1
|
Krushkal J, Zhao Y, Roney K, Zhu W, Brooks A, Wilsker D, Parchment RE, McShane LM, Doroshow JH. Association of changes in expression of HDAC and SIRT genes after drug treatment with cancer cell line sensitivity to kinase inhibitors. Epigenetics 2024; 19:2309824. [PMID: 38369747 PMCID: PMC10878021 DOI: 10.1080/15592294.2024.2309824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
Histone deacetylases (HDACs) and sirtuins (SIRTs) are important epigenetic regulators of cancer pathways. There is a limited understanding of how transcriptional regulation of their genes is affected by chemotherapeutic agents, and how such transcriptional changes affect tumour sensitivity to drug treatment. We investigated the concerted transcriptional response of HDAC and SIRT genes to 15 approved antitumor agents in the NCI-60 cancer cell line panel. Antitumor agents with diverse mechanisms of action induced upregulation or downregulation of multiple HDAC and SIRT genes. HDAC5 was upregulated by dasatinib and erlotinib in the majority of the cell lines. Tumour cell line sensitivity to kinase inhibitors was associated with upregulation of HDAC5, HDAC1, and several SIRT genes. We confirmed changes in HDAC and SIRT expression in independent datasets. We also experimentally validated the upregulation of HDAC5 mRNA and protein expression by dasatinib in the highly sensitive IGROV1 cell line. HDAC5 was not upregulated in the UACC-257 cell line resistant to dasatinib. The effects of cancer drug treatment on expression of HDAC and SIRT genes may influence chemosensitivity and may need to be considered during chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Kyle Roney
- Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC, USA
| | - Weimin Zhu
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alan Brooks
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E. Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa M. McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
2
|
Gan Z, van der Stelt I, Li W, Hu L, Song J, Grefte S, van de Westerlo E, Zhang D, van Schothorst EM, Claahsen-van der Grinten HL, Teerds KJ, Adjobo-Hermans MJW, Keijer J, Koopman WJH. Mitochondrial Nicotinamide Nucleotide Transhydrogenase: Role in Energy Metabolism, Redox Homeostasis, and Cancer. Antioxid Redox Signal 2024; 41:927-956. [PMID: 39585234 DOI: 10.1089/ars.2024.0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Significance: Dimeric nicotinamide nucleotide transhydrogenase (NNT) is embedded in the mitochondrial inner membrane and couples the conversion of NADP+/NADH into NADPH/NAD+ to mitochondrial matrix proton influx. NNT was implied in various cancers, but its physiological role and regulation still remain incompletely understood. Recent Advances: NNT function was analyzed by studying: (1) NNT gene mutations in human (adrenal) glucocorticoid deficiency 4 (GCCD4), (2) Nnt gene mutation in C57BL/6J mice, and (3) the effect of NNT knockdown/overexpression in (cancer) cells. In these three models, altered NNT function induced both common and differential aberrations. Critical Issues: Information on NNT protein expression in GCCD4 patients is still scarce. Moreover, NNT expression levels are tissue-specific in humans and mice and the functional consequences of NNT deficiency strongly depend on experimental conditions. In addition, data from intact cells and isolated mitochondria are often unsuited for direct comparison. This prevents a proper understanding of NNT-linked (patho)physiology in GCCD4 patients, C57BL/6J mice, and cancer (cell) models, which complicates translational comparison. Future Directions: Development of mice with conditional NNT deletion, cell-reprogramming-based adrenal (organoid) models harboring specific NNT mutations, and/or NNT-specific chemical inhibitors/activators would be useful. Moreover, live-cell analysis of NNT substrate levels and mitochondrial/cellular functioning with fluorescent reporter molecules might provide novel insights into the conditions under which NNT is active and how this activity links to other metabolic and signaling pathways. This would also allow a better dissection of local signaling and/or compartment-specific (i.e., mitochondrial matrix, cytosol, nucleus) effects of NNT (dys)function in a cellular context. Antioxid. Redox Signal. 41, 927-956.
Collapse
Affiliation(s)
- Zhuohui Gan
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Weiwei Li
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Liangyu Hu
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Els van de Westerlo
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Deli Zhang
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Katja J Teerds
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Gao X, Pan T, Gao Y, Zhu W, Liu L, Duan W, Han C, Feng B, Yan W, Song Q, Liu Y, Yue L. Acetylation of PGK1 at lysine 323 promotes glycolysis, cell proliferation, and metastasis in luminal A breast cancer cells. BMC Cancer 2024; 24:1054. [PMID: 39192221 PMCID: PMC11348675 DOI: 10.1186/s12885-024-12792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND In prior research employing iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) technology, we identified a range of proteins in breast cancer tissues exhibiting high levels of acetylation. Despite this advancement, the specific functions and implications of these acetylated proteins in the context of cancer biology have yet to be elucidated. This study aims to systematically investigate the functional roles of these acetylated proteins with the objective of identifying potential therapeutic targets within breast cancer pathophysiology. METHODS Acetylated targets were identified through bioinformatics, with their expression and acetylation subsequently confirmed. Proteomic analysis and validation studies identified potential acetyltransferases and deacetylases. We evaluated metabolic functions via assays for catalytic activity, glucose consumption, ATP levels, and lactate production. Cell proliferation and metastasis were assessed through viability, cycle analysis, clonogenic assays, PCNA uptake, wound healing, Transwell assays, and MMP/EMT marker detection. RESULTS Acetylated proteins in breast cancer were primarily involved in metabolism, significantly impacting glycolysis and the tricarboxylic acid cycle. Notably, PGK1 showed the highest acetylation at lysine 323 and exhibited increased expression and acetylation across breast cancer tissues, particularly in T47D and MCF-7 cells. Notably, 18 varieties acetyltransferases or deacetylases were identified in T47D cells, among which p300 and Sirtuin3 were validated for their interaction with PGK1. Acetylation at 323 K enhanced PGK1's metabolic role by boosting its activity, glucose uptake, ATP production, and lactate output. This modification also promoted cell proliferation, as evidenced by increased viability, S phase ratio, clonality, and PCNA levels. Furthermore, PGK1-323 K acetylation facilitated metastasis, improving wound healing, cell invasion, and upregulating MMP2, MMP9, N-cadherin, and Vimentin while downregulating E-cadherin. CONCLUSION PGK1-323 K acetylation was significantly elevated in T47D and MCF-7 luminal A breast cancer cells and this acetylation could be regulated by p300 and Sirtuin3. PGK1-323 K acetylation promoted cell glycolysis, proliferation, and metastasis, highlighting novel epigenetic targets for breast cancer therapy.
Collapse
Affiliation(s)
- Xiuli Gao
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ting Pan
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Gao
- The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenbin Zhu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Likun Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenbo Duan
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Bo Feng
- Dean's Office, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Wenjing Yan
- College of Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Qiuhang Song
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunlong Liu
- The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Liling Yue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
4
|
Novikova S, Tolstova T, Kurbatov L, Farafonova T, Tikhonova O, Soloveva N, Rusanov A, Zgoda V. Systems Biology for Drug Target Discovery in Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:4618. [PMID: 38731835 PMCID: PMC11083274 DOI: 10.3390/ijms25094618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Tretinoin/pharmacology
- Systems Biology/methods
- HL-60 Cells
- Gene Expression Profiling
- K562 Cells
- Drug Discovery/methods
- Transcriptome
- Cell Line, Tumor
- Cyclin-Dependent Kinase 6/metabolism
- Cyclin-Dependent Kinase 6/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Expression Regulation, Leukemic/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia; (S.N.) (T.T.); (L.K.); (T.F.); (O.T.); (N.S.); (A.R.)
| |
Collapse
|
5
|
Li R, Chen F, Li S, Yuan L, Zhao L, Tian S, Chen B. Comparative acetylomic analysis reveals differentially acetylated proteins regulating fungal metabolism in hypovirus-infected chestnut blight fungus. MOLECULAR PLANT PATHOLOGY 2023; 24:1126-1138. [PMID: 37278715 PMCID: PMC10423328 DOI: 10.1111/mpp.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Cryphonectria parasitica, the chestnut blight fungus, and hypoviruses are excellent models for examining fungal pathogenesis and virus-host interactions. Increasing evidence suggests that lysine acetylation plays a regulatory role in cell processes and signalling. To understand protein regulation in C. parasitica by hypoviruses at the level of posttranslational modification, a label-free comparative acetylome analysis was performed in the fungus with or without Cryphonectria hypovirus 1 (CHV1) infection. Using enrichment of acetyl-peptides with a specific anti-acetyl-lysine antibody, followed by high accuracy liquid chromatography-tandem mass spectrometry analysis, 638 lysine acetylation sites were identified on 616 peptides, corresponding to 325 unique proteins. Further analysis revealed that 80 of 325 proteins were differentially acetylated between C. parasitica strain EP155 and EP155/CHV1-EP713, with 43 and 37 characterized as up- and down-regulated, respectively. Moreover, 75 and 65 distinct acetylated proteins were found in EP155 and EP155/CHV1-EP713, respectively. Bioinformatics analysis revealed that the differentially acetylated proteins were involved in various biological processes and were particularly enriched in metabolic processes. Differences in acetylation in C. parasitica citrate synthase, a key enzyme in the tricarboxylic acid cycle, were further validated by immunoprecipitation and western blotting. Site-specific mutagenesis and biochemical studies demonstrated that the acetylation of lysine-55 plays a vital role in the regulation of the enzymatic activity of C. parasitica citrate synthase in vitro and in vivo. These findings provide a valuable resource for the functional analysis of lysine acetylation in C. parasitica, as well as improving our understanding of fungal protein regulation by hypoviruses from a protein acetylation perspective.
Collapse
Affiliation(s)
- Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Shigen Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Sugarcane Biology, College of AgricultureGuangxi UniversityNanningChina
| |
Collapse
|
6
|
López-Bañuelos L, Vega L. Inhibition of Acetylation, is it Enough to Fight Cancer? Crit Rev Oncol Hematol 2022; 176:103752. [PMID: 35792250 DOI: 10.1016/j.critrevonc.2022.103752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/09/2022] Open
Abstract
Acetylation is a reversible post-translational modification (PTM) that regulates important cellular processes such as proliferation, DNA damage repair and cell cycle progress. When the balance is broken, these processes are affected and lead to carcinogenesis. Therefore, the study of acetylation has led to its proposal as a target pathway for anticancer therapies. Here, we discuss how acetylation regulates the cell cycle process, how it is modified in cancer cells and which are the key proteins in the regulation of apoptosis induction in cancer cells that can become targets to fight cancer. The inhibition of acetylation has been proposed as an emergent therapy against cancer, compounds such as 6-Penthadecyl salicylic acid (6SA), Curcumin, Garcinol and C646, among others, are currently studied because they show antitumor activity related to the inhibition of acetylation. Recently, the use of the acetylomics research tool has improved the study of acetylation as a target against tumor cells, but still the thresholds between promoting DNA instability and regulating gene expression by acetylation are not clear in many cell types.
Collapse
Affiliation(s)
- Laura López-Bañuelos
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Ave. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico
| | - Libia Vega
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Ave. IPN 2508, San Pedro Zacatenco, Mexico City, 07360, Mexico.
| |
Collapse
|
7
|
Enhancement of cordycepin production from Cordyceps militaris culture by epigenetic modification. Biotechnol Lett 2022; 44:581-593. [PMID: 35262812 DOI: 10.1007/s10529-022-03241-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/25/2022] [Indexed: 11/02/2022]
Abstract
Cordycepin (3'-deoxyadenosine) is a nucleoside analogue and biosynthesised by Cordyceps militaris, an entomopathogenic fungus. In this study, an epigenetic modifier was applied to static liquid cultures to enhance cordycepin production. C. militaris was cultured in a static liquid culture, and valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was supplemented in order to modifying the epigenetic status. Gene regulatory network was explored to understand the molecular mechanisms underlying cordycepin production. 50 micromolar of VPA enhanced cordycepin production by 41.187% via the upregulation of 5'-nucleotidase, adenylate kinase, phosphorybosyltransferase, Cns1, Cns2, Cnsa3, and Cns4 of C. militaris for at least 2 days after VPA treatment. The maximum production of cordycepin was 2,835.32 ± 34.35 mg/L in 400 mL-working volume. A scaled-up culture was established with a working volume of 10 L, which led to the slight decrease of cordycepin production. This might due to multifactorial effects, for instance limited aeration and an uneven dispersion of nutrients in the culture system. This scaled-up culture was still needed further optimization. The modification of epigenetic status by VPA significantly enhanced cordycepin production by altering key gene regulatory network of C. militaris. The strategy established in this study might be applicable to other microorganism culture in order to improving the production of bioactive compounds. This work aimed to enhance the production of cordycepin by modifying the epigenetic status of C. militaris, in which subsequently altered gene regulatory network of cordycepin biosynthesis pathway. The weekly supplementation of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, significantly improve cordycepin production over 40%, compared to the untreated control, and the gene regulatory network of C. militaris was also adapted.
Collapse
|
8
|
Untargeted LC-MS/MS Metabolomics Study on the MCF-7 Cell Line in the Presence of Valproic Acid. Int J Mol Sci 2022; 23:ijms23052645. [PMID: 35269790 PMCID: PMC8910739 DOI: 10.3390/ijms23052645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
To target breast cancer (BC), epigenetic modulation could be a promising therapy strategy due to its role in the genesis, growth, and metastases of BC. Valproic acid (VPA) is a well-known histone deacetylase inhibitor (HDACi), which due to its epigenetic focus needs to be studied in depth to understand the effects it might elicit in BC cells. The aim of this work is to contribute to exploring the complete pharmacological mechanism of VPA in killing cancer cells using MCF-7. LC-MS/MS metabolomics studies were applied to MCF-7 treated with VPA. The results show that VPA promote cell death by altering metabolic pathways principally pentose phosphate pathway (PPP) and 2′deoxy-α-D-ribose-1-phosphate degradation related with metabolites that decrease cell proliferation and cell growth, interfere with energy sources and enhance reactive oxygen species (ROS) levels. We even suggest that mechanisms such as ferropoptosis could be involved due to deregulation of L-cysteine. These results suggest that VPA has different pharmacological mechanisms in killing cancer cells including apoptotic and nonapoptotic mechanisms, and due to the broad impact that HDACis have in cells, metabolomic approaches are a great source of information to generate new insights for this type of molecule.
Collapse
|
9
|
Liu Q, Hao B, Zhang M, Liu Z, Huang Y, Zhao X, Hu H, Tan M, Xu JY. An Integrative Proteome-Based Pharmacologic Characterization and Therapeutic Strategy Exploration of SAHA in Solid Malignancies. J Proteome Res 2022; 21:953-964. [PMID: 35172096 DOI: 10.1021/acs.jproteome.1c00791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeting histone epigenetic modification is an important strategy for anticancer therapy. Histone deacetylase inhibitors (HDACis) have been clinically approved in the treatment of diverse hematological cancers, but mechanisms of drug resistance and poor therapeutic efficacy in solid malignancies remain largely unknown. In this study, we applied a mass spectrometry-based quantitative proteomic strategy to investigate the molecular differences in HDACi vorinostat (SAHA) sensitive and resistant cell lines. The proteomic results revealed that the glycolysis pathway was highly enriched after vorinostat treatment in the resistant cell line, leading to the prediction of a new drug combination, SAHA and hexokinase inhibitor (2-deoxyglucose). The efficacy of this combination was further verified in several solid tumor cell lines. Quantitative proteomics revealed that alterations in the transcription process and protein homeostasis could play roles in the synergetic utilization of these two compounds. Our study showed the application of proteomics in elucidating the drug mechanism and predicting drug combination and the potential of expanding the utilization of HDACi.
Collapse
Affiliation(s)
- Quan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingya Zhang
- School of Chinese Materia Medical, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
| | - Zhiwei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Zhao
- School of Chinese Materia Medical, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medical, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
11
|
Xu Y, Li X, Liang W, Liu M. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in the Phytopathogenic Fungus Botrytis cinerea. Front Microbiol 2020; 11:585614. [PMID: 33329453 PMCID: PMC7728723 DOI: 10.3389/fmicb.2020.585614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Posttranslational modifications (PTMs) of the whole proteome have become a hot topic in the research field of epigenetics, and an increasing number of PTM types have been identified and shown to play significant roles in different cellular processes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly detected PTM, and the 2-hydroxyisobutyrylome has been identified in several species. Botrytis cinerea is recognized as one of the most destructive pathogens due to its broad host distribution and very large economic losses; thus the many aspects of its pathogenesis have been continuously studied. However, distribution and function of Khib in this phytopathogenic fungus are not clear. In this study, a proteome-wide analysis of Khib in B. cinerea was performed, and 5,398 Khib sites on 1,181 proteins were identified. Bioinformatics analysis showed that the 2-hydroxyisobutyrylome in B. cinerea contains both conserved proteins and novel proteins when compared with Khib proteins in other species. Functional classification, functional enrichment and protein interaction network analyses showed that Khib proteins are widely distributed in cellular compartments and involved in diverse cellular processes. Significantly, 37 proteins involved in different aspects of regulating the pathogenicity of B. cinerea were detected as Khib proteins. Our results provide a comprehensive view of the 2-hydroxyisobutyrylome and lay a foundation for further studying the regulatory mechanism of Khib in both B. cinerea and other plant pathogens.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxia Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mengjie Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Lei L, Zeng J, Wang L, Gong T, Zheng X, Qiu W, Zhang R, Yun L, Yang Y, Li Y. Quantitative acetylome analysis reveals involvement of glucosyltransferase acetylation in Streptococcus mutans biofilm formation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 13:86-97. [PMID: 33185947 DOI: 10.1111/1758-2229.12907] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Streptococcus mutans (S. mutans) effectively utilizes dietary sucrose for the exopolysaccharide productions, which are mostly synthesized by the effects of glucosyltransferases (Gtfs). In the present study, the acetylome of S. mutans was identified and quantitative acetylome analysis of the bacterial biofilm growth (SMB) was compared with that of planktonic growth (SMP). The dynamic changes of protein acetylation were quantified using the integrated approach involving TMT labeling and Kac affinity enrichment followed by high-resolution mass spectrometry-based quantitative proteomics. In total, 973 acetylation sites in 445 proteins were identified, among which 617 acetylation sites in 302 proteins were quantitated. The overall analysis indicated that 22.7% of proteins were acetylated. Among the quantified proteins in SMB, the acetylation degree of lysine in 56 sites increased, while that of lysine decreased in 52 sites. In the acetylome of S. mutans, six significantly enriched motifs were identified and obtained including Kac****K, KacF, Kac****R, KacY, KacH, F*Kac. In addition, KEGG pathway-based enrichment analysis indicated significant enrichments in glycolysis/gluconeogenesis, and RNA degradation. Particularly, most downregulated acetylated lysine proteins were glucosyltransferase-SI, glucosyltransferase-I, and glucosyltransferase-S in S. mutans biofilm, which probably reveals a switch-off mechanism for the regulation of glucosyltransferases function during the biofilm development.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lingyun Wang
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tao Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Qiu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ru Zhang
- Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Libing Yun
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Science, Sichuan University, Chengdu, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Li J, Gao M, Gabriel DW, Liang W, Song L. Secretome-Wide Analysis of Lysine Acetylation in Fusarium oxysporum f. sp. lycopersici Provides Novel Insights Into Infection-Related Proteins. Front Microbiol 2020; 11:559440. [PMID: 33013791 PMCID: PMC7506082 DOI: 10.3389/fmicb.2020.559440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/18/2020] [Indexed: 01/13/2023] Open
Abstract
Fusarium oxysporum f. sp. lycopersici (Fol) is the causal agent of Fusarium wilt disease in tomato. Proteins secreted by this pathogen during initial host colonization largely determine the outcome of pathogen-host interactions. Lysine acetylation (Kac) plays a vital role in the functions of many proteins, but little is known about Kac in Fol secreted proteins. In this study, we analyzed lysine acetylation of the entire Fol secretome. Using high affinity enrichment of Kac peptides and LC-MS/MS analysis, 50 potentially secreted Fol proteins were identified and acetylation sites determined. Bioinformatics analysis revealed 32 proteins with canonical N-terminal signal peptide leaders, and most of them were predicted to be enzymes involved in a variety of biological processes and metabolic pathways. Remarkably, all 32 predicted secreted proteins were novel and encoded on the core chromosomes rather than on the previously identified LS pathogenicity chromosomes. Homolog scanning of the secreted proteins among 40 different species revealed 4 proteins that were species specific, 3 proteins that were class-specific in the Ascomycota phylum, and 25 proteins that were more widely conserved genes. These secreted proteins provide a starting resource for investigating putative novel pathogenic genes, with 26 up-regulated genes encoding Kac proteins that may play an important role during initial symptomless infection stages.
Collapse
Affiliation(s)
- Jingtao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingming Gao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Limin Song
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
14
|
Guo W, Han L, Li X, Wang H, Mu P, Lin Q, Liu Q, Zhang Y. Proteome and lysine acetylome analysis reveals insights into the molecular mechanism of seed germination in wheat. Sci Rep 2020; 10:13454. [PMID: 32778714 PMCID: PMC7418024 DOI: 10.1038/s41598-020-70230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Seed germination is the first stage in wheat growth and development, directly affecting grain yield and quality. As an important post-translation modification, lysine acetylation participates in diverse biological functions. However, little is known regarding the quantitative acetylproteome characterization during wheat seed germination. In this study, we generated the first comparative proteomes and lysine acetylomes during wheat seed germination. In total, 5,639 proteins and 1,301 acetylated sites on 722 proteins were identified at 0, 12 and 24 h after imbibitions. Several particularly preferred amino acids were found near acetylation sites, including KacS, KacT, KacK, KacR, KacH, KacF, KacN, Kac*E, FKac and Kac*D, in the embryos during seed germination. Among them, KacH, KacF, FKac and KacK were conserved in wheat. Biosynthetic process, transcriptional regulation, ribosome and proteasome pathway related proteins were significantly enriched in both differentially expressed proteins and differentially acetylated proteins through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. We also revealed that histone acetylation was differentially involved in epigenetic regulation during seed germination. Meanwhile, abscisic acid and stress related proteins were found with acetylation changes. In addition, we focused on 8 enzymes involved in carbohydrate metabolism, and found they were differentially acetylated during seed germination. Finally, a putative metabolic pathway was proposed to dissect the roles of protein acetylation during wheat seed germination. These results not only demonstrate that lysine acetylation may play key roles in seed germination of wheat but also reveal insights into the molecular mechanism of seed germination in this crop.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Liping Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ping Mu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qi Lin
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qingchang Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.,Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
15
|
Singh PK, Gao W, Liao P, Li Y, Xu FC, Ma XN, Long L, Song CP. Comparative acetylome analysis of wild-type and fuzzless-lintless mutant ovules of upland cotton (Gossypium hirsutum Cv. Xu142) unveils differential protein acetylation may regulate fiber development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:56-70. [PMID: 32114400 DOI: 10.1016/j.plaphy.2020.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Protein acetylation (KAC) is a significant post-translational modification, which plays an essential role in the regulation of growth and development. Unfortunately, related studies are inadequately available in angiosperms, and to date, there is no report providing insight on the role of protein acetylation in cotton fiber development. Therefore, we first compared the lysine-acetylation proteome (acetylome) of upland cotton ovules in the early fiber development stages by using wild-type as well as its fuzzless-lintless mutant to identify the role of KAC in the fiber development. A total of 1696 proteins with 2754 acetylation sites identified with the different levels of acetylation belonging to separate subcellular compartments suggesting a large number of proteins differentially acetylated in two cotton cultivars. About 80% of the sites were predicted to localize in the cytoplasm, chloroplast, and mitochondria. Seventeen significantly enriched acetylation motifs were identified. Serine and threonine and cysteine located downstream and upstream to KAC sites. KEGG pathway enrichment analysis indicated oxidative phosphorylation, fatty acid, ribosome and protein, and folate biosynthesis pathways enriched significantly. To our knowledge, this is the first report of comparative acetylome analysis to compare the wild-type as well as its fuzzless-lintless mutant acetylome data to identify the differentially acetylated proteins, which may play a significant role in cotton fiber development.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, 7505101, Israel; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China; Department of Biotechnology, Pachhunga University College, Mizoram University, Aizawl, 796001, India.
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Peng Liao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Yang Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Xiao-Nan Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China.
| |
Collapse
|
16
|
Plazibat M, Katušić Bojanac A, Himerleich Perić M, Gamulin O, Rašić M, Radonić V, Škrabić M, Krajačić M, Krasić J, Sinčić N, Jurić-Lekić G, Balarin M, Bulić-Jakuš F. Embryo-derived teratoma in vitro biological system reveals antitumor and embryotoxic activity of valproate. FEBS J 2020; 287:4783-4800. [PMID: 32056377 PMCID: PMC7687280 DOI: 10.1111/febs.15248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/10/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Antiepileptic/teratogen valproate (VPA) is a histone deacetylase inhibitor/epigenetic drug proposed for the antitumor therapy where it is generally crucial to target poorly or undifferentiated cells to prevent a recurrence. Transplanted rodent gastrulating embryos‐proper (primitive streak and three germ layers) are the source of teratoma/teratocarcinoma tumors. Human primitive‐streak remnants develop sacrococcygeal teratomas that may recur even when benign (well differentiated). To screen for unknown VPA impact on teratoma‐type tumors, we used original 2‐week embryo‐derived teratoma in vitro biological system completed by a spent media metabolome analysis. Gastrulating 9.5‐day‐old rat embryos‐proper were cultivated in Eagle's minimal essential medium (MEM) with 50% rat serum (controls) or with the addition of 2 mmVPA. Spent media metabolomes were analyzed by FTIR. Compared to controls, VPA acetylated histones; significantly diminished overall teratoma growth, impaired survival, increased the apoptotic index, and decreased proliferation index and incidence of differentiated tissues (e.g., neural tissue). Control teratomas continued to grow and differentiate for 14 days in isotransplants in vivo, but in vitro VPA‐treated teratomas resorbed. Principal component analysis of FTIR results showed that spent media metabolomes formed well‐separated clusters reflecting the treatment and day of cultivation. In metabolomes of VPA‐treated teratomas, we found elevation of previously described histone acetylation biomarkers [amide I α‐helix and A(CH3)/A(CH2)]) with apoptotic biomarkers within the amide I region for β‐sheets, and unordered and CH2 vibrations of lipids. VPA may be proposed for therapy of the undifferentiated component of teratoma tumors and this biological system completed by metabolome analysis, for a faster dual screening of antitumor/embryotoxic agents.
Collapse
Affiliation(s)
- Milvija Plazibat
- Department of Pediatrics, Hospital Zabok, Croatia.,Centre of Excellence for Reproductive and Regenerative Medicine, Unit for Biomedical Investigation of Reproduction and Development, School of Medicine, University of Zagreb, Croatia.,Dental Medicine and Health, School of Medicine, University of Osijek, Croatia
| | - Ana Katušić Bojanac
- Centre of Excellence for Reproductive and Regenerative Medicine, Unit for Biomedical Investigation of Reproduction and Development, School of Medicine, University of Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Croatia
| | - Marta Himerleich Perić
- Centre of Excellence for Reproductive and Regenerative Medicine, Unit for Biomedical Investigation of Reproduction and Development, School of Medicine, University of Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Croatia
| | - Ozren Gamulin
- Department of Physics, School of Medicine, University of Zagreb, Croatia.,Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, School of Medicine, University of Zagreb, Croatia
| | - Mario Rašić
- Department of Physics, School of Medicine, University of Zagreb, Croatia.,Department of Head and Neck Surgery, Tumor Clinic,Clinical Hospital Center Sisters of Charity, Zagreb, Croatia
| | - Vedran Radonić
- Department of Physics, School of Medicine, University of Zagreb, Croatia.,Department Of Cardiology, Clinical Hospital Merkur, Zagreb, Croatia
| | - Marko Škrabić
- Department of Physics, School of Medicine, University of Zagreb, Croatia.,Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, School of Medicine, University of Zagreb, Croatia
| | - Maria Krajačić
- Department of Physics, School of Medicine, University of Zagreb, Croatia
| | - Jure Krasić
- Centre of Excellence for Reproductive and Regenerative Medicine, Unit for Biomedical Investigation of Reproduction and Development, School of Medicine, University of Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Croatia
| | - Nino Sinčić
- Centre of Excellence for Reproductive and Regenerative Medicine, Unit for Biomedical Investigation of Reproduction and Development, School of Medicine, University of Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Croatia
| | - Gordana Jurić-Lekić
- Centre of Excellence for Reproductive and Regenerative Medicine, Unit for Biomedical Investigation of Reproduction and Development, School of Medicine, University of Zagreb, Croatia.,Department of Histology and Embryology, School of Medicine, University of Zagreb, Croatia
| | - Maja Balarin
- Centre of Excellence for Reproductive and Regenerative Medicine, Unit for Biomedical Investigation of Reproduction and Development, School of Medicine, University of Zagreb, Croatia.,Department of Physics, School of Medicine, University of Zagreb, Croatia
| | - Floriana Bulić-Jakuš
- Centre of Excellence for Reproductive and Regenerative Medicine, Unit for Biomedical Investigation of Reproduction and Development, School of Medicine, University of Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Croatia
| |
Collapse
|
17
|
Saracino R, Capponi C, Di Persio S, Boitani C, Masciarelli S, Fazi F, Fera S, Vicini E. Regulation of
Gdnf
expression by retinoic acid in Sertoli cells. Mol Reprod Dev 2020; 87:419-429. [DOI: 10.1002/mrd.23323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Rossana Saracino
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Chiara Capponi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Sara Di Persio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Carla Boitani
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Silvia Masciarelli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Francesco Fazi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Stefania Fera
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Elena Vicini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| |
Collapse
|
18
|
Adjuvant Epigenetic Therapy of Decitabine and Suberoylanilide Hydroxamic Acid Exerts Anti-Neoplastic Effects in Acute Myeloid Leukemia Cells. Cells 2019; 8:cells8121480. [PMID: 31766421 PMCID: PMC6952979 DOI: 10.3390/cells8121480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Atypical epigenetic processes including histone acetylation and DNA methylation have been identified as a fundamental theme in hematologic malignancies. Such mechanisms modify gene expression and prompt, in part at least, the initiation and progression of several malignancies including acute myeloid leukemia. In the current study we determined the effects of treating KG-1 and U937 acute myeloid leukemia (AML) cells, in vitro, with the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), or with a DNMT inhibitor, decitabine (DAC), or their combination, on cell proliferation, cell cycle progression, apoptosis, and expression of apoptosis-related proteins. Each of SAHA and DAC attenuated cell proliferation and induced cell cycle arrest and apoptotic cell death of KG-1 and U937 cell lines. Besides, their sequential combination improved the obtained anti-neoplastic effect: significant augmentation of growth inhibition and apoptosis induction as compared to cells treated with either drug alone. This effect was featured by the upregulated expression of Bax, cytochrome c1, p21, and cleaved caspases 8, 9, and 3, signifying the activation of both the intrinsic and extrinsic pathways of apoptosis. The sequential combination of SAHA and DAC causes a profound antitumorigenic effect in AML cell lines by inducing the expression of tumor suppressor genes.
Collapse
|
19
|
Qin W, Wang T, Huang H, Gao Y. Profiling of lysine-acetylated proteins in human urine. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1514-1520. [PMID: 30820853 DOI: 10.1007/s11427-017-9367-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
A biomarker is a measurable indicator associated with changes in physiological state or disease. In contrast to the blood which is under homeostatic controls, urine reflects changes in the body earlier and more sensitively, and is therefore a better biomarker source. Lysine acetylation is an abundant and highly regulated post-translational modification. It plays a pivotal role in modulating diverse biological processes and is associated with various important diseases. Enrichment or visualization of proteins with specific post-translational modifications provides a method for sampling the urinary proteome and reducing sample complexity. In this study, we used anti-acetyllysine antibody-based immunoaffinity enrichment combined with high-resolution mass spectrometry to profile lysine-acetylated proteins in normal human urine. A total of 629 acetylation sites on 315 proteins were identified, including some very low-abundance proteins. This is the first proteome-wide characterization of lysine acetylation proteins in normal human urine. Our dataset provides a useful resource for the further discovery of lysine-acetylated proteins as biomarkers in urine.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Ting Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - He Huang
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
20
|
Mechanism of Action for HDAC Inhibitors-Insights from Omics Approaches. Int J Mol Sci 2019; 20:ijms20071616. [PMID: 30939743 PMCID: PMC6480157 DOI: 10.3390/ijms20071616] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
Histone deacetylase inhibitors (HDIs) are a class of prominent epigenetic drugs that are currently being tested in hundreds of clinical trials against a variety of diseases. A few compounds have already been approved for treating lymphoma or myeloma. HDIs bind to the zinc-containing catalytic domain of the histone deacetylase (HDACs) and they repress the deacetylase enzymatic activity. The broad therapeutic effect of HDIs with seemingly low toxicity is somewhat puzzling when considering that most HDIs lack strict specificity toward any individual HDAC and, even if they do, each individual HDAC has diverse functions under different physiology scenarios. Here, we review recent mechanistic studies using omics approaches, including epigenomics, transcriptomics, proteomics, metabolomics, and chemoproteomics, methods. These omics studies provide non-biased insights into the mechanism of action for HDIs.
Collapse
|
21
|
Xue C, Liu S, Chen C, Zhu J, Yang X, Zhou Y, Guo R, Liu X, Gong Z. Global Proteome Analysis Links Lysine Acetylation to Diverse Functions in Oryza Sativa. Proteomics 2019; 18. [PMID: 29106068 DOI: 10.1002/pmic.201700036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 10/11/2017] [Indexed: 01/26/2023]
Abstract
Lysine acetylation (Kac) is an important protein post-translational modification in both eukaryotes and prokaryotes. Herein, we report the results of a global proteome analysis of Kac and its diverse functions in rice (Oryza sativa). We identified 1353 Kac sites in 866 proteins in rice seedlings. A total of 11 Kac motifs are conserved, and 45% of the identified proteins are localized to the chloroplast. Among all acetylated proteins, 38 Kac sites are combined in core histones. Bioinformatics analysis revealed that Kac occurs on a diverse range of proteins involved in a wide variety of biological processes, especially photosynthesis. Protein-protein interaction networks of the identified proteins provided further evidence that Kac contributes to a wide range of regulatory functions. Furthermore, we demonstrated that the acetylation level of histone H3 (lysine 27 and 36) is increased in response to cold stress. In summary, our approach comprehensively profiles the regulatory roles of Kac in the growth and development of rice.
Collapse
Affiliation(s)
- Chao Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Shuai Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Jun Zhu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Xibin Yang
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Rui Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
22
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
23
|
Liu S, Yu F, Yang Z, Wang T, Xiong H, Chang C, Yu W, Li N. Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis. Mol Cell Proteomics 2018; 17:1010-1027. [PMID: 29440448 DOI: 10.1074/mcp.ra117.000530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Protein acetylation, one of many types of post-translational modifications (PTMs), is involved in a variety of biological and cellular processes. In the present study, we applied both CsCl density gradient (CDG) centrifugation-based protein fractionation and a dimethyl-labeling-based 4C quantitative PTM proteomics workflow in the study of dynamic acetylproteomic changes in Arabidopsis. This workflow integrates the dimethyl chemical labeling with chromatography-based acetylpeptide separation and enrichment followed by mass spectrometry (MS) analysis, the extracted ion chromatogram (XIC) quantitation-based computational analysis of mass spectrometry data to measure dynamic changes of acetylpeptide level using an in-house software program, named Stable isotope-based Quantitation-Dimethyl labeling (SQUA-D), and finally the confirmation of ethylene hormone-regulated acetylation using immunoblot analysis. Eventually, using this proteomic approach, 7456 unambiguous acetylation sites were found from 2638 different acetylproteins, and 5250 acetylation sites, including 5233 sites on lysine side chain and 17 sites on protein N termini, were identified repetitively. Out of these repetitively discovered acetylation sites, 4228 sites on lysine side chain (i.e. 80.5%) are novel. These acetylproteins are exemplified by the histone superfamily, ribosomal and heat shock proteins, and proteins related to stress/stimulus responses and energy metabolism. The novel acetylproteins enriched by the CDG centrifugation fractionation contain many cellular trafficking proteins, membrane-bound receptors, and receptor-like kinases, which are mostly involved in brassinosteroid, light, gravity, and development signaling. In addition, we identified 12 highly conserved acetylation site motifs within histones, P-glycoproteins, actin depolymerizing factors, ATPases, transcription factors, and receptor-like kinases. Using SQUA-D software, we have quantified 33 ethylene hormone-enhanced and 31 hormone-suppressed acetylpeptide groups or called unique PTM peptide arrays (UPAs) that share the identical unique PTM site pattern (UPSP). This CDG centrifugation protein fractionation in combination with dimethyl labeling-based quantitative PTM proteomics, and SQUA-D may be applied in the quantitation of any PTM proteins in any model eukaryotes and agricultural crops as well as tissue samples of animals and human beings.
Collapse
Affiliation(s)
- Shichang Liu
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| | - Tingliang Wang
- **Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hairong Xiong
- ‡‡College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Caren Chang
- §§Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742-5815
| | - Weichuan Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
24
|
Comprehensive Profiling of Lysine Acetylome in Baculovirus Infected Silkworm (Bombyx mori) Cells. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/01/2017] [Indexed: 12/12/2022]
|
25
|
Li Y, Luo Z, Wu X, Zhu J, Yu K, Jin Y, Zhang Z, Zhao S, Zhou L. Proteomic Analyses of Cysteine Redox in High-Fat-Fed and Fasted Mouse Livers: Implications for Liver Metabolic Homeostasis. J Proteome Res 2018; 17:129-140. [PMID: 29098862 DOI: 10.1021/acs.jproteome.7b00431] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intensive oxidative stress occurs during high-fat-diet-induced hepatic fat deposition, suggesting a critical role for redox signaling in liver metabolism. Intriguingly, evidence shows that fasting could also result in redox-profile changes largely through reduced oxidant or increased antioxidant levels. However, a comprehensive landscape of redox-modified hepatic substrates is lacking, thereby hindering our understanding of liver metabolic homeostasis. We employed a proteomic approach combining iodoacetyl tandem mass tag and nanoliquid chromatography tandem mass spectrometry to quantitatively probe the effects of high-fat feeding and fasting on in vivo redox-based cysteine modifications. Compared with control groups, ∼60% of cysteine residues exhibited downregulated oxidation ratios by fasting, whereas ∼94% of these ratios were upregulated by high-fat feeding. Importantly, in fasted livers, proteins exhibiting diminished cysteine oxidation were annotated in pathways associated with fatty acid metabolism, carbohydrate metabolism, insulin, peroxisome proliferator-activated receptors, and oxidative respiratory chain signaling, suggesting that fasting-induced redox changes targeted major metabolic pathways and consequently resulted in hepatic lipid accumulation.
Collapse
Affiliation(s)
- Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Xilong Wu
- Jingjie PTM Biolab Co. Ltd. , Hangzhou Economic and Technological Development Area, Hangzhou 310018, P.R. China
| | - Jun Zhu
- Jingjie PTM Biolab Co. Ltd. , Hangzhou Economic and Technological Development Area, Hangzhou 310018, P.R. China
| | - Kai Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Yi Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University , Wuhan, P.R. China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University , Nanning 530004, P.R. China
| |
Collapse
|
26
|
|
27
|
Hosokawa M, Tanaka S, Ueda K, Iwakawa S. Different Schedule-Dependent Effects of Epigenetic Modifiers on Cytotoxicity by Anticancer Drugs in Colorectal Cancer Cells. Biol Pharm Bull 2017; 40:2199-2204. [PMID: 28954936 DOI: 10.1248/bpb.b17-00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Limited information is currently available on how to apply epigenetic modifiers to current colorectal cancer (CRC) chemotherapy. The purpose of this study is to clarify the schedule-dependent effects of combined treatment with conventional anticancer drugs and epigenetic modifiers in human CRC cells. Cytotoxicity in 4 CRC cell lines (SW480, HT29, SW48, and HCT116) was measured using the WST-8 assay. As epigenetic modifiers, 3 DNA methyltransferase (DNMT) inhibitors such as decitabine (DAC), azacytidine (AC), and zebularine (Zeb), and 3 histone deacetylase (HDAC) inhibitors including trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), and valproic acid (VPA) were used. Combination effects were analyzed by the isobologram method. SW480 cells showed the lowest sensitivity to the anticancer drugs 5-fluorouracil, SN-38 (the active form of irinotecan), and oxaliplatin. In SW480 cells, epigenetic modifiers other than VPA showed the most significant synergistic effects when used before anticancer drugs, while VPA showed synergistic effects in co- or post-treatment. In the 3 other CRC cells, synergistic effects were less frequent and weaker. The dose of anticancer drugs may be reduced by combining epigenetic modifiers in SW480 cells, which are less sensitive to anticancer drugs, unlike the more sensitive HT29, SW48, and HCT116 cell lines. These results provide useful information for understanding how to incorporate epigenetic modifiers into current CRC chemotherapy.
Collapse
Affiliation(s)
- Mika Hosokawa
- Department of Pharmaceutics, Kobe Pharmaceutical University
| | - Shota Tanaka
- Department of Pharmaceutics, Kobe Pharmaceutical University
| | - Kumiko Ueda
- Department of Pharmaceutics, Kobe Pharmaceutical University
| | - Seigo Iwakawa
- Department of Pharmaceutics, Kobe Pharmaceutical University
| |
Collapse
|
28
|
Anti-leukemia effects of the novel synthetic 1-benzylindole derivative 21-900 in vitro and in vivo. Sci Rep 2017; 7:42291. [PMID: 28181578 PMCID: PMC5299419 DOI: 10.1038/srep42291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/08/2017] [Indexed: 02/08/2023] Open
Abstract
Cancers are the major cause of death worldwide. Chemotherapy using cytotoxic drugs and targeted therapy is required when surgery is difficult, ineffective, or impossible. We previously synthesized the novel synthetic 1-benzylindole derivative 21-900 and found that it inhibits histone deacetylase (HDAC) activities and tubulin assembly. Here we tested its effects on the human leukaemia cell lines HL-60 and MOLT-4 in vitro and in vivo. We found that its potent cytotoxic effects were mediated through cell cycle arrest at the G2/M phase, which increased the population of sub-G1 cells, leading to apoptosis. Further, tubulin was depolymerized by 21-900 in a manner similar to that of vincristine, leading to disruption of microtubule dynamics and increased levels of the mitotic marker MPM-2. Further, 21-900 increased the expression of cleavage form of poly (ADP-ribose) polymerase (PARP), caspase 3, 7 (cleavage form), and pro-apoptotic protein BAK and decreased the expression of pro-survival BCL-2-family proteins BCL-2, MCL-1, and BID pro-form, leading to the induction of apoptosis. The growth of tumours in nude mice formed by xenografts of HL-60 and MOLT-4 cells was significantly inhibited by 21-900 without causing the mice to lose body weight. These findings indicate that 21-900 may serve as a potent anti-leukaemia drug.
Collapse
|
29
|
Gu X, Hua Z, Dong Y, Zhan Y, Zhang X, Tian W, Liu Z, Thiele CJ, Li Z. Proteome and Acetylome Analysis Identifies Novel Pathways and Targets Regulated by Perifosine in Neuroblastoma. Sci Rep 2017; 7:42062. [PMID: 28165023 PMCID: PMC5292702 DOI: 10.1038/srep42062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022] Open
Abstract
Perifosine, an Akt inhibitor, has been shown to be effective in controlling neuroblastoma tumor growth. However, studies indicate that in addition to the ability to inhibit Akt, other mechanisms contribute to perifosine’s anti-tumor activity. To gain insight into perifosine anti-tumor activity in neuroblastoma we have studied changes in the proteome and acetylome after perifosine treatment in SK-N-AS neuroblastoma cells using SILAC labeling, affinity enrichment, high-resolution and LC-MS/MS analysis. Bioinformatic analysis indicates that, a total of 5,880 proteins and 3,415 lysine acetylation sites were quantified in SK-N-AS cells and 216 differentially expressed proteins and 115 differentially expressed lysine acetylation sites were obtained. These differentially expressed proteins and lysine acetylated proteins were involved in a number of different biological functions, metabolic pathways and pathophysiological processes. This study details the impact of perifosine on proteome and lysine acetylome in SK-N-AS cells and expands our understanding of the mechanisms of perifosine action in neuroblastoma.
Collapse
Affiliation(s)
- Xiao Gu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhongyan Hua
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yudi Dong
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yue Zhan
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Wei Tian
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhihui Liu
- Cellular &Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Carol J Thiele
- Cellular &Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Zhijie Li
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
30
|
Hwang AW, Trzeciakiewicz H, Friedmann D, Yuan CX, Marmorstein R, Lee VMY, Cohen TJ. Conserved Lysine Acetylation within the Microtubule-Binding Domain Regulates MAP2/Tau Family Members. PLoS One 2016; 11:e0168913. [PMID: 28002468 PMCID: PMC5176320 DOI: 10.1371/journal.pone.0168913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022] Open
Abstract
Lysine acetylation has emerged as a dominant post-translational modification (PTM) regulating tau proteins in Alzheimer’s disease (AD) and related tauopathies. Mass spectrometry studies indicate that tau acetylation sites cluster within the microtubule-binding region (MTBR), a region that is highly conserved among tau, MAP2, and MAP4 family members, implying that acetylation could represent a conserved regulatory mechanism for MAPs beyond tau. Here, we combined mass spectrometry, biochemical assays, and cell-based approaches to demonstrate that the tau family members MAP2 and MAP4 are also subject to reversible acetylation. We identify a cluster of lysines in the MAP2 and MAP4 MTBR that undergo CBP-catalyzed acetylation, many of which are conserved in tau. Similar to tau, MAP2 acetylation can occur in a cysteine-dependent auto-regulatory manner in the presence of acetyl-CoA. Furthermore, tubulin reduced MAP2 acetylation, suggesting tubulin binding dictates MAP acetylation status. Taken together, these results uncover a striking conservation of MAP2/Tau family post-translational modifications that could expand our understanding of the dynamic mechanisms regulating microtubules.
Collapse
Affiliation(s)
- Andrew W. Hwang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hanna Trzeciakiewicz
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Dave Friedmann
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chao-Xing Yuan
- Alexion Pharmaceuticals Inc, New Haven, Connecticut, United States of America
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Virginia M. Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Todd J. Cohen
- Department of Neurology, UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
31
|
Zhou S, Yang Q, Yin C, Liu L, Liang W. Systematic analysis of the lysine acetylome in Fusarium graminearum. BMC Genomics 2016; 17:1019. [PMID: 27964708 PMCID: PMC5153868 DOI: 10.1186/s12864-016-3361-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Lysine acetylation in proteins is a ubiquitous and conserved post-translational modification, playing a critical regulatory role in almost every aspect of living cells. Although known for many years, its function remains elusive in Fusarium graminearum, one of the most important necrotrophic plant pathogens with huge economic impact. RESULTS By the combination of affinity enrichment and high-resolution LC-MS/MS analysis, large-scale lysine acetylome analysis was performed. In total, 577 lysine acetylation sites matched to 364 different proteins were identified. Bioinformatics analysis of the acetylome showed that the acetylated proteins are involved in a wide range of cellular functions and exhibit diverse subcellular localizations. Remarkably, 10 proteins involved in the virulence or DON (deoxynivalenol) biosynthesis were found to be acetylated, including 4 transcription factors, 4 protein kinases and 2 phosphatases. Protein-protein interaction network analysis revealed that acetylated protein complexes are involved in diversified interactions. CONCLUSIONS This work provides the first comprehensive survey of a possible lysine acetylome in F. graminearum and reveals previously unappreciated roles of lysine acetylation in the regulation of diverse biological processes. This work provides a resource for functional analysis of acetylated proteins in filamentous fungi.
Collapse
Affiliation(s)
- Shanyue Zhou
- College of Agronomy and Plant Protection, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, Shandong, 266109, China
| | - Qianqian Yang
- College of Agronomy and Plant Protection, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, Shandong, 266109, China
| | - Changfa Yin
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lin Liu
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liang
- College of Agronomy and Plant Protection, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, Shandong, 266109, China.
| |
Collapse
|
32
|
Okanishi H, Kim K, Fukui K, Yano T, Kuramitsu S, Masui R. Proteome-wide identification of lysine succinylation in thermophilic and mesophilic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:232-242. [PMID: 27888076 DOI: 10.1016/j.bbapap.2016.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/13/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
Lysine succinylation, one of post-translational acylations conserved from eukaryotes to bacteria, plays regulatory roles in various cellular processes. However, much remains unknown about the general and specific characteristics of lysine succinylation among bacteria, and about its functions different from those of other acylations. In this study, we characterized lysine succinylation, a newly discovered widespread type of lysine acylation in five bacterial species with different characteristics such as optimal growth temperature and cell wall structure. This study is the first to demonstrate that succinylation is general phenomenon occurring not only in mesophiles but also in thermophiles. Mapping of succinylation sites on protein structures revealed that succinylation occurs at many lysine residues important for protein function. Comparison of the succinylation sites in the five bacterial species provides insights regarding common protein regulation mechanisms utilizing lysine succinylation. Many succinylation sites were conserved among five bacteria, especially between Geobacillus kaustophilus and Bacillus subtilis, some of which are functionally important sites. Furthermore, systematic comparison of the succinyl-proteome results and our previous propionyl-proteome results showed that the abundance of these two types of acylations is considerably different among the five bacteria investigated. Many succinylation and propionylation events were detected in G. kaustophilus, whereas Escherichia coli and B. subtilis exhibited high succinylation and low propionylation; low succinylation and high propionylation were identified in Thermus thermophilus, and low succinylation and propionylation were observed in Rhodothermus marinus. Comparison of the characteristics of lysine succinylation and lysine propionylation suggested these two types of acylation play different roles in cellular processes.
Collapse
Affiliation(s)
- Hiroki Okanishi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kwang Kim
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | - Seiki Kuramitsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryoji Masui
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan; Division of Biology & Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|