1
|
Gong W, Linghu JH, Xu HM, Luo LL, Smagghe G, Liu TX, Gui SH. Neuropeptide natalisin regulates reproductive behaviors in Spodoptera frugiperda. Sci Rep 2024; 14:15122. [PMID: 38956289 PMCID: PMC11220091 DOI: 10.1038/s41598-024-66031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Natalisin (NTL) is a conserved neuropeptide, only present in insects, that has been reported to regulate their sexual activity. In this study, we investigated the involvement of NTL in the reproductive behaviors of a major invasive pest, Spodoptera frugiperda. We identified NTL precursor-encoded transcripts, and evaluated their transcript levels in different stages and tissues of S. frugiperda. The results showed that the NTL transcript level was expressed in both male and female pupae and both male and female adults in the later stage. It was highly expressed in male pupae, 3-day-old male and female adults, and 5-day-old male adults. In different tissues, the expression level is higher in the male and female adult brain and male testis. Immunohistochemical staining of the brain of S. frugiperda female and male adults revealed that three pairs of brain neurons of S. frugiperda adults of both sexes secreted and expressed NTL. To study the role of NTL in reproductive behaviors, NTL was silenced in S. frugiperda male and female adults by RNA interference (RNAi) technology, the results showed that silencing NTL could significantly affect the sexual activity behavior of the adults, reducing the calling rate of females, the courtship rate of males, and the mating rate. In summary, this study emphasizes the important role of NTL in regulating the mating behavior and sexual activity of S. frugiperda in both male and female adults, potentially laying a foundation to employ NTL as a new insect-specific target to control populations of pest insects.
Collapse
Affiliation(s)
- Wei Gong
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jun-Hong Linghu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hui-Min Xu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Li-Lin Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, Guizhou, China.
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Luo LL, Lin Y, Linghu JH, Gong W, Luo YH, Liu M, Jin DC, Smagghe G, Liu TX, Gui SH, Yi TC. Genomics, transcriptomics, and peptidomics of the greater wax moth Galleria mellonella neuropeptides and their expression in response to lead stress. INSECT SCIENCE 2024; 31:773-791. [PMID: 37689966 DOI: 10.1111/1744-7917.13264] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 09/11/2023]
Abstract
Neuropeptides are crucial in regulation of a rich variety of developmental, physiological, and behavioral functions throughout the life cycle of insects. Using an integrated approach of multiomics, we identified neuropeptide precursors in the greater wax moth Galleria mellonella, which is a harmful pest of honeybee hives with a worldwide distribution. Here, a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G. mellonella genome and transcriptome, in which 40 neuropeptide precursors were confirmed in the G. mellonella peptidome. Interestingly, we identified 12 neuropeptide precursor genes present in G. mellonella but absent in honeybees, which may be potential novel pesticide target sites. Honeybee hives were contaminated with heavy metals such as lead, enabling its bioaccumulation in G. mellonella bodies through the food chain, we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G. mellonella neuropeptide precursors. After treatment by Pb, the expression of neuropeptide F1 was found to be significantly downregulated, implying that this neuropeptide might be associated with responding to the heavy metal stress in G. mellonella. This study comprehensively identified neuropeptide precursors in G. mellonella, and discussed the effects of heavy metals on insect neuropeptides, with the example of G. mellonella. The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G. mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.
Collapse
Affiliation(s)
- Li-Lin Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Yang Lin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Jun-Hong Linghu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Wei Gong
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Yuan-Hong Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Man Liu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Dao-Chao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Jindal V, Park Y, Kim D. Functional Characterization of Ecdysis Triggering Hormone Receptors (AgETHR-A and AgETHR-B) in the African Malaria Mosquito, Anopheles gambiae. Front Physiol 2021; 12:702979. [PMID: 34295267 PMCID: PMC8291126 DOI: 10.3389/fphys.2021.702979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Insect ecdysis behavior, shedding off the old cuticle, is under the control of specific neuropeptides with the top command by the ecdysis triggering hormone (ETH). We characterized the ETH receptor (ETHR) of the malaria mosquito, Anopheles gambiae, by manual annotation of the NCBI gene (AGAP002881) and functional analysis, using a heterologous expression system in a mammalian cell line. The two splicing variants of ETHRs, ecdysis triggering hormone receptors (AgETHR-A and AgETHR-B), a conserved feature among insects, included of four (552 aa) and five exons (635 aa), respectively. The main feature of manual annotation of the receptor was a correction of N-terminal and exon-intron boundaries of an annotated gene (AGAP002881). Interestingly, the functional expression of the receptor in Chinese hamster ovary cells required modification of the transcription initiation site for mammalian Kozak consensus. In the calcium mobilization assay using the heterologous expression of each receptor, AgETHR-B showed a higher sensitivity to AgETH-1 (28 times) and AgETH-2 (320 times) than AgETHR-A. The AgETHRs showed specificity only to the ETH group of peptides but not to other groups carrying the C-termini motifs as PRXamide, such as pyrokinin1/DH and pyrokinin2/PBAN. Ecdysis triggering hormone receptors (AgETHR-B) responded to different ETH variants of other insect species more promiscuously than AgETHR-A.
Collapse
Affiliation(s)
- Vikas Jindal
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Department of Vector Entomology, Kyungpook National University, Sangju, South Korea
| |
Collapse
|
4
|
Wang XF, Chen Z, Wang XB, Xu J, Chen P, Ye H. Bacterial-mediated RNAi and functional analysis of Natalisin in a moth. Sci Rep 2021; 11:4662. [PMID: 33633211 PMCID: PMC7907129 DOI: 10.1038/s41598-021-84104-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
The neuropeptide natalisin (NTL) has been determined to play essential roles in reproduction in two Diptera and one Coleoptera species. Whether NTL has similar or even different functions in Lepidoptera remains to be determined. Here, we cloned the NTL transcript in the common cutworm moth Spodoptera litura. This transcript encodes a 438-amino acid protein. Twelve putative Sl-NTL neuropeptides were defined by cleavage sites. These NTL peptides share a DDPFWxxRamide C-terminal motif. The expressions of Sl-NTL is low during the egg and larval stages, which increased to a higher level during the pupal stage, and then reached the maximum during the adult stage. Moreover, the expression pattern during the pupal stage is similar between sexes while during the adult stage, it is dimorphic. To explore the function of Sl-NTL and assess its potential as a target for pest control, we knocked down the expression of Sl-NTL in both sexes by using bacteria-mediated RNAi. This technique significantly down regulated (reduced up to 83%) the expression of Sl-NTL in both sexes. Knocking down Sl-NTL expression did not significantly affect its development, survival and morphology but significantly reduced adults' reproductive behavior (including female calling, male courtship, mating and remating patterns and rates) and reproductive output (offspring gain reduced more than 70%).
Collapse
Affiliation(s)
- Xia-Fei Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China.,School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhe Chen
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China
| | - Xu-Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China.
| | - Peng Chen
- Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.
| | - Hui Ye
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| |
Collapse
|
5
|
Mateos-Hernández L, Pipová N, Allain E, Henry C, Rouxel C, Lagrée AC, Haddad N, Boulouis HJ, Valdés JJ, Alberdi P, de la Fuente J, Cabezas-Cruz A, Šimo L. Enlisting the Ixodes scapularis Embryonic ISE6 Cell Line to Investigate the Neuronal Basis of Tick-Pathogen Interactions. Pathogens 2021; 10:pathogens10010070. [PMID: 33466622 PMCID: PMC7828734 DOI: 10.3390/pathogens10010070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/03/2023] Open
Abstract
Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Natália Pipová
- Faculty of Science, Pavol Jozef Šafarik University in Košice, 04180 Košice, Slovakia;
| | - Eléonore Allain
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Céline Henry
- AgroParisTech, Micalis Institute, Université Paris-Saclay, PAPPSO, INRAE, 78350 Jouy-en-Josas, France;
| | - Clotilde Rouxel
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Anne-Claire Lagrée
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Nadia Haddad
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Henri-Jean Boulouis
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - James J. Valdés
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Pilar Alberdi
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
- Neuroplasticity and Neurodegeneration Group, Regional Centre for Biomedical Research (CRIB), Ciu-dad Real Medical School, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José de la Fuente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
- Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
- Correspondence: (A.C.-C.); (L.Š.); Tel.: +33-6-31-23-51-91 (A.C.-C.); +33-1-49-77-46-52 (L.Š.)
| | - Ladislav Šimo
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
- Correspondence: (A.C.-C.); (L.Š.); Tel.: +33-6-31-23-51-91 (A.C.-C.); +33-1-49-77-46-52 (L.Š.)
| |
Collapse
|
6
|
Nässel DR, Zandawala M, Kawada T, Satake H. Tachykinins: Neuropeptides That Are Ancient, Diverse, Widespread and Functionally Pleiotropic. Front Neurosci 2019; 13:1262. [PMID: 31824255 PMCID: PMC6880623 DOI: 10.3389/fnins.2019.01262] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Tachykinins (TKs) are ancient neuropeptides present throughout the bilaterians and are, with some exceptions, characterized by a conserved FX1GX2Ramide carboxy terminus among protostomes and FXGLMamide in deuterostomes. The best-known TK is the vertebrate substance P, which in mammals, together with other TKs, has been implicated in health and disease with important roles in pain, inflammation, cancer, depressive disorder, immune system, gut function, hematopoiesis, sensory processing, and hormone regulation. The invertebrate TKs are also known to have multiple functions in the central nervous system and intestine and these have been investigated in more detail in the fly Drosophila and some other arthropods. Here, we review the protostome and deuterostome organization and evolution of TK precursors, peptides and their receptors, as well as their functions, which appear to be partly conserved across Bilateria. We also outline the distribution of TKs in the brains of representative organisms. In Drosophila, recent studies have revealed roles of TKs in early olfactory processing, neuromodulation in circuits controlling locomotion and food search, nociception, aggression, metabolic stress, and hormone release. TK signaling also regulates lipid metabolism in the Drosophila intestine. In crustaceans, TK is an important neuromodulator in rhythm-generating motor circuits in the stomatogastric nervous system and a presynaptic modulator of photoreceptor cells. Several additional functional roles of invertebrate TKs can be inferred from their distribution in various brain circuits. In addition, there are a few interesting cases where invertebrate TKs are injected into prey animals as vasodilators from salivary glands or paralyzing agents from venom glands. In these cases, the peptides are produced in the glands of the predator with sequences mimicking the prey TKs. Lastly, the TK-signaling system appears to have duplicated in Panarthropoda (comprising arthropods, onychophores, and tardigrades) to give rise to a novel type of peptides, natalisins, with a distinct receptor. The distribution and functions of natalisins are distinct from the TKs. In general, it appears that TKs are widely distributed and act in circuits at short range as neuromodulators or cotransmitters.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
7
|
Gui SH, Pei YX, Xu L, Wang WP, Jiang HB, Nachman RJ, Kaczmarek K, Zabrocki J, Wang JJ. Function of the natalisin receptor in mating of the oriental fruit fly, Bactrocera dorsalis (Hendel) and testing of peptidomimetics. PLoS One 2018; 13:e0193058. [PMID: 29474388 PMCID: PMC5825034 DOI: 10.1371/journal.pone.0193058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/02/2018] [Indexed: 11/18/2022] Open
Abstract
Natalisins (NTLs) are conservative neuropeptides, which are only found in arthropods and are documented to regulate reproductive behaviors in insects. In our previous study, we have confirmed that NTLs regulate the reproductive process in an important agricultural pest, Bactrocera dorsalis (Hendel). Hence, in this study, to further confirm the in vivo function of NTL receptor (NTLR) and assess the potential of NTLR as an insecticide target, RNA interference targeting NTLR mRNA was performed. We found that mating frequencies of both males and females were reduced by RNAi-mediated knockdown of the NTLR transcript, while there was no effect on mating duration. Moreover, we functionally expressed the B. dorsalis NTLR in Chinese Hamster Ovary (CHO) cells and was co-transfected with an aequorin reporter to measure ligand activities. A total of 13 biostable multi-Aib analogs were tested for agonistic and antagonistic activities. While most of these NTL analogs did not show strong activity, one analog (NLFQV[Aib]DPFF[Aib]TRamide) had moderate antagonistic activity. Taken together, we provided evidence for the important roles of NTLR in regulating mating frequencies of both male and female in this fly and also provided in vitro data on mimetic analogs that serve as leading structures for the development of agonists and antagonists to disrupt the NTL signaling pathway.
Collapse
Affiliation(s)
- Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yu-Xia Pei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei-Ping Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ronald J. Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, College Station, Texas, United States of America
| | - Krzysztof Kaczmarek
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, College Station, Texas, United States of America
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Janusz Zabrocki
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, College Station, Texas, United States of America
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
8
|
Li HM, Jiang HB, Gui SH, Liu XQ, Liu H, Lu XP, Smagghe G, Wang JJ. Characterization of a β-Adrenergic-Like Octopamine Receptor in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel). Int J Mol Sci 2016; 17:ijms17101577. [PMID: 27669213 PMCID: PMC5085626 DOI: 10.3390/ijms17101577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
The biogenic amine octopamine plays a critical role in the regulation of many physiological processes in insects. Octopamine transmits its action through a set of specific G-protein coupled receptors (GPCRs), namely octopamine receptors. Here, we report on a β-adrenergic-like octopamine receptor gene (BdOctβR1) from the oriental fruit fly, Bactrocera dorsalis (Hendel), a destructive agricultural pest that occurs in North America and the Asia-Pacific region. As indicated by RT-qPCR, BdOctβR1 was highly expressed in the central nervous system (CNS) and Malpighian tubules (MT) in the adult flies, suggesting it may undertake important roles in neural signaling in the CNS as well as physiological functions in the MT of this fly. Furthermore, its ligand specificities were tested in a heterologous expression system where BdOctβR1 was expressed in HEK-293 cells. Based on cyclic AMP response assays, we found that BdOctβR1 could be activated by octopamine in a concentration-dependent manner, confirming that this receptor was functional, while tyramine and dopamine had much less potency than octopamine. Naphazoline possessed the highest agonistic activity among the tested agonists. In antagonistic assays, mianserin had the strongest activity and was followed by phentolamine and chlorpromazine. Furthermore, when the flies were kept under starvation, there was a corresponding increase in the transcript level of BdOctβR1, while high or low temperature stress could not induce significant expression changes. The above results suggest that BdOctβR1 may be involved in the regulation of feeding processes in Bactrocera dorsalis and may provide new potential insecticide leads targeting octopamine receptors.
Collapse
Affiliation(s)
- Hui-Min Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Hong Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Department of Crop Protection, Ghent University, Ghent 9000, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|