1
|
Huang J, Liao C, Yang J, Zhang L. The role of vascular and lymphatic networks in bone and joint homeostasis and pathology. Front Endocrinol (Lausanne) 2024; 15:1465816. [PMID: 39324127 PMCID: PMC11422228 DOI: 10.3389/fendo.2024.1465816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
The vascular and lymphatic systems are integral to maintaining skeletal homeostasis and responding to pathological conditions in bone and joint tissues. This review explores the interplay between blood vessels and lymphatic vessels in bones and joints, focusing on their roles in homeostasis, regeneration, and disease progression. Type H blood vessels, characterized by high expression of CD31 and endomucin, are crucial for coupling angiogenesis with osteogenesis, thus supporting bone homeostasis and repair. These vessels facilitate nutrient delivery and waste removal, and their dysfunction can lead to conditions such as ischemia and arthritis. Recent discoveries have highlighted the presence and significance of lymphatic vessels within bone tissue, challenging the traditional view that bones are devoid of lymphatics. Lymphatic vessels contribute to interstitial fluid regulation, immune cell trafficking, and tissue repair through lymphangiocrine signaling. The pathological alterations in these networks are closely linked to inflammatory joint diseases, emphasizing the need for further research into their co-regulatory mechanisms. This comprehensive review summarizes the current understanding of the structural and functional aspects of vascular and lymphatic networks in bone and joint tissues, their roles in homeostasis, and the implications of their dysfunction in disease. By elucidating the dynamic interactions between these systems, we aim to enhance the understanding of their contributions to skeletal health and disease, potentially informing the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jingxiong Huang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Guizhou, Zunyi, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Liu X, Zhang P, Gu Y, Guo Q, Liu Y. Type H vessels: functions in bone development and diseases. Front Cell Dev Biol 2023; 11:1236545. [PMID: 38033859 PMCID: PMC10687371 DOI: 10.3389/fcell.2023.1236545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Type H vessels are specialized blood vessels found in the bone marrow that are closely associated with osteogenic activity. They are characterized by high expression of endomucin and CD31. Type H vessels form in the cancellous bone area during long bone development to provide adequate nutritional support for cells near the growth plate. They also influence the proliferation and differentiation of osteoprogenitors and osteoclasts in a paracrine manner, thereby creating a suitable microenvironment to facilitate new bone formation. Because of the close relationship between type H vessels and osteogenic activity, it has been found that type H vessels play a role in the physiological and pathological processes of bone diseases such as fracture healing, osteoporosis, osteoarthritis, osteonecrosis, and tumor bone metastasis. Moreover, experimental treatments targeting type H vessels can improve the outcomes of these diseases. Here, we reviewed the molecular mechanisms related to type H vessels and their associated osteogenic activities, which are helpful in further understanding the role of type H vessels in bone metabolism and will provide a theoretical basis and ideas for comprehending bone diseases from the vascular perspective.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Colorectal and Anal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Peilin Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyue Guo
- Endocrinology Research Center, Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yonggan Liu
- Department of Colorectal and Anal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
3
|
Jia W, Zhou Z, Zhan W. Musculoskeletal Biomaterials: Stimulated and Synergized with Low Intensity Pulsed Ultrasound. J Funct Biomater 2023; 14:504. [PMID: 37888169 PMCID: PMC10607075 DOI: 10.3390/jfb14100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Clinical biophysical stimulating strategies, which have significant effects on improving the function of organs or treating diseases by causing the salutary response of body, have shown many advantages, such as non-invasiveness, few side effects, and controllable treatment process. As a critical technique for stimulation, the low intensity pulsed ultrasound (LIPUS) has been explored in regulating osteogenesis, which has presented great promise in bone repair by delivering a combined effect with biomaterials. This review summarizes the musculoskeletal biomaterials that can be synergized with LIPUS for enhanced biomedical application, including bone regeneration, spinal fusion, osteonecrosis/osteolysis, cartilage repair, and nerve regeneration. Different types of biomaterials are categorized for summary and evaluation. In each subtype, the verified biological mechanisms are listed in a table or graphs to prove how LIPUS was effective in improving musculoskeletal tissue regeneration. Meanwhile, the acoustic excitation parameters of LIPUS that were promising to be effective for further musculoskeletal tissue engineering are discussed, as well as their limitations and some perspectives for future research. Overall, coupled with biomimetic scaffolds and platforms, LIPUS may be a powerful therapeutic approach to accelerate musculoskeletal tissue repair and even in other regenerative medicine applications.
Collapse
Affiliation(s)
- Wanru Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
4
|
Song Y, Wang N, Shi H, Zhang D, Wang Q, Guo S, Yang S, Ma J. Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regen Biomater 2023; 10:rbad083. [PMID: 37808955 PMCID: PMC10551240 DOI: 10.1093/rb/rbad083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In recent decades, bone tissue engineering, which is supported by scaffold, seed cells and bioactive molecules (BMs), has provided new hope and direction for treating bone defects. In terms of seed cells, compared to bone marrow mesenchymal stem cells, which were widely utilized in previous years, adipose-derived stem cells (ADSCs) are becoming increasingly favored by researchers due to their abundant sources, easy availability and multi-differentiation potentials. However, there is no systematic theoretical basis for selecting appropriate biomaterials loaded with ADSCs. In this review, the regulatory effects of various biomaterials on the behavior of ADSCs are summarized from four perspectives, including biocompatibility, inflammation regulation, angiogenesis and osteogenesis, to illustrate the potential of combining various materials with ADSCs for the treatment of bone defects. In addition, we conclude the influence of additional application of various BMs on the bone repair effect of ADSCs, in order to provide more evidences and support for the selection or preparation of suitable biomaterials and BMs to work with ADSCs. More importantly, the associated clinical case reports and experiments are generalized to provide additional ideas for the clinical transformation and application of bone tissue engineering loaded with ADSCs.
Collapse
Affiliation(s)
- Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Jia Ma
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| |
Collapse
|
5
|
Tang L, Guo H, Wang K, Zhou Y, Wu T, Fan X, Guo J, Sun L, Ta D. Low-intensity pulsed ultrasound enhances the positive effects of high-intensity treadmill exercise on bone in rats. J Bone Miner Metab 2023; 41:592-605. [PMID: 37270713 DOI: 10.1007/s00774-023-01439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Moderate exercise benefits bone health, but excessive loading leads to bone fatigue and a decline in mechanical properties. Low-intensity pulsed ultrasound (LIPUS) can stimulate bone formation. The purpose of this study was to explore whether LIPUS could augment the skeletal benefits of high-intensity exercise. MATERIALS AND METHODS MC3T3-E1 osteoblasts were treated with LIPUS at 80 mW/cm2 or 30 mW/cm2 for 20 min/day. Forty rats were divided into sham treatment normal control (Sham-NC), sham treatment high-intensity exercise (Sham-HIE), 80 mW/cm2 LIPUS (LIPUS80), and high-intensity exercise combined with 80 mW/cm2 LIPUS (LIPUS80-HIE). The rats in HIE group were subjected to 30 m/min slope treadmill exercise for 90 min/day, 6 days/week for 12 weeks. The LIPUS80-HIE rats were irradiated with LIPUS (1 MHz, 80 mW/cm2) for 20 min/day at bilateral hind limb after exercise. RESULTS LIPUS significantly accelerated the proliferation, differentiation, mineralization, and migration of MC3T3-E1 cells. Compared to 30 mW/cm2 LIPUS, 80 mW/cm2 LIPUS got better promotion effect. 12 weeks of high-intensity exercise significantly reduced the muscle force, which was significantly reversed by LIPUS. Compared with the Sham-NC group, Sham-HIE group significantly optimized bone microstructure and enhanced mechanical properties of femur, and LIPUS80-HIE further enhanced the improvement effect on bone. The mechanisms may be related to activate Wnt/β-catenin signal pathway and then up-regulate the protein expression of Runx2 and VEGF, the key factors of osteogenesis and angiogenesis. CONCLUSION LIPUS could augment the skeletal benefits of high-intensity exercise through Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Guo
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
- School of Physical Education, Bohai University, Jinzhou, 121013, China
| | - Keyi Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yaling Zhou
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Tianpei Wu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
6
|
Shi H, Zhao Z, Jiang W, Zhu P, Zhou N, Huang X. A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Front Cell Dev Biol 2022; 10:878697. [PMID: 35686054 PMCID: PMC9173585 DOI: 10.3389/fcell.2022.878697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
In addition to its important transport functions, the skeletal system is involved in complex biological activities for the regulation of blood vessels. Endothelial progenitor cells (EPCs), as stem cells of endothelial cells (ECs), possess an effective proliferative capacity and a powerful angiogenic capacity prior to their differentiation. They demonstrate synergistic effects to promote bone regeneration and vascularization more effectively by co-culturing with multiple cells. EPCs demonstrate a significant therapeutic potential for the treatment of various bone diseases by secreting a combination of growth factors, regulating cellular functions, and promoting bone regeneration. In this review, we retrospect the definition and properties of EPCs, their interaction with mesenchymal stem cells, ECs, smooth muscle cells, and immune cells in bone regeneration, vascularization, and immunity, summarizing their mechanism of action and contribution to bone biology. Additionally, we generalized their role and potential mechanisms in the treatment of various bone diseases, possibly indicating their clinical application.
Collapse
Affiliation(s)
- Henglei Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Weidong Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| |
Collapse
|
7
|
Study of Trunk Morphological Imbalance and Rehabilitation Outcome of Adolescent Idiopathic Scoliosis with Intelligent Medicine. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6775674. [PMID: 35392047 PMCID: PMC8983207 DOI: 10.1155/2022/6775674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
In recent years, artificial intelligence technology has been widely used in various medical fields to effectively assist physicians in patient treatment operations. In this paper, we design and implement a deep biblical network model-based orthotic design for adolescent idiopathic scoliosis to quickly and effectively assist physicians in designing orthotics for adolescent idiopathic scoliosis. A fuzzy set is used to express the knowledge of adolescent idiopathic scoliosis orthosis design, and a fuzzy reasoning based on the confidence level is implemented. Finally, the efficiency of the design of adolescent idiopathic scoliosis orthoses was improved by 50% through two cases of adolescent idiopathic scoliosis patients, and the deviation rate between the inference value and the actual operation value of the domain experts was less than 10%.
Collapse
|
8
|
Kang Y, Liu C, Wang M, Wang C, Yan YG, Wang WJ. A novel rat model of interbody fusion based on anterior lumbar corpectomy and fusion (ALCF). BMC Musculoskelet Disord 2021; 22:965. [PMID: 34794408 PMCID: PMC8603486 DOI: 10.1186/s12891-021-04822-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Rats have been widely used as experimental animals when performing fundamental research because they are economical, rapidly reproducing, and heal quickly. While the rat interbody fusion model has been applied in basic studies, existing rat models generally have shortcomings, such as insufficiently simulating clinical surgery. The purpose of this study was to develop a novel rat model of interbody fusion which more closely represents clinical surgery. METHODS The internal fixation was designed based on physical measurements of the rats' lumbar spine. Then, ten rats divided into two groups (A and B) underwent anterior lumbar corpectomy and fusion of the L5 vertebrae. Groups A and B were sacrificed four and 8 weeks post-surgery, respectively. Micro-CT and histological examination were used to evaluate the model. Fusion rate, bone volume fraction (BV/TV), trabecular bone number (Tb.N), trabecular bone thickness (Tb.Th), and the area ratio of newly formed bone (NB) were calculated for quantitative analysis. RESULTS Based on the L5 body dimensions of individual rats, 3D-printed titanium cage of the appropriate size were printed. The operations were successfully completed in all ten rats, and X-ray confirmed that internal fixation was good without migration. Micro-CT suggested that fusion rates in group B (100%) were greater than group A (40%, P < 0.05). The BV/TV (B: 42.20 ± 10.50 vs. A: 29.02 ± 3.25, P < 0.05) and Tb.N (B: 4.66 ± 1.23 vs. A: 1.97 ± 0.40, P < 0.05) were greater in group B than A, and the Tb.Th in group B was lower than group A (B: 0.10 ± 0.04 vs. A: 0.15 ± 0.02, P < 0.05). Histomorphometry results demonstrated that the area ratio of NB in group B were greater than group A (B: 35.72 ± 12.80 vs. A: 12.36 ± 16.93, P < 0.05). CONCLUSION A rat interbody fusion model based on anterior lumbar corpectomy and fusion has successfully been constructed and verified. It could provide a new choice for fundamental research using animal models of spinal fusion.
Collapse
Affiliation(s)
- Yu Kang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Orthopedicsity, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Chao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ming Wang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Cheng Wang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Yi-Guo Yan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wen-Jun Wang
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
9
|
Cottrill E, Downey M, Pennington Z, Ehresman J, Schilling A, Downey M, Hersh A, Theodore N, Sciubba DM, Witham T. Low-Intensity Pulsed Ultrasound as a Potential Adjuvant Therapy to Promote Spinal Fusion: Systematic Review and Meta-analysis of the Available Data. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2005-2017. [PMID: 33400315 DOI: 10.1002/jum.15587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/27/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Despite extensive research, nonunion continues to affect a nontrivial proportion of patients undergoing spinal fusion. Recently, preclinical studies have suggested that low-intensity pulsed ultrasound (LIPUS) may increase rates of spinal fusion. In this study, we summarized the available in vivo literature evaluating the effect of LIPUS on spinal fusion and performed a meta-analysis of the available data to estimate the degree to which LIPUS may mediate higher fusion rates. Across 13 preclinical studies, LIPUS was associated with a 9-fold increase in the odds of successful spinal fusion. Future studies are necessary to establish the benefit of LIPUS on spinal fusion in clinical populations.
Collapse
Affiliation(s)
- Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Max Downey
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff Ehresman
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Schilling
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madison Downey
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Timothy Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
The Cellular Choreography of Osteoblast Angiotropism in Bone Development and Homeostasis. Int J Mol Sci 2021; 22:ijms22147253. [PMID: 34298886 PMCID: PMC8305002 DOI: 10.3390/ijms22147253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Interaction between endothelial cells and osteoblasts is essential for bone development and homeostasis. This process is mediated in large part by osteoblast angiotropism, the migration of osteoblasts alongside blood vessels, which is crucial for the homing of osteoblasts to sites of bone formation during embryogenesis and in mature bones during remodeling and repair. Specialized bone endothelial cells that form "type H" capillaries have emerged as key interaction partners of osteoblasts, regulating osteoblast differentiation and maturation and ensuring their migration towards newly forming trabecular bone areas. Recent revolutions in high-resolution imaging methodologies for bone as well as single cell and RNA sequencing technologies have enabled the identification of some of the signaling pathways and molecular interactions that underpin this regulatory relationship. Similarly, the intercellular cross talk between endothelial cells and entombed osteocytes that is essential for bone formation, repair, and maintenance are beginning to be uncovered. This is a relatively new area of research that has, until recently, been hampered by a lack of appropriate analysis tools. Now that these tools are available, greater understanding of the molecular relationships between these key cell types is expected to facilitate identification of new drug targets for diseases of bone formation and remodeling.
Collapse
|
11
|
Zhang J, Pan J, Jing W. Motivating role of type H vessels in bone regeneration. Cell Prolif 2020; 53:e12874. [PMID: 33448495 PMCID: PMC7507571 DOI: 10.1111/cpr.12874] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coupling between angiogenesis and osteogenesis has an important role in both normal bone injury repair and successful application of tissue‐engineered bone for bone defect repair. Type H blood vessels are specialized microvascular components that are closely related to the speed of bone healing. Interactions between type H endothelial cells and osteoblasts, and high expression of CD31 and EMCN render the environment surrounding these blood vessels rich in factors conducive to osteogenesis and promote the coupling of angiogenesis and osteogenesis. Type H vessels are mainly distributed in the metaphysis of bone and densely surrounded by Runx2+ and Osterix+ osteoprogenitors. Several other factors, including hypoxia‐inducible factor‐1α, Notch, platelet‐derived growth factor type BB, and slit guidance ligand 3 are involved in the coupling of type H vessel formation and osteogenesis. In this review, we summarize the identification and distribution of type H vessels and describe the mechanism for type H vessel‐mediated modulation of osteogenesis. Type H vessels provide new insights for detection of the molecular and cellular mechanisms that underlie the crosstalk between angiogenesis and osteogenesis. As a result, more feasible therapeutic approaches for treatment of bone defects by targeting type H vessels may be applied in the future.
Collapse
Affiliation(s)
- Jiankang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Liu W, Yang D, Wei X, Guo S, Wang N, Tang Z, Lu Y, Shen S, Shi L, Li X, Guo Z. Fabrication of piezoelectric porous BaTiO3 scaffold to repair large segmental bone defect in sheep. J Biomater Appl 2020; 35:544-552. [PMID: 32660363 DOI: 10.1177/0885328220942906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Porous titanium scaffolds can provide sufficient mechanical support and bone growth space for large segmental bone defect repair. However, they fail to restore the physiological environment of bone tissue. Barium titanate (BaTiO3) is considered a smart material that can produce an electric field in response to dynamic force. Low-intensity pulsed ultrasound stimulation (LIPUS), as a kind of micromechanical wave, can not only promote bone repair but also induce BaTiO3 to generate an electric field. In our studies, BaTiO3 was coated on porous Ti6Al4V and LIPUS was externally applied to observe the influence of the piezoelectric effect on the repair of large bone defects in vitro and in vivo. The results show that the piezoelectric effect can effectively promote the osteogenic differentiation of bone marrow stromal cells (BMSCs) in vitro as well as bone formation and growth into implants in vivo. This study provides an optional alternative to the conventional porous Ti6Al4V scaffold with enhanced osteogenesis and osseointegration for the repair of large bone defects.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Di Yang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinghui Wei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuo Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ning Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zheng Tang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yajie Lu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuning Shen
- Department of Orthopedics, Hospital of Peoples Liberate Army, Nanchang, China
| | - Lei Shi
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
13
|
Horne DA, Jones PD, Adams MS, Lotz JC, Diederich CJ. LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro: development and validation with bovine intervertebral disc cells. Biomed Phys Eng Express 2020; 6:035033. [PMID: 33438678 DOI: 10.1088/2057-1976/ab8b26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevation within target samples. Acoustic field simulations and hydrophone measurements demonstrated that by directing LIPUS energy at 0.5, 1.0, or 1.5 MHz operating frequency, with an acoustic standoff in the FF (125-350 mm), at 6-well CCP targets including an alginate ring spacer, uniform intensity distributions can be delivered. A custom FF LIPUS system was fabricated and demonstrated reduced acoustic intensity field heterogeneity within CCP-wells by up to 93% compared to common NF configurations. When bovine IVD cells were exposed to LIPUS (1.5 MHz, 200 μs pulse, 1 kHz pulse frequency, and ISPTA = 120 mW cm-2) using the FF system, sample heating was minimal (+0.81 °C) and collagen content was increased by 2.6-fold compared to the control and was equivalent to BMP-7 growth factor treatment. The results of this study demonstrate that FF LIPUS exposure increases collagen content in IVD cells and suggest that LIPUS is a potential noninvasive therapeutic for stimulating repair of tissues deep within the body such as the IVD.
Collapse
Affiliation(s)
- Devante A Horne
- Department of Orthopaedic Surgery, University of California, San Francisco, United States of America. The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, and University of California, San Francisco, United States of America. Thermal Therapy Research Group, Radiation Oncology Department, University of California, San Francisco, United States of America
| | | | | | | | | |
Collapse
|
14
|
Zhao Y, Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann N Y Acad Sci 2020; 1474:5-14. [PMID: 32242943 DOI: 10.1111/nyas.14348] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 02/05/2023]
Abstract
Blood vessels serve as a versatile transport system and play crucial roles in organ development, regeneration, and stem cell behavior. In the skeletal system, certain capillaries support perivascular stem cells or osteoprogenitor cells and thereby regulate bone formation. Recent studies reported that a specialized capillary subtype, termed type H vessels, is shown to couple angiogenesis and osteogenesis in rodents and humans. They can be distinguished by specific cell surface markers, as the endothelial cells in the metaphysis and endosteum highly express the junctional protein CD31 and the sialoglycoprotein endomucin. Here, we provide an overview of the role of type H vessels in bone homeostasis and summarize their linkage with various cytokines to control bone cell behavior and bone formation. We also discuss the potential clinical application for bone disorders by targeting these specific vessels according to their physiological and pathobiological settings.
Collapse
Affiliation(s)
- Yifan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Advances in the understanding of the role of type-H vessels in the pathogenesis of osteoporosis. Arch Osteoporos 2020; 15:5. [PMID: 31897773 DOI: 10.1007/s11657-019-0677-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Angiogenesis in the bone and its role in bone metabolic plays a fundamental role in the pathology of osteoporosis. Type-H vessels have been reported to exhibit distinct morphological, molecular, and functional properties. This review is aimed to illustrate the relationship between type-H vessels in the bone and bone metabolism. METHODS This manuscript reviews the articles on in vitro and in vivo experiments concerning the topic of type-H vessels and osteoporosis, and other researches in the area published by the author within the time frame from 2014 to 2019. RESULTS Current literatures have demonstrated that age-related loss of type-H vessels plays a critical role in the pathogenesis of osteoporosis. Impaired bone mass can be reserved by enhancing the formation of type-H vessels. Activation of the Notch and Hif-1α signaling pathway in bone tissue and exogenous PDGF-BB treatment increase the number of type-H vessels, along with the restoration of bone mass. The effects of osteoblasts and low-intensity pulsed ultrasound (LIPUS) on type-H vessels remain to be further studied. CONCLUSIONS These studies support unique functions for type-H vessels in the bone that may enable new therapeutic approaches to osteoporosis.
Collapse
|
16
|
Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics 2020; 10:426-436. [PMID: 31903130 PMCID: PMC6929606 DOI: 10.7150/thno.34126] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022] Open
Abstract
In the mammalian skeletal system, osteogenesis and angiogenesis are intimately linked during bone growth and regeneration in bone modeling and during bone homeostasis in bone remodeling. Recent studies have expanded our knowledge about the molecular and cellular mechanisms responsible for coupling angiogenesis and bone formation. Type H vessels, termed such because of high expression of Endomucin (Emcn) and CD31, have recently been identified and have the ability to induce bone formation. Factors including platelet-derived growth factor type BB (PDGF-BB), slit guidance ligand 3 (SLIT3), hypoxia-inducible factor 1-alpha (HIF-1α), Notch, and vascular endothelial growth factor (VEGF) are involved in the coupling of angiogenesis and osteogenesis. This review summarizes the current understanding of signaling pathways that regulate type H vessels and how type H vessels modulate osteogenesis. Further studies dissecting the regulation and function of type H vessels will provide new insights into the role of bone vasculature in the metabolism of the skeleton. We also discuss considerations for therapeutic approaches targeting type H vessels to promote fracture healing, prevent pathological bone loss, osteonecrosis, osteoarthritis, and bone metastases.
Collapse
Affiliation(s)
- Yi Peng
- Department of Orthopedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Song Wu
- Department of Orthopedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yusheng Li
- Department of Orthopedic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 41000, China
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Mirza YH, Teoh KH, Golding D, Wong JF, Nathdwarawala Y. Is there a role for low intensity pulsed ultrasound (LIPUS) in delayed or nonunion following arthrodesis in foot and ankle surgery? Foot Ankle Surg 2019; 25:842-848. [PMID: 30578158 DOI: 10.1016/j.fas.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Delayed union and nonunion following foot and ankle arthrodesis is a disabling complication for patients. There are no clinical studies looking at whether there is a role for use of low-intensity pulsed ultrasound (LIPUS) following this. The aim of this study is to investigate the efficacy of LIPUS in this cohort of patients in our centre. METHODS This was a retrospective observational study reviewing the use of LIPUS in patients who had arthrodesis of a number of different foot and ankle joints diagnosed with delayed or non-union. RESULTS Over a 5year period, 18 patients (71st MTPJ fusion, 2 subtalar joints, 2 triple fusion, 4 ankle fusions and 3 isolated midfoot joint) with radiologically confirmed delayed union, were treated with a standardised LIPUS therapy. Twelve patients (67%) were treated successfully with full radiological union confirmed. 4 patients required further surgical revision surgery while 2 were treated conservatively. Isolated small foot joints demonstrated a higher incidence of fusion (9/10; 90%) after LIPUS in comparison to larger or multiple joint arthrodesis (3/8; 38%). CONCLUSIONS There may be a role for the use of LIPUS as a treatment option in delayed union of isolated, small foot joint arthrodesis. However, we would not recommend its use in large or multiple F&A joint arthrodesis. Large multicentre series are required to confirm our findings.
Collapse
Affiliation(s)
- Yusuf H Mirza
- Hospital- Ysbyty Glan Clwyd, Bodelwyddan, Rhyl, United Kingdom; South Wales Orthopaedic Research Network/WelshBone, Department of Trauma and Orthopaedics, Princess of Wales Hospital, Coity Road, Bridgend, United Kingdom.
| | - Kar Hao Teoh
- South Wales Orthopaedic Research Network/WelshBone, Department of Trauma and Orthopaedics, Princess of Wales Hospital, Coity Road, Bridgend, United Kingdom; The Princess Alexandra Hospital, Harlow, Essex, United Kingdom
| | - David Golding
- Foot and Ankle Unit, Ysbyty Ystrad Fawr, Ystrad Fawr Way, Ystrad Mynach, Hengoed CF82 7EP, United Kingdom
| | - Jenny F Wong
- South Wales Orthopaedic Research Network/WelshBone, Department of Trauma and Orthopaedics, Princess of Wales Hospital, Coity Road, Bridgend, United Kingdom
| | - Yogesh Nathdwarawala
- Foot and Ankle Unit, Ysbyty Ystrad Fawr, Ystrad Fawr Way, Ystrad Mynach, Hengoed CF82 7EP, United Kingdom
| |
Collapse
|
18
|
Zhang ZC, Yang YL, Li B, Hu XC, Xu S, Wang F, Li M, Zhou XY, Wei XZ. Low-intensity pulsed ultrasound promotes spinal fusion by regulating macrophage polarization. Biomed Pharmacother 2019; 120:109499. [DOI: 10.1016/j.biopha.2019.109499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
|
19
|
Xie S, Jiang X, Wang R, Xie S, Hua Y, Zhou S, Yang Y, Zhang J. Low-intensity pulsed ultrasound promotes the proliferation of human bone mesenchymal stem cells by activating PI3K/AKt signaling pathways. J Cell Biochem 2019; 120:15823-15833. [PMID: 31090943 DOI: 10.1002/jcb.28853] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a promising therapy that is widely used in clinical applications and fundamental research. Previous research has shown that LIPUS exposure has a positive effect on stem cell proliferation. However, the impact of LIPUS exposure on human bone marrow mesenchymal stem cells (hBMSCs) remains unknown. In our study, the effect and mechanism of LIPUS exposure on the proliferation of hBMSCs were investigated, and the optimal parameters of LIPUS were determined. hBMSCs were obtained and identified by flow cytometry, and the proliferation of hBMSCs was measured using the Cell Counting Kit-8 assay to determine cell cycle and cell count. Expression levels of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKt) pathway proteins and cyclin D1 were determined by western blot analysis. Next, hBMSCs were successfully cultured and identified as multipotent mesenchymal stem cells. We found that LIPUS could promote the proliferation of hBMSCs when the exposure time was 5 or 10 minutes per day. Furthermore, 50 or 60 mW/cm2 LIPUS had a more significant effect on cell proliferation, but if cells were irradiated by LIPUS for 20 minutes once a day, an intensity of at least 50 mW/cm2 could markedly inhibit cell growth. Cell cycle analysis demonstrated that LIPUS treatment drives cells to enter S and G2/M phases from the G0/G1 phase. LIPUS exposure increased phosphorylation of PI3K/AKt and significantly upregulated expression of cyclin D1. However, these effects were inhibited when cells were treated with PI3K inhibitor (LY294002), which in turn reduced LIPUS-mediated proliferation of hBMSCs. These results suggest that LIPUS exposure may be involved in the proliferation of hBMSCs via activation of the PI3K/AKt signaling pathway and high expression of cyclin D1, and the intensity of 50 or 60 mW/cm2 and exposure time of 5 minutes were determined to be the optimal parameters for LIPUS exposure.
Collapse
Affiliation(s)
- Shucai Xie
- Department of Hepatobiliary Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, People's Republic of China
| | - Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Rui Wang
- Department of Hepatobiliary Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, People's Republic of China
| | - Shaowei Xie
- Department of Hepatobiliary Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, People's Republic of China
| | - Yongyong Hua
- Department of Hepatobiliary Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, People's Republic of China
| | - Shuai Zhou
- Department of Hepatobiliary Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, People's Republic of China
| | - Yijun Yang
- Department of Hepatobiliary Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, People's Republic of China
| | - Jianquan Zhang
- Department of Hepatobiliary Surgery, Haikou People's Hospital/Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
20
|
Xu XM, Xu TM, Wei YB, Gao XX, Sun JC, Wang Y, Kong QJ, Shi JG. Low-Intensity Pulsed Ultrasound Treatment Accelerates Angiogenesis by Activating YAP/TAZ in Human Umbilical Vein Endothelial Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2655-2661. [PMID: 30205992 DOI: 10.1016/j.ultrasmedbio.2018.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
As a non-invasive method, low-intensity pulsed ultrasound (LIPUS) can accelerate fracture healing. The mechanisms responsible for the enhanced fracture healing need to be studied further. Activation of YAP/TAZ, key mediators of the Hippo signaling pathway, could promote angiogenesis and vascular remodeling. The purpose of this study was to determine whether LIPUS treatment can activate YAP/TAZ. Human umbilical vein endothelial cells (HUVEC) were used. After LIPUS treatment, Western blot and immunofluorescence staining were used for YAP/TAZ activation. Small interfering RNA (siRNA) of YAP and short hairpin LATS1/2 (shLATS1/2) were used to check whether there is cross-talk with the Hippo pathway. The phosphorylated YAP (p-127 and p-397) protein increased more than 3-fold 0.5 h after LIPUS treatment (p < 0.05). TAZ protein increased 3.0-, 2.0- and 1.5-fold 0.5, 6 and 12 h after LIPUS treatment. We found that LIPUS treatment activates YAP/TAZ, which is translocated into the cell nucleus to activate target genes. This process can be inactivated by siYAP and activated by shLATS1/2. The cross-talk with the Hippo pathway can initiate angiogenesis so as to accelerate fracture healing by LIPUS.
Collapse
Affiliation(s)
- Xi-Ming Xu
- Department of Orthopedics, Spine Section, Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Tian-Ming Xu
- Department of Orthopedics, No. 455 Hospital of PLA, Shanghai, China
| | - Yi-Bo Wei
- Department of Stomatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Xiang Gao
- Department of Orthopedics, No. 455 Hospital of PLA, Shanghai, China
| | - Jing-Chuan Sun
- Department of Orthopedics, Spine Section, Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Yuan Wang
- Department of Orthopedics, Spine Section, Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Qing-Jie Kong
- Department of Orthopedics, Spine Section, Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Jian-Gang Shi
- Department of Orthopedics, Spine Section, Affiliated Changzheng Hospital of the Second Military Medical University, Shanghai, China.
| |
Collapse
|
21
|
Wu S, Xu X, Sun J, Zhang Y, Shi J, Xu T. Low-Intensity Pulsed Ultrasound Accelerates Traumatic Vertebral Fracture Healing by Coupling Proliferation of Type H Microvessels. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:1733-1742. [PMID: 29363151 DOI: 10.1002/jum.14525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/04/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Patients with traumatic vertebral fractures often have major associated postoperative morbidities such as healing failure and kyphosis. Low-intensity pulsed ultrasound (US) has been found to promote bone fracture healing. The objectives of our study were to determine whether low-intensity pulsed US could promote traumatic vertebral fracture healing and to explore its inner mechanisms. METHODS A rat model of traumatic vertebral fracture was created and treated with low-intensity pulsed US after surgery. At 4 weeks after surgery, radiographic, micro-computed tomography, and 3-dimensional reconstruction were used to assess the radiologic healing status; a histologic analysis was performed to evaluate the pathologic process and relationship between osteogenesis and type H microvessels. RESULTS Well-remodeled trabecular meshworks were found in the low-intensity pulsed US treatment group compared to the control group. Micro-computed tomography and 3-dimensional reconstruction revealed more and thicker trabeculae after low-intensity pulsed US treatment. Abundant chondrocytes, a newly formed bone marrow cavity, trabeculae, and microvessels were formed at the fracture sites. More osterix-positive osteoblasts were circling the newly formed bone meshwork and were situated at the interface of chondrocytes in the low-intensity pulsed US treatment group. Type H microvessels were spreading around the newly formed trabecula, bone marrow cavity, osteoblasts, and interface of chondrocytes, with a larger mean vascular density in the low-intensity pulsed US group. CONCLUSIONS Low-intensity pulsed US could accelerate traumatic vertebral fracture healing by temporally and spatially increasing chondrogenesis and osteoblast-induced osteogenesis coupled with angiogenesis of type H microvessels in a rat model of traumatic vertebral fracture.
Collapse
Affiliation(s)
- Suiyi Wu
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ximing Xu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yao Zhang
- Cadet Brigade, Second Military Medical University, Shanghai, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianming Xu
- 455 Hospital of Chinese People's Liberation Army, Shanghai, China
| |
Collapse
|
22
|
Occurrence of substance P and neurokinin receptors during the early phase of spinal fusion. Mol Med Rep 2018; 17:6691-6696. [PMID: 29512791 DOI: 10.3892/mmr.2018.8701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/02/2018] [Indexed: 11/05/2022] Open
Abstract
Spinal fusion is widely used for patients with spinal disorders; however, patients often suffer from back pain following fusion surgery. Substance P (SP) acts as a pain neurotransmitter via the sensory nerve afferent fibres up to the spinal cord, and is involved in the conduction and modulation of pain. The use of specific SP neurokinin receptor (NKR) antagonists may decrease postoperative pain. In the present study, the effects of alterations in the quantity of SP and NKRs in the early spinal fusion process were investigated. The results of the present study revealed that SP and NKRs began to appear 1 week post‑surgery in fibrous tissues. The abundance of SP and NKRs peaked at 3 weeks post‑surgery; the majority of SP and NKRs were distributed around the allograft and the new microvessels. In conclusion, SP and NKRs are involved in early spinal fusion, a finding that may facilitate the development of novel strategies to promote spinal fusion from a neurogenesis perspective.
Collapse
|
23
|
Zhou XY, Wu SY, Zhang ZC, Wang F, Yang YL, Li M, Wei XZ. Low-intensity pulsed ultrasound promotes endothelial cell-mediated osteogenesis in a conditioned medium coculture system with osteoblasts. Medicine (Baltimore) 2017; 96:e8397. [PMID: 29069035 PMCID: PMC5671868 DOI: 10.1097/md.0000000000008397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Angiogenesis plays an important role during bone regeneration. Low-intensity pulsed ultrasound (LIPUS) has been proven to accelerate the process of bone fracture healing. However, the mechanism of the effect of LIPUS on bone regeneration is still unclear. In the present study, we used human umbilical vein endothelial cell (HUVEC) and human osteosarcoma cell (MG-63) to investigate the effect of LIPUS stimulation in an endothelial cell-osteoblast coculture system. At the same time, we used transwell and in vitro angiogenesis assay to observe how LIPUS affects endothelial cells. The results demonstrated that LIPUS could significantly increase the migratory ability and promote tube formation in angiogenesis of HUVECs. Furthermore, LIPUS could significantly elevate the expression of osteogenesis-related genes on osteoblasts such as Runt-related transcription factor 2, alkaline phosphatase, Osteorix, and Cyclin-D1, indicating the pro-osteogenesis effect of LIPUS in our coculture system. In conclusion, endothelial cell is involved in LIPUS-accelerated bone regeneration, the positive effect of LIPUS may be transferred via endothelial cells surrounding fracture healing site.
Collapse
Affiliation(s)
- Xiao-Yi Zhou
- Department of Orthopedic Surgery, Changhai Hospital
| | - Sui-Yi Wu
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | | | - Fei Wang
- Department of Orthopedic Surgery, Changhai Hospital
| | - Yi-Lin Yang
- Department of Orthopedic Surgery, Changhai Hospital
| | - Ming Li
- Department of Orthopedic Surgery, Changhai Hospital
| | | |
Collapse
|