1
|
Fabrizio-Stover EM, Lee CM, Oliver DL, Burghard AL. Sound-evoked plasticity differentiates tinnitus from non-tinnitus mice. Front Neurosci 2025; 19:1549163. [PMID: 40297536 PMCID: PMC12034690 DOI: 10.3389/fnins.2025.1549163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Tinnitus is the perception of non-meaningful sound in the absence of external stimuli. Although tinnitus behavior in animal models is associated with altered central nervous system activity, it is not currently possible to identify tinnitus using neuronal activity alone. In the mouse inferior colliculus (IC), a subpopulation of neurons demonstrates a sustained increase in spontaneous activity after a long-duration sound (LDS). Methods Here, we use the "LDS test" to reveal tinnitus-specific differences in sound-evoked plasticity through IC extracellular recordings and the auditory brainstem response (ABRLDS) in CBA/CaJ mice after sound exposure and behavioral tinnitus assessment. Results Sound-exposed mice showed stronger and shorter tone-evoked responses in the IC compared to unexposed controls, but these differences were not strong predictors of tinnitus. In contrast, in the LDS test, non-tinnitus mice had a significantly stronger suppression in tone-evoked spike rate compared to tinnitus and unexposed control mice. ABR peak amplitudes also revealed robust differences between tinnitus and non-tinnitus mice, with ABR peaks from non-tinnitus mice exhibiting significantly stronger suppression in the LDS test compared to tinnitus and control mice. No significant differences were seen between cohorts in ABR amplitude, latency, wave V:I ratio, wave V:III ratio, I-V intra-peak latency, and I-VI intra-peak latency. We found high-frequency tone stimuli better suited to reveal tinnitus-specific differences for both extracellular IC and ABR recordings. Discussion We successfully used the LDS test to demonstrate that tinnitus-specific differences in sound-evoked plasticity can be shown using both multi-unit near-field recordings in the IC and non-invasive far-field recordings, providing a foundation for future electrophysiological research into the causes and treatment of tinnitus.
Collapse
Affiliation(s)
- Emily M. Fabrizio-Stover
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Christopher M. Lee
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Douglas L. Oliver
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Alice L. Burghard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
2
|
Fabrizio-Stover EM, Oliver DL, Burghard AL. Tinnitus mechanisms and the need for an objective electrophysiological tinnitus test. Hear Res 2024; 449:109046. [PMID: 38810373 DOI: 10.1016/j.heares.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Tinnitus, the perception of sound with no external auditory stimulus, is a complex, multifaceted, and potentially devastating disorder. Despite recent advances in our understanding of tinnitus, there are limited options for effective treatment. Tinnitus treatments are made more complicated by the lack of a test for tinnitus based on objectively measured physiological characteristics. Such an objective test would enable a greater understanding of tinnitus mechanisms and may lead to faster treatment development in both animal and human research. This review makes the argument that an objective tinnitus test, such as a non-invasive electrophysiological measure, is desperately needed. We review the current tinnitus assessment methods, the underlying neural correlates of tinnitus, the multiple tinnitus generation theories, and the previously investigated electrophysiological measurements of tinnitus. Finally, we propose an alternate objective test for tinnitus that may be valid in both animal and human subjects.
Collapse
Affiliation(s)
- Emily M Fabrizio-Stover
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Otolaryngology-Head and Neck Surgery, Medical University South Carolina, Charleston, SC, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Alice L Burghard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
3
|
Lao-Rodríguez AB, Przewrocki K, Pérez-González D, Alishbayli A, Yilmaz E, Malmierca MS, Englitz B. Neuronal responses to omitted tones in the auditory brain: A neuronal correlate for predictive coding. SCIENCE ADVANCES 2023; 9:eabq8657. [PMID: 37315139 DOI: 10.1126/sciadv.abq8657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
Prediction provides key advantages for survival, and cognitive studies have demonstrated that the brain computes multilevel predictions. Evidence for predictions remains elusive at the neuronal level because of the complexity of separating neural activity into predictions and stimulus responses. We overcome this challenge by recording from single neurons from cortical and subcortical auditory regions in anesthetized and awake preparations, during unexpected stimulus omissions interspersed in a regular sequence of tones. We find a subset of neurons that responds reliably to omitted tones. In awake animals, omission responses are similar to anesthetized animals, but larger and more frequent, indicating that the arousal and attentional state levels affect the degree to which predictions are neuronally represented. Omission-sensitive neurons also responded to frequency deviants, with their omission responses getting emphasized in the awake state. Because omission responses occur in the absence of sensory input, they provide solid and empirical evidence for the implementation of a predictive process.
Collapse
Affiliation(s)
- Ana B Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Karol Przewrocki
- Computational Neuroscience Lab, Department of Neurophysiology, Donders Centre of Neuroscience, Nijmegen, Netherlands
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Basic Psychology, Psychobiology and Methodology of Behavioral Sciences, University of Salamanca, Salamanca, Spain
| | - Artoghrul Alishbayli
- Computational Neuroscience Lab, Department of Neurophysiology, Donders Centre of Neuroscience, Nijmegen, Netherlands
| | - Evrim Yilmaz
- Computational Neuroscience Lab, Department of Neurophysiology, Donders Centre of Neuroscience, Nijmegen, Netherlands
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Bernhard Englitz
- Computational Neuroscience Lab, Department of Neurophysiology, Donders Centre of Neuroscience, Nijmegen, Netherlands
| |
Collapse
|
4
|
Burghard AL, Lee CM, Fabrizio-Stover EM, Oliver DL. Long-Duration Sound-Induced Facilitation Changes Population Activity in the Inferior Colliculus. Front Syst Neurosci 2022; 16:920642. [PMID: 35873097 PMCID: PMC9301083 DOI: 10.3389/fnsys.2022.920642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The inferior colliculus (IC) is at the midpoint of the auditory system and integrates virtually all information ascending from the auditory brainstem, organizes it, and transmits the results to the auditory forebrain. Its abundant, excitatory local connections are crucial for this task. This study describes a long duration sound (LDS)-induced potentiation in the IC that changes both subsequent tone-evoked responses and spontaneous activity. Afterdischarges, changes of spontaneous spiking following an LDS, were seen previously in single neurons. Here, we used multi-channel probes to record activity before and after a single, tetanic sound and describe the changes in a population of IC neurons. Following a 60 s narrowband-noise stimulation, a subset of recording channels (∼16%) showed afterdischarges. A facilitated response spike rate to tone pips following an LDS was also observed in ∼16% of channels. Both channels with an afterdischarge and channels with facilitated tone responses had higher firing rates in response to LDS, and the magnitude of the afterdischarges increased with increased responses to the LDS. This is the first study examining the effect of LDS stimulation on tone-evoked responses. This observed facilitation in vivo has similarities to post-tetanic potentiation in vitro as both manner of induction (strong stimulation for several seconds) as well as time-course of the facilitation (second to minute range) are comparable. Channels with and without facilitation appear to be intermixed and distributed widely in the central nucleus of IC, and this suggests a heretofore unknown property of some IC neurons or their circuits. Consequently, this sound-evoked facilitation may enhance the sound-evoked output of these neurons, while, simultaneously, most other IC neurons have reduced or unchanged output in response to the same stimulus.
Collapse
|
5
|
Ye H, Liu ZX, He YJ, Wang X. Effects of M currents on the persistent activity of pyramidal neurons in mouse primary auditory cortex. J Neurophysiol 2022; 127:1269-1278. [PMID: 35294269 DOI: 10.1152/jn.00332.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal persistent activity (PA) is a common phenomenon observed in many types of neurons. PA can be induced in neurons in the mouse auditory nucleus by activating cholinergic receptors with carbachol (CCh), a dual muscarinic and nicotinic receptor agonist. PA is presumed to be associated with learning-related auditory plasticity at the cellular level. However, the mechanism is not clearly understood. Many studies have reported that muscarinic cholinergic receptor agonists inhibit muscarinic-sensitive potassium channels (M channels). Potassium influx through M channels produces potassium currents, called M currents, which play an essential role in regulating neural excitability and synaptic plasticity. Further study is needed to determine whether M currents affect the PA of auditory central neurons and provide additional analysis of the variations in electrophysiological properties. We used in vitro whole-cell patch-clamp recordings in isolated mouse brain slices to investigate the effects of M currents on the PA in pyramidal neurons in layer V of the primary auditory cortex (AI-L5). We found that blocking M currents with XE991 depolarized the AI-L5 pyramidal neurons, which significantly increased the input resistance. The active threshold and threshold intensity were significantly reduced, indicating that the intrinsic excitability was enhanced. Our results also showed that blocking M currents with XE991 switched the neuronal firing patterns in the AI-L5 pyramidal neurons from regular-spiking to intrinsic-bursting. Blocking M currents facilitated PA by increasing the plateau potential and enhancing intrinsic excitability. Our results suggested that blocking M currents might facilitate the PA in AI-L5 pyramidal neurons, which underlies auditory plasticity.
Collapse
Affiliation(s)
- Huan Ye
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhen-Xu Liu
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Ya-Jie He
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xin Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
6
|
Group II Metabotropic Glutamate Receptors Modulate Sound Evoked and Spontaneous Activity in the Mouse Inferior Colliculus. eNeuro 2021; 8:ENEURO.0328-20.2020. [PMID: 33334826 PMCID: PMC7814476 DOI: 10.1523/eneuro.0328-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023] Open
Abstract
Little is known about the functions of Group II metabotropic glutamate receptors (mGluRs2/3) in the inferior colliculus (IC), a midbrain structure that is a major integration region of the central auditory system. We investigated how these receptors modulate sound-evoked and spontaneous firing in the mouse IC in vivo. We first performed immunostaining and tested hearing thresholds to validate vesicular GABA transporter (VGAT)-ChR2 transgenic mice on a mixed CBA/CaJ x C57BL/6J genetic background. Transgenic animals allowed for optogenetic cell-type identification. Extracellular single neuron recordings were obtained before and after pharmacological mGluR2/3 activation. We observed increased sound-evoked firing, as assessed by the rate-level functions (RLFs), in a subset of both GABAergic and non-GABAergic IC neurons following mGluR2/3 pharmacological activation. These neurons also displayed elevated spontaneous excitability and were distributed throughout the IC area tested, suggesting a widespread mGluR2/3 distribution in the mouse IC.
Collapse
|
7
|
Cooke JE, Lee JJ, Bartlett EL, Wang X, Bendor D. Post-stimulatory activity in primate auditory cortex evoked by sensory stimulation during passive listening. Sci Rep 2020; 10:13885. [PMID: 32807854 PMCID: PMC7431571 DOI: 10.1038/s41598-020-70397-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Under certain circumstances, cortical neurons are capable of elevating their firing for long durations in the absence of a stimulus. Such activity has typically been observed and interpreted in the context of performance of a behavioural task. Here we investigated whether post-stimulatory activity is observed in auditory cortex and the medial geniculate body of the thalamus in the absence of any explicit behavioural task. We recorded spiking activity from single units in the auditory cortex (fields A1, R and RT) and auditory thalamus of awake, passively-listening marmosets. We observed post-stimulatory activity that lasted for hundreds of milliseconds following the termination of the acoustic stimulus. Post-stimulatory activity was observed following both adapting, sustained and suppressed response profiles during the stimulus. These response types were observed across all cortical fields tested, but were largely absent from the auditory thalamus. As well as being of shorter duration, thalamic post-stimulatory activity emerged following a longer latency than in cortex, indicating that post-stimulatory activity may be generated within auditory cortex during passive listening. Given that these responses were observed in the absence of an explicit behavioural task, post-stimulatory activity in sensory cortex may play a functional role in processes such as echoic memory and temporal integration that occur during passive listening.
Collapse
Affiliation(s)
- James E Cooke
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK.
| | - Julie J Lee
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
- Institute of Ophthalmology, University College London (UCL), London, WC1H 0AP, UK
| | - Edward L Bartlett
- Departments of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, 47907, USA
| | - Xiaoqin Wang
- Departments of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205, USA
| | - Daniel Bendor
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| |
Collapse
|
8
|
Acoustic trauma induced the alteration of the activity balance of excitatory and inhibitory neurons in the inferior colliculus of mice. Hear Res 2020; 391:107957. [DOI: 10.1016/j.heares.2020.107957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
|
9
|
Ono M, Bishop DC, Oliver DL. Neuronal sensitivity to the interaural time difference of the sound envelope in the mouse inferior colliculus. Hear Res 2019; 385:107844. [PMID: 31759235 DOI: 10.1016/j.heares.2019.107844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/28/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022]
Abstract
We examined the sensitivity of the neurons in the mouse inferior colliculus (IC) to the interaural time differences (ITD) conveyed in the sound envelope. Utilizing optogenetic methods, we compared the responses to the ITD in the envelope of identified glutamatergic and GABAergic neurons. More than half of both cell types were sensitive to the envelope ITD, and the ITD curves were aligned at their troughs. Within the physiological ITD range of mice (±50 μs), the ITD curves of both cell types had a higher firing rate when the contralateral envelope preceded the ipsilateral envelope. These results show that the circuitry to process ITD persists in the mouse despite its lack of low-frequency hearing. The sensitivity of IC neurons to ITD is most likely to be shaped by the binaural interaction of excitation and inhibition in the lateral superior olive.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA, 06030-3401; Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan.
| | - Deborah C Bishop
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA, 06030-3401
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA, 06030-3401
| |
Collapse
|
10
|
Goyer D, Silveira MA, George AP, Beebe NL, Edelbrock RM, Malinski PT, Schofield BR, Roberts MT. A novel class of inferior colliculus principal neurons labeled in vasoactive intestinal peptide-Cre mice. eLife 2019; 8:43770. [PMID: 30998185 PMCID: PMC6516826 DOI: 10.7554/elife.43770] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Located in the midbrain, the inferior colliculus (IC) is the hub of the central auditory system. Although the IC plays important roles in speech processing, sound localization, and other auditory computations, the organization of the IC microcircuitry remains largely unknown. Using a multifaceted approach in mice, we have identified vasoactive intestinal peptide (VIP) neurons as a novel class of IC principal neurons. VIP neurons are glutamatergic stellate cells with sustained firing patterns. Their extensive axons project to long-range targets including the auditory thalamus, auditory brainstem, superior colliculus, and periaqueductal gray. Using optogenetic circuit mapping, we found that VIP neurons integrate input from the contralateral IC and the dorsal cochlear nucleus. The dorsal cochlear nucleus also drove feedforward inhibition to VIP neurons, indicating that inhibitory circuits within the IC shape the temporal integration of ascending inputs. Thus, VIP neurons are well-positioned to influence auditory computations in a number of brain regions.
Collapse
Affiliation(s)
- David Goyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Marina A Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Alexander P George
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, United States
| | - Ryan M Edelbrock
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, United States
| | - Peter T Malinski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, United States
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| |
Collapse
|
11
|
Naumov V, Heyd J, de Arnal F, Koch U. Analysis of excitatory and inhibitory neuron types in the inferior colliculus based on Ih properties. J Neurophysiol 2019; 121:2126-2139. [PMID: 30943094 DOI: 10.1152/jn.00594.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inferior colliculus (IC) is a large midbrain nucleus that integrates inputs from many auditory brainstem and cortical structures. Despite its prominent role in auditory processing, the various cell types and their connections within the IC are not well characterized. To further separate GABAergic and non-GABAergic neuron types according to their physiological properties, we used a mouse model that expresses channelrhodopsin and enhanced yellow fluorescent protein in all GABAergic neurons and allows identification of GABAergic cells by light stimulation. Neuron types were classified upon electrophysiological measurements of the hyperpolarizing-activated current (Ih) in acute brain slices of young adult mice. All GABAergic neurons from our sample displayed slow-activating Ih with moderate amplitudes, whereas a subset of excitatory neurons showed fast-activating Ih with large amplitudes. This is in agreement with our finding that immunoreactivity against the fast-gating hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) channel was present around excitatory neurons, whereas the slow-gating HCN4 channel was found perisomatically around most inhibitory neurons. Ih properties and neurotransmitter types were correlated with firing patterns to depolarizing current pulses. All GABAergic neurons displayed adapting firing patterns very similar to the majority of glutamatergic neurons. About 15% of the glutamatergic neurons showed an onset spiking pattern, always in combination with large and fast Ih. We conclude that HCN channel subtypes are differentially distributed in IC neuron types and correlate with neurotransmitter type and firing pattern. In contrast to many other brain regions, membrane properties and firing patterns were similar in GABAergic neurons and about one-third of the excitatory neurons. NEW & NOTEWORTHY Neuron types in the central nucleus of the auditory midbrain are not well characterized regarding their transmitter type, ion channel composition, and firing pattern. The present study shows that GABAergic neurons have slowly activating hyperpolarizing-activated current (Ih) and an adaptive firing pattern whereas at least four types of glutamatergic neurons exist regarding their Ih properties and firing patterns. Many of the glutamatergic neurons were almost indistinguishable from the GABAergic neurons regarding Ih properties and firing pattern.
Collapse
Affiliation(s)
- Victor Naumov
- Institute of Biology, Neurophysiology, Freie Universität Berlin , Berlin , Germany
| | - Julia Heyd
- Institute of Biology, Neurophysiology, Freie Universität Berlin , Berlin , Germany
| | - Fauve de Arnal
- Institute of Biology, Neurophysiology, Freie Universität Berlin , Berlin , Germany
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin , Berlin , Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin , Germany
| |
Collapse
|
12
|
Ono M, Ito T. Inhibitory Neural Circuits in the Mammalian Auditory Midbrain. J Exp Neurosci 2018; 12:1179069518818230. [PMID: 30559596 PMCID: PMC6291857 DOI: 10.1177/1179069518818230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023] Open
Abstract
The auditory midbrain is the critical integration center in the auditory pathway of vertebrates. Synaptic inhibition plays a key role during information processing in the auditory midbrain, and these inhibitory neural circuits are seen in all vertebrates and are likely essential for hearing. Here, we review the structure and function of the inhibitory neural circuits of the auditory midbrain. First, we provide an overview on how these inhibitory circuits are organized within different clades of vertebrates. Next, we focus on recent findings in the mammalian auditory midbrain, the most studied of the vertebrates, and discuss how the mammalian auditory midbrain is functionally coordinated.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Tetsufumi Ito
- Department of Anatomy, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
13
|
Ono M, Muramoto S, Ma L, Kato N. Optogenetics Identification of a Neuronal Type with a Glass Optrode in Awake Mice. J Vis Exp 2018. [PMID: 30010633 DOI: 10.3791/57781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is a major concern in neuroscience how different types of neurons work in neural circuits. Recent advances in optogenetics have enabled the identification of the neuronal type in in vivo electrophysiological experiments in broad brain regions. In optogenetics experiments, it is critical to deliver the light to the recording site. However, it is often hard to deliver the stimulation light to the deep brain regions from the brain's surface. Especially, it is difficult for the stimulation light to reach the deep brain regions when the optical transparency of the brain surface is low, as is often the case with recordings from awake animals. Here, we describe a method to record spike responses to the light from an awake mouse using a custom-made glass optrode. In this method, the light is delivered through the recording glass electrode so that it is possible to reliably stimulate the recorded neuron with light in the deep brain regions. This custom-made optrode system consists of accessible and inexpensive materials and is easy to assemble.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, Kanazawa Medical University;
| | | | - Lanlan Ma
- Department of Physiology, Kanazawa Medical University
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University
| |
Collapse
|
14
|
Muca A, Standafer E, Apawu AK, Ahmad F, Ghoddoussi F, Hali M, Warila J, Berkowitz BA, Holt AG. Tinnitus and temporary hearing loss result in differential noise-induced spatial reorganization of brain activity. Brain Struct Funct 2018; 223:2343-2360. [PMID: 29488007 PMCID: PMC6129978 DOI: 10.1007/s00429-018-1635-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/17/2018] [Indexed: 12/27/2022]
Abstract
Loud noise frequently results in hyperacusis or hearing loss (i.e., increased or decreased sensitivity to sound). These conditions are often accompanied by tinnitus (ringing in the ears) and changes in spontaneous neuronal activity (SNA). The ability to differentiate the contributions of hyperacusis and hearing loss to neural correlates of tinnitus has yet to be achieved. Towards this purpose, we used a combination of behavior, electrophysiology, and imaging tools to investigate two models of noise-induced tinnitus (either with temporary hearing loss or with permanent hearing loss). Manganese (Mn2+) uptake was used as a measure of calcium channel function and as an index of SNA. Manganese uptake was examined in vivo with manganese-enhanced magnetic resonance imaging (MEMRI) in key auditory brain regions implicated in tinnitus. Following acoustic trauma, MEMRI, the SNA index, showed evidence of spatially dependent rearrangement of Mn2+ uptake within specific brain nuclei (i.e., reorganization). Reorganization of Mn2+ uptake in the superior olivary complex and cochlear nucleus was dependent upon tinnitus status. However, reorganization of Mn2+ uptake in the inferior colliculus was dependent upon hearing sensitivity. Furthermore, following permanent hearing loss, reduced Mn2+ uptake was observed. Overall, by combining testing for hearing sensitivity, tinnitus, and SNA, our data move forward the possibility of discriminating the contributions of hyperacusis and hearing loss to tinnitus.
Collapse
Affiliation(s)
- Antonela Muca
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Emily Standafer
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Aaron K Apawu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Farhan Ahmad
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mirabela Hali
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - James Warila
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Avril Genene Holt
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA.
- John D. Dingell VAMC, Detroit, MI, USA.
| |
Collapse
|
15
|
Identified GABAergic and Glutamatergic Neurons in the Mouse Inferior Colliculus Share Similar Response Properties. J Neurosci 2017; 37:8952-8964. [PMID: 28842411 DOI: 10.1523/jneurosci.0745-17.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/19/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022] Open
Abstract
GABAergic neurons in the inferior colliculus (IC) play a critical role in auditory information processing, yet their responses to sound are unknown. Here, we used optogenetic methods to characterize the response properties of GABAergic and presumed glutamatergic neurons to sound in the IC. We found that responses to pure tones of both inhibitory and excitatory classes of neurons were similar in their thresholds, response latencies, rate-level functions, and frequency tuning, but GABAergic neurons may have higher spontaneous firing rates. In contrast to their responses to pure tones, the inhibitory and excitatory neurons differed in their ability to follow amplitude modulations. The responses of both cell classes were affected by their location regardless of the cell type, especially in terms of their frequency tuning. These results show that the synaptic domain, a unique organization of local neural circuits in the IC, may interact with all types of neurons to produce their ultimate response to sound.SIGNIFICANCE STATEMENT Although the inferior colliculus (IC) in the auditory midbrain is composed of different types of neurons, little is known about how these specific types of neurons respond to sound. Here, for the first time, we characterized the response properties of GABAergic and glutamatergic neurons in the IC. Both classes of neurons had diverse response properties to tones but were overall similar, except for the spontaneous activity and their ability to follow amplitude-modulated sound. Both classes of neurons may compose a basic local circuit that is replicated throughout the IC. Within each local circuit, the inputs to the local circuit may have a greater influence in determining the response properties to sound than the specific neuron types.
Collapse
|