1
|
Azargoonjahromi A. Serotonin enhances neurogenesis biomarkers, hippocampal volumes, and cognitive functions in Alzheimer's disease. Mol Brain 2024; 17:93. [PMID: 39696587 DOI: 10.1186/s13041-024-01169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics. Gray matter volume changes were analyzed using Voxel-Based Morphometry (VBM) with MRI. Statistical analyses employed Pearson correlation, bootstrap methods, and FDR-adjusted p-values (< 0.05 or < 0.01) via the Benjamini-Hochberg procedure, alongside nonparametric methods. The analysis found a positive correlation between serotonin levels and total brain (r = 0.229, p = 0.023) and hippocampal volumes (right: r = 0.186, p = 0.032; left: r = 0.210, p = 0.023), even after FDR adjustment. Higher serotonin levels were linked to better cognitive function (negative correlation with CDR-SB, r = -0.230, p = 0.024). Notably, serotonin levels were positively correlated with BMP-6 (r = 0.173, p = 0.047), CNTF (r = 0.216, p = 0.013), FGF-4 (r = 0.176, p = 0.043), and MMP-1 (r = 0.202, p = 0.019), suggesting a link between serotonin and neurogenesis and neuroplasticity. However, after adjusting for multiple comparisons and controlling for confounding factors such as age, gender, education, and APOE genotypes (APOE3 and APOE4), none of the correlations of biomarkers remained statistically significant. In conclusion, increased serotonin levels are associated with improved cognitive function and increased brain volume. However, associations with CNTF, FGF-4, BMP-6, and MMP-1 were not statistically significant after adjustments, highlighting the complexity of serotonin's role in AD and the need for further research.
Collapse
|
2
|
Hu L, Qiu MJ, Fan WJ, Wang WE, Liu SH, Liu XQ, Liu SW, Shen ZJ, Zheng YF, Liu GC, Jia ZY, Wang XQ, Fang N. Characterization of GABAergic marker expression in prefrontal cortex in dexamethasone induced depression/anxiety model. Front Endocrinol (Lausanne) 2024; 15:1433026. [PMID: 39483976 PMCID: PMC11524930 DOI: 10.3389/fendo.2024.1433026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background The pivotal responsibility of GABAergic interneurons is inhibitory neurotransmission; in this way, their significance lies in regulating the maintenance of excitation/inhibition (E/I) balance in cortical circuits. An abundance of glucocorticoids (GCs) exposure results in a disorder of GABAergic interneurons in the prefrontal cortex (PFC); the relationship between this status and an enhanced vulnerability to neuropsychiatric ailments, like depression and anxiety, has been identified, but this connection is still poorly understood because systematic and comprehensive research is lacking. Here, we aim to investigate the impact of dexamethasone (DEX, a GC receptor agonist) on GABAergic interneurons in the PFC of eight-week-old adult male mice. Methods A double-blind study was conducted where thirty-two mice were treated subcutaneously either saline or DEX (0.2 mg/10 ml per kg of body weight) dissolved in saline daily for 21 days. Weight measurements were taken at five-day intervals to assess the emotional changes in mice as well as the response to DEX treatment. Following the 21-day regimen of DEX injections, mice underwent examinations for depression/anxiety-like behaviours and GABAergic marker expression in PFC. Results In a depression/anxiety model generated by chronic DEX treatment, we found that our DEX procedure did trigger depression/anxiety-like behaviors in mice. Furthermore, DEX treatment reduced the expression levels of a GABA-synthesizing enzyme (GAD67), Reelin, calcium-binding proteins (parvalbumin and calretinin) and neuropeptides co-expressed in GABAergic neurons (somatostatin, neuropeptide Y and vasoactive intestinal peptide) in the PFC were reduced after 21 days of DEX treatment; these reductions were accompanied by decreases in brain size and cerebral cortex thickness. Conclusion Our results indicate that a reduction in the number of GABAergic interneurons may result in deficiencies in cortical inhibitory neurotransmission, potentially causing an E/I imbalance in the PFC; this insight suggests a potential breakthrough strategy for the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Ling Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ming-Jing Qiu
- Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Juan Fan
- Luohe Medical College, Henan Province Engineering Research Center of Nutrition and Health, Luohe, China
| | - Wan-Er Wang
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Shao-Hao Liu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xiao-Qi Liu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Shi-Wei Liu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Ze-Jin Shen
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Ya-Fei Zheng
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Guang-Chao Liu
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Zi-Yi Jia
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xiao-Qing Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Na Fang
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Han S, Wang J, Zhang W, Tian X. Chronic Pain-Related Cognitive Deficits: Preclinical Insights into Molecular, Cellular, and Circuit Mechanisms. Mol Neurobiol 2024; 61:8123-8143. [PMID: 38470516 DOI: 10.1007/s12035-024-04073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Cognitive impairment is a common comorbidity of chronic pain, significantly disrupting patients' quality of life. Despite this comorbidity being clinically recognized, the underlying neuropathological mechanisms remain unclear. Recent preclinical studies have focused on the fundamental mechanisms underlying the coexistence of chronic pain and cognitive decline. Pain chronification is accompanied by structural and functional changes in the neural substrate of cognition. Based on the developments in electrophysiology and optogenetics/chemogenetics, we summarized the relevant neural circuits involved in pain-induced cognitive impairment, as well as changes in connectivity and function in brain regions. We then present the cellular and molecular alternations related to pain-induced cognitive impairment in preclinical studies, mainly including modifications in neuronal excitability and structure, synaptic plasticity, glial cells and cytokines, neurotransmitters and other neurochemicals, and the gut-brain axis. Finally, we also discussed the potential treatment strategies and future research directions.
Collapse
Affiliation(s)
- Siyi Han
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Xuebi Tian
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Cheng J, Chen L, Zheng YN, Liu J, Zhang L, Zhang XM, Huang L, Yuan QL. Disfunction of dorsal raphe nucleus-hippocampus serotonergic-HTR3 transmission results in anxiety phenotype of Neuroplastin 65-deficient mice. Acta Pharmacol Sin 2024; 45:1393-1405. [PMID: 38528118 PMCID: PMC11192762 DOI: 10.1038/s41401-024-01252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65-/-) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65-/- mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65-/- mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65-/- mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ling Chen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ya-Ni Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Juan Liu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Lei Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xiao-Ming Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Sun R, Yuan H, Wang J, Zhu K, Xiong Y, Zheng Y, Ni X, Huang M. Rehmanniae Radix Preparata ameliorates behavioral deficits and hippocampal neurodevelopmental abnormalities in ADHD rat model. Front Neurosci 2024; 18:1402056. [PMID: 38872946 PMCID: PMC11169733 DOI: 10.3389/fnins.2024.1402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives Abnormal hippocampal neurodevelopment, particularly in the dentate gyrus region, may be a key mechanism of attention-deficit/hyperactivity disorder (ADHD). In this study, we investigate the effect of the most commonly used Chinese herb for the treatment of ADHD, Rehmanniae Radix Preparata (RRP), on behavior and hippocampal neurodevelopment in spontaneously hypertensive rats (SHR). Methods Behavior tests, including Morris water maze (MWM) test, open field test (OFT) and elevated plus maze (EPM) test were performed to assess the effect of RRP on hyperactive and impulsive behavior. Hippocampal neurodevelopment was characterized by transmission electron microscopy, immunofluorescence, Golgi staining and Nissl staining approaches. Regulatory proteins such as Trkb, CDK5, FGF2/FGFR1 were examined by Western blot analysis. Results The results showed that RRP could effectively control the impulsive and spontaneous behavior and improve the spatial learning and memory ability. RRP significantly reduced neuronal loss and increased the number of hippocampal stem cells, and promoted synaptic plasticity. In addition, FGF/FGFR signaling was upregulated after RRP treatment. Conclusion RRP can effectively reduce impulsive and spontaneous behavior and ameliorate hippocampal neurodevelopmental abnormalities in ADHD rat model.
Collapse
Affiliation(s)
- Ruxin Sun
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Haixia Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Kanglin Zhu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yu Xiong
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yabei Zheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinqiang Ni
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Min Huang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
6
|
Martínez-Magaña JJ, Genis-Mendoza AD, Gallegos-Silva I, López-Narváez ML, Juárez-Rojop IE, Diaz-Zagoya JC, Tovilla-Zárate CA, González-Castro TB, Nicolini H, Solis-Medina A. Differential Alterations of Expression of the Serotoninergic System Genes and Mood-Related Behavior by Consumption of Aspartame or Potassium Acesulfame in Rats. Nutrients 2024; 16:490. [PMID: 38398814 PMCID: PMC10892058 DOI: 10.3390/nu16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The use of aspartame (ASP) and potassium acesulfame (ACK) to reduce weight gain is growing; however, contradictory effects in body mass index control and neurobiological alterations resulting from artificial sweeteners consumption have been reported. This study aimed to evaluate the impact of the chronic consumption of ASP and ACK on mood-related behavior and the brain expression of serotonin genes in male Wistar rats. Mood-related behaviors were evaluated using the swim-forced test and defensive burying at two time points: 45 days (juvenile) and 95 days (adult) postweaning. Additionally, the mRNA expression of three serotoninergic genes (Slc6a4, Htr1a, and Htr2c) was measured in the brain areas (prefrontal cortex, hippocampus, and hypothalamus) involved in controlling mood-related behaviors. In terms of mood-related behaviors, rats consuming ACK exhibited anxiety-like behavior only during the juvenile stage. In contrast, rats consuming ASP showed a reduction in depressive-like behavior during the juvenile stage but an increase in the adult stage. The expression of Slc6a4 mRNA increased in the hippocampus of rats consuming artificial sweeteners during the juvenile stage. In the adult stage, there was an upregulation in the relative expression of Slc6a4 and Htr1a in the hypothalamus, while Htr2c expression decreased in the hippocampus of rats consuming ASP. Chronic consumption of ASP and ACK appears to have differential effects during neurodevelopmental stages in mood-related behavior, potentially mediated by alterations in serotoninergic gene expression.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Ileana Gallegos-Silva
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - María Lilia López-Narváez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | - Juan C. Diaz-Zagoya
- División de Investigación, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Carlos Alfonso Tovilla-Zárate
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | | | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Anayelly Solis-Medina
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| |
Collapse
|
7
|
Zvozilova A, Reichova A, Mach M, Bakos J, Koprdova R. Effect of a New Substance with Pyridoindole Structure on Adult Neurogenesis, Shape of Neurons, and Behavioral Outcomes in a Chronic Mild Stress Model in Rats. Int J Mol Sci 2024; 25:845. [PMID: 38255918 PMCID: PMC10815319 DOI: 10.3390/ijms25020845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Despite an accumulating number of studies, treatments for depression are currently insufficient. Therefore, the search for new substances with antidepressant potential is very important. In this study, we hypothesized that treatment with a newly synthesized pyridoindole derivative compound SMe1EC2M3 would result in protective and antidepressant-like effects on behavioral outcomes and reverse the impaired adult hippocampal neurogenesis caused by chronic mild stress (CMS). We found that chronic administration of 5 mg/kg and 25 mg/kg SMe1EC2M3 to adult Sprague Dawley rats ameliorated the consequences of CMS on immobility and swimming time in a forced swim test. A slight sedative effect of the highest dose of SMe1EC2M3 in the nonstress group was observed in the open field. SMe1EC2M3 in the highest dose ameliorated CMS-induced decreases in the sucrose preference test. Administration of SMe1EC2M3 significantly increased SOX2-positive cells in the hippocampal dentate gyrus (DG) in CMS compared to control animals. A significant reduction in glial fibrillary acid protein (GFAP)-positive cells in the DG of CMS compared to control animals was observed. Administration of both 5 and 25 mg/kg SMe1EC2M3 significantly increased signal of GFAP-positive cells in the DG of CMS animals. No such effects of SMe1EC2M3 were observed in the cornu ammonis hippocampal area. Additionally, we found that incubation of primary hippocampal neurons in the presence of 1.50 µM SMe1EC2M3 significantly stimulated the length of neurites. Overall, we found that the negative effects of CMS on depression-like behavior are partially reduced by the administration of SMe1EC2M3 and are associated with changes in hippocampal neurogenesis and neuronal differentiation. SMe1EC2M3 represents a potential drug candidate with positive neuroplastic effects and neurogenesis-associated effects in therapeutic approaches to depression.
Collapse
Affiliation(s)
- Alexandra Zvozilova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (A.Z.); (R.K.)
| | - Alexandra Reichova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia;
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (A.Z.); (R.K.)
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia;
- Institute of Physiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Romana Koprdova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (A.Z.); (R.K.)
| |
Collapse
|
8
|
Matar D, Serhan A, El Bilani S, Faraj RA, Hadi BA, Fakhoury M. Psychopharmacological Approaches for Neural Plasticity and Neurogenesis in Major Depressive Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:27-48. [PMID: 39261422 DOI: 10.1007/978-981-97-4402-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Major depressive disorder (MDD) is a mental health disorder associated with cognitive impairment, dysregulated appetite, fatigue, insomnia or hypersomnia, and severe mood changes that significantly impact the ability of the affected individual to perform day-to-day tasks, leading to suicide in the worst-case scenario. As MDD is becoming more prevalent, affecting roughly 300 million individuals worldwide, its treatment has become a major point of interest. Antidepressants acting as selective serotonin reuptake inhibitors (SSRIs) are currently used as the first line of treatment for MDD. Other antidepressants currently used for the treatment of MDD include the serotonin and norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs). However, although effective in alleviating symptoms of MDD, most antidepressants require weeks or even months of regular administration prior to eliciting a rational clinical effect. Owing to the strong evidence showing a relationship between neural plasticity, neurogenesis, and MDD, researchers have also looked at the possibility of using treatment modalities that target these processes in an attempt to improve clinical outcome. The overarching aim of this chapter is to highlight the role of neural plasticity and neurogenesis in the pathophysiology of MDD and discuss the most recently studied treatment strategies that target these processes by presenting supporting evidence from both animal and human studies.
Collapse
Affiliation(s)
- Dina Matar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Aya Serhan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sabah El Bilani
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Rashel Abi Faraj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Bayan Ali Hadi
- School of Pharmacy, Lebanese American University, Beirut, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
9
|
Luo X, Xu M, Guo W. Adult neurogenesis research in China. Dev Growth Differ 2023; 65:534-545. [PMID: 37899611 DOI: 10.1111/dgd.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Neural stem cells are multipotent stem cells that generate functional newborn neurons through a process called neurogenesis. Neurogenesis in the adult brain is tightly regulated and plays a pivotal role in the maintenance of brain function. Disruption of adult neurogenesis impairs cognitive function and is correlated with numerous neurologic disorders. Deciphering the mechanisms underlying adult neurogenesis not only advances our understanding of how the brain functions, but also offers new insight into neurologic diseases and potentially contributes to the development of effective treatments. The field of adult neurogenesis is experiencing significant growth in China. Chinese researchers have demonstrated a multitude of factors governing adult neurogenesis and revealed the underlying mechanisms of and correlations between adult neurogenesis and neurologic disorders. Here, we provide an overview of recent advancements in the field of adult neurogenesis due to Chinese scientists.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Tryptophan Hydroxylase-2-Mediated Serotonin Biosynthesis Suppresses Cell Reprogramming into Pluripotent State. Int J Mol Sci 2023; 24:ijms24054862. [PMID: 36902295 PMCID: PMC10003565 DOI: 10.3390/ijms24054862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The monoamine neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has important functions both in the neural system and during embryonic development in mammals. In this study, we set out to investigate whether and how endogenous serotonin affects reprogramming to pluripotency. As serotonin is synthesized from tryptophan by the rate limiting enzymes tryptophan hydroxylase-1 and -2 (TPH1 and TPH2), we have assessed the reprogramming of TPH1- and/or TPH2-deficient mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). The reprogramming of the double mutant MEFs showed a dramatic increase in the efficiency of iPSC generation. In contrast, ectopic expression of TPH2 alone or in conjunction with TPH1 reverted the rate of reprogramming of the double mutant MEFs to the wild-type level and besides, TPH2 overexpression significantly suppressed reprogramming of wild-type MEFs. Our data thus suggest a negative role of serotonin biosynthesis in the reprogramming of somatic cells to a pluripotent state.
Collapse
|
11
|
Abstract
The histories of targeted treatment trials in fragile X syndrome (FXS) are reviewed in animal studies and human trials. Advances in understanding the neurobiology of FXS have identified a number of pathways that are dysregulated in the absence of FMRP and are therefore pathways that can be targeted with new medication. The utilization of quantitative outcome measures to assess efficacy in multiple studies has improved the quality of more recent trials. Current treatment trials including the use of cannabidiol (CBD) topically and metformin orally have positive preliminary data, and both of these medications are available clinically. The use of the phosphodiesterase inhibitor (PDE4D), BPN1440, which raised the level of cAMP that is low in FXS has very promising results for improving cognition in adult males who underwent a controlled trial. There are many more targeted treatments that will undergo trials in FXS, so the future looks bright for new treatments.
Collapse
Affiliation(s)
- Devon Johnson
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Courtney Clark
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
12
|
Xu H, Ding Y, Qi X, Zhang ZJ, Su J. Ameliorated Neurogenesis Deficits in Dentate Gyrus May Underly the Pronounced Antidepressant Effect of TREK-1 Potassium Channel Blockade in Rats with Depressive-like Behavior. ACS Chem Neurosci 2022; 13:3068-3077. [PMID: 36269040 DOI: 10.1021/acschemneuro.2c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Depression is considered to be the most common mental disorder and is probed by several studies that chronic mild stress contributes to depression, and fortunately, most antidepressants ameliorate depressive-like behavior accompanied with reversed hippocampal neurogenesis defects. In our present study, we confirmed that different antidepressants repaired the stress-induced neuronal and behavioral deficits by modulating adult hippocampal neurogenesis. Antidepressant treatment restored the adult hippocampal neurodegeneration, which was impaired by chronic unpredicted mild stress displaying decreased proliferation and neuronal differentiation but increased apoptosis of newly formed neurons in dentate gyrus. Notably, sucrose preference ratio significantly correlated with both neuronal differentiation proportion and newborn apoptosis proportion, suggesting a mechanistic relationship between neurogenesis and behavior. Indeed, the neotype TREK-1 potassium channel blocker expressed an earlier and pronounced antidepressant manifestation compared to the traditional selective serotonin-reuptake inhibitors fluoxetine. We therefore conclude that the administration of TREK-1 potassium channel antagonism can reverse the depressive deficits caused by chronic stress quickly via regulation of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hua Xu
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou, Jiangsu 213200, China.,Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yingpeng Ding
- Department of Cardiology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou 213200, Jiangsu, China
| | - Xinyang Qi
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.,The Brain Cognition and Brain Disease Institute (BCBDI), CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jianhua Su
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People's Hospital, Changzhou, Jiangsu 213200, China
| |
Collapse
|
13
|
Hu L, Zhou BY, Yang CP, Lu DY, Tao YC, Chen L, Zhang L, Su JH, Huang Y, Song NN, Chen JY, Zhao L, Chen Y, He CH, Wang YB, Lang B, Ding YQ. Deletion of Schizophrenia Susceptibility Gene Ulk4 Leads to Abnormal Cognitive Behaviors via Akt-GSK-3 Signaling Pathway in Mice. Schizophr Bull 2022; 48:804-813. [PMID: 35522199 PMCID: PMC9212110 DOI: 10.1093/schbul/sbac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Despite of strenuous research in the past decades, the etiology of schizophrenia (SCZ) still remains incredibly controversial. Previous genetic analysis has uncovered a close association of Unc-51 like kinase 4 (ULK4), a family member of Unc-51-like serine/threonine kinase, with SCZ. However, animal behavior data which may connect Ulk4 deficiency with psychiatric disorders, particularly SCZ are still missing. METHODS We generated Emx1-Cre:Ulk4flox/flox conditional knockout (CKO) mice, in which Ulk4 was deleted in the excitatory neurons of cerebral cortex and hippocampus. RESULTS The cerebral cellular architecture was maintained but the spine density of pyramidal neurons was reduced in Ulk4 CKO mice. CKO mice showed deficits in the spatial and working memories and sensorimotor gating. Levels of p-Akt and p-GSK-3α/β were markedly reduced in the CKO mice indicating an elevation of GSK-3 signaling. Mechanistically, Ulk4 may regulate the GSK-3 signaling via putative protein complex comprising of two phosphatases, protein phosphatase 2A (PP2A) and 1α (PP1α). Indeed, the reduction of p-Akt and p-GSK-3α/β was rescued by administration of inhibitor acting on PP2A and PP1α in CKO mice. CONCLUSIONS Our data identified potential downstream signaling pathway of Ulk4, which plays important roles in the cognitive functions and when defective, may promote SCZ-like pathogenesis and behavioral phenotypes in mice.
Collapse
Affiliation(s)
| | | | - Cui-Ping Yang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Da-Yun Lu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin Chen
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Jun-Hui Su
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Li Zhao
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Yi Chen
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Centre for Mental Health, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Qiang Ding
- To whom correspondence should be addressed; Shanghai 200032, China; tel: +86 021 5423 7169, e-mail:
| |
Collapse
|
14
|
Wang YB, Song NN, Zhang L, Ma P, Chen JY, Huang Y, Hu L, Mao B, Ding YQ. Rnf220 is Implicated in the Dorsoventral Patterning of the Hindbrain Neural Tube in Mice. Front Cell Dev Biol 2022; 10:831365. [PMID: 35399523 PMCID: PMC8988044 DOI: 10.3389/fcell.2022.831365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Rnf220 is reported to regulate the patterning of the ventral spinal neural tube in mice. The brainstem has divergent connections with peripheral and central targets and contains unique internal neuronal groups, but the role of Rnf220 in the early development of the hindbrain has not been explored. In this study, Nestin-Cre-mediated conditional knockout (Rnf220Nestin CKO) mice were used to examine if Rnf220 is involved in the early morphogenesis of the hindbrain. Rnf220 showed restricted expression in the ventral half of ventricular zone (VZ) of the hindbrain at embryonic day (E) 10.5, and as development progressed, Rnf220-expressing cells were also present in the mantle zone outside the VZ at E12.5. In Rnf220Nestin CKO embryos, alterations of progenitor domains in the ventral VZ were observed at E10.5. There were significant reductions of the p1 and p2 domains shown by expression of Dbx1, Olig2, and Nkx6.1, accompanied by a ventral expansion of the Dbx1+ p0 domain and a dorsal expansion of the Nkx2.2+ p3 domain. Different from the case in the spinal cord, the Olig2+ pMN (progenitors of somatic motor neuron) domain shifted and expanded dorsally. Notably, the total range of the ventral VZ and the extent of the dorsal tube were unchanged. In addition, the post-mitotic cells derived from their corresponding progenitor domain, including oligodendrocyte precursor cells (OPCs) and serotonergic neurons (5-HTNs), were also changed in the same trend as the progenitor domains do in the CKO embryos at E12.5. In summary, our data suggest similar functions of Rnf220 in the hindbrain dorsoventral (DV) patterning as in the spinal cord with different effects on the pMN domain. Our work also reveals novel roles of Rnf220 in the development of 5-HTNs and OPCs.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Bingyu Mao, ; Yu-Qiang Ding,
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Bingyu Mao, ; Yu-Qiang Ding,
| |
Collapse
|
15
|
Sekul AE, Ikuta T. The human raphe-hippocampal tract and affective sensitivity: a probabilistic tractography study. Brain Imaging Behav 2021; 16:1106-1112. [PMID: 34755292 DOI: 10.1007/s11682-021-00549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
Serotonergic system plays critical roles in modulating affective control. The raphe nucleus has been known to be the origin of forebrain 5-HT afferents. Specifically, the Raphe-Hippocampal projection has been shown to modulate affective sensitivity in rodents. However, the human Raphe-Hippocampal tract is not well studied. We aimed to segment the Raphe-Hippocampal tract using probabilistic tractography on diffusion tensor imaging data from 502 subjects. The Raphe-Hippocampal tracts were successfully isolated in 464 individuals. There was a significant association between integrity of the Raphe-Hippocampal tract and affective sensitivity. To our best knowledge, this is the first study that isolated the human Raphe-Hippocampal tract. The integrity of the tract showed consistent characteristics with rodent findings, where affective sensitivity is modulated by the Raphe-Hippocampal projection. This study provides a technique to segment the human Raphe-Hippocampal tract and a translational knowledge that the tract in a human possesses consistent characteristics that have been found in rodent studies.
Collapse
Affiliation(s)
- Ashley E Sekul
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Toshikazu Ikuta
- Department of Communication Sciences, University of Mississippi, Oxford, MS, 38655, USA.
| |
Collapse
|
16
|
Novel Approaches Used to Examine and Control Neurogenesis in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22179608. [PMID: 34502516 PMCID: PMC8431772 DOI: 10.3390/ijms22179608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synaptic plasticity, deregulates intercellular communication, and supports the development of neuroinflammation, thereby providing propagation of pathological events leading to the establishment of a PD-specific phenotype. Multidirectional and ambiguous effects of α-synuclein on adult neurogenesis suggest that impaired neurogenesis should be considered as a target for the prevention of cell loss and restoration of neurological functions. Thus, stimulation of endogenous neurogenesis or cell-replacement therapy with stem cell-derived differentiated neurons raises new hopes for the development of effective and safe technologies for treating PD neurodegeneration. Given the rapid development of optogenetics, it is not surprising that this method has already been repeatedly tested in manipulating neurogenesis in vivo and in vitro via targeting stem or progenitor cells. However, niche astrocytes could also serve as promising candidates for controlling neuronal differentiation and improving the functional integration of newly formed neurons within the brain tissue. In this review, we mainly focus on current approaches to assess neurogenesis and prospects in the application of optogenetic protocols to restore the neurogenesis in Parkinson’s disease.
Collapse
|
17
|
Yu Z, Lin YT, Chen JC. Knockout of NPFFR2 Prevents LPS-Induced Depressive-Like Responses in Mice. Int J Mol Sci 2021; 22:ijms22147611. [PMID: 34299230 PMCID: PMC8306864 DOI: 10.3390/ijms22147611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
The precise neural mechanisms underlying the pathogenesis of depression are largely unknown, though stress-induced brain inflammation and serotonergic plasticity are thought to be centrally involved. Moreover, we previously demonstrated that neuropeptide FF receptor 2 (NPFFR2) overexpression provokes depressive-like behaviors in mice. Here, we assess whether NPFFR2 is involved in priming of depressive-like behaviors and downregulation of serotonergic 1A receptor (5HT1AR) after lipopolysaccharide (LPS) treatment. The forced swimming test (FST) and sucrose preference test (SPT) were used to quantify depressive-like phenotypes in wild-type (WT) and NPFFR2-knockout (KO) mice. A single dose of LPS (i.p. 1 mg/kg) readily caused increases in toll-like receptor 4 and tumor necrosis factor-α along with decreases in 5-HT1AR mRNA in the ventral hippocampus of WT mice. Furthermore, LPS treatment of WT mice increased immobility time in FST and decreased sucrose preference in SPT. In contrast, none of these effects were observed in NPFFR2-KO mice. While WT mice injected with lentiviral 5-HT1AR shRNA in the ventral hippocampus displayed an unaltered response after LPS challenge, LPS-challenged NPFFR2-KO mice displayed a profound decrease in sucrose preference when pretreated with 5-HT1AR shRNA. Taken together, these results suggest that NPFFR2 modulates LPS-induced depressive-like behavioral phenotypes by downregulating 5HT1AR in the ventral hippocampus.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Depression/genetics
- Depression/metabolism
- Disease Models, Animal
- Female
- Hippocampus/metabolism
- Lipopolysaccharides/adverse effects
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Toll-Like Receptor 4/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Zachary Yu
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ya-Tin Lin
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118700
| |
Collapse
|
18
|
Hu L, Chen Y, Yang CP, Huang Y, Song NN, Chen JY, Sun YL, Ding YQ, Lang B. Ulk4, a Newly Discovered Susceptibility Gene for Schizophrenia, Regulates Corticogenesis in Mice. Front Cell Dev Biol 2021; 9:645368. [PMID: 34235142 PMCID: PMC8255617 DOI: 10.3389/fcell.2021.645368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SCZ) is a chronic and severe mental disease that affects around 1% of the population. The precise etiology of SCZ still remains largely unknown, and no conclusive mechanisms are firmly established. Recent advances in epidemiological and clinical investigation support an overwhelmingly strong neurodevelopmental origin for SCZ. Here, we demonstrated that Unc-51-like kinase 4 (Ulk4), a novel risk factor for major mental disorders including schizophrenia, is involved in the corticogenesis. Deletion of Ulk4 in mice led to significantly thinner layers of II–III, and V in the cerebral cortex, which was confirmed in conditional Ulk4 deletion mice achieved by Cre-loxp strategy. This abnormality might be caused by decreased intermediate neural progenitors and increased apoptosis. Thus, our data suggest that Ulk4 manipulates the behaviors of neural progenitors during brain development and, when functionally defective, leads to the reduction of specific cortical layers. This anomaly may increase predisposition to a range of neurodevelopmental disorders, including SCZ.
Collapse
Affiliation(s)
- Ling Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Chen
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Cui-Ping Yang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jia-Yin Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Ling Sun
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.,Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Bing Lang
- National Clinical Research Centre for Mental Health, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Zhang Q, Liu F, Yan W, Wu Y, Wang M, Wei J, Wang S, Zhu X, Chai X, Zhao S. Prolonged maternal separation alters neurogenesis and synaptogenesis in postnatal dentate gyrus of mice. Bipolar Disord 2021; 23:376-390. [PMID: 32805776 DOI: 10.1111/bdi.12986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES As a common model for adverse early experience and depression, maternal separation (MS) is always used to investigate the psychological disease. Despite extensive and strong evidence verified the depression-like state induced by MS, little is known about the specific mechanism of MS. Therefore, the present study aimed to investigate the neurobiology mechanism of the MS-induced depression-like state. METHODS To verify the depression-like behaviors of offspring induced by MS, a series of behavioral tests were performed. Then, in vivo electroporation and three-dimensional reconstruction, combining with immunohistochemistry and BrdU labeling, were mainly used to explore the neurogenesis and synaptogenesis in postnatal dentate gyrus. RESULTS Prolonged MS indeed induced the depression-like behaviors of offspring in adulthood. Surprisingly, learning and memory were enhanced by prolonged MS. Further investigation indicated that prolonged MS inhibited the proliferation of neural stem cells, impaired the survival, and altered the fate decision of newborn cells, whereas the total length and terminal tips of dendrite, and the spine density, especially thin spine, were significantly increased in prolonged MS mice. CONCLUSIONS Our results elucidated that prolonged MS induced the depression-like state by impairing postnatal neurogenesis of dentate gyrus. Importantly, our results emphasized that prolonged MS increased the spine density, especially thin spine, by increasing the total length and number of terminal tips of dendrite, thereby enhancing learning and memory.
Collapse
Affiliation(s)
- Qianru Zhang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Feng Liu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Wenyong Yan
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Yongji Wu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Mengli Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Jingjing Wei
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Shuzhong Wang
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Shanting Zhao
- College of Veterinary Medicine, Department of Neurobiology, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
PTEN in prefrontal cortex is essential in regulating depression-like behaviors in mice. Transl Psychiatry 2021; 11:185. [PMID: 33771972 PMCID: PMC7998021 DOI: 10.1038/s41398-021-01312-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is an environmental risk factor for depression and causes neuronal atrophy in the prefrontal cortex (PFC) and other brain regions. It is still unclear about the molecular mechanism underlying the behavioral alterations and neuronal atrophy induced by chronic stress. We here report that phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a mediator for chronic stress-induced depression-like behaviors and neuronal atrophy in mice. One-month chronic restraint stress (CRS) up-regulated PTEN signaling pathway in the PFC of mice as indicated by increasing levels of PTEN, p-MEK, and p-ERK but decreasing levels of p-AKT. Over-expression of Pten in the PFC led to an increase of depression-like behaviors, whereas genetic inactivation or knockdown of Pten in the PFC prevented the CRS-induced depression-like behaviors. In addition, systemic administration of PTEN inhibitor was also able to prevent these behaviors. Cellular examination showed that Pten over-expression or the CRS treatment resulted in PFC neuron atrophy, and this atrophy was blocked by genetic inactivation of Pten or systemic administration of PTEN inhibitor. Furthermore, possible causal link between Pten and glucocorticoids was examined. In chronic dexamethasone (Dex, a glucocorticoid agonist) treatment-induced depression model, increased PTEN levels were observed, and depression-like behaviors and PFC neuron atrophy were attenuated by the administration of PTEN inhibitor. Our results indicate that PTEN serves as a key mediator in chronic stress-induced neuron atrophy as well as depression-like behaviors, providing molecular evidence supporting the synaptic plasticity theory of depression.
Collapse
|
21
|
Serotonin deficiency induced after brain maturation rescues consequences of early life adversity. Sci Rep 2021; 11:5368. [PMID: 33686115 PMCID: PMC7940624 DOI: 10.1038/s41598-021-83592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKO × MS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders.
Collapse
|
22
|
Inactivation of the GATA Cofactor ZFPM1 Results in Abnormal Development of Dorsal Raphe Serotonergic Neuron Subtypes and Increased Anxiety-Like Behavior. J Neurosci 2020; 40:8669-8682. [PMID: 33046550 DOI: 10.1523/jneurosci.2252-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Serotonergic neurons in the dorsal raphe (DR) nucleus are associated with several psychiatric disorders including depression and anxiety disorders, which often have a neurodevelopmental component. During embryonic development, GATA transcription factors GATA2 and GATA3 operate as serotonergic neuron fate selectors and regulate the differentiation of serotonergic neuron subtypes of DR. Here, we analyzed the requirement of GATA cofactor ZFPM1 in the development of serotonergic neurons using Zfpm1 conditional mouse mutants. Our results demonstrated that, unlike the GATA factors, ZFPM1 is not essential for the early differentiation of serotonergic precursors in the embryonic rhombomere 1. In contrast, in perinatal and adult male and female Zfpm1 mutants, a lateral subpopulation of DR neurons (ventrolateral part of the DR) was lost, whereas the number of serotonergic neurons in a medial subpopulation (dorsal region of the medial DR) had increased. Additionally, adult male and female Zfpm1 mutants had reduced serotonin concentration in rostral brain areas and displayed increased anxiety-like behavior. Interestingly, female Zfpm1 mutant mice showed elevated contextual fear memory that was abolished with chronic fluoxetine treatment. Altogether, these results demonstrate the importance of ZFPM1 for the development of DR serotonergic neuron subtypes involved in mood regulation. It also suggests that the neuronal fate selector function of GATAs is modulated by their cofactors to refine the differentiation of neuronal subtypes.SIGNIFICANCE STATEMENT Predisposition to anxiety disorders has both a neurodevelopmental and a genetic basis. One of the brainstem nuclei involved in the regulation of anxiety is the dorsal raphe, which contains different subtypes of serotonergic neurons. We show that inactivation of a transcriptional cofactor ZFPM1 in mice results in a developmental failure of laterally located dorsal raphe serotonergic neurons and changes in serotonergic innervation of rostral brain regions. This leads to elevated anxiety-like behavior and contextual fear memory, alleviated by chronic fluoxetine treatment. Our work contributes to understanding the neurodevelopmental mechanisms that may be disturbed in the anxiety disorder.
Collapse
|
23
|
Chen GY, Zhang S, Li CH, Qi CC, Wang YZ, Chen JY, Wang G, Ding YQ, Su CJ. Mediator Med23 Regulates Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2020; 8:699. [PMID: 32850819 PMCID: PMC7403405 DOI: 10.3389/fcell.2020.00699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian Mediator (Med) is a key regulator of gene expression by linking transcription factors to RNA polymerase II (Pol II) transcription machineries. The Mediator subunit 23 (Med23) is a member of the conserved Med protein complex and plays essential roles in diverse biological processes including adipogenesis, carcinogenesis, osteoblast differentiation, and T-cell activation. However, its potential functions in the nervous system remain unknown. We report here that Med23 is required for adult hippocampal neurogenesis in mouse. Deletion of Med23 in adult hippocampal neural stem cells (NSCs) was achieved in Nestin-CreER:Med23flox/flox mice by oral administration of tamoxifen. We found an increased number of proliferating NSCs shown by pulse BrdU-labeling and immunostaining of MCM2 and Ki67, which is possibly due to a reduction in cell cycle length, with unchanged GFAP+/Sox2+ NSCs and Tbr2+ progenitors. On the other hand, neuroblasts and immature neurons indicated by NeuroD and DCX were decreased in number in the dentate gyrus (DG) of Med23-deficient mice. In addition, these mice also displayed defective dendritic morphogenesis, as well as a deficiency in spatial and contextual fear memory. Gene ontology (GO) analysis of hippocampal NSCs revealed an enrichment in genes involved in cell proliferation, Pol II-associated transcription, Notch signaling pathway and apoptosis. These results demonstrate that Med23 plays roles in regulating adult brain neurogenesis and functions.
Collapse
Affiliation(s)
- Guo-Yan Chen
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Shuai Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Chong-Hui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong-Cong Qi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ya-Zhou Wang
- Department of Neurobiology, Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science, and Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Chang-Jun Su
- Department of Neurology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
24
|
Xu CJ, Wang JL, Jing-Pan, Min-Liao. Tph2 Genetic Ablation Contributes to Senile Plaque Load and Astrogliosis in APP/PS1 Mice. Curr Alzheimer Res 2020; 16:219-232. [PMID: 30827242 DOI: 10.2174/1567205016666190301110110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Amyloid-β (Aβ) accumulation plays a critical role in the pathogenesis of Alzheimer's disease (AD) lesions. Deficiency of Serotonin signaling recently has been linked to the increased Aβ level in transgenic mice and humans. In addition, tryptophan hydroxylase-2 (Tph2), a second tryptophan hydroxylase isoform, controls brain serotonin synthesis. However, it remains to be determined that whether Tph2 deficient APP/PS1mice affect the formation of Aβ plaques in vivo. METHODS Both quantitative and qualitative immunochemistry methods, as well as Congo red staining were used to evaluate the Aβ load and astrogliosis in these animals. RESULTS we studied alterations of cortex and hippocampus in astrocytes and senile plaques by Tph2 conditional knockout (Tph2 CKO) AD mice from 6-10 months of age. Using Congo red staining and immunostained with Aβ antibody, we showed that plaques load or plaques numbers significantly increased in Tph2 CKO experimental groups at 8 to 10 months old, compared to wild type (WT) group, respectively. Using GFAP+ astrocytes immunofluorescence method, we found that the density of GFAP+ astrocytes markedly enhanced in Tph2 CKO at 10 months. We showed Aβ plaques co-localized autophagic markers LC3 and p62. Nevertheless, we did not observe any co-localization between GFAP+ astrocytes and autophagic markers, but detected the co-localization between βIII-tubulin+ neurons and autophagic markers. CONCLUSION Overall, our work provides the preliminary evidence in vivo that Tph2 plays a role in amyloid plaques generation.
Collapse
Affiliation(s)
- Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jun-Ling Wang
- Centre for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jing-Pan
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Min-Liao
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
25
|
Li X, Sun X, Sun J, Zu Y, Zhao S, Sun X, Li L, Zhang X, Wang W, Liang Y, Wang W, Liang X, Sun C, Guan X, Tang M. Depressive-like state sensitizes 5-HT 1A and 5-HT 1B auto-receptors in the dorsal raphe nucleus sub-system. Behav Brain Res 2020; 389:112618. [PMID: 32360167 DOI: 10.1016/j.bbr.2020.112618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Dorsal raphe (DR) and median raphe (MR) 5-HT neurons are two distinct sub-systems known to be regulated by 5-HT1A and 5-HT1B auto-receptors. Whether the auto-receptors in each sub-system are functionally altered in depressive-like state remains unknown. The present study is aimed to study a specific circuit (DR-ventral hippocampus and MR-dorsal hippocampus) within each sub-system to investigate changes in receptor sensitivity in the pathogenesis of depression. A mouse model of depression was developed through the social defeat paradigm, and was then treated with fluoxetine (FLX). 5-HT1A auto-receptor in the neuronal cell body (DR or MR) and 5-HT1B auto-receptor in the axonal terminal (ventral or dorsal hippocampus) were directly targeted by local perfusion of antagonists (5-HT1A: WAY100635; 5-HT1B: GR127935) through reverse microdialysis. Time courses of dialysate 5-HT measured at the axonal terminal were subsequently determined for each circuit. At baseline, 5-HT1A and 5-HT1B antagonists dose-dependently increased dialysate 5-HT, with sub-circuit specificity. In the depressive-like state, greater increases in dialysate 5-HT were observed only in the DR-ventral hippocampus circuit following local delivery of both antagonists, which were then fully restored following the FLX treatment. In contrast, no changes were observed in the MR-dorsal hippocampus circuit. Our results demonstrate differential changes in sensitivities of 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus and MR-dorsal hippocampus circuits. 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus circuit are sensitized in the depressive-like state. Taken together, these results suggest that the DR sub-system maybe the neural substrate mediating depressive phenotypes.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xianan Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jing Sun
- Department of Outpatient, Rocket Force University of Engineering Clinic Affiliated to 986 Hospital of Air Force, Xi'an, 710043, China
| | - Yi Zu
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women's and Children's Hospital, Shenyang, 110011, China
| | - Lu Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xinjing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuezhu Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chi Sun
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Xue Guan
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
26
|
Foltran RB, Stefani KM, Höcht C, Diaz SL. Neurochemical, Behavioral, and Neurogenic Validation of a Hyposerotonergic Animal Model by Voluntary Oral Consumption of para-Chlorophenylalanine. ACS Chem Neurosci 2020; 11:952-959. [PMID: 32107912 DOI: 10.1021/acschemneuro.9b00687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The inhibitor of tryptophan hydroxylase, para-chlorophenylalanine (PCPA), has been classically employed as a pharmacological tool to deplete serotonin (5-HT) in animal models and to evaluate whether this neurotransmitter is involved in the action of pharmacological compounds. PCPA is usually administrated by intraperitoneal (ip) injections, which are stressful and painful. To avoid ip injections, we designed and validated a protocol for PCPA oral administration. C57BL/6 elite male mice received PCPA during 7 days either ip or by giving the drug inside jelly cubes at an estimated dose of 500 mg/kg on days 1 and 2 and 250 mg/kg for the rest of the treatment. 5-HT levels decreased by 85% and 55% in the hippocampus of mice treated with oral or ip PCPA, respectively, whereas in the prefrontal cortex, 5-HT levels decreased by 65% (oral) and 50% (ip). Behavioral tests, like the forced swimming test (FST), the nestlet shredding test (NST), and the marble burying test (MBT), were performed. In the FST, mice received fluoxetine ip 30 min before the test. In mice with oral PCPA treatment, fluoxetine did not induce significant reductions of immobility, indicating that reduction of 5-HT levels was effective. No effect of ip or oral 5-HT depletion was observed in the NST nor in the MBT. In a second experiment, mice received oral PCPA for 8 weeks: again, serotonin levels were significantly decreased in both hippocampus and cortex, and effects on hippocampal neurogenesis replicated previous observations in hyposerotonergic mice. Therefore, neurochemical, behavioral, and neurogenic results allow us to validate this refined protocol for voluntary oral consumption of PCPA.
Collapse
Affiliation(s)
- Rocío B. Foltran
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, CONICET-UBA, Paraguay 2155,
3rd floor, C1121ABG Buenos Aires, Argentina
| | - Karen M. Stefani
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, CONICET-UBA, Paraguay 2155,
3rd floor, C1121ABG Buenos Aires, Argentina
| | - Christian Höcht
- Cátedra de Farmacología, Fac. de Farmacia y Bioquímica, UBA. Junin 956, 5th
floor, C1113AAD Buenos Aires, Argentina
| | - Silvina L. Diaz
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, CONICET-UBA, Paraguay 2155,
3rd floor, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
27
|
Jiang L, Wang L, Yin Y, Huo M, Liu C, Zhou Q, Yu D, Xu L, Mao R. Spaced Training Enhances Contextual Fear Memory via Activating Hippocampal 5-HT2A Receptors. Front Mol Neurosci 2020; 12:317. [PMID: 32038159 PMCID: PMC6992649 DOI: 10.3389/fnmol.2019.00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
Spaced training is robustly superior to massed training, which is a well-documented phenomenon in humans and animals. However, the mechanisms underlying the spacing effect still remain unclear. We have reported previously that spacing training exerts memory-enhancing effects by inhibiting forgetting via decreasing hippocampal Rac1 activity. Here, using contextual fear conditioning in rat, we found that spaced but not massed training increased hippocampal 5-HT2A receptors' expression. Furthermore, hippocampal administration of 5-HT2A receptor antagonist MDL11939 before spaced training blocked the enhanced memory, while hippocampal administration of 5-HT2A receptor agonist TCB-2 before massed training promoted the memory. Moreover, MDL11939 activated hippocampal Rac1, while TCB-2 decreased hippocampal Rac1 activity in naïve rats. These results indicated the possibility of interaction between 5-HT2A receptors and Rac1, which was demonstrated by co-immunoprecipitation experiments. Our study first demonstrates that activation of hippocampal 5-HT2A is a mechanism underlying the spacing effect, and forgetting related molecular Rac1 is engaged in this process through interacting with 5-HT2A receptors, which suggest a promising strategy to modulate abnormal learning in cognitive disorders.
Collapse
Affiliation(s)
- Lizhu Jiang
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Department of Central Laboratory, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Liping Wang
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Yan Yin
- Department of Central Laboratory, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Mengke Huo
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
| | - Chao Liu
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qixin Zhou
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Dafu Yu
- Department of Nuclear Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lin Xu
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Rongrong Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
28
|
Hippocampal Neurogenesis Is Enhanced in Adult Tau Deficient Mice. Cells 2020; 9:cells9010210. [PMID: 31947657 PMCID: PMC7016791 DOI: 10.3390/cells9010210] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Tau dysfunction is common in several neurodegenerative diseases including Alzheimer’s disease (AD) and frontotemporal dementia (FTD). Affective symptoms have often been associated with aberrant tau pathology and are commonly comorbid in patients with tauopathies, indicating a connection between tau functioning and mechanisms of depression. The current study investigated depression-like behavior in Mapt−/− mice, which contain a targeted deletion of the gene coding for tau. We show that 6-month Mapt−/− mice are resistant to depressive behaviors, as evidenced by decreased immobility time in the forced swim and tail suspension tests, as well as increased escape behavior in a learned helplessness task. Since depression has also been linked to deficient adult neurogenesis, we measured neurogenesis in the hippocampal dentate gyrus and subventricular zone using 5-bromo-2-deoxyuridine (BrdU) labeling. We found that neurogenesis is increased in the dentate gyrus of 14-month-old Mapt−/− brains compared to wild type, providing a potential mechanism for their behavioral phenotypes. In addition to the hippocampus, an upregulation of proteins involved in neurogenesis was observed in the frontal cortex and amygdala of the Mapt−/− mice using proteomic mass spectrometry. All together, these findings suggest that tau may have a role in the depressive symptoms observed in many neurodegenerative diseases and identify tau as a potential molecular target for treating depression.
Collapse
|
29
|
Foltran RB, Stefani KM, Bonafina A, Resasco A, Diaz SL. Differential Hippocampal Expression of BDNF Isoforms and Their Receptors Under Diverse Configurations of the Serotonergic System in a Mice Model of Increased Neuronal Survival. Front Cell Neurosci 2019; 13:384. [PMID: 31555094 PMCID: PMC6712164 DOI: 10.3389/fncel.2019.00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Neurotrophic factors are relevant regulators of the neurogenic process at different levels. In particular, the brain-derived neurotrophic factor, BDNF, is highly expressed in the hippocampus (HC) of rodents and participates in the control of neuronal proliferation, and survival in the dentate gyrus (DG). Likewise, serotonin is also involved in the regulation of neurogenesis, though its role is apparently more complex. Indeed, both enhancement of serotonin neurotransmission as well as serotonin depletion, paradoxically increase neuronal survival in the HC of mice. In this study, we analyzed the protein expression of the BDNF isoforms, i.e., pro- and mature-BDNF, and their respective receptors p75 and TrkB, in the HC of mice chronically treated with para-chloro-phenyl-alanine (PCPA), an inhibitor of serotonin synthesis. The same analysis was conducted in hyposerotonergic mice with concomitant administration of the 5-HT1A receptor agonist, 8-Hydroxy-2-(di-n- propylamino) tetralin (8-OH-DPAT). Increased expression of p75 receptor with decreased expression of pro-BDNF was observed after chronic PCPA. Seven-day treatment with 8-OH-DPAT reestablished the expression of pro-BDNF modified by PCPA, and induced an increase in the expression of p75 receptor. It has been demonstrated that PCPA-treated mice have higher number of immature neurons in the HC. Given that immature neurons participate in the pattern separation process, the object pattern separation test was conducted. A better performance of hyposerotonergic mice was not confirmed in this assay. Altogether, our results show that molecules in the BDNF signaling pathway are differentially expressed under diverse configurations of the serotonergic system, allowing for fine-tuning of the neurogenic process.
Collapse
Affiliation(s)
- Rocío Beatriz Foltran
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karen Melany Stefani
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Bonafina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Resasco
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Laura Diaz
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Pratelli M, Pasqualetti M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: Learning from Tph2 genetic models. Biochimie 2019; 161:3-14. [DOI: 10.1016/j.biochi.2018.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/24/2018] [Indexed: 01/04/2023]
|
31
|
Li H, Liu Y, Gao X, Liu L, Amuti S, Wu D, Jiang F, Huang L, Wang G, Zeng J, Ma B, Yuan Q. Neuroplastin 65 modulates anxiety- and depression-like behavior likely through adult hippocampal neurogenesis and central 5-HT activity. FEBS J 2019; 286:3401-3415. [PMID: 31034748 DOI: 10.1111/febs.14865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/07/2019] [Accepted: 04/25/2019] [Indexed: 01/02/2023]
Abstract
Neuroplastin 65 (Np65) is a brain-specific cell adhesion molecule that is highly expressed in the hippocampus, amygdala, and cortex, regions of the brain that are associated with memory and emotions. However, the role of Np65 in regulation of emotional behavior is still unclear. In the present study, we show that Np65 knock-out (Np65 KO) mice display enhanced anxiety-like behavior, a reduction in some aspects of depressive-like behaviors, and increased sociability and memory. Biochemical investigations revealed that Np65 KO mice show increased adult-born neurons and proliferation in the hippocampus. In addition, the level of 5-hydroxytryptamine (5-HT) in the hippocampus was reduced. The expression of tryptophan hydroxylase 2 in the brainstem and the expression of the 5-HT3A receptor were also decreased. Electrophysiological recordings confirmed an impaired maintenance of long-term potentiation in the hippocampus of Np65 KO mice. Together, our findings uncover a role for Np65 in regulating anxiety- and depressive-like behaviors and suggest that Np65 may be essential for the maintenance of emotional stability, indicating that it might be an attractive potential target for treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Huanhuan Li
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoqing Gao
- Department of Anatomy and Neurobiology, Southwest Medical University, Luzhou, China
| | - Lifen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siyiti Amuti
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dandan Wu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fen Jiang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Geying Wang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiujiang Zeng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Ma
- Department of Molecular and Biomedical Sciences, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Qionglan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Lima da Cruz RV, Moulin TC, Petiz LL, Leão RN. A Single Dose of 5-MeO-DMT Stimulates Cell Proliferation, Neuronal Survivability, Morphological and Functional Changes in Adult Mice Ventral Dentate Gyrus. Front Mol Neurosci 2018; 11:312. [PMID: 30233313 PMCID: PMC6131656 DOI: 10.3389/fnmol.2018.00312] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/15/2018] [Indexed: 11/13/2022] Open
Abstract
The subgranular zone (SGZ) of dentate gyrus (DG) is one of the few regions in which neurogenesis is maintained throughout adulthood. It is believed that newborn neurons in this region encode temporal information about partially overlapping contextual memories. The 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a naturally occurring compound capable of inducing a powerful psychedelic state. Recently, it has been suggested that DMT analogs may be used in the treatment of mood disorders. Due to the strong link between altered neurogenesis and mood disorders, we tested whether 5-MeO-DMT is capable of increasing DG cell proliferation. We show that a single intracerebroventricular (ICV) injection of 5-MeO-DMT increases the number of Bromodeoxyuridine (BrdU+) cells in adult mice DG. Moreover, using a transgenic animal expressing tamoxifen-dependent Cre recombinase under doublecortin promoter, we found that 5 Meo-DMT treated mice had a higher number of newborn DG Granule cells (GC). We also showed that these DG GC have more complex dendritic morphology after 5-MeO-DMT. Lastly, newborn GC treated with 5-MeO-DMT, display shorter afterhyperpolarization (AHP) potentials and higher action potential (AP) threshold compared. Our findings show that 5-MeO-DMT affects neurogenesis and this effect may contribute to the known antidepressant properties of DMT-derived compounds.
Collapse
Affiliation(s)
| | - Thiago C Moulin
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lyvia Lintzmaier Petiz
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Natal, Brazil
| | - Richardson N Leão
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Natal, Brazil.,Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Serotonin depletion causes valproate-responsive manic-like condition and increased hippocampal neuroplasticity that are reversed by stress. Sci Rep 2018; 8:11847. [PMID: 30087403 PMCID: PMC6081464 DOI: 10.1038/s41598-018-30291-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal hippocampal neural plasticity has been implicated in behavioural abnormalities and complex neuropsychiatric conditions, including bipolar disorder (BD). However, the determinants of this neural alteration remain unknown. This work tests the hypothesis that the neurotransmitter serotonin (5-HT) is a key determinant of hippocampal neuroplasticity, and its absence leads to maladaptive behaviour relevant for BD. Depletion of brain 5-HT in Tph2 mutant mice resulted in reduced behavioural despair, reduced anxiety, marked aggression and lower habituation in novel environments, reminiscent of bipolar-associated manic behaviour. Treatment with valproate produced a substantial improvement of the mania-like behavioural phenotypes displayed by Tph2 mutants. Brain-wide fMRI mapping in mutants revealed functional hippocampal hyperactivity in which we also observed dramatically increased neuroplasticity. Importantly, remarkable correspondence between the transcriptomic profile of the Tph2 mutant hippocampus and neurons from bipolar disorder patients was observed. Chronic stress reversed the emotional phenotype and the hippocampal transcriptional landscape of Tph2 mutants. These changes were associated with inappropriate activation of transcriptional adaptive response to stress as assessed by gene set enrichment analyses in the hippocampus of Tph2 mutant mice. These findings delineate 5-HT as a critical determinant in BD associated maladaptive emotional responses and aberrant hippocampal neuroplasticity, and support the use of Tph2−/− mice as a new research tool for mechanistic and therapeutic research in bipolar disorder.
Collapse
|
34
|
Mishra A, Singh S, Shukla S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. J Exp Neurosci 2018; 12:1179069518779829. [PMID: 29899667 PMCID: PMC5985548 DOI: 10.1177/1179069518779829] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
Dopamine controls various physiological functions in the brain and periphery by acting on its receptors D1, D2, D3, D4, and D5. Dopamine receptors are G protein–coupled receptors involved in the regulation of motor activity and several neurological disorders such as schizophrenia, bipolar disorder, Parkinson’s disease (PD), Alzheimer’s disease, and attention-deficit/hyperactivity disorder. Reduction in dopamine content in the nigrostriatal pathway is associated with the development of PD, along with the degeneration of dopaminergic neurons in the substantia nigra region. Dopamine receptors directly regulate neurotransmission of other neurotransmitters, release of cyclic adenosine monophosphate, cell proliferation, and differentiation. Here, we provide an update on recent knowledge about the signalling mechanism, mode of action, and the evidence for the physiological and functional basis of dopamine receptors. We also highlight the pivotal role of these receptors in the modulation of neurogenesis, a possible therapeutic target that might help to slow down the process of neurodegeneration.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
- Shubha Shukla, Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
35
|
Yang T, Britt JK, Cintrón-Pérez CJ, Vázquez-Rosa E, Tobin KV, Stalker G, Hardie J, Taugher RJ, Wemmie J, Pieper AA, Lee A. Ca 2+-Binding Protein 1 Regulates Hippocampal-dependent Memory and Synaptic Plasticity. Neuroscience 2018; 380:90-102. [PMID: 29660444 DOI: 10.1016/j.neuroscience.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 11/25/2022]
Abstract
Ca2+-binding protein 1 (CaBP1) is a Ca2+-sensing protein similar to calmodulin that potently regulates voltage-gated Ca2+ channels. Unlike calmodulin, however, CaBP1 is mainly expressed in neuronal cell-types and enriched in the hippocampus, where its function is unknown. Here, we investigated the role of CaBP1 in hippocampal-dependent behaviors using mice lacking expression of CaBP1 (C-KO). By western blot, the largest CaBP1 splice variant, caldendrin, was detected in hippocampal lysates from wild-type (WT) but not C-KO mice. Compared to WT mice, C-KO mice exhibited mild deficits in spatial learning and memory in both the Barnes maze and in Morris water maze reversal learning. In contextual but not cued fear-conditioning assays, C-KO mice showed greater freezing responses than WT mice. In addition, the number of adult-born neurons in the hippocampus of C-KO mice was ∼40% of that in WT mice, as measured by bromodeoxyuridine labeling. Moreover, hippocampal long-term potentiation was significantly reduced in C-KO mice. We conclude that CaBP1 is required for cellular mechanisms underlying optimal encoding of hippocampal-dependent spatial and fear-related memories.
Collapse
Affiliation(s)
- Tian Yang
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Jeremiah K Britt
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Coral J Cintrón-Pérez
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Edwin Vázquez-Rosa
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin V Tobin
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Grant Stalker
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Jason Hardie
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Rebecca J Taugher
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - John Wemmie
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew A Pieper
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Psychiatry, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Free Radical, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Radiation Oncology Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Veterans Affairs, University of Iowa, Iowa City, IA 52242, USA; Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Pappajohn Biomedical Institute and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Amy Lee
- Departments of Molecular Physiology and Biophysics, Otolaryngology Head-Neck Surgery, Neurology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
36
|
The interhemispheric CA1 circuit governs rapid generalisation but not fear memory. Nat Commun 2017; 8:2190. [PMID: 29259187 PMCID: PMC5736595 DOI: 10.1038/s41467-017-02315-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Encoding specificity theory predicts most effective recall by the original conditions at encoding, while generalization endows recall flexibly under circumstances which deviate from the originals. The CA1 regions have been implicated in memory and generalization but whether and which locally separated mechanisms are involved is not clear. We report here that fear memory is quickly formed, but generalization develops gradually over 24 h. Generalization but not fear memory is impaired by inhibiting ipsilateral (ips) or contralateral (con) CA1, and by optogenetic silencing of the ipsCA1 projections onto conCA1. By contrast, in vivo fEPSP recordings reveal that ipsCA1–conCA1 synaptic efficacy is increased with delay over 24 h when generalization is formed but it is unchanged if generalization is disrupted. Direct excitation of ipsCA1–conCA1 synapses using chemogenetic hM3Dq facilitates generalization formation. Thus, rapid generalization is an active process dependent on bilateral CA1 regions, and encoded by gradual synaptic learning in ipsCA1–conCA1 circuit. Previous work has documented a slow form of memory generalization although a rapid one is demanded. Here the authors elucidate the role of the interhemispheric CA1-CA1 projection in a form of rapid generalization of contextual fear memory via gradual potentiation of these synapses over 24 h.
Collapse
|
37
|
Vivar C, van Praag H. Running Changes the Brain: the Long and the Short of It. Physiology (Bethesda) 2017; 32:410-424. [PMID: 29021361 PMCID: PMC6148340 DOI: 10.1152/physiol.00017.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Exercise is a simple intervention that profoundly benefits cognition. In rodents, running increases neurogenesis in the hippocampus, a brain area important for memory. We describe the dynamic changes in new neuron number and afferent connections throughout their maturation. We highlight the effects of exercise on the neurotransmitter systems involved, with a focus on the role of glutamate and acetylcholine in the initial development of new neurons in the adult brain.
Collapse
Affiliation(s)
- Carmen Vivar
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico; and
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
38
|
Larsson SC, Markus HS. Branched-chain amino acids and Alzheimer's disease: a Mendelian randomization analysis. Sci Rep 2017; 7:13604. [PMID: 29051501 PMCID: PMC5648806 DOI: 10.1038/s41598-017-12931-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/20/2017] [Indexed: 01/25/2023] Open
Abstract
We conducted a two-sample Mendelian randomization study to test the hypothesis that raised plasma levels of the branched-chain amino acids isoleucine, leucine, and valine are associated with Alzheimer’s disease (AD). From a genome-wide association study of 16,596 individuals of European ancestry, we obtained summary statistics for four independent single nucleotide polymorphisms (SNPs) associated with isoleucine levels and one SNP associated with both leucine and valine levels at genome-wide significance. Summary statistics of the associations of the five SNPs with AD were obtained from the International Genomics of Alzheimer’s Project (17,008 AD cases and 37,154 controls). Based on four SNPs, the odds ratio of AD per genetically predicted one standard deviation higher isoleucine levels was 1.35 (95% CI, 1.08–1.69; p = 0.007). The leucine- and valine-raising allele was not associated with AD (p = 0.46). These data suggest that a genetic predisposition to raised plasma isoleucine levels is positively associated with AD.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Castilla-Ortega E, Ladrón de Guevara-Miranda D, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F, Santín LJ. The impact of cocaine on adult hippocampal neurogenesis: Potential neurobiological mechanisms and contributions to maladaptive cognition in cocaine addiction disorder. Biochem Pharmacol 2017; 141:100-117. [DOI: 10.1016/j.bcp.2017.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
|
40
|
Hashizume K, Yamanaka M, Ueda S. POU3F2 participates in cognitive function and adult hippocampal neurogenesis via mammalian-characteristic amino acid repeats. GENES BRAIN AND BEHAVIOR 2017; 17:118-125. [PMID: 28782255 DOI: 10.1111/gbb.12408] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/02/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
Abstract
POU3F2/BRN-2 is a transcription factor that is mainly expressed in the central nervous system and plays an important role in brain development. The transactivation domain of POU3F2 includes multiple mammalian-characteristic tandem amino acid repeats (homopolymeric amino acid repeats). We previously generated knock-in mice (Pou3f2Δ/Δ mice) in which all three homopolymeric amino acid repeats were deleted from the Pou3f2 transactivation domain and identified phenotypic impairments in maternal behavior and pup recognition. Yet, the exact biological implications of homopolymeric repeats are not completely understood. In this study, we investigated cognitive function and hippocampal neurogenesis in Pou3f2Δ/Δ mice. Pou3f2Δ/Δ mice exhibited cognitive impairment in object recognition and object location tests. Immunohistochemistry for doublecortin, a marker of immature neurons, showed a lower number of newborn neurons in the dentate gyrus of adult Pou3f2Δ/Δ mice compared with wild-type mice. Consistent with this observation, adult Pou3f2Δ/Δ mice had lower numbers of 5-bromo-2'-deoxyuridine (BrdU) and NeuN double-positive cells at 4 weeks after BrdU injection compared with control mice, indicating the decreased generation of mature granule cells in Pou3f2Δ/Δ mice. Taken together, these results suggest that POU3F2 is involved in cognitive function as well as adult hippocampal neurogenesis, and that homopolymeric amino acid repeats in this gene play a functional role.
Collapse
Affiliation(s)
- K Hashizume
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - M Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - S Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Morales-García JA, de la Fuente Revenga M, Alonso-Gil S, Rodríguez-Franco MI, Feilding A, Perez-Castillo A, Riba J. The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro. Sci Rep 2017; 7:5309. [PMID: 28706205 PMCID: PMC5509699 DOI: 10.1038/s41598-017-05407-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/07/2017] [Indexed: 11/10/2022] Open
Abstract
Banisteriopsis caapi is the basic ingredient of ayahuasca, a psychotropic plant tea used in the Amazon for ritual and medicinal purposes, and by interested individuals worldwide. Animal studies and recent clinical research suggests that B. caapi preparations show antidepressant activity, a therapeutic effect that has been linked to hippocampal neurogenesis. Here we report that harmine, tetrahydroharmine and harmaline, the three main alkaloids present in B. caapi, and the harmine metabolite harmol, stimulate adult neurogenesis in vitro. In neurospheres prepared from progenitor cells obtained from the subventricular and the subgranular zones of adult mice brains, all compounds stimulated neural stem cell proliferation, migration, and differentiation into adult neurons. These findings suggest that modulation of brain plasticity could be a major contribution to the antidepressant effects of ayahuasca. They also expand the potential application of B. caapi alkaloids to other brain disorders that may benefit from stimulation of endogenous neural precursor niches.
Collapse
Affiliation(s)
- Jose A Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.,Departamento de Biología Celular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Mario de la Fuente Revenga
- Human Neuropsychopharmacology Research Group. Sant Pau Institute of Biomedical Research (IIB-Sant Pau). Sant Antoni María Claret, 167. 08025, Barcelona, Spain.,Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.,MFR currently at: Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | | | - Amanda Feilding
- The Beckley Foundation, Beckley Park, Oxford, OX3 9SY, United Kingdom
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain. .,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.
| | - Jordi Riba
- Human Neuropsychopharmacology Research Group. Sant Pau Institute of Biomedical Research (IIB-Sant Pau). Sant Antoni María Claret, 167. 08025, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Planta, 028029, Madrid, Spain.
| |
Collapse
|
42
|
Song NN, Huang Y, Yu X, Lang B, Ding YQ, Zhang L. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis. Front Cell Neurosci 2017; 11:185. [PMID: 28713247 PMCID: PMC5492328 DOI: 10.3389/fncel.2017.00185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
The central serotonin (5-HT) system is the main target of selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1) mice with altered central 5-HT levels from embryonic stages, (2) mice with deletion of 5-HT receptors from embryonic stages, and (3) mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.
Collapse
Affiliation(s)
- Ning-Ning Song
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Xin Yu
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Bing Lang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China.,Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South UniversityChangsha, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, Tongji University School of MedicineShanghai, China.,Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| |
Collapse
|
43
|
Enhanced dendritic morphogenesis of adult hippocampal newborn neurons in central 5-HT-deficient mice. Stem Cell Res 2017; 19:6-11. [DOI: 10.1016/j.scr.2016.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/24/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
|
44
|
Li N, Zhang X, Dong H, Hu Y, Qian Y. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD. Behav Brain Res 2017; 322:60-69. [PMID: 28082194 DOI: 10.1016/j.bbr.2017.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced neuroinflammation, which is also a key element in the pathobiology of neurodegenerative diseases, stroke, and neuropsychiatric disorders. There is extensive communication between the immune system and the central nervous system (CNS). Inflammation resulting from activation of the innate immune system cells in the periphery can impact central nervous system behaviors, such as cognitive performance. Mast cells (MCs), as the"first responders" in the CNS, can initiate, amplify, and prolong other immune and nervous responses upon activation. In addition, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. Neuroinflammation has been considered to be linked to neurovascular dysfunction in several neurological disorders. This review will provide a brief overview of the bidirectional relationship of MCs-neurovascular unit communication in neuroinflammation and its involvement in POCD, providing a new and unique therapeutic target for the adjuvant treatment of POCD.
Collapse
Affiliation(s)
- Nana Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Xiang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Youli Hu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|