1
|
Ehinger Y, Laguesse S, Phamluong K, Salvi A, Sei YJ, Hoisington ZW, Soneja D, Gunasekaran S, Nakamura K, Ron D. Paradoxical mTORC1-Dependent microRNA-mediated Translation Repression in the Nucleus Accumbens of Mice Consuming Alcohol Attenuates Glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.29.569312. [PMID: 38076984 PMCID: PMC10705386 DOI: 10.1101/2023.11.29.569312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
mTORC1 promotes protein translation, learning and memory, and neuroadaptations that underlie alcohol use and abuse. We report that activation of mTORC1 in the nucleus accumbens (NAc) of mice consuming alcohol promotes the translation of microRNA (miR) machinery components and the upregulation of microRNAs (miRs) expression including miR-34a-5p. In parallel, we detected a paradoxical mTORC1-dependent repression of translation of transcripts including Aldolase A, an essential glycolytic enzyme. We found that miR-34a-5p in the NAc targets Aldolase A for translation repression and promotes alcohol intake. Our data further suggest that glycolysis is inhibited in the NAc manifesting in an mTORC1-dependent attenuation of L-lactate, the end product of glycolysis. Finally, we show that systemic administration of L-lactate attenuates mouse excessive alcohol intake. Our data suggest that alcohol promotes paradoxical actions of mTORC1 on translation and glycolysis which in turn drive excessive alcohol use.
Collapse
|
2
|
Son G, Na Y, Kim Y, Son JH, Clemenson GD, Schafer ST, Yoo JY, Parylak SL, Paquola A, Do H, Kim D, Ahn I, Ju M, Kang CS, Ju Y, Jung E, McDonald AH, Park Y, Kim G, Paik SB, Hur J, Kim J, Han YM, Lee SH, Gage FH, Kim JS, Han J. miR-124 coordinates metabolic regulators acting at early stages of human neurogenesis. Commun Biol 2024; 7:1393. [PMID: 39455851 PMCID: PMC11511827 DOI: 10.1038/s42003-024-07089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic dysregulation of neurons is associated with diverse human brain disorders. Metabolic reprogramming occurs during neuronal differentiation, but it is not fully understood which molecules regulate metabolic changes at the early stages of neurogenesis. In this study, we report that miR-124 is a driver of metabolic change at the initiating stage of human neurogenesis. Proteome analysis has shown the oxidative phosphorylation pathway to be the most significantly altered among the differentially expressed proteins (DEPs) in the immature neurons after the knockdown of miR-124. In agreement with these proteomics results, miR-124-depleted neurons display mitochondrial dysfunctions, such as decreased mitochondrial membrane potential and cellular respiration. Moreover, morphological analyses of mitochondria in early differentiated neurons after miR-124 knockdown result in smaller and less mature shapes. Lastly, we show the potential of identified DEPs as novel metabolic regulators in early neuronal development by validating the effects of GSTK1 on cellular respiration. GSTK1, which is upregulated most significantly in miR-124 knockdown neurons, reduces the oxygen consumption rate of neural cells. Collectively, our data highlight the roles of miR-124 in coordinating metabolic maturation at the early stages of neurogenesis and provide insights into potential metabolic regulators associated with human brain disorders characterized by metabolic dysfunctions.
Collapse
Affiliation(s)
- Geurim Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yongsung Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Gregory D Clemenson
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Yeon Yoo
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Sarah L Parylak
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Apua Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dayeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Insook Ahn
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Mingyu Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chanhee S Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Younghee Ju
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Sovargen.CO., LTD., Daejeon, Korea
| | - Eunji Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Aidan H McDonald
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Youngjin Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Gilhyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Junho Hur
- College of Medicine, Hanyang University, Seoul, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yong-Mahn Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- BioMedical Research Center, KAIST, Daejeon, Korea.
- KAIST Stem Cell Center, KAIST, Daejeon, Korea.
| |
Collapse
|
3
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
4
|
Dalal S, Ramirez-Gomez J, Sharma B, Devara D, Kumar S. MicroRNAs and synapse turnover in Alzheimer's disease. Ageing Res Rev 2024; 99:102377. [PMID: 38871301 DOI: 10.1016/j.arr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and cognitive decline. Healthy synapses are the crucial for normal brain function, memory restoration and other neurophysiological function. Synapse loss and synaptic dysfunction are two primary events that occur during AD initiation. Synapse lifecycle and/or synapse turnover is divided into five key stages and several sub-stages such as synapse formation, synapse assembly, synapse maturation, synapse transmission and synapse termination. In normal state, the synapse turnover is regulated by various biological and molecular factors for a healthy neurotransmission. In AD, the different stages of synapse turnover are affected by AD-related toxic proteins. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and have been implicated in various neurological diseases, including AD. Deregulation of miRNAs modulate the synaptic proteins and affect the synapse turnover at different stages. In this review, we discussed the key milestones of synapse turnover and how they are affected in AD. Further, we discussed the involvement of miRNAs in synaptic turnover, focusing specifically on their role in AD pathogenesis. We also emphasized the regulatory mechanisms by which miRNAs modulate the synaptic turnover stages in AD. Current studies will help to understand the synaptic life-cycle and role of miRNAs in each stage that is deregulated in AD, further allowing for a better understanding of the pathogenesis of devastating disease.
Collapse
Affiliation(s)
- Sarthak Dalal
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jaime Ramirez-Gomez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedicael Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
5
|
Abstract
The brain is designed not only with molecules and cellular processes that help to form memories but also with molecules and cellular processes that suppress the formation and retention of memory. The latter processes are critical for an efficient memory management system, given the vast amount of information that each person experiences in their daily activities and that most of this information becomes irrelevant with time. Thus, efficiency dictates that the brain should have processes for selecting the most critical information for storage and suppressing the irrelevant or forgetting it later should it escape the initial filters. Such memory suppressor molecules and processes are revealed by genetic or pharmacologic insults that lead to enhanced memory expression. We review here the predominant memory suppressor molecules and processes that have recently been discovered. They are diverse, as expected, because the brain is complex and employs many different strategies and mechanisms to form memories. They include the gene-repressive actions of small noncoding RNAs, repressors of protein synthesis, cAMP-mediated gene expression pathways, inter- and intracellular signaling pathways for normal forgetting, and others. A deep understanding of memory suppressor molecules and processes is necessary to fully comprehend how the brain forms, stabilizes, and retrieves memories and to reveal how brain disorders disrupt memory.
Collapse
Affiliation(s)
- Nathaniel C. Noyes
- Department of Neuroscience, University of Florida Scripps Biomedical Research, Jupiter, FL, USA
| | - Ronald L. Davis
- Department of Neuroscience, University of Florida Scripps Biomedical Research, Jupiter, FL, USA
| |
Collapse
|
6
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Role of Post-Transcriptional Regulation in Learning and Memory in Mammals. Genes (Basel) 2024; 15:337. [PMID: 38540396 PMCID: PMC10970538 DOI: 10.3390/genes15030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
After many decades, during which most molecular studies on the regulation of gene expression focused on transcriptional events, it was realized that post-transcriptional control was equally important in order to determine where and when specific proteins were to be synthesized. Translational regulation is of the most importance in the brain, where all the steps of mRNA maturation, transport to different regions of the cells and actual expression, in response to specific signals, constitute the molecular basis for neuronal plasticity and, as a consequence, for structural stabilization/modification of synapses; notably, these latter events are fundamental for the highest brain functions, such as learning and memory, and are characterized by long-term potentiation (LTP) of specific synapses. Here, we will discuss the molecular bases of these fundamental events by considering both the role of RNA-binding proteins (RBPs) and the effects of non-coding RNAs involved in controlling splicing, editing, stability and translation of mRNAs. Importantly, it has also been found that dysregulation of mRNA metabolism/localization is involved in many pathological conditions, arising either during brain development or in the adult nervous system.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
7
|
Huang J, Chen D, Lin X, Yang C, Lin X. miRNA-124 alleviated memory impairment induced by d-galactose rapidly in male rats via microglia polarization. Hippocampus 2023; 33:96-111. [PMID: 36541921 DOI: 10.1002/hipo.23491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/25/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022]
Abstract
MiRNA-124 has been considered to play a significant role in the formation of memory and a variety of neurodegenerative diseases. In this study, the aim is to verify whether miRNA-124 is involved in memory impairment induced by d-galactose, and explore the underlying neuroprotective mechanism. The results revealed that rapid administration of d-galactose (1000 mg/kg subcutaneously) in mice caused memory impairments, as determined by Novel Object Recognition test, Morris Water Maze test, and histological assessments. MiRNA-124 agomir is stereotactic injected into hippocampus, thus alleviated memory impairment induced by d-galactose and reversed the neural damage and neuroinflammation. Furthermore, the results of molecular biological analysis and immunohistochemistry revealed that miRNA-124 markedly reduced neuroinflammation induced by d-galactose through polarization of microglia as determined by detection of ionized calcium binding adapter molecule 1 (Iba-1), inducible nitric oxide synthase (iNOS) and arginase-1(Arg-1), which also downregulated inflammatory mediators, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and upregulated IL-4 and IL-10. Hence, taken together, the results of the present study suggested that miRNA-124 showed a significant negative correlation with memory impairment and neuroinflammation induced by d-galactose rapidly, possibly via polarization of microglia from M1 to M2. It is possible that miRNA-124 can be used as a new target for the pathogenesis of memory impairment, including age-associated neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Jinghao Huang
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dengchao Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Stomatological Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyi Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengxia Yang
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xianzhong Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Vasiliev GV, Ovchinnikov VY, Lisachev PD, Bondar NP, Grinkevich LN. The Expression of miRNAs Involved in Long-Term Memory Formation in the CNS of the Mollusk Helix lucorum. Int J Mol Sci 2022; 24:ijms24010301. [PMID: 36613744 PMCID: PMC9820140 DOI: 10.3390/ijms24010301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mollusks are unique animals with a relatively simple central nervous system (CNS) containing giant neurons with identified functions. With such simple CNS, mollusks yet display sufficiently complex behavior, thus ideal for various studies of behavioral processes, including long-term memory (LTM) formation. For our research, we use the formation of the fear avoidance reflex in the terrestrial mollusk Helix lucorum as a learning model. We have shown previously that LTM formation in Helix requires epigenetic modifications of histones leading to both activation and inactivation of the specific genes. It is known that microRNAs (miRNAs) negatively regulate the expression of genes; however, the role of miRNAs in behavioral regulation has been poorly investigated. Currently, there is no miRNAs sequencing data being published on Helix lucorum, which makes it impossible to investigate the role of miRNAs in the memory formation of this mollusk. In this study, we have performed sequencing and comparative bioinformatics analysis of the miRNAs from the CNS of Helix lucorum. We have identified 95 different microRNAs, including microRNAs belonging to the MIR-9, MIR-10, MIR-22, MIR-124, MIR-137, and MIR-153 families, known to be involved in various CNS processes of vertebrates and other species, particularly, in the fear behavior and LTM. We have shown that in the CNS of Helix lucorum MIR-10 family (26 miRNAs) is the most representative one, including Hlu-Mir-10-S5-5p and Hlu-Mir-10-S9-5p as top hits. Moreover, we have shown the involvement of the MIR-10 family in LTM formation in Helix. The expression of 17 representatives of MIR-10 differentially changes during different periods of LTM consolidation in the CNS of Helix. In addition, using comparative analysis of microRNA expression upon learning in normal snails and snails with deficient learning abilities with dysfunction of the serotonergic system, we identified a number of microRNAs from several families, including MIR-10, which expression changes only in normal animals. The obtained data can be used for further fundamental and applied behavioral research.
Collapse
Affiliation(s)
- Gennady V. Vasiliev
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vladimir Y. Ovchinnikov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Pavel D. Lisachev
- Federal Research Center for Information and Computational Technologies, 6 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Natalia P. Bondar
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Larisa N. Grinkevich
- The Federal State Budget Scientific Institution Pavlov Institute of Physiology, Russian Academy of Sciences, 6 nab. Makarova, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
9
|
Salami M, Soheili M. The microbiota-gut- hippocampus axis. Front Neurosci 2022; 16:1065995. [PMID: 36620458 PMCID: PMC9817109 DOI: 10.3389/fnins.2022.1065995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction It is well known that the intestinal bacteria substantially affect physiological processes in many body organs. Especially, through a bidirectional communication called as gut-microbiota-brain axis, the gut microbiota deeply influences development and function of the nervous system. Hippocampus, as a part of medial temporal lobe, is known to be involved in cognition, emotion, and anxiety. Growing evidence indicates that the hippocampus is a target of the gut microbiota. We used a broad search linking the hippocampus with the gut microbiota and probiotics. Methods All experimental studies and clinical trials published until end of 2021 were reviewed. Influence of the gut microbiota on the behavioral, electrophysiological, biochemical and histological aspects of the hippocampus were evaluated in this review. Results The effect of disrupted gut microbiota and probiotic supplements on the microbiota-hippocampus link is also considered. Studies show that a healthy gut microbiota is necessary for normal hippocampus dependent learning and memory and synaptic plasticity. The known current mechanisms are production and modulation of neurotrophins, neurotransmitters and receptors, regulation of intracellular molecular processes, normalizing the inflammatory/anti-inflammatory and oxidative/antioxidant factors, and histological stability of the hippocampus. Activity of the hippocampal neuronal circuits as well as behavioral functions of the hippocampus positively respond to different mixtures of probiotic bacteria. Discussion Growing evidence from animal researches indicate a close association between the hippocampus with the gut microbiota and probiotic bacteria as well. However, human studies and clinical trials verifying such a link are scant. Since the most of papers on this topic have been published over the past 3 years, intensive future research awaits.
Collapse
|
10
|
Liaqat H, Parveen A, Kim SY. Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients 2022; 14:nu14163270. [PMID: 36014776 PMCID: PMC9413544 DOI: 10.3390/nu14163270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
L-tryptophan (Trp) contributes to regulating bilateral communication of the gut–brain axis. It undergoes three major metabolic pathways, which lead to formation of kynurenine, serotonin (5-HT), and indole derivatives (under the control of the microbiota). Metabolites from the principal Trp pathway, kynurenic acid and quinolinic acid, exhibit neuroprotective activity, while picolinic acid exhibits antioxidant activity, and 5-HT modulates appetite, sleep cycle, and pain. Abnormality in Trp plays crucial roles in diseases, including depression, colitis, ulcer, and gut microbiota-related dysfunctions. To address these diseases, the use of natural products could be a favorable alternative because they are a rich source of compounds that can modulate the activity of Trp and combat various diseases through modulating different signaling pathways, including the gut microbiota, kynurenine pathway, and serotonin pathway. Alterations in the signaling cascade pathways via different phytochemicals may help us explore the deep relationships of the gut–brain axis to study neuroprotection. This review highlights the roles of natural products and their metabolites targeting Trp in different diseases. Additionally, the role of Trp metabolites in the regulation of neuroprotective and gastroprotective activities is discussed. This study compiles the literature on novel, potent neuroprotective agents and their action mechanisms in the gut–brain axis and proposes prospective future studies to identify more pharmaceuticals based on signaling pathways targeting Trp.
Collapse
Affiliation(s)
- Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Amna Parveen
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| |
Collapse
|
11
|
Eshkoor SA, Ghodsian N, Akhtari-Zavare M. MicroRNAs influence and longevity. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MiRNAs play critical roles in the regulation of cellular function, life span, and the aging process. They can affect longevity positively and negatively through different aging pathways.
Main text
MiRNAs are a group of short non-coding RNAs that regulate gene expressions at post-transcriptional levels. The different types of alterations in miRNAs biogenesis, mRNA expressions, and activities of miRNA-protein complexes can affect the regulation of normal post-transcriptional gene process, which may lead to aging, age-related diseases, and an earlier death. It seems that the influence of deregulation of miRNAs on senescence and age-related diseases occurring by targeting aging molecular pathways can be used for diagnosis and prognosis of them. Therefore, the expression and function of miRNAs should be studied more accurately with new applicable and validated experimental tools. However, the current review wishes to highlight simply a connection among miRNAs, senescence and some age-related diseases.
Conclusion
Despite several research indicating the key roles of miRNAs in aging and longevity, further investigations are still needed to elucidate the essential roles of miRNAs in controlling mRNA regulation, cell proliferation, death and/or protection during stress and health problems. Besides, more research on miRNAs will help to identify new targets for alternative strategies regarding effectively screen, treat, and prevent diseases as well as make slow the aging process.
Collapse
|
12
|
Shi J, Chi Y, Wang X, Zhang Y, Tian L, Chen Y, Chen C, Dong Y, Sang H, Chen M, Liu L, Zhao N, Kang C, Hu X, Wang X, Liu Q, Li X, Zhu S, Nie M, Wang H, Yang L, Liu J, Wang H, Lu J, Hu J. MiR-124 Regulates IQGAP1 and Participates in the Relationship Between Morphine Dependence Susceptibility and Cognition. Front Psychiatry 2022; 13:845357. [PMID: 35401251 PMCID: PMC8983956 DOI: 10.3389/fpsyt.2022.845357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
Background Long-term excessive use of morphine leads to addictive diseases and affects cognitive function. Cognitive performance is associated with genetic characteristics.MiR-124 plays a critical regulatory role in neurogenesis, synaptic development, brain plasticity, and the use of addictive substances. As a scaffold protein, IQGAP1 affects learning and memory dose-dependent. However, the role of miR-124 and its target protein as potential addiction biomarkers and the impact on cognitive function have not been fully explored. Method A total of 40 patients with morphine dependence and 40 cases of healthy people were recruited. We collected basic and clinical information about the two groups. The Generalized Anxiety Disorder Scale (GAD-7), Patient Health Questionnaire-9(PHQ-9), Montreal Cognition Assessment Scale (MoCA), Pittsburgh Sleep Quality Index (PSQI) were used to assess the severity of depression, anxiety, depressive symptoms, cognitive dysfunction, and sleep quality. Results Compared to the control group, the morphine-dependent group had higher GAD-7, PHQ-9, PSQI scores, and more elevated miR-124 levels but lower MOCA scores and IQGAP1 levels. MiR-124, IQGAP1, the average intake last year were related to OASI scores.MiR-124, IQGAP1, PHQ-9 were associated with MOCA scores. In the multiple regression model, the levels of miR-124 and IQGAP1 were independent factors influencing the severity of morphine dependence. The level of miR-124 was an independent factor influencing the severity of cognitive impairment in patients with morphine dependence. In addition, the luciferase report confirmed that IQGAP1 mRNA is the direct target of miR-124. Conclusion MiR-124 and its target protein IQGAP1 are involved in the regulation of addiction and cognitive function in patients with morphine dependence.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Chi
- The National Clinical Research Center for Mental Disorders, Capital Medical University & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingjie Zhang
- The National Clinical Research Center for Mental Disorders, Capital Medical University & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lu Tian
- The National Clinical Research Center for Mental Disorders, Capital Medical University & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yao Chen
- Shenyang Mental Health Center, Shenyang, China
| | - Chunwu Chen
- Shenyang Mental Health Center, Shenyang, China
| | - Yong Dong
- Shenyang Mental Health Center, Shenyang, China
| | - Hong Sang
- Changchun Sixth Hospital, Changchun, China
| | - Ming Chen
- Changchun Sixth Hospital, Changchun, China
| | - Lei Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na Zhao
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanyi Kang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaorui Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Wang
- Harbin University of Science and Technology, Harbin, China
| | - Qingxia Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuemin Li
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Zhu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxuan Nie
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Honghui Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liying Yang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiacheng Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huaizhi Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Lu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Rosa JM, Formolo DA, Yu J, Lee TH, Yau SY. The Role of MicroRNA and Microbiota in Depression and Anxiety. Front Behav Neurosci 2022; 16:828258. [PMID: 35299696 PMCID: PMC8921933 DOI: 10.3389/fnbeh.2022.828258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.
Collapse
Affiliation(s)
- Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Neurocentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
14
|
Noyes NC, Phan A, Davis RL. Memory suppressor genes: Modulating acquisition, consolidation, and forgetting. Neuron 2021; 109:3211-3227. [PMID: 34450024 PMCID: PMC8542634 DOI: 10.1016/j.neuron.2021.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
The brain has a remarkable but underappreciated capacity to limit memory formation and expression. The term "memory suppressor gene" was coined in 1998 as an attempt to explain emerging reports that some genes appeared to limit memory. At that time, only a handful of memory suppressor genes were known, and they were understood to work by limiting cAMP-dependent consolidation. In the intervening decades, almost 100 memory suppressor genes with diverse functions have been discovered that affect not only consolidation but also acquisition and forgetting. Here we highlight the surprising extent to which biological limits are placed on memory formation through reviewing the literature on memory suppressor genes. In this review, we present memory suppressors within the framework of their actions on different memory operations: acquisition, consolidation, and forgetting. This is followed by a discussion of the reasons why there may be a biological need to limit memory formation.
Collapse
Affiliation(s)
- Nathaniel C Noyes
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Anna Phan
- Department of Biological Sciences, University of Alberta, 11355 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
15
|
Mahjoum S, Rufino-Ramos D, Pereira de Almeida L, Broekman MLD, Breakefield XO, van Solinge TS. Living Proof of Activity of Extracellular Vesicles in the Central Nervous System. Int J Mol Sci 2021; 22:ijms22147294. [PMID: 34298912 PMCID: PMC8303915 DOI: 10.3390/ijms22147294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
The central nervous system (CNS) consists of a heterogeneous population of cells with highly specialized functions. For optimal functioning of the CNS, in disease and in health, intricate communication between these cells is vital. One important mechanism of cellular communication is the release and uptake of extracellular vesicles (EVs). EVs are membrane enclosed particles actively released by cells, containing a wide array of proteins, lipids, RNA, and DNA. These EVs can be taken up by neighboring or distant cells, and influence a wide range of processes. Due to the complexity and relative inaccessibility of the CNS, our current understanding of the role of EVs is mainly derived in vitro work. However, recently new methods and techniques have opened the ability to study the role of EVs in the CNS in vivo. In this review, we discuss the current developments in our understanding of the role of EVs in the CNS in vivo.
Collapse
Affiliation(s)
- Shadi Mahjoum
- Program in Neuroscience, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02119, USA; (S.M.); (M.L.D.B.); (X.O.B.)
| | - David Rufino-Ramos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.R.-R.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.R.-R.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Marike L. D. Broekman
- Program in Neuroscience, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02119, USA; (S.M.); (M.L.D.B.); (X.O.B.)
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| | - Xandra O. Breakefield
- Program in Neuroscience, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02119, USA; (S.M.); (M.L.D.B.); (X.O.B.)
| | - Thomas S. van Solinge
- Program in Neuroscience, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02119, USA; (S.M.); (M.L.D.B.); (X.O.B.)
- Department of Neurosurgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
16
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2021; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
17
|
Grinkevich LN. The role of microRNAs in learning and long-term memory. Vavilovskii Zhurnal Genet Selektsii 2020; 24:885-896. [PMID: 35088002 PMCID: PMC8763713 DOI: 10.18699/vj20.687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been
paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in
length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently
being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have
been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation.
Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA
biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile
dementia, which are often accompanied by deterioration in the learning ability and by memory impairment.
Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest
in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well
as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory
formation, depending on the activation or inhibition of their expression. The review presents summarized data
on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with
sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving
cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active
mental and physical exercises.
Collapse
Affiliation(s)
- L. N. Grinkevich
- Pavlov Institute of Physiology of the Russian Academy of Sciences
| |
Collapse
|
18
|
Mustafin RN, Kazantseva AV, Malykh SB, Khusnutdinova EK. Genetic Mechanisms of Cognitive Development. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542007011x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv Nutr 2020; 11:709-723. [PMID: 31825083 PMCID: PMC7231603 DOI: 10.1093/advances/nmz127] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
The gut-brain axis (GBA) is a bilateral communication network between the gastrointestinal (GI) tract and the central nervous system. The essential amino acid tryptophan contributes to the normal growth and health of both animals and humans and, importantly, exerts modulatory functions at multiple levels of the GBA. Tryptophan is the sole precursor of serotonin, which is a key monoamine neurotransmitter participating in the modulation of central neurotransmission and enteric physiological function. In addition, tryptophan can be metabolized into kynurenine, tryptamine, and indole, thereby modulating neuroendocrine and intestinal immune responses. The gut microbial influence on tryptophan metabolism emerges as an important driving force in modulating tryptophan metabolism. Here, we focus on the potential role of tryptophan metabolism in the modulation of brain function by the gut microbiota. We start by outlining existing knowledge on tryptophan metabolism, including serotonin synthesis and degradation pathways of the host, and summarize recent advances in demonstrating the influence of the gut microbiota on tryptophan metabolism. The latest evidence revealing those mechanisms by which the gut microbiota modulates tryptophan metabolism, with subsequent effects on brain function, is reviewed. Finally, the potential modulation of intestinal tryptophan metabolism as a therapeutic option for brain and GI functional disorders is also discussed.
Collapse
Affiliation(s)
- Kan Gao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chun-long Mu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, Graz, Austria
| | - Wei-yun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China,Address correspondence to WZ (e-mail: )
| |
Collapse
|
20
|
Jash K, Gondaliya P, Kirave P, Kulkarni B, Sunkaria A, Kalia K. Cognitive dysfunction: A growing link between diabetes and Alzheimer's disease. Drug Dev Res 2020; 81:144-164. [DOI: 10.1002/ddr.21579] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Aditya Sunkaria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| |
Collapse
|
21
|
McNeill EM, Warinner C, Alkins S, Taylor A, Heggeness H, DeLuca TF, Fulga TA, Wall DP, Griffith LC, Van Vactor D. The conserved microRNA miR-34 regulates synaptogenesis via coordination of distinct mechanisms in presynaptic and postsynaptic cells. Nat Commun 2020; 11:1092. [PMID: 32107390 PMCID: PMC7046720 DOI: 10.1038/s41467-020-14761-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/31/2020] [Indexed: 01/30/2023] Open
Abstract
Micro(mi)RNA-based post-transcriptional regulatory mechanisms have been broadly implicated in the assembly and modulation of synaptic connections required to shape neural circuits, however, relatively few specific miRNAs have been identified that control synapse formation. Using a conditional transgenic toolkit for competitive inhibition of miRNA function in Drosophila, we performed an unbiased screen for novel regulators of synapse morphogenesis at the larval neuromuscular junction (NMJ). From a set of ten new validated regulators of NMJ growth, we discovered that miR-34 mutants display synaptic phenotypes and cell type-specific functions suggesting distinct downstream mechanisms in the presynaptic and postsynaptic compartments. A search for conserved downstream targets for miR-34 identified the junctional receptor CNTNAP4/Neurexin-IV (Nrx-IV) and the membrane cytoskeletal effector Adducin/Hu-li tai shao (Hts) as proteins whose synaptic expression is restricted by miR-34. Manipulation of miR-34, Nrx-IV or Hts-M function in motor neurons or muscle supports a model where presynaptic miR-34 inhibits Nrx-IV to influence active zone formation, whereas, postsynaptic miR-34 inhibits Hts to regulate the initiation of bouton formation from presynaptic terminals. Although micro(mi)RNA-based post-transcriptional regulatory mechanisms have been implicated in the assembly and modulation of synaptic connections, few miRNAs have been identified that control synapse formation. Here, authors performed an unbiased screen for novel regulators of synapse morphogenesis at the Drosophila larval neuromuscular junction and discovered that miR-34 inhibits Nrx-IV to influence active zone formation, whereas, postsynaptic miR-34 inhibits Hts to regulate the initiation of bouton formation from presynaptic terminals.
Collapse
Affiliation(s)
- Elizabeth M McNeill
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.,Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Chloe Warinner
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen Alkins
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, 02454, USA
| | - Alicia Taylor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.,Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Hansine Heggeness
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Todd F DeLuca
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Tudor A Fulga
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.,Weatherall Institute, Oxford University, Oxford, UK
| | - Dennis P Wall
- Department of Pediatrics, Division of Systems Medicine, Stanford University, Palo Alto, CA, 94305, USA
| | - Leslie C Griffith
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, 02454, USA
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Xu Q, Ou J, Zhang Q, Tang R, Wang J, Hong Q, Guo X, Tong M, Yang L, Chi X. Effects of Aberrant miR-384-5p Expression on Learning and Memory in a Rat Model of Attention Deficit Hyperactivity Disorder. Front Neurol 2020; 10:1414. [PMID: 32116987 PMCID: PMC7026368 DOI: 10.3389/fneur.2019.01414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neuropsychiatric disorder characterized by inattention, hyperactivity, and impulsivity. It may be accompanied by learning difficulties and working memory deficits. Few studies have examined the role of miRNAs in cognitive dysfunction in ADHD. This study investigated the effects of aberrant miR-384-5p expression on learning and memory in a widely used ADHD rat model. Lentiviral vectors were injected into the lateral ventricles of the rats to increase or decrease miR-384-5p level. To determine whether aberrant miR-384-5p expression affects learning and memory, spontaneous activity and cognitive function were assessed with the open field and Morris water maze tests. In the place navigation experiment of the Morris water maze test, time, and total swimming distance to reach the platform decreased compared to the control group when miR-384-5p was overexpressed, whereas down-regulation of miR-384-5p had the opposite effect. There were no obvious changes in brain tissue morphology following miR-384-5p overexpression or inhibition; however, dopamine (DA) receptor D1 (DRD1) level has decreased and increased, respectively, in the prefrontal cortex (PFC). The luciferase activity of the wild-type DRD1 group has decreased in luciferase reporter assay. Cyclic AMP response element-binding protein (CREB) phosphorylation has increased, and DA transporter (DAT) level has decreased in the PFC of spontaneously hypertensive rats (SHR) by miR-384-5p overexpression. On the other hand, miR-384-5p suppression increased DRD1 and decreased DAT and CREB protein levels relative to control rats. These findings suggest that miR-384-5p may play a critical role in learning and memory impairment in ADHD.
Collapse
Affiliation(s)
- Qu Xu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jiaxin Ou
- Department of Pediatrics, First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Qingyu Zhang
- Jiangsu Key Laboratory of Pediatrics, Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Ranran Tang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jing Wang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qin Hong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xirong Guo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiling Tong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lei Yang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xia Chi
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
MicroRNA-34a Acutely Regulates Synaptic Efficacy in the Adult Dentate Gyrus In Vivo. Mol Neurobiol 2019; 57:1432-1445. [PMID: 31754996 DOI: 10.1007/s12035-019-01816-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022]
Abstract
Activity-dependent synaptic plasticity involves rapid regulation of neuronal protein synthesis on a time-scale of minutes. miRNA function in synaptic plasticity and memory formation has been elucidated by stable experimental manipulation of miRNA expression and activity using transgenic approaches and viral vectors. However, the impact of rapid miRNA modulation on synaptic efficacy is unknown. Here, we examined the effect of acute (12 min), intrahippocampal infusion of a miR-34a antagonist (antimiR) on medial perforant path-evoked synaptic transmission in the dentate gyrus of adult anesthetised rats. AntimiR-34a infusion acutely depressed medial perforant path-evoked field excitatory post-synaptic potentials (fEPSPs). The fEPSP decrease was detected within 9 min of infusion, lasted for hours, and was associated with knockdown of antimiR-34a levels. AntimiR-34a-induced synaptic depression was sequence-specific; no changes were elicited by infusion of scrambled or mismatch control. The rapid modulation suggests that a target, or set of targets, is regulated by miR-34a. Western blot analysis of dentate gyrus lysates revealed enhanced expression of Arc, a known miR-34a target, and four novel predicted targets (Ctip2, PKI-1α, TCF4 and Ube2g1). Remarkably, antimiR-34a had no effect when infused during the maintenance phase of long-term potentiation. We conclude that miR-34a regulates basal synaptic efficacy in the adult dentate gyrus in vivo. To our knowledge, these in vivo findings are the first to demonstrate acute (< 9 min) regulation of synaptic efficacy in the adult brain by a miRNA.
Collapse
|
24
|
Microbial regulation of microRNA expression in the brain-gut axis. Curr Opin Pharmacol 2019; 48:120-126. [PMID: 31590111 DOI: 10.1016/j.coph.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
The gut microbiome facilitates a consistent transfer of information between the gut and the brain and microRNAs may now represent a key signalling molecule that facilitates this relationship. This review will firstly examine how these small non-coding RNAs influence the gut microbiome, and secondly how the microbiome, when disturbed, may influence miRNA expression in the brain. In addition, we will examine the consequence that microbiome-related changes in miRNA expression have on neurodevelopment, behaviour and cognition. We will also discuss novel data that suggests miRNAs contained in our diet may influence our immune system in a positive manner, offering a further potential pathway for treatment of disorders of the gut-brain axis that are influenced by the microbiome.
Collapse
|
25
|
Men Y, Yelick J, Jin S, Tian Y, Chiang MSR, Higashimori H, Brown E, Jarvis R, Yang Y. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun 2019; 10:4136. [PMID: 31515491 PMCID: PMC6742670 DOI: 10.1038/s41467-019-11534-w] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Astroglia play active and diverse roles in modulating neuronal/synaptic functions in the CNS. How these astroglial functions are regulated, especially by neuronal signals, remains largely unknown. Exosomes, a major type of extracellular vesicles (EVs) that originate from endosomal intraluminal vesicles (ILVs), have emerged as a new intercellular communication process. By generating cell-type-specific ILVs/exosome reporter (CD63-GFPf/f) mice and immuno-EM/confocal image analysis, we found that neuronal CD63-GFP+ ILVs are primarily localized in soma and dendrites, but not in axonal terminals in vitro and in vivo. Secreted neuronal exosomes contain a subset of microRNAs (miRs) that is distinct from the miR profile of neurons. These miRs, especially the neuron-specific miR-124-3p, are potentially internalized into astrocytes. MiR-124-3p further up-regulates the predominant glutamate transporter GLT1 by suppressing GLT1-inhibiting miRs. Our findings suggest a previously undescribed neuronal exosomal miR-mediated genetic regulation of astrocyte functions, potentially opening a new frontier in understanding CNS intercellular communication. Our current understanding of exosome signaling among CNS cells is mostly limited to culture models. In this study, authors generated a new cell-type specific exosome reporter mouse line which allows the first in vivo investigation of the localization of neuronal exosomes in the CNS, and also potentially highlights the role of exosomally transferred miR-124-3p in mediating astroglial glutamate uptake function
Collapse
Affiliation(s)
- Yuqin Men
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA.,Tufts University, Sackler School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Julia Yelick
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Shijie Jin
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Yang Tian
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA.,Dongfang Hospital of University of Chinese Medicine, No.6, District 1, Fangxingyuan, Fangzhuang, Fengtai District, 100078, Beijing, People's Republic of China
| | - Ming Sum R Chiang
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Haruki Higashimori
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Eoin Brown
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Rachel Jarvis
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Yongjie Yang
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Avenue, Boston, MA, 02111, USA. .,Tufts University, Sackler School of Biomedical Sciences, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
26
|
Rbfox1 Regulates Synaptic Transmission through the Inhibitory Neuron-Specific vSNARE Vamp1. Neuron 2019; 98:127-141.e7. [PMID: 29621484 DOI: 10.1016/j.neuron.2018.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 01/08/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022]
Abstract
Dysfunction of the neuronal RNA binding protein RBFOX1 has been linked to epilepsy and autism spectrum disorders. Rbfox1 loss in mice leads to neuronal hyper-excitability and seizures, but the physiological basis for this is unknown. We identify the vSNARE protein Vamp1 as a major Rbfox1 target. Vamp1 is strongly downregulated in Rbfox1 Nes-cKO mice due to loss of 3' UTR binding by RBFOX1. Cytoplasmic Rbfox1 stimulates Vamp1 expression in part by blocking microRNA-9. We find that Vamp1 is specifically expressed in inhibitory neurons, and that both Vamp1 knockdown and Rbfox1 loss lead to decreased inhibitory synaptic transmission and E/I imbalance. Re-expression of Vamp1 selectively within interneurons rescues the electrophysiological changes in the Rbfox1 cKO, indicating that Vamp1 loss is a major contributor to the Rbfox1 Nes-cKO phenotype. The regulation of interneuron-specific Vamp1 by Rbfox1 provides a paradigm for broadly expressed RNA-binding proteins performing specialized functions in defined neuronal subtypes.
Collapse
|
27
|
Pozzi A, Dowling DK. The Genomic Origins of Small Mitochondrial RNAs: Are They Transcribed by the Mitochondrial DNA or by Mitochondrial Pseudogenes within the Nucleus (NUMTs)? Genome Biol Evol 2019; 11:1883-1896. [PMID: 31218347 PMCID: PMC6619488 DOI: 10.1093/gbe/evz132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Several studies have linked mitochondrial genetic variation to phenotypic modifications; albeit the identity of the mitochondrial polymorphisms involved remains elusive. The search for these polymorphisms led to the discovery of small noncoding RNAs, which appear to be transcribed by the mitochondrial DNA ("small mitochondrial RNAs"). This contention is, however, controversial because the nuclear genome of most animals harbors mitochondrial pseudogenes (NUMTs) of identical sequence to regions of mtDNA, which could alternatively represent the source of these RNAs. To discern the likely contributions of the mitochondrial and nuclear genome to transcribing these small mitochondrial RNAs, we leverage data from six vertebrate species exhibiting markedly different levels of NUMT sequence. We explore whether abundances of small mitochondrial RNAs are associated with levels of NUMT sequence across species, or differences in tissue-specific mtDNA content within species. Evidence for the former would support the hypothesis these RNAs are primarily transcribed by NUMT sequence, whereas evidence for the latter would provide strong evidence for the counter hypothesis that these RNAs are transcribed directly by the mtDNA. No association exists between the abundance of small mitochondrial RNAs and NUMT levels across species. Moreover, a sizable proportion of transcripts map exclusively to the mtDNA sequence, even in species with highest NUMT levels. Conversely, tissue-specific abundances of small mitochondrial RNAs are strongly associated with the mtDNA content. These results support the hypothesis that small mitochondrial RNAs are primarily transcribed by the mitochondrial genome and that this capacity is conserved across Amniota and, most likely, across most metazoan lineages.
Collapse
Affiliation(s)
- Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
28
|
Li J, Ling Y, Huang W, Sun L, Li Y, Wang C, Zhang Y, Wang X, Dahlgren RA, Wang H. Regulatory mechanisms of miR-96 and miR-184 abnormal expressions on otic vesicle development of zebrafish following exposure to β-diketone antibiotics. CHEMOSPHERE 2019; 214:228-238. [PMID: 30265930 DOI: 10.1016/j.chemosphere.2018.09.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Chronic ototoxicity of β-diketone antibiotics (DKAs) to zebrafish (Danio rerio) was explored in detail by following abnormal expressions of two hearing-related miRNAs. Dose-dependent down-regulation of miR-96 and miR-184 was observed in otoliths during embryonic-larval development. Continuous DKA exposure to 120-hpf larva decreased sensitivity to acoustic stimulation. Development of otolith was delayed in treatment groups, showing unclear boundaries and vacuolization at 72-hpf, and utricular enlargement as well as decreased saccular volume in 96-hpf or latter larval otoliths. If one miRNA was knocked-down and another over-expressed, only a slight influence on morphological development of the otic vesicle occurred, but knocked-down or over-expressed miRNA both significantly affected zebrafish normal development. Injection of miR-96, miR-184 or both micRNA mimics to yolk sac resulted in marked improvement of otic vesicle phenotype. However, hair cell staining showed that only the injected miR-96 mimic restored hair cell numbers after DKA exposure, demonstrating that miR-96 played an important role in otic vesicle development and formation of hearing, while miR-184 was only involved in otic vesicle construction during embryonic development. These observations advance our understanding of hearing loss owing to acute antibiotic exposure and provide theoretical guidance for early intervention and gene therapy for drug-induced diseases.
Collapse
Affiliation(s)
- Jieyi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Beijing Key Laboratory of Cardiometabolic Molecular Medicine, State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yanyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuhuan Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California-Davis, CA, 95616, USA
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
29
|
Maldonado-Lasuncion I, Atienza M, Sanchez-Espinosa MP, Cantero JL. Aging-Related Changes in Cognition and Cortical Integrity are Associated With Serum Expression of Candidate MicroRNAs for Alzheimer Disease. Cereb Cortex 2018; 29:4426-4437. [DOI: 10.1093/cercor/bhy323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/11/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
Abstract
Evidence has shown that microRNAs (miRNAs) are involved in molecular pathways responsible for aging and prevalent aging-related chronic diseases. However, the lack of research linking circulating levels of miRNAs to changes in the aging brain hampers clinical translation. Here, we have investigated if serum expression of brain-enriched miRNAs that have been proposed as potential biomarkers in Alzheimer’s disease (AD) (miR-9, miR-29b, miR-34a, miR-125b, and miR-146a) are also associated with cognitive functioning and changes of the cerebral cortex in normal elderly subjects. Results revealed that candidate miRNAs were linked to changes in cortical thickness (miR-9, miR-29b, miR-34a, and miR-125b), cortical glucose metabolism (miR-29b, miR-125b, and miR-146a), and cognitive performance (miR-9, miR-34a, and miR-125b). While both miR-29b and miR-125b were related to aging-related structural and metabolic cortical changes, only expression levels of miR-125b were associated with patterns of glucose consumption shown by cortical regions that correlated with executive function. Together, these findings suggest that serum expression of AD-related miRNAs are biologically meaningful in aging and may play a role as biomarkers of cerebral vulnerability in late life.
Collapse
Affiliation(s)
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | | | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| |
Collapse
|
30
|
Kao YC, Wang IF, Tsai KJ. miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline. Int J Mol Sci 2018; 19:ijms19082323. [PMID: 30096777 PMCID: PMC6121231 DOI: 10.3390/ijms19082323] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023] Open
Abstract
Microribonucleic acids (miRNAs) play a pivotal role in numerous aspects of the nervous system and are increasingly recognized as key regulators in neurodegenerative diseases. This study hypothesized that miR-34c, a miRNA expressed in mammalian hippocampi whose expression level can alter the hippocampal dendritic spine density, could induce memory impairment akin to that of patients with Alzheimer’s disease (AD) in mice. In this study, we showed that miR-34c overexpression in hippocampal neurons negatively regulated dendritic length and spine density. Hippocampal neurons transfected with miR-34c had shorter dendrites on average and fewer filopodia and spines than those not transfected with miR-34c (control mice). Because dendrites and synapses are key sites for signal transduction and fundamental structures for memory formation and storage, disrupted dendrites can contribute to AD. Therefore, we supposed that miR-34c, through its effects on dendritic spine density, influences synaptic plasticity and plays a key role in AD pathogenesis.
Collapse
Affiliation(s)
- Yu-Chia Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Pediatrics, E-Da Hospital, Kaohsiung 824, Taiwan.
| | - I-Fang Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
31
|
Lu L, Li Z, Zuo Y, Zhao L, Liu B. Radioprotective activity of glutathione on cognitive ability in X-ray radiated tumor-bearing mice. Neurol Res 2018; 40:758-766. [PMID: 29847238 DOI: 10.1080/01616412.2018.1476080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lina Lu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- School of Chemical Engineering, Northwest University for Nationalities, Lanzhou, Gansu, China
| | - Zongli Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanhua Zuo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Libo Zhao
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Abstract
Supplemental Digital Content is Available in the Text. Pathophysiological mechanisms underlying pain associated with cancer are poorly understood. microRNAs (miRNAs) are a class of noncoding RNAs with emerging functional importance in chronic pain. In a genome-wide screen for miRNAs regulated in dorsal root ganglia (DRG) neurons in a mouse model of bone metastatic pain, we identified miR-34c-5p as a functionally important pronociceptive miRNA. Despite these functional insights and therapeutic potential for miR-34c-5p, its molecular mechanism of action in peripheral sensory neurons remains unknown. Here, we report the identification and validation of key target transcripts of miRNA-34c-5p. In-depth bioinformatics analyses revealed Cav2.3, P2rx6, Oprd1, and Oprm1 as high confidence putative targets for miRNA-34c-5p. Of these, canonical and reciprocal regulation of miR-34c-5p and Cav2.3 was observed in cultured sensory neurons as well as in DRG in vivo in mice with cancer pain. Coexpression of miR-34c-5p and Cav2.3 was observed in peptidergic and nonpeptidergic nociceptors, and luciferase reporter assays confirmed functional binding of miR-34c-5p to the 3′ UTR of Cav2.3 transcripts. Importantly, knocking down the expression of Cav2.3 specifically in DRG neurons led to hypersensitivity in mice. In summary, these results show that Cav2.3 is a novel mechanistic target for a key pronociceptive miRNA, miR-34c-5p, in the context of cancer pain and indicate an antinociceptive role for Cav2.3 in peripheral sensory neurons. The current study facilitates a deeper understanding of molecular mechanisms underlying cancer pain and suggests a potential for novel therapeutic strategies targeting miR-34c-5p and Cav2.3 in cancer pain.
Collapse
|
33
|
Du X, Huo X, Yang Y, Hu Z, Botchway BOA, Jiang Y, Fang M. miR-124 downregulates BACE 1 and alters autophagy in APP/PS1 transgenic mice. Toxicol Lett 2017; 280:195-205. [PMID: 28867212 DOI: 10.1016/j.toxlet.2017.08.082] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/09/2022]
Abstract
One role of BACE 1 (Beta-site amyloid precursor protein cleaving enzyme 1) is to cleave the sequential amyloid precursor protein (APP) into β-Amyloid (Aβ), the accumulation of which is an important participant in the formation of the amyloid plaques and neurofibrillary tangles of Alzheimer's disease (AD). Our previous study showed BACE 1, the potential functional downstream target of miR-124, to be connected to cell death in AD cell models. Recent studies have shown that autophagy is altered in AD, however, as to whether miR-124 is involved in this alteration is not clear. In this study, 7-month-old APP/PS1 transgenic mice were transfected with miR-124 lentiviral vectors, injected bilaterally into the dentate gyrus (DG) of mice hippocampi. Following 7 days of recovery, both behavior and biochemical pathology tests were implemented. The results demonstrated learning ability improvement and specific AD pathology alleviation. Meanwhile there was down-regulation of Bcl-2 to Bax ratio expression, increase in Beclin-1 and decreases in expression of LC3II, Atg5 and p62/SQSTMl. In view of this, we hypothesis that miR-124 conducts its neuroprotective effect through BACE 1 by regulation of autophagic pathways.
Collapse
Affiliation(s)
- Xiaoxue Du
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Huo
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Hu
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Jiang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
34
|
Moloney GM, O'Leary OF, Salvo-Romero E, Desbonnet L, Shanahan F, Dinan TG, Clarke G, Cryan JF. Microbial regulation of hippocampal miRNA expression: Implications for transcription of kynurenine pathway enzymes. Behav Brain Res 2017; 334:50-54. [PMID: 28736331 DOI: 10.1016/j.bbr.2017.07.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/15/2023]
Abstract
Increasing evidence points to a functional role of the enteric microbiota in brain development, function and behaviour including the regulation of transcriptional activity in the hippocampus. Changes in CNS miRNA expression may reflect the colonisation status of the gut. Given the pivotal impact of miRNAs on gene expression, our study was based on the hypothesis that gene expression would also be altered in the germ-free state in the hippocampus. We measured miRNAs in the hippocampus of Germ free (GF), conventional (C) and Germ free colonised (exGF) Swiss Webster mice. miRNAs were selected for follow up based on significant differences in expression between groups according to sex and colonisation status. The expression of miR-294-5p was increased in male germ free animals and was normalised following colonisation. Targets of the differentially expressed miRNAs were over-represented in the kynurenine pathway. We show that the microbiota modulates the expression of miRNAs associated with kynurenine pathway metabolism and, demonstrate that the gut microbiota regulates the expression of kynurenine pathway genes in the hippocampus. We also show a sex-specific role for the microbiota in the regulation of miR-294-5p expression in the hippocampus. The gut microbiota plays an important role in modulating small RNAs that influence hippocampal gene expression, a process critical to hippocampal development.
Collapse
Affiliation(s)
- Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - Eloisa Salvo-Romero
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Lieve Desbonnet
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Fergus Shanahan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
35
|
Bofill-De Ros X, Rovira-Rigau M, Fillat C. Implications of MicroRNAs in Oncolytic Virotherapy. Front Oncol 2017; 7:142. [PMID: 28725635 PMCID: PMC5495989 DOI: 10.3389/fonc.2017.00142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are an abundant class of small non-coding RNA molecules (~22 nt) that can repress gene expression. Deregulation of certain miRNAs is widely recognized as a robust biomarker for many neoplasms, as well as an important player in tumorigenesis and the establishment of tumoral microenvironments. The downregulation of specific miRNAs in tumors has been exploited as a mechanism to provide selectivity to oncolytic viruses or gene-based therapies. miRNA response elements recognizing miRNAs expressed in specific tissues, but downregulated in tumors, have been inserted into the 3′UTR of viral genes to promote the degradation of these viral mRNAs in healthy tissue, but not in tumor cells. Consequently, oncolytic virotherapy-associated toxicities were diminished, while therapeutic activity in tumor cells was preserved. However, viral infections themselves can modulate the miRNome of the host cell, and such miRNA changes under infection impact the normal viral lifecycle. Thus, there is a miRNA-mediated interplay between virus and host cell, affecting both viral and cellular activities. Moreover, the outcome of such interactions may be cell type or condition specific, suggesting that the impact on normal and tumoral cells may differ. Here, we provide an insight into the latest developments in miRNA-based viral engineering for cancer therapy, following the most recent discoveries in miRNA biology. Furthermore, we report on the relevance of miRNAs in virus–host cell interaction, and how such knowledge can be exploited to improve the control of viral activity in tumor cells.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
36
|
Hu Z, Li Z. miRNAs in synapse development and synaptic plasticity. Curr Opin Neurobiol 2017; 45:24-31. [PMID: 28334640 DOI: 10.1016/j.conb.2017.02.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 01/21/2023]
Abstract
Synapses are functional units of the nervous system, through which information is transferred between neurons. The development and activity-dependent modification of synapses require temporally and spatially controlled modulation of gene expression. microRNAs (miRNAs) have emerged as essential regulators of gene expression. They are small non-coding RNAs that regulate mRNA stability and translation by interacting with the 3' untranslated region (3' UTR) of mRNAs. miRNAs are located to neuronal processes to regulate protein synthesis locally and their expression is regulated by synaptic activity. This article reviews recent findings on the role of miRNAs in synapse development and synaptic plasticity.
Collapse
Affiliation(s)
- Zhonghua Hu
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, United States; Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, United States
| | - Zheng Li
- Section on Synapse Development and Plasticity, National Institute of Mental Health, National Institutes of Health, United States.
| |
Collapse
|
37
|
MicroRNAs underlying memory deficits in neurodegenerative disorders. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:79-86. [PMID: 27117821 DOI: 10.1016/j.pnpbp.2016.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/01/2016] [Accepted: 04/22/2016] [Indexed: 11/23/2022]
Abstract
Neurodegenerative disorders are defined by neuronal loss and often associated with dementia. Understanding the multifactorial nature of cognitive decline is of particular interest. Cell loss is certainly a possibility but also an early imbalance in the complex gene networks involved in learning and memory. The small (~22nt) non-coding microRNAs play a major role in gene expression regulation and have been linked to neuronal survival and cognition. Interestingly, changes in microRNA signatures are associated with neurodegenerative disorders. In this review, we explore the role of three microRNAs, namely miR-132, miR-124 and miR-34, which are dysregulated in major neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Interestingly, these microRNAs have been associated with both memory impairment and neuronal survival, providing a potential common molecular mechanism contributing to dementia.
Collapse
|
38
|
Mathew RS, Tatarakis A, Rudenko A, Johnson-Venkatesh EM, Yang YJ, Murphy EA, Todd TP, Schepers ST, Siuti N, Martorell AJ, Falls WA, Hammack SE, Walsh CA, Tsai LH, Umemori H, Bouton ME, Moazed D. A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. eLife 2016; 5. [PMID: 28001126 PMCID: PMC5293492 DOI: 10.7554/elife.22467] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway. DOI:http://dx.doi.org/10.7554/eLife.22467.001
Collapse
Affiliation(s)
- Rebecca S Mathew
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Antonis Tatarakis
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Andrii Rudenko
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States
| | - Erin M Johnson-Venkatesh
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Yawei J Yang
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, United States
| | - Elisabeth A Murphy
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States
| | - Travis P Todd
- Department of Psychology, University of Vermont, Burlington, United States
| | - Scott T Schepers
- Department of Psychology, University of Vermont, Burlington, United States
| | - Nertila Siuti
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Anthony J Martorell
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States
| | - William A Falls
- Department of Psychology, University of Vermont, Burlington, United States
| | | | - Christopher A Walsh
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Hisashi Umemori
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mark E Bouton
- Department of Psychology, University of Vermont, Burlington, United States
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
39
|
Isik M, Blackwell TK, Berezikov E. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep 2016; 6:36766. [PMID: 27905558 PMCID: PMC5131338 DOI: 10.1038/srep36766] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Diverse stresses and aging alter expression levels of microRNAs, suggesting a role for these posttranscriptional regulators of gene expression in stress modulation and longevity. Earlier studies demonstrated a central role for the miR-34 family in promoting cell cycle arrest and cell death following stress in human cells. However, the biological significance of this response was unclear. Here we show that in C. elegans mir-34 upregulation is necessary for developmental arrest, correct morphogenesis, and adaptation to a lower metabolic state to protect animals against stress-related damage. Either deletion or overexpression of mir-34 lead to an impaired stress response, which can largely be explained by perturbations in DAF-16/FOXO target gene expression. We demonstrate that mir-34 expression is regulated by the insulin signaling pathway via a negative feedback loop between miR-34 and DAF-16/FOXO. We propose that mir-34 provides robustness to stress response programs by controlling noise in the DAF-16/FOXO-regulated gene network.
Collapse
Affiliation(s)
- Meltem Isik
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.,Joslin Diabetes Center, Harvard Stem Cell Institute and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - T Keith Blackwell
- Joslin Diabetes Center, Harvard Stem Cell Institute and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - Eugene Berezikov
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Jaitner C, Reddy C, Abentung A, Whittle N, Rieder D, Delekate A, Korte M, Jain G, Fischer A, Sananbenesi F, Cera I, Singewald N, Dechant G, Apostolova G. Satb2 determines miRNA expression and long-term memory in the adult central nervous system. eLife 2016; 5. [PMID: 27897969 PMCID: PMC5207769 DOI: 10.7554/elife.17361] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/28/2016] [Indexed: 01/09/2023] Open
Abstract
SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory. DOI:http://dx.doi.org/10.7554/eLife.17361.001
Collapse
Affiliation(s)
- Clemens Jaitner
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Chethan Reddy
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Abentung
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Nigel Whittle
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Delekate
- Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,AG Neuroinflammation and Neurodegeneration (NIND), Braunschweig, Germany
| | - Gaurav Jain
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Research Group for Complex Neurodegenerative Disorders, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Andre Fischer
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Research Group for Complex Neurodegenerative Disorders, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Isabella Cera
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Kasai A, Kakihara S, Miura H, Okada R, Hayata-Takano A, Hazama K, Niu M, Shintani N, Nakazawa T, Hashimoto H. Double In situ Hybridization for MicroRNAs and mRNAs in Brain Tissues. Front Mol Neurosci 2016; 9:126. [PMID: 27920667 PMCID: PMC5118840 DOI: 10.3389/fnmol.2016.00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) participate in a variety of functions in the brain. Understanding the in vivo localization of miRNAs is an important step for uncovering their roles in brain function. However, the in situ detection of low-abundance miRNAs in brain tissues remains difficult and requires extensive optimization of in situ hybridization (ISH) protocols in individual laboratories. Thus, detailed information regarding experimental conditions would serve as a useful reference for researchers in this field. Here, we investigated and summarized the effects of adjusting a series of critical steps, including tissue fixation, probe accessibility and hybridization stringency, to standardize the currently used miRNA ISH procedures. As a result, we successfully detected several low-abundance miRNAs by ISH using the following experimental conditions: (1) use of fresh brain tissues, (2) digestion of brain samples with proteinase K, (3) LNA-probe hybridization at a temperature 37°C below the melting temperature of the RNA, (4) performance of high-stringency wash steps using 50% formamide in 1 × standard saline citrate (SSC) buffer. RT-PCR of the punched-out tissues using TaqManTM primers confirmed the ISH results. Finally, double-fluorescence ISH successfully demonstrated the colocalization of miRNAs and mRNAs. Thus, the detailed information regarding the miRNA ISH procedures used in this study may help to resolve the technical hurdles observed in the in vivo localization of miRNAs, and the elucidation of the specific roles of miRNAs.
Collapse
Affiliation(s)
- Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University Suita, Japan
| | - Sora Kakihara
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University Suita, Japan
| | - Hiroki Miura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University Suita, Japan
| | - Ryo Okada
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University Suita, Japan
| | - Atsuko Hayata-Takano
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui Suita, Japan
| | - Keisuke Hazama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University Suita, Japan
| | - Misaki Niu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University Suita, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University Suita, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Japan; iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Japan; Department of Pharmacology, Graduate School of Dentistry, Osaka UniversitySuita, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuita, Japan; iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuita, Japan; Division of Bioscience, Institute for Datability Science, Osaka UniversitySuita, Japan
| |
Collapse
|
42
|
Li J, Liu J, Zhang Y, Wang X, Li W, Zhang H, Wang H. Screening on the differentially expressed miRNAs in zebrafish (Danio rerio) exposed to trace β-diketone antibiotics and their related functions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:27-38. [PMID: 27450238 DOI: 10.1016/j.aquatox.2016.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
The toxicity of β-diketone antibiotics (DKAs) to larval and adult zebrafish (Danio rerio) was investigated by miRNA sequencing and bioinformatics analyses. In control and DKA-exposed groups, 215 differentially expressed miRNAs were screened, and 4076 differential target genes were predicted. Among 51 co-differentially expressed genes, 45 were annotated in KOG functional classification, and 34 in KEGG pathway analysis. The homology analysis of 20 miRNAs with human hsa-miRNAs demonstrated 17 high homologous sequences. The expression levels of 12 miRNAs by qRT-PCR were consistent with those by sRNA-seq. A regulatory network for 4 positive miRNA genes (dre-miR-10, -96, -92 and -184) was plotted, and the high-degree of connectivity between miRNA-gene pairs suggests that these miRNAs play critical roles during zebrafish development. The consistent expression of dre-miR-184 and dre-miR-96 was proved in 120-hpf zebrafish brain, gill, otoliths and lateral line neuromast by qRT-PCR, miRNA-seq, W-ISH and ISH. DKA-exposure led to vacuolation of interstitial cells, reduced number of neurons, glial cell proliferation and formation of glial scar, and the obvious abnormality of cell structure might result from abnormal expression of differentially expressed miRNAs. In general, chronic DKA-exposure resulted in comprehensively toxic effects on larval and adult zebrafish tissues, especially for nervous system.
Collapse
Affiliation(s)
- Jieyi Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinfeng Liu
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuhuan Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Weijun Li
- Puyang People's Hospital of Henan Province, Puyang 457000, China
| | - Hongqin Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|