1
|
Jiang C, Yuan B, Hang B, Mao JH, Zou X, Wang P. FHOD1 is upregulated in gastric cancer and promotes the proliferation and invasion of gastric cancer cells. Oncol Lett 2021; 22:712. [PMID: 34457067 PMCID: PMC8358613 DOI: 10.3892/ol.2021.12973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
Gastric cancer (GC) is one of the main causes of cancer-associated morbidity and mortality worldwide. The present study aimed to investigate the role of the gene encoding formin homology 2 domain containing 1 (FHOD1) protein in GC development. Data from The Cancer Genome Atlas were firstly analyzed, and immunohistochemistry was conducted on GC tissues. The results demonstrated that FHOD1 expression in GC tissues was significantly increased compared with adjacent non-tumor tissues. Furthermore, the expression level of FHOD1 was negatively associated with the overall survival of patients with GC. For the functional studies, lentivirus-mediated short hairpin RNA against FHOD1 and FHOD1-overexpression vectors were constructed to knockdown and overexpress the expression level of FHOD1 in human GC cell lines, respectively. The results indicated that FHOD1 knockdown inhibited the proliferation, colony formation and migratory and invasive abilities of GC cells. Conversely, overexpression of FHOD1 in GC cells promoted soft-agar colony formation and migratory and invasive abilities. In addition, it was demonstrated that genes of which expression levels were correlated with FHOD1 were enriched in the Gene Ontology term of 'extracellular matrix (ECM) structural constituent', suggesting that FHOD1 may serve an important role in the regulation of ECM. In conclusion, the present study demonstrated that FHOD1 may exert an oncogenic role in cultured GC cells and be inversely associated with the overall survival of patients with GC.
Collapse
Affiliation(s)
- Chengfei Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Binbin Yuan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
2
|
Faux MC, King LE, Kane SR, Love C, Sieber OM, Burgess AW. APC regulation of ESRP1 and p120-catenin isoforms in colorectal cancer cells. Mol Biol Cell 2020; 32:120-130. [PMID: 33237836 PMCID: PMC8120691 DOI: 10.1091/mbc.e20-05-0321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The adenomatous polyposis coli (APC) tumor suppressor protein is associated with the regulation of Wnt signaling; however, APC also controls other cellular processes including the regulation of cell adhesion and migration. The expression of full-length APC in SW480 colorectal cancer cells (SW480+APC) not only reduces Wnt signaling, but increases membrane E-cadherin and restores cell–cell adhesion. This report describes the effects of full-length, wild-type APC (fl-APC) on cell–cell adhesion genes and p120-catenin isoform switching in SW480 colon cancer cells: fl-APC increased the expression of genes implicated in cell–cell adhesion, whereas the expression of negative regulators of E-cadherin was decreased. Analysis of cell–cell adhesion-related proteins in SW480+APC cells revealed an increase in p120-catenin isoform 3A; similarly, depletion of APC altered the p120-catenin protein isoform profile. Expression of ESRP1 (epithelial splice regulatory protein 1) is increased in SW480+APC cells, and its depletion results in reversion to the p120-catenin isoform 1A phenotype and reduced cell–cell adhesion. The ESRP1 transcript is reduced in primary colorectal cancer, and its expression correlates with the level of APC. Pyrvinium pamoate, which inhibits Wnt signaling, promotes ESRP1 expression. We conclude that re-expression of APC restores the cell–cell adhesion gene and posttranscriptional regulatory programs leading to p120-catenin isoform switching and associated changes in cell–cell adhesion.
Collapse
Affiliation(s)
- Maree C Faux
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Lauren E King
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Serena R Kane
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Christopher Love
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Antony W Burgess
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
Fernández-Calero T, Davyt M, Perelmuter K, Chalar C, Bampi G, Persson H, Tosar JP, Hafstað V, Naya H, Rovira C, Bollati-Fogolín M, Ehrlich R, Flouriot G, Ignatova Z, Marín M. Fine-tuning the metabolic rewiring and adaptation of translational machinery during an epithelial-mesenchymal transition in breast cancer cells. Cancer Metab 2020; 8:8. [PMID: 32699630 PMCID: PMC7368990 DOI: 10.1186/s40170-020-00216-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/26/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT BACKGROUND During breast cancer progression, the epithelial to mesenchymal transition has been associated with metastasis and endocrine therapy resistance; however, the underlying mechanisms remain elusive. To gain insight into this process, we studied the transition undergone by MCF7-derived cells, which is driven by the constitutive nuclear expression of a MKL1 variant devoid of the actin-binding domain (MKL1 ΔN200). We characterized the adaptive changes that occur during the MKL1-induced cellular model and focused on regulation of translation machinery and metabolic adaptation. METHODS We performed a genome-wide analysis at the transcriptional and translational level using ribosome profiling complemented with RNA-Seq and analyzed the expression of components of the translation machinery and enzymes involved in energy metabolism. NGS data were correlated with metabolomic measurements and quantification of specific mRNAs extracted from polysomes and western blots. RESULTS Our results reveal the expression profiles of a luminal to basal-like state in accordance with an epithelial to mesenchymal transition. During the transition, the synthesis of ribosomal proteins and that of many translational factors was upregulated. This overexpression of the translational machinery appears to be regulated at the translational level. Our results indicate an increase of ribosome biogenesis and translation activity. We detected an extensive metabolic rewiring occurring in an already "Warburg-like" context, in which enzyme isoform switches and metabolic shunts indicate a crucial role of HIF-1α along with other master regulatory factors. Furthermore, we detected a decrease in the expression of enzymes involved in ribonucleotide synthesis from the pentose phosphate pathway. During this transition, cells increase in size, downregulate genes associated with proliferation, and strongly upregulate expression of cytoskeletal and extracellular matrix genes. CONCLUSIONS Our study reveals multiple regulatory events associated with metabolic and translational machinery adaptation during an epithelial mesenchymal-like transition process. During this major cellular transition, cells achieve a new homeostatic state ensuring their survival. This work shows that ribosome profiling complemented with RNA-Seq is a powerful approach to unveil in-depth global adaptive cellular responses and the interconnection among regulatory circuits, which will be helpful for identification of new therapeutic targets.
Collapse
Affiliation(s)
- Tamara Fernández-Calero
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
- Departamento de Ciencias Exactas y Naturales, Universidad Católica del Uruguay, Av. 8 de Octubre, 2738 Montevideo, Uruguay
| | - Marcos Davyt
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Karen Perelmuter
- Cell Biology Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - Cora Chalar
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| | - Giovana Bampi
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Helena Persson
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | - Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Mataojo, 2020 Montevideo, Uruguay
- Analytical Biochemistry Unit, Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo, Uruguay
| | - Völundur Hafstað
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University Cancer Center, Lund University, SE-223 63 Lund, Sweden
| | | | - Ricardo Ehrlich
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gilles Flouriot
- Université de Rennes 1-IRSET, Campus Santé de Villejean, 35000 Rennes, France
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Mónica Marín
- Biochemistry-Molecular Biology Section, Faculty of Sciences, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay
| |
Collapse
|
4
|
Maleki S, Cottrill KA, Poujade FA, Bhattachariya A, Bergman O, Gådin JR, Simon N, Lundströmer K, Franco-Cereceda A, Björck HM, Chan SY, Eriksson P. The mir-200 family regulates key pathogenic events in ascending aortas of individuals with bicuspid aortic valves. J Intern Med 2019; 285:102-114. [PMID: 30280445 PMCID: PMC6488227 DOI: 10.1111/joim.12833] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND An individual with a bicuspid aortic valve (BAV) runs a substantially higher risk of developing aneurysm in the ascending aorta compared to the normal population with tricuspid aortic valves (TAV). Aneurysm formation in patients with BAV and TAV is known to be distinct at the molecular level but the underlying mechanisms are undefined. Here, we investigated the still incompletely described role of microRNAs (miRNAs), important post-transcriptional regulators of gene expression, in such aortic disease of patients with BAV as compared with TAV. METHODS AND RESULTS Using a system biology approach, based on data obtained from proteomic analysis of non-dilated aortas from BAV and TAV patients, we constructed a gene-interaction network of regulatory microRNAs associated with the observed differential protein signature. The miR-200 family was the highest ranked miRNA, hence potentially having the strongest effect on the signalling network associated with BAV. Further, qRT-PCR and ChIP analyses showed lower expression of miR-200c, higher expression of miR-200 target genes, ZEB1/ZEB2 transcription factors, and higher chromatin occupancy of the miR-200c promoter by ZEB1/ZEB2 in BAV patients, indicating a miR-200c/ZEBs negative feedback loop and induction of endothelial/epithelial mesenchymal transition (EndMT/EMT). CONCLUSION We propose that a miR-200-dependent process of EndMT/EMT is a plausible biological mechanism rendering the BAV ascending aorta more prone to aneurysm development. Although initially supported by a miR-200c/ZEB feedback loop, this process is most probably advanced by cooperation of other miRNAs.
Collapse
Affiliation(s)
- S Maleki
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - K A Cottrill
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - F-A Poujade
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - A Bhattachariya
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - O Bergman
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - J R Gådin
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - N Simon
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - K Lundströmer
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - A Franco-Cereceda
- Karolinska University Hospital, Solna, Sweden.,Department of Molecular Medicine and Surgery, Cardiothoracic Surgery Unit, Karolinska Institutet, Stockholm, Sweden
| | - H M Björck
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| | - S Y Chan
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - P Eriksson
- Department of Medicine, Cardiovascular Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
5
|
Chow HY, Dong B, Valencia CA, Zeng CT, Koch JN, Prudnikova TY, Chernoff J. Group I Paks are essential for epithelial- mesenchymal transition in an Apc-driven model of colorectal cancer. Nat Commun 2018; 9:3473. [PMID: 30150766 PMCID: PMC6110733 DOI: 10.1038/s41467-018-05935-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 08/02/2018] [Indexed: 02/05/2023] Open
Abstract
p21-activated kinases (Paks) play an important role in oncogenic signaling pathways and have been considered as potential therapeutic targets in various cancers. Most studies of Pak function employ gene knock-out or knock-down methods, but these approaches result in loss of both enzymatic and scaffolding properties of these proteins, and thus may not reflect the effects of small molecule inhibitors. Here we use a transgenic mouse model in which a specific peptide inhibitor of Group I Paks is conditionally expressed in response to Cre recombinase. Using this model, we show that inhibition of endogenous Paks impedes the transition of adenoma to carcinoma in an Apc-driven mouse model of colorectal cancer. These effects are mediated by inhibition of Wnt signaling through reduced β-catenin activity as well as suppression of an epithelial-mesenchymal transition program mediated by miR-200 and Snai1. These results highlight the potential therapeutic role of Pak1 inhibitors in colorectal cancer.
Collapse
Affiliation(s)
- H Y Chow
- Cancer Center, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - B Dong
- Cancer Center, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China
| | - C A Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - C T Zeng
- Cancer Center, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, Sichuan, China
| | - J N Koch
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - T Y Prudnikova
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - J Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
6
|
Velásquez C, Amako Y, Harold A, Toptan T, Chang Y, Shuda M. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1. Front Microbiol 2018; 9:713. [PMID: 29696010 PMCID: PMC5905237 DOI: 10.3389/fmicb.2018.00713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.
Collapse
Affiliation(s)
- Celestino Velásquez
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States
| | - Yutaka Amako
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexis Harold
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States
| | - Tuna Toptan
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Yu Q, Dai J, Zhu Z, Shen H. Downregulation of RIKP by miR-200a promotes the invasive ability of esophageal cancer cells by upregulating the expression of LIN28 and MMP-14. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8452-8460. [PMID: 31966697 PMCID: PMC6965412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/27/2017] [Indexed: 06/10/2023]
Abstract
Esophageal cancer (EC) is one of common digestive tract malignant tumors which morbidity and mortality were increased year by year. This study was aimed to investigate the role of microRNA (miR)-200a in EC. Human esophageal squamous cell carcinoma (ESCC) cells TE3 was transfected with miR-200a mimic or scramble control. Cell viability and invasion were assessed by MTT and Transwell assay, respectively. Binding effect of miR-200a on 3'UTR of RKIP was verified by luciferase activity assay. RKIP expression in miR-200a mimic transfected cells was measured. RKIP was overexpressed in miR-200a transfected cells and cell viability and invasion were measured. The expressions of Raf1, ERK, MMP-14, LIN28 and GRK-2 were also measured by qRT-PCR and Western blot analysis, respectively. Results showed that miR-200a mimic transfection increased cell viability and invasion of TE3 cells in vitro. miR-200a binding with 3'UTR of RKIP negatively regulated RKIP expression. RKIP overexpression inhibited effects of miR-200a on cell viability and invasion, as well as the increased phosphorylation levels of Raf1 and ERK. miR-200a increased expressions of MMP-14, LIN28 and GRK-2 in TE3 cells, and the up-regulations were inhibited by RKIP overexpression. In conclusion, the up-regulation of miR-200a in TE3 cells promoted cell viability and invasion via negatively regulating RKIP expression. RKIP was a direct target of miR-200a. miR-200a might be involved in activation of MAPK/ERK signaling pathway and expression of MMP-14, LIN28 and GRK-2 which were important factors of intracellular information transduction. Our findings demonstrated that miR-200a regulated ESCC cells via regulating RKIP expression.
Collapse
Affiliation(s)
- Qiuyun Yu
- Department of Laboratory, Ningbo No. 2 HospitalNingbo, P. R. China
| | - Jinhua Dai
- Department of Laboratory, Ningbo No. 2 HospitalNingbo, P. R. China
| | - Zhankun Zhu
- Department of Laboratory, Ningbo No. 2 HospitalNingbo, P. R. China
| | - Haibo Shen
- Department of Thoracic Surgery, Ningbo No. 2 HospitalNingbo, P. R. China
| |
Collapse
|
8
|
Zhang J, Li G, Chen Y, Fang L, Guan C, Bai F, Ma M, Lyu J, Meng QH. Metformin Inhibits Tumorigenesis and Tumor Growth of Breast Cancer Cells by Upregulating miR-200c but Downregulating AKT2 Expression. J Cancer 2017; 8:1849-1864. [PMID: 28819383 PMCID: PMC5556649 DOI: 10.7150/jca.19858] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Metformin has been reported to inhibit the growth of various types of cancers, including breast cancer. Yet the mechanisms underlying the anticancer effects of metformin are not fully understood. Growing evidence suggests that metformin's anticancer effects are mediated at least in part by modulating microRNAs, including miR-200c, which has a tumor suppressive role in breast cancer. We hypothesized that miR-200c has a role in the antitumorigenic effects of metformin on breast cancer cells. Methods: To delineate the role of miR-200c in the effects of metformin on breast cancer, plasmids containing pre-miR-200c or miR-200c inhibitor were transfected into breast cancer cell lines. The MDA-MB-231, BT549, MCF-7, and T-47-D cells' proliferation, apoptosis, migration, and invasion were assessed. The antitumor role of metformin in vivo was investigated in a MDA-MB-231 xenograft tumor model in SCID mice. Results: Metformin significantly inhibited the growth, migration, and invasion of breast cancer cells, and induced their apoptosis; these effects were dependent on both dose and time. Metformin also suppressed MDA-MB-231 tumor growth in SCID mice in vivo. Metformin treatment was associated with increased miR-200c expression and decreased c-Myc and AKT2 protein expression in both breast cancer cells and tumor tissues. Overexpression of miR-200c exhibited effects on breast cancer cells similar to those of metformin treatment. In contrast, inhibiting the expression of miR-200c increased the growth, migration, and invasion of MCF-7 and MDA-MB-231 cells. Conclusion: Metformin inhibits the growth and invasiveness of breast cancer cells by upregulation of miR-200c expression by targeting AKT2. These findings provide novel insight into the molecular functions of metformin that suggest its potential as an anticancer agent.
Collapse
Affiliation(s)
- Jiali Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gefei Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuan Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lei Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chen Guan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fumao Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengni Ma
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qing H Meng
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Tsai SC, Lin CC, Shih TC, Tseng RJ, Yu MC, Lin YJ, Hsieh SY. The miR-200b-ZEB1 circuit regulates diverse stemness of human hepatocellular carcinoma. Mol Carcinog 2017; 56:2035-2047. [PMID: 28383782 DOI: 10.1002/mc.22657] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
Abstract
Accumulating evidence suggests that human hepatocellular carcinoma (HCC) can be derived from cancer stem cells (CSCs), which contribute to tumor initiation, metastasis, chemoresistance, and recurrence. A great variety of HCC CSCs resulting in diverse clinical manifestations have been reported. However, how CSC diversity is regulated and generated remains unclear. Here we report that the miR-200b-ZEB1 circuit is closely involved with the induction and maintenance of a diverse group of CSCs. We found that miR-200b downregulation occurred in early HCC and associated with poor prognosis. The downregulation was attributable to genome deletion and promoter methylation of the miR-200a/b/429 gene. Ectopic expression of miR-200b or silencing of ZEB1 led to a decrease in CD13+ and CD24+ HCC CSCs and an increase in EpCAM+ HCC CSCs. Mechanistically, miR-200b directly suppressed BMI1 and ZEB1 expressions. ZEB1 recognized promoters of CD13, CD24, and EpCAM genes resulting in CD13 and CD24 upregulation and EpCAM downregulation. Neither miR-200b nor ZEB1 had obvious effects on CD133 or CD90 expression. Silencing CD13 or CD24 expression suppressed tumorigenicity of HCC cells. Ectopic expression of CD24 reversed the suppression of tumorigenicity by ectopic expression of miR-200b. Clinically, miR-200b downregulation was coupled with ZEB1 upregulation in approximately two-thirds of HCC patients. ZEB1 expression was positively correlated with CD13 and CD24 expressions in HCCs, while miR-200b expression was positively correlated with EpCAM. Our findings suggest that the miR-200b-ZEB1 circuit is a master regulator of diverse stemness of HCC, which differentiates HCCs into those containing CD13+ /CD24+ CSCs from those containing EpCAM+ CSCs.
Collapse
Affiliation(s)
- Shu-Chun Tsai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chen-Chun Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsung-Chieh Shih
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California
| | - Rong-Jeng Tseng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yu-Jr Lin
- Medical Statistics and Clinical Informatics Lab, Chang Gung University, Taoyuan, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|