1
|
Yin L, Zhang L, Luo L, Liu Y, Wang F, Feng Y, Wang H, Han Y, Yan Y, Huang C, Fan S. Berbamine reduces body weight via suppression of small GTPase Rab8a activity and activation of paraventricular hypothalamic neurons in obese mice. Eur J Pharmacol 2022; 916:174679. [PMID: 34982965 DOI: 10.1016/j.ejphar.2021.174679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022]
Abstract
Small GTPase Rab8a is involved in fat-specific protein 27 (Fsp27) mediated lipid droplet accumulation in adipocytes. By screening inhibitors of Rab8a GTPase from a natural compound library, berbamine (BBM), a marketing drug for treatment of leukopenia in China, was identified to inhibit the activity of Rab8a GTPase and block the differentiation of 3T3-L1 adipocytes. Animal study showed that BBM could reduce body weight, improved glucose and lipid metabolic homeostasis in high-fat diet-induced obesity (DIO) C57BL/6 mice and db/db mice. Additional, BBM increased energy expenditure and inhibited food intake in mice but not in lean mice. Moreover, intracerebroventricular injection (i.c.v.) of BBM inhibited feeding behavior and increased c-Fos expression in paraventricular nucleus of the hypothalamus (PVH) of mice. Our data suggest that BBM may improve obesity through the inhibition of Rab8a GTPase activity and the activation of anorexigenic energy-sensing neuron in PVH.
Collapse
Affiliation(s)
- Liufang Yin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yalei Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yaru Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongqing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Park HJ, Rhie SJ, Shim I. Neuronal mechanisms of ginseng on antiobesity effects: implication of its synergistic benefits with physical exercise. J Exerc Rehabil 2022; 17:388-394. [PMID: 35036387 PMCID: PMC8743603 DOI: 10.12965/jer.2142668.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
Obesity is a chronic disease of increasing prevalence in most countries, which leads to substantial increase in morbidity, and mortality in association with diabetes, hyperlipidaemia, hypertension, and other cardiovascular diseases. Many factors have been attributed to an epidemic of obesity including sedentary lifestyle, high-fat diets (HFD), and consumption of large amount of modern fast foods. Panax ginseng C. A. Meyer (PG) has several pharmacological and physiological effects. In particular, PG and saponin fractions from PG show a variety of efficacies such as antifatigue, hyperlipidemia, hypertension and noninsulin-dependent diabetes mellitus and obesity. We have revealed that ginseng and ginsenosides can decrease food intake energy expenditure by stimulating appetite regulatory hormones and can reduce energy intake. Exercise/ physical activity is well known as modality for treating the disease of overweight and obesity. It is suggested that natural products and their combinations with exercise may produce a synergistic activity that increases their bioavailability and action on multiple molecular targets, offering advantages over chemical treatments. This review is aimed at evaluating the antiobesity efficacy of ginseng and ginsenosides and delineating the mechanisms by which they function. Finally, we review information regarding interactions between ginseng and physical exercise in protecting against weight gain and obesity.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Korea
| | - Sung Ja Rhie
- Department of Beauty Design, Halla University, Wonju, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul Korea
| |
Collapse
|
3
|
Fan S, Xu Y, Lu Y, Jiang Z, Li H, Morrill JC, Cai J, Wu Q, Xu Y, Xue M, Arenkiel BR, Huang C, Tong Q. A neural basis for brain leptin action on reducing type 1 diabetic hyperglycemia. Nat Commun 2021; 12:2662. [PMID: 33976218 PMCID: PMC8113586 DOI: 10.1038/s41467-021-22940-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Central leptin action rescues type 1 diabetic (T1D) hyperglycemia; however, the underlying mechanism and the identity of mediating neurons remain elusive. Here, we show that leptin receptor (LepR)-expressing neurons in arcuate (LepRArc) are selectively activated in T1D. Activation of LepRArc neurons, Arc GABAergic (GABAArc) neurons, or arcuate AgRP neurons, is able to reverse the leptin's rescuing effect. Conversely, inhibition of GABAArc neurons, but not AgRP neurons, produces leptin-mimicking rescuing effects. Further, AgRP neuron function is not required for T1D hyperglycemia or leptin's rescuing effects. Finally, T1D LepRArc neurons show defective nutrient sensing and signs of cellular energy deprivation, which are both restored by leptin, whereas nutrient deprivation reverses the leptin action. Our results identify aberrant activation of LepRArc neurons owing to energy deprivation as the neural basis for T1D hyperglycemia and that leptin action is mediated by inhibiting LepRArc neurons through reversing energy deprivation.
Collapse
Affiliation(s)
- Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yungang Lu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hongli Li
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessie C Morrill
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- MD Anderson Cancer Center & UT Health Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX, USA
| | - Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- MD Anderson Cancer Center & UT Health Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX, USA
| | - Qi Wu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- MD Anderson Cancer Center & UT Health Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol 2021; 33:e12952. [PMID: 33656205 DOI: 10.1111/jne.12952] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Food intake and energy expenditure are regulated by peripheral signals providing feedback on nutrient status and adiposity to the central nervous system. One of these signals is the pancreatic hormone, insulin. Unlike peripheral administration of insulin, which often causes weight gain, central administration of insulin leads to a reduction in food intake and body weight when administered long-term. This is a result of feedback processes in regions of the brain that regulate food intake. Within the hypothalamus, the arcuate nucleus (ARC) contains subpopulations of neurones that produce orexinergic neuropeptides agouti-related peptide (AgRP)/neuropeptide Y (NPY) and anorexigenic neuropeptides, pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular infusion of insulin down-regulates the expression of AgRP/NPY at the same time as up-regulating expression of POMC/CART. Recent evidence suggests that insulin activity within the amygdala may play an important role in regulating energy balance. Insulin infusion into the central nucleus of the amygdala (CeA) can decrease food intake, possibly by modulating activity of NPY and other neurone subpopulations. Insulin signalling within the CeA can also influence stress-induced obesity. Overall, it is evident that the CeA is a critical target for insulin signalling and the regulation of energy balance.
Collapse
Affiliation(s)
| | - Denovan P Begg
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Piórkowska K, Żukowski K, Połtowicz K, Nowak J, Ropka-Molik K, Derebecka N, Wesoły J, Wojtysiak D. Identification of candidate genes and regulatory factors related to growth rate through hypothalamus transcriptome analyses in broiler chickens. BMC Genomics 2020; 21:509. [PMID: 32703165 PMCID: PMC7376931 DOI: 10.1186/s12864-020-06884-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Intensive selection for growth rate (GR) in broiler chickens carries negative after-effects, such as aberrations in skeletal development and the immune system, heart failure, and deterioration of meat quality. In Poland, fast-growing chicken populations are highly non-uniform in term of growth rate, which is highly unprofitable for poultry producers. Therefore, the identification of genetic markers for boiler GR that could support the selection process is needed. The hypothalamus is strongly associated with growth regulation by inducing important pituitary hormones. Therefore, the present study used this tissue to pinpoint genes involved in chicken growth control. Results The experiment included male broilers of Ross 308 strain in two developmental stages, after 3rd and 6th week of age, which were maintained in the same housing and feeding conditions. The obtained results show for the overexpression of genes related to orexigenic molecules, such as neuropeptide Y (NPY), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), galanin (GAL), and pro-melanin concentrating hormone (PMCH) in low GR cockerels. Conclusion The results reveal strong associations between satiety centre and the growth process. The present study delivers new insights into hypothalamic regulation in broiler chickens and narrows the area for the searching of genetic markers for GR. Graphical abstract ![]()
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Połtowicz
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland.
| | - Joanna Nowak
- Department of Poultry Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Natalia Derebecka
- Adam Mickiewicz University, Faculty of Biology, Laboratory of High Throughput Technologies Institute of Molecular Biology and Biotechnology, Poznań, Poland
| | - Joanna Wesoły
- Adam Mickiewicz University, Faculty of Biology, Laboratory of High Throughput Technologies Institute of Molecular Biology and Biotechnology, Poznań, Poland
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Krakow, Cracow, Poland
| |
Collapse
|
6
|
Liu C, Li H, Zhou Z, Li J, Chen H, Liu Y, Huang C, Fan S. Protopanaxadiol alleviates obesity in high-fat diet-fed mice via activation of energy-sensing neuron in the paraventricular nucleus of hypothalamus. Biochem Biophys Res Commun 2019; 513:1092-1099. [DOI: 10.1016/j.bbrc.2019.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/31/2022]
|
7
|
Park HJ, Kim JH, Shim I. Anti-obesity Effects of Ginsenosides in High-Fat Diet-Fed Rats. Chin J Integr Med 2019; 25:895-901. [DOI: 10.1007/s11655-019-3200-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
|
8
|
Li H, Liu Y, Liu C, Luo L, Yao Y, Li F, Yin L, Xu L, Tong Q, Huang C, Fan S. Notoginsenoside Fe suppresses diet induced obesity and activates paraventricular hypothalamic neurons. RSC Adv 2019; 9:1290-1298. [PMID: 35518019 PMCID: PMC9059641 DOI: 10.1039/c8ra07842d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/24/2018] [Indexed: 01/13/2023] Open
Abstract
Obesity has become a major public health challenge worldwide. Energy imbalance between calorie acquisition and consumption is the fundamental cause of obesity. Notoginsenoside Fe is a naturally occurring compound in Panax notoginseng, a herb used in the treatment of cardiovascular diseases in traditional Chinese medicine. Here, we evaluated the effect of notoginsenoside Fe on obesity development induced by high-fat diet in C57BL/6 mice. Our results demonstrated that notoginsenoside Fe decreased food intake and body weight, as well as protected liver structure integrity and normal function. Metabolic cage analysis showed that notoginsenoside Fe also promoted resting metabolic rate. In addition, intracerebroventricular (i.c.v) injection of notoginsenoside Fe induced C-Fos expression in the paraventricular nucleus (PVH) but not the arcuate nucleus (ARC) of the hypothalamus. These results suggest that Fe may reduce body weight through the activation of energy-sensing neurons in the hypothalamus. Notoginsenoside Fe, a naturally occurring compound in Panax notoginseng, significantly reduces body weight, promotes metabolic rate, and suppresses food intake through activating C-Fos expression in PVH in high-fat diet induced obese mice.![]()
Collapse
|
9
|
Liu M, Liu H, Liang F, Song XQ, Hu PA. Neuropeptide Y promotes adipogenic differentiation in primary cultured human adipose-derived stem cells. Endocr J 2018; 65:43-52. [PMID: 28954935 DOI: 10.1507/endocrj.ej17-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the release of NPY has coordinated and integrated effects on energy metabolism in different tissues, such as adipocyte tissue, resulting in increased energy storage and decreased energy expenditure. Whether NPY has role in the molecular mechanism of human adipocyte tissue remains unclear. We established the model of human adipose derived stem cells (hADSCs) from human adipose tissue and differentiated it into adipocytes in the presence of NPY at different concentrations (10-15-10-6 mmol/L). We then assessed hADSCs proliferation and differentiation by quantifying lipid accumulation and examining the expression levels of related adipocyte markers after differentiation. Furthermore, the specific markers of white adipocyte tissue (WAT) in hADSCs were also analyzed. The results showed that low doses of NPY stimulated hADSCs proliferation (p < 0.05), while high doses of NPY inhibited hADSCs proliferation (p < 0.05). NPY significantly promoted lipid accumulation and increased the size of lipid droplets during human adipogenic differentiation; the levels of adipocyte markers PPAR-γ and C/EBPα were also increased. At the same time, NPY also increased the levels of WAT markers Cidec and RIP140 after adipocyte differentiation. The results suggested high dose NPY inhibits the proliferation of hADSCs while promotes adipocyte differentiation and increases the expression of WAT markers. This may be the reason why increased levels of NPY can lead to a rise in body weight.
Collapse
Affiliation(s)
- Min Liu
- Department of Clinical Nutrition, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Hong Liu
- Department of Clinical Nutrition, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Fang Liang
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Xiao-Qin Song
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Ping-An Hu
- Department of Endocrinology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
10
|
Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017; 11:127. [PMID: 28373831 PMCID: PMC5357634 DOI: 10.3389/fnins.2017.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 12/23/2022] Open
Abstract
Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the “control” of the “master biological clock” reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.
Collapse
Affiliation(s)
- Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University Krakow, Poland
| | - Andrew L Gundlach
- Neuropeptides Division, The Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia; Florey Department of Neuroscience and Mental Health, The University of MelbourneParkville, VIC, Australia
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian UniversityKrakow, Poland; Institute of Pharmacology, Polish Academy of SciencesKrakow, Poland
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University Krakow, Poland
| |
Collapse
|