1
|
Rahmatipour H, Shabestari SM, Benisi SZ, Samadikhah H. Pioneering pain management with botulinum toxin type A: From anti-inflammation to regenerative therapies. Heliyon 2025; 11:e42350. [PMID: 40028584 PMCID: PMC11870196 DOI: 10.1016/j.heliyon.2025.e42350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
In the present paper, a comprehensive review was conducted to evaluate the performance of botulinum toxin type A (BTX-A) in managing various types of pain, including myofascial, muscular temporomandibular joint pain, orofacial pain, chronic migraines, and more. Firstly, the mechanism of action and anti-inflammatory effects of BTX-A was introduced. Following this, recent advancements in BTX-A applications were discussed, with an emphasis on emerging combination therapies, regenerative medicine, and personalized treatment strategies. Unlike previous reviews, this study explored a broader spectrum of pain conditions and highlighted BTX-A's versatility and potential as a long-term, minimally invasive pain management option. Additionally, the importance of tailoring BTX-A treatment was emphasized through the integration of biomarkers, genetic factors, and optimized dosing regimens to enhance efficacy and minimize side effects. Novel combinations with regenerative therapies, such as stem cells and tissue engineering, were identified as promising avenues for joint and nerve repair, providing both symptomatic relief and tissue regeneration. Furthermore, digital health tools and artificial intelligence were suggested as innovative approaches to monitor treatment responses and optimize dosing protocols in real-time, advancing personalized pain management. Overall, this review underscores BTX-A's potential in comprehensive and patient-centered pain management and offers recommendations to guide future studies in optimizing BTX-A therapy.
Collapse
Affiliation(s)
- Hamta Rahmatipour
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, P.O. Box 13185/768, Tehran, Iran
| | - Salar Mohammadi Shabestari
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, P.O. Box 13185/768, Tehran, Iran
- Stem Cell and Cell Therapy Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamidreza Samadikhah
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| |
Collapse
|
2
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel J, Pons L, Foster K, Beard M, Bard F. Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons. eLife 2024; 12:RP92806. [PMID: 39196607 DOI: 10.7554/elife.92806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia P Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Rebecca Bennion
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| | - Omar Loss
- Ipsen Bioinnovation, London, United Kingdom
| | | | | | | | | | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| |
Collapse
|
3
|
Joensuu M, Syed P, Saber SH, Lanoue V, Wallis TP, Rae J, Blum A, Gormal RS, Small C, Sanders S, Jiang A, Mahrhold S, Krez N, Cousin MA, Cooper‐White R, Cooper‐White JJ, Collins BM, Parton RG, Balistreri G, Rummel A, Meunier FA. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J 2023; 42:e112095. [PMID: 37226896 PMCID: PMC10308369 DOI: 10.15252/embj.2022112095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Parnayan Syed
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
| | - Vanessa Lanoue
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - James Rae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Shanley Sanders
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Stefan Mahrhold
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Nadja Krez
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson BuildingUniversity of EdinburghEdinburghUK
- Muir Maxwell Epilepsy CentreUniversity of EdinburghEdinburghUK
- Simons Initiative for the Developing BrainUniversity of EdinburghEdinburghUK
| | - Ruby Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Justin J Cooper‐White
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLDAustralia
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLDAustralia
- UQ Centre for Stem Cell Ageing and Regenerative EngineeringThe University of QueenslandBrisbaneQLDAustralia
| | - Brett M Collins
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Robert G Parton
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandBrisbaneQLDAustralia
| | - Giuseppe Balistreri
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Rummel
- Institut für ToxikologieMedizinische Hochschule HannoverHannoverGermany
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
- School of Biomedical SciencesThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
4
|
Schümann F, Schmitt O, Wree A, Hawlitschka A. Distribution of Cleaved SNAP-25 in the Rat Brain, following Unilateral Injection of Botulinum Neurotoxin-A into the Striatum. Int J Mol Sci 2023; 24:1685. [PMID: 36675200 PMCID: PMC9865012 DOI: 10.3390/ijms24021685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
In Parkinson's disease, hypercholinism in the striatum occurs, with the consequence of disturbed motor functions. Direct application of Botulinum neurotoxin-A in the striatum of hemi-Parkinsonian rats might be a promising anticholinergic therapeutic option. Here, we aimed to determine the spread of intrastriatally injected BoNT-A in the brain as well as the duration of its action based on the distribution of cleaved SNAP-25. Rats were injected with 1 ng of BoNT-A into the right striatum and the brains were examined at different times up to one year after treatment. In brain sections immunohistochemically stained for BoNT-A, cleaved SNAP-25 area-specific densitometric analyses were performed. Increased immunoreactivity for cleaved SNAP-25 was found in brain regions other than the unilaterally injected striatum. Most cleaved SNAP-25-ir was found in widespread areas ipsilateral to the BoNT-A injection, in some regions, however, immunoreactivity was also measured in the contralateral hemisphere. There was a linear relationship between the distance of a special area from the injected striatum and the time until its maximum averaged immunoreactivity was reached. Moreover, we observed a positive relationship for the area-specific distance from the injected striatum and its maximum immunoreactivity as well as for the connection density with the striatum and its maximum immunoreactivity. The results speak for a bidirectional axonal transport of BoNT-A after its application into the striatum to its widespread connected parts of the brain. Even one year after BoNT-A injection, cleaved SNAP-25 could still be detected.
Collapse
Affiliation(s)
- Friederike Schümann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
- Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| |
Collapse
|
5
|
Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol 2022; 96:1521-1539. [PMID: 35333944 PMCID: PMC9095541 DOI: 10.1007/s00204-022-03271-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
Abstract
Tetanus and botulinum neurotoxins cause the neuroparalytic syndromes of tetanus and botulism, respectively, by delivering inside different types of neurons, metalloproteases specifically cleaving the SNARE proteins that are essential for the release of neurotransmitters. Research on their mechanism of action is intensively carried out in order to devise improved therapies based on antibodies and chemical drugs. Recently, major results have been obtained with human monoclonal antibodies and with single chain antibodies that have allowed one to neutralize the metalloprotease activity of botulinum neurotoxin type A1 inside neurons. In addition, a method has been devised to induce a rapid molecular evolution of the metalloprotease domain of botulinum neurotoxin followed by selection driven to re-target the metalloprotease activity versus novel targets with respect to the SNARE proteins. At the same time, an intense and wide spectrum clinical research on novel therapeutics based on botulinum neurotoxins is carried out, which are also reviewed here.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
6
|
Wang T, Meunier FA. Live-Cell Superresolution Imaging of Retrograde Axonal Trafficking Using Pulse-Chase Labeling in Cultured Hippocampal Neurons. Methods Mol Biol 2022; 2473:101-128. [PMID: 35819762 DOI: 10.1007/978-1-0716-2209-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The entanglement of long axons found in cultured dissociated hippocampal neurons restricts the analysis of the machinery underlying directed axonal trafficking. Further, hippocampal neurons exhibit "en passant" presynapses that may confound the analysis of long-range retrograde axonal transport. To solve these issues, we and others have developed microfluid-based methods to specifically follow the fates of the retrograde axonal cargoes following pulse-chase labeling by super-resolution live-cell imaging, and automatically tracking their directed transport and analyzing their kinetical properties. These methods have allowed us to visualize the trafficking of fluorescently tagged signaling endosomes and autophagosomes derived from axonal terminals and resolve their localizations and movements with high spatial and temporal accuracy. In this chapter, we describe how to use a commercially available microfluidic device to enable the labeling and tracking of retrograde axonal carriers, including (1) how to culture and transfect rat hippocampal neurons in the microfluidic device; (2) how to perform pulse-chase to label specific populations of retrograde axonal carriers; and (3) how to conduct the automatic tracking and data analysis using open-source software.
Collapse
Affiliation(s)
- Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Zanetti G, Mattarei A, Lista F, Rossetto O, Montecucco C, Pirazzini M. Novel Small Molecule Inhibitors That Prevent the Neuroparalysis of Tetanus Neurotoxin. Pharmaceuticals (Basel) 2021; 14:ph14111134. [PMID: 34832916 PMCID: PMC8618345 DOI: 10.3390/ph14111134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Tetanus neurotoxin (TeNT) is a protein exotoxin produced by Clostridium tetani that causes the deadly spastic neuroparalysis of tetanus. It consists of a metalloprotease light chain and of a heavy chain linked via a disulphide bond. TeNT binds to the neuromuscular junction (NMJ) and it is retro-axonally transported into vesicular compartments to the spinal cord, where it is released and taken up by inhibitory interneuron. Therein, the catalytic subunit is translocated into the cytoplasm where it cleaves its target protein VAMP-1/2 with consequent blockage of the release of inhibitory neurotransmitters. Vaccination with formaldehyde inactivated TeNT prevents the disease, but tetanus is still present in countries where vaccination coverage is partial. Here, we show that small molecule inhibitors interfering with TeNT trafficking or with the reduction of the interchain disulphide bond block the activity of the toxin in neuronal cultures and attenuate tetanus symptoms in vivo. These findings are relevant for the development of therapeutics against tetanus based on the inhibition of toxin molecules that are being retro-transported to or are already within the spinal cord and are, thus, not accessible to anti-TeNT immunoglobulins.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Florigio Lista
- Scientific Department, Army Medical Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy;
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- Italian Research Council, Institute of Neuroscience, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- Italian Research Council, Institute of Neuroscience, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy
- Correspondence: (C.M.); (M.P.)
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy; (G.Z.); (O.R.)
- CIR-Myo, Centro Interdipartimentale di Ricerca di Miologia, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: (C.M.); (M.P.)
| |
Collapse
|
8
|
Solabre Valois L, Shi V(H, Bishop P, Zhu B, Nakamura Y, Wilkinson KA, Henley JM. Neurotrophic effects of Botulinum neurotoxin type A in hippocampal neurons involve activation of Rac1 by the non-catalytic heavy chain (HC C/A). IBRO Neurosci Rep 2021; 10:196-207. [PMID: 34041508 PMCID: PMC8143998 DOI: 10.1016/j.ibneur.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent naturally occurring poisons that act by silencing neurotransmission. Intriguingly, in addition to preventing presynaptic vesicle fusion, BoNT serotype A (BoNT/A) can also promote axonal regeneration in preclinical models. Here we report that the non-toxic C-terminal region of the receptor-binding domain of heavy chain BoNT/A (HCC/A) activates the small GTPase Rac1 and ERK pathway to potentiate axonal outgrowth, dendritic protrusion formation and synaptic vesicle release in hippocampal neurons. These data are consistent with HCC/A exerting neurotrophic properties, at least in part, independent of any BoNT catalytic activity or toxic effect.
Collapse
Affiliation(s)
- Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Vanilla (Hua) Shi
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Bishop
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Bangfu Zhu
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
9
|
Harper CB, Smillie KJ. Current molecular approaches to investigate pre-synaptic dysfunction. J Neurochem 2021; 157:107-129. [PMID: 33544872 DOI: 10.1111/jnc.15316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
Over the course of the last few decades it has become clear that many neurodevelopmental and neurodegenerative disorders have a synaptic defect, which contributes to pathogenicity. A rise in new techniques, and in particular '-omics'-based methods providing large datasets, has led to an increase in potential proteins and pathways implicated in synaptic function and related disorders. Additionally, advancements in imaging techniques have led to the recent discovery of alternative modes of synaptic vesicle recycling. This has resulted in a lack of clarity over the precise role of different pathways in maintaining synaptic function and whether these new pathways are dysfunctional in neurodevelopmental and neurodegenerative disorders. A greater understanding of the molecular detail of pre-synaptic function in health and disease is key to targeting new proteins and pathways for novel treatments and the variety of new techniques currently available provides an ideal opportunity to investigate these functions. This review focuses on techniques to interrogate pre-synaptic function, concentrating mainly on synaptic vesicle recycling. It further examines techniques to determine the underlying molecular mechanism of pre-synaptic dysfunction and discusses methods to identify molecular targets, along with protein-protein interactions and cellular localization. In combination, these techniques will provide an expanding and more complete picture of pre-synaptic function. With the application of recent technological advances, we are able to resolve events with higher spatial and temporal resolution, leading research towards a greater understanding of dysfunction at the presynapse and the role it plays in pathogenicity.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|
10
|
Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proc Natl Acad Sci U S A 2020; 117:30476-30487. [PMID: 33214152 DOI: 10.1073/pnas.2007443117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous β2-adrenoreceptor (β2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated β2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated β2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.
Collapse
|
11
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Solabre Valois L, Wilkinson KA, Nakamura Y, Henley JM. Endocytosis, trafficking and exocytosis of intact full-length botulinum neurotoxin type a in cultured rat neurons. Neurotoxicology 2020; 78:80-87. [PMID: 32088326 PMCID: PMC7225749 DOI: 10.1016/j.neuro.2020.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
Botulinum toxin A (BoNT/A) is a potent neurotoxin that acts primarily by silencing synaptic transmission by blocking neurotransmitter release. BoNT/A comprises a light chain (LC/A) intracellular protease and a heavy chain (HC/A) composed of a receptor binding domain (HCC/A) and a translocation domain (HCN/A) that mediates cell entry. Following entry into the neuron, the disulphide bond linking the two peptide chains is reduced to release the LC/A. To gain better insight into the trafficking and fate of BoNT/A before dissociation we have used a catalytically inactive, non-toxic full-length BoNT/A(0) mutant. Our data confirm that BoNT/A(0) enters cortical neurons both in an activity-dependent manner and via a pathway dependent on fibroblast growth factor receptor 3 (Fgfr3) signalling. We demonstrate that both dynamin-dependent endocytosis and lipid rafts are involved in BoNT/A internalisation and that full-length BoNT/A(0) traffics to early endosomes. Furthermore, while a proportion of BoNT/A remains stable in neurons for 3 days, BoNT/A degradation is primarily mediated by the proteasome. Finally, we demonstrate that a fraction of the endocytosed full-length BoNT/A(0) is capable of exiting the cell to intoxicate other neurons. Together, our data shed new light on the entry routes, trafficking and degradation of BoNT/A, and confirm that trafficking properties previously described for the isolated HCC/A receptor binding domain of are also applicable to the intact, full-length toxin.
Collapse
Affiliation(s)
- Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
13
|
Yuan H, Silberstein SD. The Use of Botulinum Toxin in the Management of Headache Disorders. Handb Exp Pharmacol 2020; 263:227-249. [PMID: 32562057 DOI: 10.1007/164_2020_365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tremendous progress has been made in the past decades for the treatment of headache disorders. Chronic migraine is the most disabling type of headache and requires the use of acute and preventive medications, many of which are associated with adverse events that limit patient adherence. Botulinum toxin (BoNT) serotype A, a neurotoxin derived from certain strains of Clostridium, disrupts neuropeptide secretion and receptor translocation related to trigeminal nociception, thereby preventing pain sensitization through peripheral and possibly central mechanisms. Ever since the first randomized controlled trial on onabotulinumtoxinA (onabotA) for migraine was published two decades ago, onabotA has been the only BoNT formulation approved for use in the prevention of chronic migraine. Superior tolerability and efficacy have been demonstrated on multiple migraine endpoints in many controlled trials and real-life studies. OnabotA is a safe and efficacious treatment for chronic migraine and possibly high-frequency episodic migraine. Further research is still needed to understand its mechanism of action to fully develop its therapeutic potential.
Collapse
Affiliation(s)
- Hsiangkuo Yuan
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
14
|
Rossetto O, Pirazzini M, Fabris F, Montecucco C. Botulinum Neurotoxins: Mechanism of Action. Handb Exp Pharmacol 2020; 263:35-47. [PMID: 32277300 DOI: 10.1007/164_2020_355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Botulinum neurotoxins (BoNTs) are a growing family of bacterial protein toxins that cause botulism, a rare but often fatal animal and human disease. They are the most potent toxins known owing to their molecular architecture, which underlies their mechanism of action. BoNTs target peripheral nerve terminals by a unique mode of binding and enter into their cytosol where they cleave SNARE proteins, thus inhibiting the neurotransmitter release. The specificity and rapidity of binding, which limits the anatomical area of its neuroparalytic action, and its reversible action make BoNT a valuable pharmaceutical to treat neurological and non-neurological diseases determined by hyperactivity of cholinergic nerve terminals. This review reports the progress on our understanding of how BoNTs cause nerve paralysis highlighting the different steps of their molecular mechanism of action as key aspects to explain their extreme toxicity but also their unique pharmacological properties.
Collapse
Affiliation(s)
- O Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - M Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - F Fabris
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - C Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy. .,Institute of Neuroscience, National Research Council, Padova, Italy.
| |
Collapse
|
15
|
Rossetto O, Pirazzini M, Lista F, Montecucco C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol 2019; 21:e13037. [PMID: 31050145 PMCID: PMC6899712 DOI: 10.1111/cmi.13037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 01/02/2023]
Abstract
A large number of bacterial toxins consist of active and cell binding protomers linked by an interchain disulfide bridge. The largest family of such disulfide-bridged exotoxins is that of the clostridial neurotoxins that consist of two chains and comprise the tetanus neurotoxins causing tetanus and the botulinum neurotoxins causing botulism. Reduction of the interchain disulfide abolishes toxicity, and we discuss the experiments that revealed the role of this structural element in neuronal intoxication. The redox couple thioredoxin reductase-thioredoxin (TrxR-Trx) was identified as the responsible for reduction of this disulfide occurring on the cytosolic surface of synaptic vesicles. We then discuss the very relevant finding that drugs that inhibit TrxR-Trx also prevent botulism. On this basis, we propose that ebselen and PX-12, two TrxR-Trx specific drugs previously used in clinical trials in humans, satisfy all the requirements for clinical tests aiming at evaluating their capacity to effectively counteract human and animal botulism arising from intestinal toxaemias such as infant botulism.
Collapse
Affiliation(s)
- Ornella Rossetto
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Marco Pirazzini
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Florigio Lista
- Sezione di Istologia e Biologia MolecolareCentro di ricerca Medica e Veterinaria del Ministero della DifesaRomeItaly
| | - Cesare Montecucco
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
- Istituto Neuroscienze del CNRUniversità di PadovaPaduaItaly
| |
Collapse
|
16
|
Unilateral whisker pad injection of botulinum toxin type a enhances spatial learning in mice. Neuroreport 2018; 29:987-992. [DOI: 10.1097/wnr.0000000000001035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Surana S, Tosolini AP, Meyer IF, Fellows AD, Novoselov SS, Schiavo G. The travel diaries of tetanus and botulinum neurotoxins. Toxicon 2018; 147:58-67. [DOI: 10.1016/j.toxicon.2017.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
18
|
Fonfria E, Maignel J, Lezmi S, Martin V, Splevins A, Shubber S, Kalinichev M, Foster K, Picaut P, Krupp J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins (Basel) 2018; 10:E208. [PMID: 29783676 PMCID: PMC5983264 DOI: 10.3390/toxins10050208] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Stephane Lezmi
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Vincent Martin
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Andrew Splevins
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Saif Shubber
- Ipsen Biopharm Ltd., Wrexham Industrial Estate, 9 Ash Road, Wrexham LL13 9UF, UK.
| | | | - Keith Foster
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Philippe Picaut
- Ipsen Bioscience, 650 Kendall Street, Cambridge, MA 02142, USA.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
19
|
Azarnia Tehran D, Pirazzini M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins (Basel) 2018; 10:E190. [PMID: 29748471 PMCID: PMC5983246 DOI: 10.3390/toxins10050190] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), the etiological agents of botulism, are the deadliest toxins known to humans. Yet, thanks to their biological and toxicological features, BoNTs have become sophisticated tools to study neuronal physiology and valuable therapeutics for an increasing number of human disorders. BoNTs are produced by multiple bacteria of the genus Clostridium and, on the basis of their different immunological properties, were classified as seven distinct types of toxin. BoNT classification remained stagnant for the last 50 years until, via bioinformatics and high-throughput sequencing techniques, dozens of BoNT variants, novel serotypes as well as BoNT-like toxins within non-clostridial species have been discovered. Here, we discuss how the now “booming field” of botulinum neurotoxin may shed light on their evolutionary origin and open exciting avenues for future therapeutic applications.
Collapse
Affiliation(s)
- Domenico Azarnia Tehran
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
20
|
Caleo M, Restani L. Exploiting Botulinum Neurotoxins for the Study of Brain Physiology and Pathology. Toxins (Basel) 2018; 10:toxins10050175. [PMID: 29693600 PMCID: PMC5983231 DOI: 10.3390/toxins10050175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 01/25/2023] Open
Abstract
Botulinum neurotoxins are metalloproteases that specifically cleave N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in synaptic terminals, resulting in a potent inhibition of vesicle fusion and transmitter release. The family comprises different serotypes (BoNT/A to BoNT/G). The natural target of these toxins is represented by the neuromuscular junction, where BoNTs block acetylcholine release. In this review, we describe the actions of botulinum toxins after direct delivery to the central nervous system (CNS), where BoNTs block exocytosis of several transmitters, with near-complete silencing of neural networks. The use of clostridial neurotoxins in the CNS has allowed us to investigate specifically the role of synaptic activity in different physiological and pathological processes. The silencing properties of BoNTs can be exploited for therapeutic purposes, for example to counteract pathological hyperactivity and seizures in epileptogenic brain foci, or to investigate the role of activity in degenerative diseases like prion disease. Altogether, clostridial neurotoxins and their derivatives hold promise as powerful tools for both the basic understanding of brain function and the dissection and treatment of activity-dependent pathogenic pathways.
Collapse
Affiliation(s)
- Matteo Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Laura Restani
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
21
|
Bademosi AT, Steeves J, Karunanithi S, Zalucki OH, Gormal RS, Liu S, Lauwers E, Verstreken P, Anggono V, Meunier FA, van Swinderen B. Trapping of Syntaxin1a in Presynaptic Nanoclusters by a Clinically Relevant General Anesthetic. Cell Rep 2018; 22:427-440. [DOI: 10.1016/j.celrep.2017.12.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/27/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
|
22
|
Joensuu M, Martínez-Mármol R, Padmanabhan P, Glass NR, Durisic N, Pelekanos M, Mollazade M, Balistreri G, Amor R, Cooper-White JJ, Goodhill GJ, Meunier FA. Visualizing endocytic recycling and trafficking in live neurons by subdiffractional tracking of internalized molecules. Nat Protoc 2017; 12:2590-2622. [PMID: 29189775 DOI: 10.1038/nprot.2017.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our understanding of endocytic pathway dynamics is restricted by the diffraction limit of light microscopy. Although super-resolution techniques can overcome this issue, highly crowded cellular environments, such as nerve terminals, can also dramatically limit the tracking of multiple endocytic vesicles such as synaptic vesicles (SVs), which in turn restricts the analytical dissection of their discrete diffusional and transport states. We recently introduced a pulse-chase technique for subdiffractional tracking of internalized molecules (sdTIM) that allows the visualization of fluorescently tagged molecules trapped in individual signaling endosomes and SVs in presynapses or axons with 30- to 50-nm localization precision. We originally developed this approach for tracking single molecules of botulinum neurotoxin type A, which undergoes activity-dependent internalization and retrograde transport in autophagosomes. This method was then adapted to localize the signaling endosomes containing cholera toxin subunit-B that undergo retrograde transport in axons and to track SVs in the crowded environment of hippocampal presynapses. We describe (i) the construction of a custom-made microfluidic device that enables control over neuronal orientation; (ii) the 3D printing of a perfusion system for sdTIM experiments performed on glass-bottom dishes; (iii) the dissection, culturing and transfection of hippocampal neurons in microfluidic devices; and (iv) guidance on how to perform the pulse-chase experiments and data analysis. In addition, we describe the use of single-molecule-tracking analytical tools to reveal the average and the heterogeneous single-molecule mobility behaviors. We also discuss alternative reagents and equipment that can, in principle, be used for sdTIM experiments and describe how to adapt sdTIM to image nanocluster formation and/or tubulation in early endosomes during sorting events. The procedures described in this protocol take ∼1 week.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ramon Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nick R Glass
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Pelekanos
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Mahdie Mollazade
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Giuseppe Balistreri
- Division of General Microbiology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Rumelo Amor
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Justin J Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.,Division of General Microbiology, Department of Biosciences, University of Helsinki, Helsinki, Finland.,School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia.,Materials Science and Engineering Division, CSIRO, Clayton, Victoria, Australia.,UQ Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Caleo M, Restani L. Direct central nervous system effects of botulinum neurotoxin. Toxicon 2017; 147:68-72. [PMID: 29111119 DOI: 10.1016/j.toxicon.2017.10.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/29/2022]
Abstract
Local intramuscular injections of botulinum neurotoxin type A (BoNT/A) are effective in the treatment of focal dystonias, muscle spasms, and spasticity. However, not all clinical effects of BoNT/A may be explained by its action at peripheral nerve terminals. For example, the therapeutic benefit may exceed the duration of the peripheral neuroparalysis induced by the neurotoxin. In cellular and animal models, evidence demonstrates retrograde transport of catalytically active BoNT/A in projection neurons. This process of long-range trafficking is followed by transcytosis and action at second-order synapses. In humans, several physiological changes have been described following intramuscular delivery of BoNT/A. In particular, clinical studies have documented a decrease in Renshaw cell-mediated inhibition (i.e., recurrent inhibition), which may be important therapeutically for normalizing uncoordinated movements and overflow of muscle activity. In this review, we present data obtained in animal and experimental models that support direct central actions of BoNT/A mediated via retrograde axonal trafficking. We also discuss the reorganization of central circuitry induced by BoNT/A in patients, and the potential contribution of these effects to the therapeutic efficacy of the neurotoxin.
Collapse
Affiliation(s)
- Matteo Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124, Pisa, Italy
| | - Laura Restani
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
24
|
Pirazzini M, Rossetto O. Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opin Drug Discov 2017; 12:497-510. [DOI: 10.1080/17460441.2017.1303476] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Bademosi AT, Lauwers E, Padmanabhan P, Odierna L, Chai YJ, Papadopulos A, Goodhill GJ, Verstreken P, van Swinderen B, Meunier FA. In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters. Nat Commun 2017; 8:13660. [PMID: 28045048 PMCID: PMC5171881 DOI: 10.1038/ncomms13660] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
Syntaxin1A is organized in nanoclusters that are critical for the docking and priming of secretory vesicles from neurosecretory cells. Whether and how these nanoclusters are affected by neurotransmitter release in nerve terminals from a living organism is unknown. Here we imaged photoconvertible syntaxin1A-mEos2 in the motor nerve terminal of Drosophila larvae by single-particle tracking photoactivation localization microscopy. Opto- and thermo-genetic neuronal stimulation increased syntaxin1A-mEos2 mobility, and reduced the size and molecular density of nanoclusters, suggesting an activity-dependent release of syntaxin1A from the confinement of nanoclusters. Syntaxin1A mobility was increased by mutating its polyphosphoinositide-binding site or preventing SNARE complex assembly via co-expression of tetanus toxin light chain. In contrast, syntaxin1A mobility was reduced by preventing SNARE complex disassembly. Our data demonstrate that polyphosphoinositide favours syntaxin1A trapping, and show that SNARE complex disassembly leads to syntaxin1A dissociation from nanoclusters. Lateral diffusion and trapping of syntaxin1A in nanoclusters therefore dynamically regulate neurotransmitter release. Syntaxin1A (Sx1A) is organized in nanoclusters in neurosecretory cells but how these nanoclusters are affected by neurotransmitter release in a living organism is unknown. Here the authors perform single molecule imaging analysis in live fly larvae and show that the lateral diffusion and trapping of Sx1A in nanoclusters are altered by synaptic activity.
Collapse
Affiliation(s)
- Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elsa Lauwers
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lorenzo Odierna
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ye Jin Chai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
26
|
Joensuu M, Padmanabhan P, Durisic N, Bademosi ATD, Cooper-Williams E, Morrow IC, Harper CB, Jung W, Parton RG, Goodhill GJ, Papadopulos A, Meunier FA. Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles. J Cell Biol 2016; 215:277-292. [PMID: 27810917 PMCID: PMC5080683 DOI: 10.1083/jcb.201604001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/30/2016] [Indexed: 11/23/2022] Open
Abstract
Joensuu et al. describe a tool for subdiffractional tracking of internalized molecules. They reveal that synaptic vesicles exhibit stochastic switching between heterogeneous diffusive and transport states in live hippocampal nerve terminals. Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti–green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)–pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2–pHluorin/Atto647N–tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings.
Collapse
Affiliation(s)
- Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pranesh Padmanabhan
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adekunle T D Bademosi
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Isabel C Morrow
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Callista B Harper
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - WooRam Jung
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia .,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia .,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
27
|
Flux of signalling endosomes undergoing axonal retrograde transport is encoded by presynaptic activity and TrkB. Nat Commun 2016; 7:12976. [PMID: 27687129 PMCID: PMC5427517 DOI: 10.1038/ncomms12976] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Axonal retrograde transport of signalling endosomes from the nerve terminal to the soma underpins survival. As each signalling endosome carries a quantal amount of activated receptors, we hypothesized that it is the frequency of endosomes reaching the soma that determines the scale of the trophic signal. Here we show that upregulating synaptic activity markedly increased the flux of plasma membrane-derived retrograde endosomes (labelled using cholera toxin subunit-B: CTB) in hippocampal neurons cultured in microfluidic devices, and live Drosophila larval motor neurons. Electron and super-resolution microscopy analyses revealed that the fast-moving sub-diffraction-limited CTB carriers contained the TrkB neurotrophin receptor, transiently activated by synaptic activity in a BDNF-independent manner. Pharmacological and genetic inhibition of TrkB activation selectively prevented the coupling between synaptic activity and the retrograde flux of signalling endosomes. TrkB activity therefore controls the encoding of synaptic activity experienced by nerve terminals, digitalized as the flux of retrogradely transported signalling endosomes. Signalling endosomes are known to be essential for neuronal survival. Here the authors show that, in cultured hippocampal neurons and live Drosophila larval motor neurons, neuronal activity increases the retrograde flux of signalling endosomes, and this coupling depends on TrkB activation.
Collapse
|
28
|
Kasula R, Chai YJ, Bademosi AT, Harper CB, Gormal RS, Morrow IC, Hosy E, Collins BM, Choquet D, Papadopulos A, Meunier FA. The Munc18-1 domain 3a hinge-loop controls syntaxin-1A nanodomain assembly and engagement with the SNARE complex during secretory vesicle priming. J Cell Biol 2016; 214:847-58. [PMID: 27646276 PMCID: PMC5037406 DOI: 10.1083/jcb.201508118] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
Kasula et al. use single-molecule imaging to reveal the diffusional signature for the SNARE proteins Munc18-1 and syntaxin-1A during secretory vesicle priming. The authors show that a conformational change in the Munc18-1 domain 3a hinge-loop regulates engagement of syntaxin-1A in the SNARE complex. Munc18-1 and syntaxin-1A control SNARE-dependent neuroexocytosis and are organized in nanodomains on the plasma membrane of neurons and neurosecretory cells. Deciphering the intra- and intermolecular steps via which they prepare secretory vesicles (SVs) for fusion is key to understanding neuronal and hormonal communication. Here, we demonstrate that expression of a priming-deficient mutant lacking 17 residues of the domain 3a hinge-loop (Munc18-1Δ317-333) in PC12 cells engineered to knockdown Munc18-1/2 markedly prolonged SV docking. Single-molecule analysis revealed nonhomogeneous diffusion of Munc18-1 and syntaxin-1A in and out of partially overlapping nanodomains. Whereas Munc18-1WT mobility increased in response to stimulation, syntaxin-1A became less mobile. These Munc18-1 and syntaxin-1A diffusional switches were blocked by the expression of Munc18-1Δ317-333, suggesting that a conformational change in the Munc18-1 hinge-loop controls syntaxin-1A and subsequent SNARE complex assembly. Accordingly, syntaxin-1A confinement was prevented by expression of botulinum neurotoxin type E. The Munc18-1 domain 3a hinge-loop therefore controls syntaxin-1A engagement into SNARE complex formation during priming.
Collapse
Affiliation(s)
- Ravikiran Kasula
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ye Jin Chai
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adekunle T Bademosi
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Callista B Harper
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rachel S Gormal
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Isabel C Morrow
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, 33077 Bordeaux, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, 33077 Bordeaux, France
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel Choquet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, 33077 Bordeaux, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5297, 33077 Bordeaux, France Bordeaux Imaging Center, Unité Mixte de Service 3420, Centre National de la Recherche Scientifique, US4 Institut National de la Santé et de la Recherche Médicale, University of Bordeaux, 33077 Bordeaux, France
| | - Andreas Papadopulos
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frédéric A Meunier
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Matamales M, Götz J, Bertran-Gonzalez J. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum. PLoS One 2016; 11:e0157682. [PMID: 27314496 PMCID: PMC4912095 DOI: 10.1371/journal.pone.0157682] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs) have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17%) aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the striatum.
Collapse
Affiliation(s)
- Miriam Matamales
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (MM); (JBG)
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Jesus Bertran-Gonzalez
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (MM); (JBG)
| |
Collapse
|