bundela
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Matthew J. Nicholson
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| | - Emily J. Parker
- Department of Chemistry, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8041, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Kelburn, Wellington 6012, New Zealand
| |
Collapse
|
13
|
Hsu SY, Smanski MJ. Designing and Implementing Algorithmic DNA Assembly Pipelines for Multi-Gene Systems. Methods Mol Biol 2018; 1671:131-147. [PMID: 29170957 DOI: 10.1007/978-1-4939-7295-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Advances in DNA synthesis and assembly technology allow for the high-throughput fabrication of hundreds to thousands of multi-part genetic constructs in a short time. This allows for rapid hypothesis-testing and genetic optimization in multi-gene biological systems. Here, we discuss key considerations to design and implement an algorithmic DNA assembly pipeline that provides the freedom to change nearly any design variable in a multi-gene system. In addition to considerations for pipeline design, we describe protocols for three useful molecular biology techniques in plasmid construction.
Collapse
Affiliation(s)
- Szu-Yi Hsu
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
| | - Michael J Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA.
| |
Collapse
|
14
|
Yang X, Hu R, Yin H, Jenkins J, Shu S, Tang H, Liu D, Weighill DA, Cheol Yim W, Ha J, Heyduk K, Goodstein DM, Guo HB, Moseley RC, Fitzek E, Jawdy S, Zhang Z, Xie M, Hartwell J, Grimwood J, Abraham PE, Mewalal R, Beltrán JD, Boxall SF, Dever LV, Palla KJ, Albion R, Garcia T, Mayer JA, Don Lim S, Man Wai C, Peluso P, Van Buren R, De Paoli HC, Borland AM, Guo H, Chen JG, Muchero W, Yin Y, Jacobson DA, Tschaplinski TJ, Hettich RL, Ming R, Winter K, Leebens-Mack JH, Smith JAC, Cushman JC, Schmutz J, Tuskan GA. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat Commun 2017; 8:1899. [PMID: 29196618 PMCID: PMC5711932 DOI: 10.1038/s41467-017-01491-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Crassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C3 photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb). Our comparative analyses identify signatures of convergence in protein sequence and re-scheduling of diel transcript expression of genes involved in nocturnal CO2 fixation, stomatal movement, heat tolerance, circadian clock, and carbohydrate metabolism in K. fedtschenkoi and other CAM species in comparison with non-CAM species. These findings provide new insights into molecular convergence and building blocks of CAM and will facilitate CAM-into-C3 photosynthesis engineering to enhance water-use efficiency in crops.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Hengfu Yin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Deborah A Weighill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Jungmin Ha
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Karolina Heyduk
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - David M Goodstein
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Hao-Bo Guo
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Robert C Moseley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Elisabeth Fitzek
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhihao Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Meng Xie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - James Hartwell
- Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ritesh Mewalal
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Juan D Beltrán
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Susanna F Boxall
- Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Louisa V Dever
- Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Kaitlin J Palla
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | - Rebecca Albion
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Travis Garcia
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Jesse A Mayer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Sung Don Lim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul Peluso
- Pacific Biosciences, Inc., 940 Hamilton Avenue, Menlo Park, CA, 94025, USA
| | - Robert Van Buren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Henrique Cestari De Paoli
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Anne M Borland
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Hong Guo
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado, Balboa, Ancón, 0843-03092, Republic of Panama
| | | | - J Andrew C Smith
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
15
|
Vazquez-Vilar M, Quijano-Rubio A, Fernandez-Del-Carmen A, Sarrion-Perdigones A, Ochoa-Fernandez R, Ziarsolo P, Blanca J, Granell A, Orzaez D. GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Res 2017; 45:2196-2209. [PMID: 28053117 PMCID: PMC5389719 DOI: 10.1093/nar/gkw1326] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation. To facilitate the handling of functional descriptions, we developed a new version (v3.0) of the GoldenBraid (GB) webtool that integrates the experimental data and displays it in the form of datasheets. We report the use of the Luciferase/Renilla (Luc/Ren) transient agroinfiltration assay in Nicotiana benthamiana as a standard to estimate relative transcriptional activities conferred by regulatory phytobricks, and show the consistency and reproducibility of this method in the characterization of a synthetic phytobrick based on the CaMV35S promoter. Furthermore, we illustrate the potential for combinatorial optimization and incremental innovation of the GB3.0 platform in two separate examples, (i) the development of a collection of orthogonal transcriptional regulators based on phiC31 integrase and (ii) the design of a small genetic circuit that connects a glucocorticoid switch to a MYB/bHLH transcriptional activation module.
Collapse
Affiliation(s)
- Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alfredo Quijano-Rubio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Asun Fernandez-Del-Carmen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alejandro Sarrion-Perdigones
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Rocio Ochoa-Fernandez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Peio Ziarsolo
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Blanca
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
16
|
SMRT Gate: A method for validation of synthetic constructs on Pacific Biosciences sequencing platforms. Biotechniques 2017; 63:13-20. [PMID: 28701143 DOI: 10.2144/000114565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/24/2017] [Indexed: 11/23/2022] Open
Abstract
Current DNA assembly methods are prone to sequence errors, requiring rigorous quality control (QC) to identify incorrect assemblies or synthesized constructs. Such errors can lead to misinterpretation of phenotypes. Because of this intrinsic problem, routine QC analysis is generally performed on three or more clones using a combination of restriction endonuclease assays, colony PCR, and Sanger sequencing. However, as new automation methods emerge that enable high-throughput assembly, QC using these techniques has become a major bottleneck. Here, we describe a quick and affordable methodology for the QC of synthetic constructs. Our method involves a one-pot digestion-ligation DNA assembly reaction, based on the Golden Gate assembly methodology, that is coupled with Pacific Biosciences' Single Molecule, Real-Time (PacBio SMRT) sequencing technology.
Collapse
|
17
|
Mewalal R, Rai DK, Kainer D, Chen F, Külheim C, Peter GF, Tuskan GA. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels. Trends Biotechnol 2017; 35:227-240. [DOI: 10.1016/j.tibtech.2016.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 01/15/2023]
|
18
|
Liu D, Hu R, Palla KJ, Tuskan GA, Yang X. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:70-7. [PMID: 26896588 DOI: 10.1016/j.pbi.2016.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 05/18/2023]
Abstract
Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. This article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation of gene expression, and identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort.
Collapse
Affiliation(s)
- Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Kaitlin J Palla
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA.
| |
Collapse
|
19
|
De Martinis D, Rybicki EP, Fujiyama K, Franconi R, Benvenuto E. Editorial: Plant Molecular Farming: Fast, Scalable, Cheap, Sustainable. FRONTIERS IN PLANT SCIENCE 2016; 7:1148. [PMID: 27536308 PMCID: PMC4971507 DOI: 10.3389/fpls.2016.01148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/18/2016] [Indexed: 05/17/2023]
Affiliation(s)
- Domenico De Martinis
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
- *Correspondence: Domenico De Martinis
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape TownCape Town, South Africa
| | | | - Rosella Franconi
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| | - Eugenio Benvenuto
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentRome, Italy
| |
Collapse
|