1
|
Wang L, Pei H, Xing T, Chen D, Chen Y, Hao Z, Tian Y, Ding J. Gut bacteria and host metabolism: The keys to sea cucumber (Apostichopus japonicus) quality traits. Food Chem 2025; 482:144178. [PMID: 40209373 DOI: 10.1016/j.foodchem.2025.144178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
Gut bacteria have a significant impact on modern genetics and contribute to the improvement of aquatic germplasm, which is a key focus for breeders. However, the effects of complex interactions between gut bacteria community and phenotypic trait of aquatic products remain largely unknown. Here, we unravel the association between phenotypic trait, gut microbiota and host metabolic variables of 216 sea cucumbers (Apostichopus japonicus) by Metagenome-wide association studies (MWAS) and Weighted correlation network analysis (WGCNA) methods. Our findings reveal that a total of 14 microbial biomarkers and 201 metabolic markers considered being associated with polysaccharide and collagen content. Among them, Desulfobacterota has the capacity to facilitate the synthesis of octopamine within the neuroactive ligand-receptor metabolic pathway, subsequently influencing polysaccharide content. Additionally, the Lachnospiraceae_NK4A136_group was shown to enhance collagen content through the facilitation of glycine synthesis. In conclusion, this research indicating that precision microbiome management could be a strategy for develop strategies for cultivating high-quality aquatic germplasm.
Collapse
Affiliation(s)
- Luo Wang
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China.
| | - Honglin Pei
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Tengyu Xing
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Dongsheng Chen
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Yuchen Chen
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Zhenlin Hao
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Ying Tian
- Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian Ocean University, Dalian, 116023, China; Agriculture Department Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Cui L, Wang B, Luo K, Liu Y, Xie Y, Liu L, Chen J, Fan G, Liu S, Tian X. The diversity, composition, network characteristics and community assembly of intestinal microbiome in sea cucumber reflect the differences in habitats and aquaculture practices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124487. [PMID: 39923616 DOI: 10.1016/j.jenvman.2025.124487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
The possible differentiation of microbiomes in various habitats and aquaculture practices has rarely been studied until now. Here, the microbiomes of five different culture systems for sea cucumber Apostichopus japonicus were compared, including outdoor pond, indoor workshop, net cage, suspension cage, marine ranching. Samples of intestinal contents from sea cucumber, surrounding water and sediment were collected from these culture systems. Significant differentiations in microbial diversity, composition, function were found in various culture systems. Microbial source-tracking analysis indicated that intestinal microbiomes of sea cucumber were more similar to sediment than to surrounding water. Totally, 23 shared core operational taxonomic units (OTUs) were identified in intestinal microbiome of sea cucumber in these systems, belong to following orders: Rhodobacterales (15), Rhizobiales (3), Flavobacteriales (2), Verrucomicrobiales (1), Campylobacterales (1), unclassified (1). Meanwhile, unique core OTUs in various systems tended to aggregate toward oligotrophic, potentially beneficial, or pathogenic bacteria. Microbial network characteristics in marine ranching and suspension cage systems were consistent with those in high-stress habitats, exhibiting lower diversity, complexity, modularity, dominated by positive interactions. Conversely, opposite trends were observed in indoor workshop, outdoor pond, net cage systems. Strong diffusion limitations on intestinal microbial community of sea cucumber, particularly in marine ranching system, were elucidated. Distinct characteristics of microbiome in various culture systems reflected differences in habitats and aquaculture practices. These findings provide new insights into impact of aquaculture systems on microbial community in aquatic animals, could contribute to healthy aquaculture practices for sea cucumber industry.
Collapse
Affiliation(s)
- Liang Cui
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Bing Wang
- BGI Research Institute, Qingdao, 266555, China
| | - Kai Luo
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Yang Liu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Yumeng Xie
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Longzhen Liu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | | | - Guangyi Fan
- BGI Research Institute, Qingdao, 266555, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
3
|
Wang S, Li E, Luo Z, Li X, Liu Z, Li W, Wang X, Qin JG, Chen L. Dietary yeast culture can protect against chronic heat stress by improving the survival, antioxidant capacity, immune response, and gut health of juvenile Chinese mitten crab (Eriocheir sinensis). AQUACULTURE 2025; 596:741910. [DOI: 10.1016/j.aquaculture.2024.741910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Tabardillo JA, Juinio-Meñez MA, Reitzel AM, Ravago-Gotanco R. Differences in gut microbial diversity and composition between growth phenotypes of farmed juvenile sandfish, Holothuria scabra. BMC Microbiol 2025; 25:14. [PMID: 39799280 PMCID: PMC11724480 DOI: 10.1186/s12866-024-03665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/19/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND The observed growth variability of different aquaculture species in captivity hinders its large-scale production. For the sandfish Holothuria scabra, a tropical sea cucumber species, there is a scarcity of information on its intestinal microbiota in relation to host growth, which could provide insights into the processes that affect growth and identify microorganisms with probiotic or biochemical potential that could improve current production strategies. To address this gap, this study used 16 S rRNA amplicon sequencing to characterize differences in gut and fecal microbiota among large and small juveniles reared in floating ocean nurseries. RESULTS We recovered 5915 amplicon sequence variants and diversity indices revealed significant differences between large and small juveniles (p < 0.05). Gut microbiota of large juveniles had lower bacterial diversity than its smaller counterparts. The genus cluster Burkholderia-Caballeronia-Paraburkholderia (BCP) is the most common and abundant taxa found in the gut for both size categories but less abundant in fecal samples. Small juveniles had a higher abundance of members from the Roseobacter clade (Rhodobacteriaceae) such as Ruegeria, Shimia, Psuedoruegeria and Marivita among others while the genus Schlegelella (Caldimonas) and Bosea were primarily found in larger juveniles. Predicted physiological functions identified signatures of metabolism, biosynthesis, and biodegradation pathways unique for each size category. Significant differences in diversity and composition were also exhibited between the pooled fecal and gut sample types. CONCLUSIONS The bacterial composition in the intestinal tract of the sandfish H. scabra is an important factor in the observed growth variability in aquaculture. The results show differences in diversity, composition and predicted physiological functions between the size groups, despite being from the same cohort and environment. It was also evident that the fecal microbiota differs from the gut and does not correspond to size category, warranting caution in using the fecal matter as a proxy to infer microbial composition and interactions in the gastrointestinal tract. Understanding the roles that these microorganisms play in sandfish growth could support the development of strategies to manage size variation in captive-bred sea cucumbers, or for the promotion and selection for faster-growing individuals.
Collapse
Affiliation(s)
- Joselito A Tabardillo
- The Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| | - Marie Antonette Juinio-Meñez
- The Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Rachel Ravago-Gotanco
- The Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
5
|
Chung SSW, Cheung K, Arromrak BS, Li Z, Tse CM, Gaitán-Espitia JD. The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution. ENVIRONMENTAL MICROBIOME 2024; 19:74. [PMID: 39397007 PMCID: PMC11479550 DOI: 10.1186/s40793-024-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.
Collapse
Affiliation(s)
- Sheena Suet-Wah Chung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Bovern Suchart Arromrak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Cham Man Tse
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Xu T, Wang J, Xu H, Wang Z, Liu Y, Bai H, Zhang Y, Kong Y, Liu Y, Ding Z. Dietary β-1,3-Glucan Promotes Growth Performance and Enhances Non-Specific Immunity by Modulating Pattern Recognition Receptors in Juvenile Oriental River Prawn (Macrobrachium nipponense). FISHES 2024; 9:379. [DOI: 10.3390/fishes9100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
As a typical pathogen-associated molecular pattern (PAMP), β-1,3-glucan can engage with pattern recognition receptors (PRRs) to initiate an immune response. In this study, we investigated the effects of dietary β-1,3-glucan on growth performance, antioxidant capacity, immune response, intestinal health, and bacterial resistance in juvenile Macrobrachium nipponense. Prawns were fed with five experimental diets containing 0%, 0.05%, 0.1%, 0.2%, and 0.4% β-1,3-glucan for eight weeks. The findings demonstrated that the inclusion of β-1,3-glucan improved weight gain and survival rate in prawns. Prawns fed with β-1,3-glucan exhibited elevated activities of hepatopancreatic ACP (acid phosphatase), AKP (alkaline phosphatase), and SOD (superoxide dismutase), while MDA (malondialdehyde) content was reduced. Expression levels of PRRs related genes including LGBP (lipopolysaccharide and β-1,3-glucan binding protein), lectin, and LBP (lipopolysaccharide-binding protein) were significantly increased in prawns fed with β-1,3-glucan. Intestinal flora analysis revealed suppression of Cyanobacteria abundance at the Phylum level and enhancement in Rhodobacter abundance at the genus level in prawns fed with a 0.2% β-1,3-glucan diet. Furthermore, prawns fed with 0.1%, 0.2%, and 0.4% β-1,3-glucan demonstrated significantly higher survival rates following Aeromonas hydrophila infection. In conclusion, β-1,3-glucan can activate PRRs to improve immune responses in M. nipponese. Within the range of β-1,3-glucan concentrations set in this experiment, it is recommended to add 0.18% of β-1,3-glucan to the diet, taking into account the positive effect of β-1,3-glucan on the survival rate of M. nipponensecu.
Collapse
Affiliation(s)
- Tailei Xu
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Junbao Wang
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hao Xu
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zifan Wang
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Yujie Liu
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hongfeng Bai
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Yixiang Zhang
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Youqin Kong
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Yan Liu
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Zhili Ding
- College of Life Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
7
|
Liu J, Chen Y, Song Y, Xu D, Gu Y, Wang J, Song W, Sun B, Jiang Z, Xia B. Evidence of size-dependent toxicity of polystyrene nano- and microplastics in sea cucumber Apostichopus japonicus (Selenka, 1867) during the intestinal regeneration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124394. [PMID: 38901819 DOI: 10.1016/j.envpol.2024.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Microplastics are ubiquitous pollutants in the global marine environment. However, few studies have adequately explored the different toxic mechanisms of microplastics (MPs) and nanoplastics (NPs) in aquatic organisms. The sea cucumber, Apostichopus japonicus, is a key organism in the marine benthic ecosystem due to its crucial roles in biogeochemical cycles and food web. This study investigated the bioaccumulation and adverse effects of polystyrene micro- and nanoplastics (PS-M/NPs) of different sizes (20 μm, 1 μm and 80 nm) in the regenerated intestine of A. japonicus using multi-omics analysis. The results showed that after 30-day exposure at the concentration of 0.1 mg L-1, PS-MPs and PS-NPs accumulated to 155.41-175.04 μg g-1 and 337.95 μg g-1, respectively. This excessive accumulation led to increased levels of antioxidases (SOD, CAT, GPx and T-AOC) and reduced activities of immune enzymes (AKP, ACP and T-NOS), indicating oxidative damage and compromised immunity in the regenerated intestine. PS-NPs had more profound negative impacts on cell proliferation and differentiation compared to PS-MPs. Transcriptomic analysis revealed that PS-NPs primarily affected pathways related to cellular components, e.g., ribosome, and oxidative phosphorylation. In comparison, PS-MPs had greater influences on actin-related organization and organic compound metabolism. In the PS-M/NPs-treated groups, differentially expressed metabolites were mainly amino acids, fatty acids, glycerol phospholipid, and purine nucleosides. Additionally, microbial community reconstruction in the regenerated intestine was severely disrupted by the presence of PS-M/NPs. In the PS-NPs group, Burkholderiaceae abundance significantly increased while Rhodobacteraceae abundance decreased. Correlation analyses demonstrated that intestinal regeneration of A. japonicus was closely linked to its enteric microorganisms. These microbiota-host interactions were notably affected by different PS-M/NPs, with PS-NPs exposure causing the most remarkable disruption of mutual symbiosis. The multi-omic approaches used here provide novel insights into the size-dependent toxicity of PS-M/NPs and highlight their detrimental effects on invertebrates in M/NPs-polluted marine benthic ecosystems.
Collapse
Affiliation(s)
- Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yize Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqi Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Baiqin Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zitan Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
8
|
Ye Q, Gao C, Xiao H, Ruan S, Wang Y, Li X, Chang Y, Zhao C, Wang H, Han B, Ding J. Feeding Behavior, Gut Microbiota, and Transcriptome Analysis Reveal Individual Growth Differences in the Sea Urchin Strongylocentrotus intermedius. BIOLOGY 2024; 13:705. [PMID: 39336132 PMCID: PMC11428599 DOI: 10.3390/biology13090705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024]
Abstract
Growth differentiation among farmed sea urchins (Strongylocentrotus intermedius) poses a significant challenge to aquaculture, with there being a limited understanding of the underlying molecular mechanisms. In this study, sea urchins with varying growth rates, reared under identical conditions, were analyzed for feeding behavior, gut microbiota, and transcriptomes. Large-sized sea urchins demonstrated significantly higher feeding ability and longer duration than smaller ones. The dominant phyla across all size groups were Campylobacterota, Proteobacteria, and Firmicutes, with Campylobacterota showing the highest abundance in small-sized sea urchins (82.6%). However, the families Lachnospiraceae and Pseudomonadaceae were significantly less prevalent in small-sized sea urchins. Transcriptome analysis identified 214, 544, and 732 differentially expressed genes (DEGs) in the large vs. medium, large vs. small, and medium vs. small comparisons, respectively. Gene Ontology and KEGG pathway analyses associated DEGs with key processes such as steroid biosynthesis, protein processing within the endoplasmic reticulum, and nucleotide sugar metabolism. Variations in phagosomes and signaling pathways indicated that size differences are linked to disparities in energy expenditure and stress responses. These findings provide a foundation for future investigations into the regulatory mechanisms underlying growth differences in S. intermedius and provide clues for the screening of molecular markers useful to improve sea urchin production.
Collapse
Affiliation(s)
- Qi Ye
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Chuang Gao
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Haoran Xiao
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Shuchao Ruan
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Yongjie Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Xiaonan Li
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Chong Zhao
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Heng Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Bing Han
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
9
|
Chen C, Ai C, Cheng W, Huang H, Hou Y, Deng X, Li S, Liu Y, Xu P, Mao Y. Impact of Dietary Variations on Kuruma Shrimp ( Penaeus japonicus) Assessed through Individual-Based Rearing and Insights into Individual Differences. Animals (Basel) 2024; 14:2267. [PMID: 39123794 PMCID: PMC11311047 DOI: 10.3390/ani14152267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
This study developed an individual-rearing method to compare the effects of live feed (sandworms Perinereis aibuhitensis), formulated pellet diets, and a mixture of live feed and formula feed on the Kuruma shrimp Penaeus japonicus, aiming to minimize the influence of non-dietary factors on the growth of P. japonicus, like cannibalism. Results indicated that live feed, with its higher protein, essential amino acids, and fatty acid content, led to significantly better growth and feeding performance in P. japonicus (p < 0.05) compared to pellet diets. A mixed diet resulted in a lower average daily protein intake yet maintained a growth and feeding performance comparable to live feed. The intestinal microbiota of shrimp, dominated by Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, showed significant shifts with diet changes. Specifically, formulated feed increased the relative abundance of Vibrio and Photobacterium while decreasing Shimia and Rhodobacterales (p < 0.05), and feeding live food resulted in a more complex and stable bacterial network. Notably, individual variances in growth and feeding were observed among shrimps, with some on formulated diets showing growth comparable to those on live feed. Each shrimp's final weight, specific growth rate, protein efficiency rate, and average daily food intake positively correlated with its initial body weight (p < 0.05), and daily intake varied cyclically with the molting cycle. These findings suggest that individual-rearing is an effective approach for detailed feed evaluation and monitoring in P. japonicus, contributing to improved feed selection, development, and feeding strategies.
Collapse
Affiliation(s)
- Chuanxi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (C.C.); (C.A.); (H.H.); (Y.H.); (X.D.); (S.L.); (Y.L.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chunxiang Ai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (C.C.); (C.A.); (H.H.); (Y.H.); (X.D.); (S.L.); (Y.L.)
| | - Wenzhi Cheng
- Department of Computer Science, Xiamen University, Xiamen 361102, China;
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Zhangzhou 363400, China
| | - Huiyang Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (C.C.); (C.A.); (H.H.); (Y.H.); (X.D.); (S.L.); (Y.L.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yiling Hou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (C.C.); (C.A.); (H.H.); (Y.H.); (X.D.); (S.L.); (Y.L.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaojie Deng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (C.C.); (C.A.); (H.H.); (Y.H.); (X.D.); (S.L.); (Y.L.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Siqi Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (C.C.); (C.A.); (H.H.); (Y.H.); (X.D.); (S.L.); (Y.L.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yue Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (C.C.); (C.A.); (H.H.); (Y.H.); (X.D.); (S.L.); (Y.L.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Zhangzhou 363400, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (C.C.); (C.A.); (H.H.); (Y.H.); (X.D.); (S.L.); (Y.L.)
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
10
|
Asiri F. Polyhydroxyalkanoates for Sustainable Aquaculture: A Review of Recent Advancements, Challenges, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2034-2058. [PMID: 38227436 DOI: 10.1021/acs.jafc.3c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable biopolymers produced by prokaryotic microbes, which, at the same time, can be applied as single-cell proteins (SCPs), growing on renewable waste-derived substrates. These PHA polymers have gained increasing attention as a sustainable alternative to conventional plastics. One promising application of PHA and PHA-rich SCPs lies within the aquaculture food industry, where they hold potential as feed additives, biocontrol agents against diseases, and immunostimulants. Nevertheless, the cost of PHA production and application remains high, partly due to expensive substrates for cultivating PHA-accumulating SCPs, costly sterilization, energy-intensive SCPs harvesting techniques, and toxic PHA extraction and purification processes. This review summarizes the current state of PHA production and its application in aquaculture. The structure and classification of PHA, microbial sources, cultivation substrates, biosynthesis pathways, and the production challenges and solutions are discussed. Next, the potential of PHA application in aquaculture is explored, focusing on aquaculture challenges, common and innovative PHA-integrated farming practices, and PHA mechanisms in inhibiting pathogens, enhancing the immune system, and improving growth and gut health of various aquatic species. Finally, challenges and future research needs for PHA production and application in aquaculture are identified. Overall, this review paper provides a comprehensive overview of the potential of PHA in aquaculture and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
11
|
Kimura Y, Fukuda Y, Otsu R, Yu J, Mino S, Misawa S, Maruyama S, Ikeda Y, Miyamachi R, Noguchi H, Kato S, Yamamoto Y, Sawabe T. A lesson from polybutylene succinate plastisphere to the discovery of novel plastic degrading enzyme genes in marine vibrios. Environ Microbiol 2023; 25:2834-2850. [PMID: 37775475 DOI: 10.1111/1462-2920.16512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Polybutylene succinate (PBS) is an eco-friendly green plastic. However, PBS was shown as being non-biodegradable in marine environments, and up until now, only a limited number of PBS-degrading marine microbes have been discovered. We first set up in vitro PBS- and PBSA (polybutylene succinate adipate)-plastispheres to characterize novel PBS-degrading marine microbes. Microbial growth and oxygen consumption were observed in both PBS- and PBSA-plastispheres enriched with natural seawater collected from Usujiri, Hokkaido, Japan, and Vibrionaceae and Pseudoalteromonadaceae were significantly enriched on these films. Further gene identification indicated that vibrios belonging to the Gazogenes clade possess genes related to a PBS degrading enzyme (PBSase). The PBS degradation assay for six Gazogenes clade vibrios identified Vibrio ruber, Vibrio rhizosphaerae, and Vibrio spartinae as being capable of degrading PBS. We further identified the gene responsible for PBSase from the type strain of V. ruber, and the purified recombinant vibrio PBSase was found to have low-temperature adaptation and was active under high NaCl concentrations. We also provided docking models between the vibrio PBSase and PBS and PBSA units to show how vibrio PBSase interacts with each substrate compared to the Acidovorax PBSase. These results could contribute to a more sustainable society through further utilization of PBS in marine environments and plastic recycling.
Collapse
Affiliation(s)
- Yutaro Kimura
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yutaka Fukuda
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Rumi Otsu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juwanen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Satoru Misawa
- Medical Core Project Dept, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Satoshi Maruyama
- Yokohama Basic Chemicals Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Yuta Ikeda
- Food Core Project Dept, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Remi Miyamachi
- Organic Materials Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Hiroshi Noguchi
- Organic Materials Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Satoshi Kato
- Research and Consulting Div, Mitsubishi Chemical Research Corporation, Tokyo, Japan
| | - Yasuhito Yamamoto
- Yokohama Basic Chemicals Lab, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
12
|
Yu J, Jiang C, Yamano R, Koike S, Sakai Y, Mino S, Sawabe T. Unveiling the early life core microbiome of the sea cucumber Apostichopus japonicus and the unexpected abundance of the growth-promoting Sulfitobacter. Anim Microbiome 2023; 5:54. [PMID: 37876012 PMCID: PMC10599069 DOI: 10.1186/s42523-023-00276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Microbiome in early life has long-term effects on the host's immunological and physiological development and its disturbance is known to trigger various diseases in host Deuterostome animals. The sea cucumber Apostichopus japonicus is one of the most valuable marine Deuterostome invertebrates in Asia and a model animal in regeneration studies. To understand factors that impact on host development and holobiont maintenance, host-microbiome association has been actively studied in the last decade. However, we currently lack knowledge of early life core microbiome during its ontogenesis and how it benefits the host's growth. RESULTS We analyzed the microbial community in 28 sea cucumber samples from a laboratory breeding system, designed to replicate aquaculture environments, across six developmental stages (fertilized eggs to the juvenile stage) over a three years-period to examine the microbiomes' dynamics and stability. Microbiome shifts occurred during sea cucumber larval ontogenesis in every case. Application of the most sophisticated core microbiome extraction methodology, a hybrid approach with abundance-occupancy core microbiome analyses (top 75% of total reads and > 70% occupation) and core index calculation, first revealed early life core microbiome consisted of Alteromonadaceae and Rhodobacteraceae, as well as a stage core microbiome consisting of pioneer core microbe Pseudoalteromonadaceae in A. japonicus, suggesting a stepwise establishment of microbiome related to ontogenesis and feeding behavior in A. japonicus. More interestingly, four ASVs affiliated to Alteromonadaceae and Rhodobacteraceae were extracted as early life core microbiome. One of the ASV (ASV0007) was affiliated to the Sulfitobactor strain BL28 (Rhodobacteraceae), isolated from blastula larvae in the 2019 raring batch. Unexpectedly, a bioassay revealed the BL28 strain retains a host growth-promoting ability. Further meta-pangenomics approach revealed the BL28 genome reads were abundant in the metagenomic sequence pool, in particular, in that of post-gut development in early life stages of A. japonicus. CONCLUSION Repeated rearing efforts of A. japonicus using laboratory aquaculture replicating aquaculture environments and hybrid core microbiome extraction approach first revealed particular ASVs affiliated to Alteromonadaceae and Rhodobacteraceae as the A. japonicus early life core microbiome. Further bioassay revealed the growth promoting ability to the host sea cucumber in one of the core microbes, the Sulfitobactor strain BL28 identified as ASV0007. Genome reads of the BL28 were abundant in post-gut development of A. japonicus, which makes us consider effective probiotic uses of those core microbiome for sea cucumber resource production and conservation. The study also emphasizes the importance of the core microbiome in influencing early life stages in marine invertebrates. Understanding these dynamics could offer pathways to improve growth, immunity, and disease resistance in marine invertebrates.
Collapse
Affiliation(s)
- Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | - Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shotaro Koike
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| |
Collapse
|
13
|
Du H, Pan J, Zhang C, Yang X, Wang C, Lin X, Li J, Liu W, Zhou H, Yu X, Mo S, Zhang G, Zhao G, Qu W, Jiang C, Tian Y, He Z, Liu Y, Li M. Analogous assembly mechanisms and functional guilds govern prokaryotic communities in mangrove ecosystems of China and South America. Microbiol Spectr 2023; 11:e0157723. [PMID: 37668400 PMCID: PMC10580968 DOI: 10.1128/spectrum.01577-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/19/2023] [Indexed: 09/06/2023] Open
Abstract
As an important coastal "blue carbon sink," mangrove ecosystems contain microbial communities with an as-yet-unknown high species diversity. Exploring the assemblage and structure of sediment microbial communities therein can aid in a better understanding of their ecosystem functioning, such as carbon sequestration and other biogeochemical cycles in mangrove wetlands. However, compared to other biomes, the study of mangrove sediment microbiomes is limited, especially in diverse mangrove ecosystems at a large spatial scale, which may harbor microbial communities with distinct compositions and functioning. Here, we analyzed 380 sediment samples from 13 and 8 representative mangrove ecosystems, respectively, in China and South America and compared their microbial features. Although the microbial community compositions exhibited strong distinctions, the community assemblage in the two locations followed analogous patterns: the assemblages of the entire community, abundant taxa, rare taxa, and generalists were predominantly driven by stochastic processes with significant distance-decay patterns, while the assembly of specialists was more likely related to the behaviors of other organisms in or surrounding the mangrove ecosystems. In addition, co-occurrence and topological network analysis of mangrove sediment microbiomes underlined the dominance of sulfate-reducing prokaryotes in both the regions. Moreover, we found that more than 70% of the keystone and hub taxa were sulfate-reducing prokaryotes, implying their important roles in maintaining the linkage and stability of the mangrove sediment microbial communities. This study fills a gap in the large-scale analysis of microbiome features covering distantly located and diverse mangrove ecosystems. Here, we propose a suggestion to the Mangrove Microbiome Initiative that 16S rRNA sequencing protocols should be standardized with a unified primer to facilitate the global-scale analysis of mangrove microbiomes and further comparisons with the reference data sets from other biomes.IMPORTANCEMangrove wetlands are important ecosystems possessing valuable ecological functions for carbon storage, species diversity maintenance, and coastline stabilization. These functions are greatly driven or supported by microorganisms that make essential contributions to biogeochemical cycles in mangrove ecosystems. The mechanisms governing the microbial community assembly, structure, and functions are vital to microbial ecology but remain unclear. Moreover, studying these mechanisms of mangrove microbiomes at a large spatial scale can provide a more comprehensive insight into their universal features and can help untangle microbial interaction patterns and microbiome functions. In this study, we compared the mangrove microbiomes in a large spatial range and found that the assembly patterns and key functional guilds of the Chinese and South American mangrove microbiomes were analogous. The entire communities exhibited significant distance-decay patterns and were strongly governed by stochastic processes, while the assemblage of specialists may be merely associated with the behaviors of the organisms in mangrove ecosystems. Furthermore, our results highlight the dominance of sulfate-reducing prokaryotes in mangrove microbiomes and their key roles in maintaining the stability of community structure and functions.
Collapse
Affiliation(s)
- Huan Du
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xilan Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen, China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory for Biocontrol, Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinhui Li
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wan Liu
- National Genomics Data Center& Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
| | - Haokui Zhou
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen, China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoli Yu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory for Biocontrol, Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shuming Mo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Guoqing Zhang
- National Genomics Data Center& Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
| | - Guoping Zhao
- National Genomics Data Center& Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Chengjian Jiang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- State Key Laboratory for Biocontrol, Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Zhou L, Sang S, Li J, Li Y, Wang D, Gan L, Zhao Z, Wang J. From waste to resource: Metagenomics uncovers the molecular ecological resources for plastic degradation in estuaries of South China. WATER RESEARCH 2023; 242:120270. [PMID: 37392508 DOI: 10.1016/j.watres.2023.120270] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Estuaries are hotspots of plastic pollution due to accumulated waste from surrounding rivers and coasts. However, the molecular ecological resources that possess plastic-degrading traits and their biogeographic distributions in estuarine waters remain to be elucidated. In this study, we mapped the distribution profiles of plastic-degrading genes (PDGs) in 30 subtropical estuaries in China based on metagenomic sequencing. A total of 41 PDG subtypes were observed in these estuaries. The Pearl River Estuary had higher diversity and abundance of PDGs than the east and west region estuaries. Genes for degrading synthetic heterochain and natural plastics were the most diverse and abundant types, respectively. The abundance of synthetic PDGs was significantly higher in estuaries affected by intense anthropogenic activities. Further binning strategies revealed diverse microbes with plastic-degrading ability in these estuaries. Rhodobacteraceae, a dominant plastic-degrading bacterial family, primarily carried PDGs for degrading natural plastics. Pseudomonas veronii carrying diverse PDGs was identified, which may be of value for further technical improvement of plastic degradation. In addition, phylogenetic and structural analyses of 19 putative 3HV dehydrogenases, the most diverse and abundant DPGs, showed inconsistent evolution with their hosts, but different sequences were conserved with consistent key functional amino acids. A potential biodegradation pathway for polyhydroxybutyrate by Rhodobacteraceae was proposed. The result implied that plastic-degrading functions are widely distributed in estuarine waters and metagenomics could be used as a promising screening tool for large-scale profiling of plastic-degrading potential in the natural environment. Our findings have important implications and provide potential molecular ecological resources for developing plastic waste removal technologies.
Collapse
Affiliation(s)
- Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shilei Sang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China
| | - Jiajie Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yusen Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Lihong Gan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Kudo R, Yamano R, Yu J, Koike S, Haditomo AHC, de Freitas MAM, Tsuchiya J, Mino S, Thompson F, Romalde JL, Kasai H, Sakai Y, Sawabe T. Genome taxonomy of the genus Neptuniibacter and proposal of Neptuniibacter victor sp. nov. isolated from sea cucumber larvae. PLoS One 2023; 18:e0290060. [PMID: 37582072 PMCID: PMC10426996 DOI: 10.1371/journal.pone.0290060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
A Gram-staining-negative, oxidase-positive, strictly aerobic rod-shaped bacterium, designated strain PT1T, was isolated from the laboratory-reared larvae of the sea cucumber Apostichopus japonicus. A phylogenetic analysis based on the 16S rRNA gene nucleotide sequences revealed that PT1T was closely related to Neptuniibacter marinus ATR 1.1T (= CECT 8938T = DSM 100783T) and Neptuniibacter caesariensis MED92T (= CECT 7075T = CCUG 52065T) showing 98.2% and 98.1% sequence similarity, respectively. However, the average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values among these three strains were 72.0%-74.8% and 18.3%-19.5% among related Neptuniibacter species, which were below 95% and 70%, respectively, confirming the novel status of PT1T. The average amino acid identity (AAI) values of PT1T showing 74-77% among those strains indicated PT1T is a new species in the genus Neptuniibacter. Based on the genome-based taxonomic approach, Neptuniibacter victor sp. nov. is proposed for PT1T. The type strain is PT1T (JCM 35563T = LMG 32868T).
Collapse
Affiliation(s)
- Rika Kudo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shotaro Koike
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Alfabetian Harjuno Condro Haditomo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Aquaculture Department, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Mayanne A. M. de Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jiro Tsuchiya
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Fabiano Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jesús L. Romalde
- Departamento de Microbiología y Parasitología, CRETUS & CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago, Spain
| | - Hisae Kasai
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
16
|
Lalitha N, Ronald BSM, Chitra MA, Jangam AK, Katneni VK, Suganya PN, Senthilnayagam H, Senthilkumar TMA, Muralidhar M. Exploration of the candidate beneficial bacteria for Penaeus vannamei culture by core microbiome analysis using amplicon sequencing. Lett Appl Microbiol 2023; 76:ovad087. [PMID: 37541955 DOI: 10.1093/lambio/ovad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Globally, Penaeus vannamei is the vital species in aquaculture production. Beneficial bacterial exploration of gut, sediment, and water were investigated in P. vannamei culture using Illumina Miseq sequencing of 16S RNA V3-V4 hypervariable regions. Predominant phyla identified were Proteobacteria, Tenericutes, Bacteroidetes in gut; Proteobacteria, Bacteroidetes, Planctomycetes in sediment and Cyanobacteria, Proteobacteria, and Planctomycetes in water. In total, 46 phyla, 509 families and 902 genera; 70 phyla, 735 families and 1255 genera; 55 phyla, 580 families and 996 genera were observed in gut, sediment and water, respectively. Diversity of microbial communities in respect of observed Operational Taxonomic Units, diversity indices (Shannon and Simpson), richness index (Chao1) were significantly high P (<0.05) in 60 DoC in gut and 30 DoC in sediment. Beta diversity indicated separate clusters for bacterial communities in gut, sediment and water samples and formation of distinct community profiles. Core microbiome in P. vannamei rearing ponds over a time consisted of 9, 21, and 20 OTUs in gut, rearing water and sediment, respectively. This study helps to intervene with suitable beneficial microbes to establish an aquaculture system thereby contributes to enhance the productivity, improve water quality and pond bottom condition, and control the pathogenic agents at each stage of the culture.
Collapse
Affiliation(s)
- Natarajan Lalitha
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
- Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India
| | | | - Murugesan Ananda Chitra
- Centre for Animal Health Studies, Madhavaram Milk Colony, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, India
| | - Ashok Kumar Jangam
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
| | - Vinaya Kumar Katneni
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
| | - Panjan Nathamuni Suganya
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
| | - Hemalatha Senthilnayagam
- Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India
| | | | - Moturi Muralidhar
- ICAR-Central Institute of Brackishwater Aquaculture, Aquatic Animal Health and Environment Division, Chennai 600028, India
| |
Collapse
|
17
|
Miyasaka H, Koga A, Maki TA. Recent progress in the use of purple non-sulfur bacteria as probiotics in aquaculture. World J Microbiol Biotechnol 2023; 39:145. [PMID: 37014486 DOI: 10.1007/s11274-023-03592-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The use of probiotics in aquaculture is widely recognized as an ecological and cost-effective approach to raising healthy, pathogen-tolerant aquatic animals, including fish and shrimp. In particular for shrimp, probiotics are viewed as a promising countermeasure to the recent severe damage to the shrimp industry by bacterial and viral pathogens. Purple non-sulfur bacteria (PNSB) are Gram-negative, non-pathogenic bacteria with wide application potential in agriculture, wastewater treatment, and bioenergy/biomaterials production. In aquaculture, lactic bacteria and Bacillus are the major probiotic bacteria used, but PNSB, like Rhodopseudomonas and Rhodobacter, are also used. In this review, we summarize the previous work on the use of PNSB in aquaculture, overview the previous studies on the stimulation of innate immunity of shrimp by various probiotic microorganisms, and also share our results in the probiotic performance of Rhodovulum sulfidophilum KKMI01, a marine PNSB, which showed a superior effect in promotion of growth and stimulation of immunity in shrimp at a quite low concentration of 1 × 103 cfu (colony forming unit)/ml in rearing water.
Collapse
Affiliation(s)
- Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan.
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan.
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan.
| | - Aoi Koga
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan
| | - Taka-Aki Maki
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan
| |
Collapse
|
18
|
Yan T, Ai C, Ou H, Song S, Yang S, Yang J. The Intestinal Microbiota Involves in the Deterioration of Live Sea Cucumber During Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2023. [DOI: 10.1080/10498850.2023.2174393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Tingting Yan
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Chunqing Ai
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Haoyang Ou
- Pre- architecture Design, Iowa State University, Ames, IA, USA
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| | - Sheng Yang
- Roy J. Carver Dept. of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Jingfeng Yang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, PR China
| |
Collapse
|
19
|
Asiri F, Chu KH. Valorization of agro-industrial wastes into polyhydroxyalkanoates-rich single-cell proteins to enable a circular waste-to-feed economy. CHEMOSPHERE 2022; 309:136660. [PMID: 36191769 DOI: 10.1016/j.chemosphere.2022.136660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Recovering and converting carbon and nutrients from waste streams into healthy single-cell proteins (SCPs) can be an effective strategy to address costly waste management and support the increasing animal feed demand for the global food supply. Recently, SCPs rich in polyhydroxybutyrate (PHB) have been identified as an effective biocontrol healthy feed to replace conventional antibiotics-supplemented aquaculture feed. PHB, an intercellular polymer of short-chain-length (SCL) hydroxy-fatty acids, is a common type of polyhydroxyalkanoates (PHA) that can be microbially produced from various organics, including agro-industrial wastes. The complex chemical properties of agro-industrial wastes might produce SCPs containing PHA with SCL and/or medium chain-length (MCL) hydroxy-fatty acids. However, the effects of MCL-PHA-containing SCPs on aqua species' health and disease-fighting ability remains poorly understood. This study investigated the feasibility of producing various PHA-containing SCPs from renewable agro-industrial wastes/wastewaters, the effectiveness of SCL- and MCL-PHA as biocontrol agents, and the effects of these PHA-rich SCPs on the growth and disease resistance of an aquaculture animal model, brine shrimp Artemia. Zobellella denitrificans ZD1 and Pseudomonas oleovorans were able to grow on different pure substrates and agro-industrial wastes/wastewaters to produce various SCL- and/or MCL-PHA-rich SCPs. Low doses of MCL-fatty acids (i.e., PHA intermediates) efficiently suppressed the growth of aquaculture pathogens. Moreover, MCL-PHA-rich SCPs served as great food/energy sources for Artemia and improved Artemia's ability to fight pathogens. This study offers a win-win approach to address the challenges of wastes/wastewater management and feed supply faced by the aquaculture industry.
Collapse
Affiliation(s)
- Fahad Asiri
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA; Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA.
| |
Collapse
|
20
|
Yamano R, Yu J, Jiang C, Harjuno Condro Haditomo A, Mino S, Sakai Y, Sawabe T. Taxonomic revision of the genus Amphritea supported by genomic and in silico chemotaxonomic analyses, and the proposal of Aliamphritea gen. nov. PLoS One 2022; 17:e0271174. [PMID: 35947547 PMCID: PMC9365125 DOI: 10.1371/journal.pone.0271174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, aerobic bacterium, designated strain PT3T was isolated from laboratory-reared larvae of the Japanese sea cucumber Apostichopus japonicus. Phylogenetic analysis based on the 16S rRNA gene nucleotide sequences revealed that PT3T was closely related to Amphritea ceti RA1T (= KCTC 42154T = NBRC 110551T) and Amphritea spongicola MEBiC05461T (= KCCM 42943T = JCM 16668T) both with 98.3% sequence similarity, however, average nucleotide identity (ANI) and in silico DNA-DNA hybridization (in silico DDH) values among these three strains were below 95% and 70%, respectively, confirming the novelty of PT3T. Furthermore, the average amino acid identity (AAI) values of PT3T against other Amphritea species were on the reported genus delineation boundary (64-67%). Multilocus sequence analysis using four protein-coding genes (recA, mreB, rpoA, and topA) further demonstrated that PT3T, Amphritea ceti and Amphritea spongicola formed a monophyletic clade clearly separate from other members of the genus Amphritea. Three strains (PT3T, A. ceti KCTC 42154T and A. spongicola JCM 16668T) also showed higher similarities in their core genomes compared to those of the other Amphritea spp. Based on the genome-based taxonomic approach, Aliamphritea gen. nov. was proposed together with the reclassification of the genus Amphritea and Aliamphritea ceti comb. nov. (type strain RA1T = KCTC 42154T = NBRC 110551T), Aliamphritea spongicola comb. nov. (type strain MEBiC05461T = KCCM 42943T = JCM 16668T), and Aliamphritea hakodatensis sp. nov. (type strain PT3T = JCM 34607T = KCTC 82591T) were suggested.
Collapse
Affiliation(s)
- Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Chunqi Jiang
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Alfabetian Harjuno Condro Haditomo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
- Aquaculture Department, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
21
|
Quintanilla-Mena MA, Olvera-Novoa MA, Sánchez-Tapia IA, Lara-Pérez LA, Rivas-Reyes I, Gullian-Klanian M, Patiño-Suárez MV, Puch-Hau CA. The digestive tract sections of the sea cucumber Isostichopus badionotus reveal differences in composition, diversity, and functionality of the gut microbiota. Arch Microbiol 2022; 204:463. [PMID: 35792945 DOI: 10.1007/s00203-022-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
For the first time, this study analyses the composition and diversity of the gut microbiota of Isostichopus badionotus in captivity, using high-throughput 16S rRNA sequencing, and predicts the metagenomic functions of the microbiota. The results revealed a different composition of the gut microbiota for the foregut (FG) and midgut (MG) compared to the hindgut (HG), with a predominance of Proteobacteria, followed by Actinobacteria, Bacteroidetes, and Firmicutes. The FG and MG demonstrated a greater bacterial diversity compared to the HG. In addition, a complex network of interactions was observed at the genus level and identified some strains with probiotic and bioremediation potentials, such as Acinetobacter, Ruegeria, Streptococcus, Lactobacillus, Pseudomonas, Enterobacter, Aeromonas, Rhodopseudomonas, Agarivorans, Bacillus, Enterococcus, Micrococcus, Bifidobacterium, and Shewanella. Predicting metabolic pathways revealed that the bacterial composition in each section of the intestine participates in different physiological processes such as metabolism, genetic and environmental information processing, organismal systems, and cellular processes. Understanding and manipulating microbe--host-environment interactions and their associated functional capacity could substantially contribute to achieving more sustainable aquaculture systems for I. badionotus.
Collapse
Affiliation(s)
- Mercedes A Quintanilla-Mena
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Miguel A Olvera-Novoa
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Itzel A Sánchez-Tapia
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Luis A Lara-Pérez
- Tecnológico Nacional de México Campus Instituto Tecnológico de la Zona Maya, Carretera Chetumal-Escárcega km 21.5, C.P. 77965, Ejido Juan Sarabia, Quintana Roo, Mexico
| | - Isajav Rivas-Reyes
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Mariel Gullian-Klanian
- Universidad Marista de Mérida, Periférico Norte Tablaje Catastral 13941, Carretera Mérida-Progreso, P.O. Box 97300, Mérida, Yucatán, Mexico
| | - María V Patiño-Suárez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Carlos A Puch-Hau
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
22
|
Zhao Z, Jiang J, Zheng J, Pan Y, Dong Y, Chen Z, Gao S, Xiao Y, Jiang P, Wang X, Zhang G, Wang B, Yu D, Fu Z, Guan X, Sun H, Zhou Z. Exploiting the gut microbiota to predict the origins and quality traits of cultured sea cucumbers. Environ Microbiol 2022; 24:3882-3897. [PMID: 35297145 DOI: 10.1111/1462-2920.15972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 01/09/2023]
Abstract
Nowadays, the true economic and nutritional value of food is underpinned by both origin and quality traits, more often expressed as increased quality benefits derived from the origin source. Gut microbiota contribute to food metabolism and host health, therefore, it may be suitable as a qualifying indicator of origin and quality of economic species. Here, we investigated relationships between the gut microbiota of the sea cucumber (Apostichopus japonicus), a valuable aquaculture species in Asia, with their origins and quality metrics. Based on data from 287 intestinal samples, we generated the first biogeographical patterns for A. japonicus gut microbiota from origins across China. Importantly, A. japonicus origins were predicted using the random forest model that was constructed using 20 key gut bacterial genera, with 97.6% accuracy. Furthermore, quality traits such as saponin, fat and taurine were also successfully predicted by random forest models based on gut microbiota, with approximately 80% consistency between predicted and true values. We showed that substantial variations existed in the gut microbiota and quality variables in A. japonicus across different origins, and we also demonstrated the great potential of gut microbiota to track A. japonicus origins and predict their quality traits.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jingwei Jiang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jie Zheng
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yongjia Pan
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Ying Dong
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zhong Chen
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Shan Gao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yao Xiao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Pingzhe Jiang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Xuda Wang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Gaohua Zhang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Bai Wang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Di Yu
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zhiyu Fu
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Xiaoyan Guan
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Hongjuan Sun
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zunchun Zhou
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| |
Collapse
|
23
|
Koga A, Yamasaki T, Hayashi S, Yamamoto S, Miyasaka H. Isolation of purple nonsulfur bacteria from the digestive tract of ayu (Plecoglossus altivelis). Biosci Biotechnol Biochem 2022; 86:407-412. [PMID: 35020785 DOI: 10.1093/bbb/zbac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022]
Abstract
Purple nonsulfur bacteria (PNSB) reportedly have probiotic effects in fish, but whether they are indigenous in the digestive tract of fish is a question that requires answering. We attempted to isolate PNSB from the digestive tract of ayu (Plecoglossus altivelis) from the Kuma River (Kumamoto, Japan) and successfully isolated 12 PNSB strains. All the isolated PNSB belonged to the genus Rhodopseudomonas. Five Rhodopseudomonas strains were also isolated from the soil samples collected along the Kuma River. The phylogenetic tree based on the partial sequence of pufLM gene indicated that the PNSB from ayu and soil were similar. The effects of NaCl concentration in growth medium on growth were also compared between the PNSB from ayu and soil. The PNSB from ayu showed a better growth performance at a higher NaCl concentration, suggesting that the intestinal tract of ayu, a euryhaline fish, might provide suitable environment for halophilic microorganisms.
Collapse
Affiliation(s)
- Aoi Koga
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| | - Takumi Yamasaki
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| | - Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, Nishi-ku, Kumamoto, Kumamoto, Japan
| |
Collapse
|
24
|
Díaz-Díaz LM, Rodríguez-Villafañe A, García-Arrarás JE. The Role of the Microbiota in Regeneration-Associated Processes. Front Cell Dev Biol 2022; 9:768783. [PMID: 35155442 PMCID: PMC8826689 DOI: 10.3389/fcell.2021.768783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota, the set of microorganisms associated with a particular environment or host, has acquired a prominent role in the study of many physiological and developmental processes. Among these, is the relationship between the microbiota and regenerative processes in various organisms. Here we introduce the concept of the microbiota and its involvement in regeneration-related cellular events. We then review the role of the microbiota in regenerative models that extend from the repair of tissue layers to the regeneration of complete organs or animals. We highlight the role of the microbiota in the digestive tract, since it accounts for a significant percentage of an animal microbiota, and at the same time provides an outstanding system to study microbiota effects on regeneration. Lastly, while this review serves to highlight echinoderms, primarily holothuroids, as models for regeneration studies, it also provides multiple examples of microbiota-related interactions in other processes in different organisms.
Collapse
Affiliation(s)
- Lymarie M Díaz-Díaz
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | | | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| |
Collapse
|
25
|
Yang MJ, Song H, Feng J, Yu ZL, Shi P, Liang J, Hu Z, Zhou C, Wang XL, Zhang T. Symbiotic microbiome and metabolism profiles reveal the effects of induction by oysters on the metamorphosis of the carnivorous gastropod Rapana venosa. Comput Struct Biotechnol J 2022; 20:1-14. [PMID: 34976307 PMCID: PMC8666614 DOI: 10.1016/j.csbj.2021.11.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Most marine mollusks have a pelagic larval phase, and they need to undergo metamorphosis to develop into adults. Metamorphosis is affected by many factors, including abiotic factors such as temperature, salinity and illumination as well as biological factors such as food and microorganisms. In our previous study, we found that the metamorphosis of Rapana venosa requires induction by juvenile oysters, which are the food source of R. venosa. However, the regulatory mechanism of this induction is largely unknown. In the present study, we evaluated the impacts of induction by juvenile oysters on competent larvae of R. venosa. Competent larvae were experimentally divided into two pools, and scallop shells without juvenile oysters and scallop shells with juvenile oysters were added for 2 h and 12 h to monitor alterations in critical gene expression, symbiotic microbiota and metabolomic responses. The carboxypeptidase gene was increased while the cellulase gene was decreased, which may mean that the food habit transition was induced by juvenile oysters. Meanwhile, critical genes in the neuroendocrine system were also significantly altered in juvenile oysters. Furthermore, dramatic changes in the symbiotic microbiota and metabolism profiles were observed, with many of them associated with the digestive system and neuroendocrine system. In conclusion, juveniles as food resources may induce metamorphosis in R. venosa by regulating the neuroendocrine system and promoting the development of the digestive system and changes in digestive enzymes. This study may provide evidence that induction by juvenile oysters can promote food habit transition and metamorphosis in R. venosa by regulating the metabolome and microbiome and further altering the digestive and neuroendocrine systems of R. venosa, which expands our understanding of the regulatory mechanism of metamorphosis in R. venosa. However, further studies are needed to explore the specific substance inducing metamorphosis released by juvenile oysters.
Collapse
Affiliation(s)
- Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Liang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Lin Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- Corresponding authors at: 7 Nanhai Road, Qingdao, Shandong 266071, China.
| |
Collapse
|
26
|
Yu Z, Xue Z, Liu C, Zhang A, Fu Q, Yang K, Zhang F, Ran L. Distinct microbiota assembly mechanisms revealed in different reconstruction stages during gut regeneration in the sea cucumber Apostichopus japonicus. Microbiologyopen 2021; 10:e1250. [PMID: 34964292 PMCID: PMC8608568 DOI: 10.1002/mbo3.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
Apostichopus japonicus is a useful model for studying organ regeneration, and the gut microbiota is important for host organ regeneration. However, the reconstruction process and the mechanisms of gut microbiota assembly during gut regeneration in sea cucumbers have not been well studied. In the present study, gut regeneration was induced (via evisceration) in A. japonicus, and gut immune responses and bacterial diversity were investigated to reveal gut microbiota assembly and its possible mechanisms during gut regeneration. The results revealed that bacterial community reconstruction involved two stages with distinct assembly mechanisms, where the reconstructed community was initiated from the bacterial consortium in the residual digestive tract and tended to form a novel microbiota in the later stage of reconstruction. Together, the results of immunoenzyme assays, community phylogenetic analysis, and source tracking suggested that the host deterministic process was stronger in the initial stage than in the later stage. The bacterial interactions that occurred were significantly different between the two stages. Positive interactions dominated in the initial stage, while more complex and competitive interactions developed in the later stage. Such a dynamic bacterial community could provide the host with energetic and immune benefits that promote gut regeneration and functional recovery. The results of the present study provide insights into the processes and mechanisms of gut microbiota assembly during intestinal regeneration that are valuable for understanding gut regeneration mechanisms mediated by the microbiota.
Collapse
Affiliation(s)
- Zichao Yu
- School of Laboratory Animal & Shandong Laboratory Animal CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal ImmunologyDalian Ocean UniversityDalianChina
| | - Chao Liu
- Liaoning Key Laboratory of Marine Animal ImmunologyDalian Ocean UniversityDalianChina
| | - Anguo Zhang
- National Marine Environmental Monitoring Center, Ministry of Ecology and EnvironmentDalianChina
| | - Qiang Fu
- Liaoning Key Laboratory of Marine Animal ImmunologyDalian Ocean UniversityDalianChina
| | - Kun Yang
- School of Laboratory Animal & Shandong Laboratory Animal CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Fang Zhang
- School of Laboratory Animal & Shandong Laboratory Animal CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Liyuan Ran
- School of Laboratory Animal & Shandong Laboratory Animal CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
27
|
Kaitala V, Koivu-Jolma M, Laakso J. Infective prey leads to a partial role reversal in a predator-prey interaction. PLoS One 2021; 16:e0249156. [PMID: 34534219 PMCID: PMC8448379 DOI: 10.1371/journal.pone.0249156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
An infective prey has the potential to infect, kill and consume its predator. Such a prey-predator relationship fundamentally differs from the predator-prey interaction because the prey can directly profit from the predator as a growth resource. Here we present a population dynamics model of partial role reversal in the predator-prey interaction of two species, the bottom dwelling marine deposit feeder sea cucumber Apostichopus japonicus and an important food source for the sea cucumber but potentially infective bacterium Vibrio splendidus. We analyse the effects of different parameters, e.g. infectivity and grazing rate, on the population sizes. We show that relative population sizes of the sea cucumber and V. Splendidus may switch with increasing infectivity. We also show that in the partial role reversal interaction the infective prey may benefit from the presence of the predator such that the population size may exceed the value of the carrying capacity of the prey in the absence of the predator. We also analysed the conditions for species extinction. The extinction of the prey, V. splendidus, may occur when its growth rate is low, or in the absence of infectivity. The extinction of the predator, A. japonicus, may follow if either the infectivity of the prey is high or a moderately infective prey is abundant. We conclude that partial role reversal is an undervalued subject in predator-prey studies.
Collapse
Affiliation(s)
- Veijo Kaitala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland
| | - Mikko Koivu-Jolma
- Department of Physics, Faculty of Science, Helsinki University, Helsinki, Finland
| | - Jouni Laakso
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland
| |
Collapse
|
28
|
Wang K, Liu L, He Y, Qu C, Miao J. Effects of Dietary Supplementation with κ-Selenocarrageenan on the Selenium Accumulation and Intestinal Microbiota of the Sea Cucumbers Apostichopus japonicus. Biol Trace Elem Res 2021; 199:2753-2763. [PMID: 32974844 DOI: 10.1007/s12011-020-02393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
A 30-day feeding trial was conducted to investigate the effect of κ-selenocarrageenan on the growth performance, selenium accumulation, antioxidant capacity, and intestinal microbiota of sea cucumbers Apostichopus japonicus, with different sizes (70 g ± 10 g and 100 g ± 10 g). Sea cucumbers of each size were randomly assigned into two groups; a diet without supplemented κ-selenocarrageenan was referred to as a control diet, or supplemented with κ-selenocarrageenan at selenium (Se) levels of 2.0 μg/g. Selenium accumulation in the body wall and intestine was determined on days 0, 10, 20, and 30. The survival rate (SR) was significantly higher in the κ-selenocarrageenan-treated group (Se group) than in the control group. After 30 days of feeding, κ-selenocarrageenan supplementation increased the activities of glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC), and decreased malondialdehyde (MDA) levels in A. japonicus. Furthermore, the intestinal microbiota diversity of sea cucumbers was increased by dietary supplementation with κ-selenocarrageenan and the relative abundances of some probiotics (such as Sulfitobacter and Rhodobacteraceae) were also increased. It is suggested that κ-selenocarrageenan could increase the antioxidant capacity and modulate the intestinal microbiota of sea cucumbers A. japonicus. Further researches will be conducted for its optimal administration concentrations in vivo.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Lina Liu
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
29
|
Kalia VC, Singh Patel SK, Shanmugam R, Lee JK. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. BIORESOURCE TECHNOLOGY 2021; 326:124737. [PMID: 33515915 DOI: 10.1016/j.biortech.2021.124737] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Plastics are an integral part of most of the daily requirements. Indiscriminate usage and disposal have led to the accumulation of massive quantities of waste. Their non-biodegradable nature makes it increasingly difficult to manage and dispose them. To counter this impending disaster, biodegradable polymers, especially polyhydroxy-alkanoates (PHAs), have been envisaged as potential alternatives. Owing to their unique physicochemical characteristics, PHAs are gaining importance for versatile applications in the agricultural and medical sectors. Applications in the medical sector are more promising because of their commercial viability and sustainability. Despite such potential, their production and commercialization are significant challenges. The major limitations are their poor mechanical strength, production in small quantities, costly feed, and lack of facilities for industrial production. This article provides an overview of the contemporary progress in the field, to attract researchers and stakeholders to further exploit these renewable resources to produce biodegradable plastics on a commercial scale.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Ramasamy Shanmugam
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
30
|
Ezzat L, Merolla S, Clements CS, Munsterman KS, Landfield K, Stensrud C, Schmeltzer ER, Burkepile DE, Vega Thurber R. Thermal Stress Interacts With Surgeonfish Feces to Increase Coral Susceptibility to Dysbiosis and Reduce Tissue Regeneration. Front Microbiol 2021; 12:620458. [PMID: 33841351 PMCID: PMC8027513 DOI: 10.3389/fmicb.2021.620458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/28/2021] [Indexed: 01/04/2023] Open
Abstract
Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surface temperatures have direct effects on coral microbiomes by promoting growth and virulence of opportunists and putative pathogens, thereby altering host immunity and health. However, interactions between these biotic and abiotic factors have yet to be evaluated. Here, we used a factorial experiment to investigate the combined effects of fecal pellet deposition by the widely distributed surgeonfish Ctenochaetus striatus and elevated sea surface temperatures on microbiomes associated with the reef-building coral Porites lobata. Our results showed that regardless of temperature, exposure of P. lobata to C. striatus feces increased alpha diversity, dispersion, and lead to a shift in microbial community composition – all indicative of microbial dysbiosis. Although elevated temperature did not result in significant changes in alpha and beta diversity, we noted an increasing number of differentially abundant taxa in corals exposed to both feces and thermal stress within the first 48h of the experiment. These included opportunistic microbial lineages and taxa closely related to potential coral pathogens (i.e., Vibrio vulnificus, Photobacterium rosenbergii). Some of these taxa were absent in controls but present in surgeonfish feces under both temperature regimes, suggesting mechanisms of microbial transmission and/or enrichment from fish feces to corals. Importantly, the impact to coral microbiomes by fish feces under higher temperatures appeared to inhibit wound healing in corals, as percentages of tissue recovery at the site of feces deposition were lower at 30°C compared to 26°C. Lower percentages of tissue recovery were associated with greater relative abundance of several bacterial lineages, with some of them found in surgeonfish feces (i.e., Rhodobacteraceae, Bdellovibrionaceae, Crocinitomicaceae). Our findings suggest that fish feces interact with elevated sea surface temperatures to favor microbial opportunism and enhance dysbiosis susceptibility in P. lobata. As the frequency and duration of thermal stress related events increase, the ability of coral microbiomes to recover from biotic stressors such as deposition of fish feces may be greatly affected, ultimately compromising coral health and resilience.
Collapse
Affiliation(s)
- Leïla Ezzat
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sarah Merolla
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Cody S Clements
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Katrina S Munsterman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Kaitlyn Landfield
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Colton Stensrud
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Emily R Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
31
|
Antibiotics Modulate Intestinal Regeneration. BIOLOGY 2021; 10:biology10030236. [PMID: 33808600 PMCID: PMC8003396 DOI: 10.3390/biology10030236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
Simple Summary The impact of the microbial community on host’s biological functions has uncovered the potential outcomes of antibiotics on host physiology, introducing the caveats of the antibiotic usage. Within animals, the digestive function is closely related to the microorganisms that inhabit this organ. The proper maintenance of the digestive system requires constant regeneration. These processes vary from self-renewal of some cells or tissues in some species to the complete regeneration of the organ in others. Whether antibiotics influence digestive organ regeneration remains unknown. We employ the sea cucumber, Holothuria glaberrima, for its capacity to regenerate the whole intestine after ejection from its internal cavity. We explored the antibiotics’ effects on several intestinal regeneration processes. In parallel, we studied the effect of antibiotics on the animals’ survival, toxicity, and gut bacteria growth. Our results show that tested antibiotics perturbed key cellular processes that occur during intestinal regeneration. Moreover, this happens at doses that inhibited bacteria growth but did not alter holothurian’s metabolic activity. We propose that antibiotics can perturb the cellular events of intestinal regeneration via their impact on the microbiota. These results highlight H. glaberrima as a promising model to study the importance of the microbiota during organ regeneration. Abstract The increased antibiotics usage in biomedical and agricultural settings has been well documented. Antibiotics have now been shown to exert effects outside their purposive use, including effects on physiological and developmental processes. We explored the effect of various antibiotics on intestinal regeneration in the sea cucumber Holothuria glaberrima. For this, holothurians were eviscerated and left to regenerate for 10 days in seawater with different penicillin/streptomycin-based cocktails (100 µg/mL PS) including: 100 µg/mL kanamycin (KPS), 5 µg/mL vancomycin (VPS), and 4 µg/mL (E4PS) or 20 µg/mL (E20PS) erythromycin. Immunohistological and histochemical analyses were performed to analyze regenerative processes, including rudiment size, extracellular matrix (ECM) remodeling, cell proliferation, and muscle dedifferentiation. A reduction in muscle dedifferentiation was observed in all antibiotic-treated animals. ECM remodeling was decreased by VPS, E4PS, and E20PS treatments. In addition, organisms subjected to E20PS displayed a significant reduction in the size of their regenerating rudiments while VPS exposure altered cell proliferation. MTT assays were used to discard the possibility that the antibiotics directly affect holothurian metabolic activity while bacterial cultures were used to test antibiotic effects on holothurian enteric microbiota. Our results demonstrate a negative effect on intestinal regeneration and strongly suggest that these effects are due to alterations in the microbial community.
Collapse
|
32
|
Keating C, Bolton-Warberg M, Hinchcliffe J, Davies R, Whelan S, Wan AHL, Fitzgerald RD, Davies SJ, Ijaz UZ, Smith CJ. Temporal changes in the gut microbiota in farmed Atlantic cod (Gadus morhua) outweigh the response to diet supplementation with macroalgae. Anim Microbiome 2021; 3:7. [PMID: 33500003 PMCID: PMC7934267 DOI: 10.1186/s42523-020-00065-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Aquaculture successfully meets global food demands for many fish species. However, aquaculture production of Atlantic cod (Gadus morhua) is just 2.5% of total market production. For cod farming to be a viable economic venture specific challenges on how to increase growth, health and farming productivity need to be addressed. Feed ingredients play a key role here. Macroalgae (seaweeds) have been suggested as a functional feed supplement with both health and economic benefits for terrestrial farmed animals and fish. The impact of such dietary supplements to cod gut integrity and microbiota, which contribute to overall fish robustness is unknown. The objective of this study was to supplement the diet of juvenile Atlantic cod with macroalgae and determine the impacts on fish condition and growth, gut morphology and hindgut microbiota composition (16S rRNA amplicon sequencing). Fish were fed one of three diets: control (no macroalgal inclusion), 10% inclusion of either egg wrack (Ascophyllum nodosum) or sea lettuce (Ulva rigida) macroalgae in a 12-week trial. RESULTS The results demonstrated there was no significant difference in fish condition, gut morphology or hindgut microbiota between the U. rigida supplemented fish group and the control group at any time-point. This trend was not observed with the A. nodosum treatment. Fish within this group were further categorised as either 'Normal' or 'Lower Growth'. 'Lower Growth' individuals found the diet unpalatable resulting in reduced weight and condition factor combined with an altered gut morphology and microbiome relative to the other treatments. Excluding this group, our results show that the hindgut microbiota was largely driven by temporal pressures with the microbial communities becoming more similar over time irrespective of dietary treatment. The core microbiome at the final time-point consisted of the orders Vibrionales (Vibrio and Photobacterium), Bacteroidales (Bacteroidetes and Macellibacteroides) and Clostridiales (Lachnoclostridium). CONCLUSIONS Our study indicates that U. rigida macroalgae can be supplemented at 10% inclusion levels in the diet of juvenile farmed Atlantic cod without any impact on fish condition or hindgut microbial community structure. We also conclude that 10% dietary inclusion of A. nodosum is not a suitable feed supplement in a farmed cod diet.
Collapse
Affiliation(s)
- C Keating
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland.
- Water and Environment Group, Infrastructure and Environment Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | - M Bolton-Warberg
- Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Co, Galway, H91 V8Y1, Ireland
| | - J Hinchcliffe
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - R Davies
- AquaBioTech Group, Central Complex, Naggar Street, Targa Gap, Mosta, G.C, MST 1761, Malta
| | - S Whelan
- Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Co, Galway, H91 V8Y1, Ireland
| | - A H L Wan
- Irish Seaweed Research Group, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
- Aquaculture Nutrition and Aquafeed Research Unit, Carna Research Station, Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Carna, Co, Galway, H91 V8Y1, Ireland
| | - R D Fitzgerald
- Carna Research Station, Ryan Institute, National University of Ireland Galway, Carna, Co, Galway, H91 V8Y1, Ireland
| | - S J Davies
- Department of Animal Production, Welfare and Veterinary Science, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - U Z Ijaz
- Water and Environment Group, Infrastructure and Environment Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | - C J Smith
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland.
- Water and Environment Group, Infrastructure and Environment Division, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| |
Collapse
|
33
|
Yamazaki Y, Sakai Y, Yu J, Mino S, Sawabe T. Tracking the dynamics of individual gut microbiome of sea cucumber Apostichopus japonicus during gut regeneration. PeerJ 2020; 8:e10260. [PMID: 33344070 PMCID: PMC7718794 DOI: 10.7717/peerj.10260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Sea cucumbers possess the remarkable capacity to regenerate their body parts or organs. Regeneration of host organs and/or body parts involves reconstruction of the host associated microbiota, however, the dynamics and contribution of microbiota to the regeneration process are largely unknown due to a lack of experimental models. To track the dynamics of individual gut microbiomes during gut regeneration, both caged mariculture and laboratory isolator systems of sea cucumbers (Apostichopus japonicus) were developed and longitudinal meta16S analyses were performed. Under natural environmental conditions in the caged mariculture system, both bacterial and eukaryotic communities in sea cucumbers' guts appeared to be reconstructed within 4 months after evisceration. Using the laboratory isolator, which can trace daily dynamics, we found that fecal microbiota collected before evisceration were clearly different from those collected after evisceration. We also identified eight key bacteria, belonging to Alteromonadaceae, Rhodobacteraceae, Oceanospirillaceae and family-unassigned Gammaproteobacteria, suggesting that these bacteria might interact with the host during the gut regeneration process. Six of the eight key bacteria were isolated for further bioassay using the isolator developed in this study to test whether these isolates affect gut regeneration.
Collapse
Affiliation(s)
- Yohei Yamazaki
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
34
|
Qiao G, Lv T, Zhang M, Chen P, Sun Q, Zhang J, Li Q. β-hydroxybutyrate (β-HB) exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated macrophages in Liza haematocheila. FISH & SHELLFISH IMMUNOLOGY 2020; 107:444-451. [PMID: 33160021 DOI: 10.1016/j.fsi.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Poly-β-hydroxybutyrate (PHB) can be hydrolyzed to β-hydroxybutyrate (β-HB) in the intestinal tract of animals, and dietary PHB supplementation could enhance the immunity and disease resistance of aquatic animals. Antioxidant system is responsive to PHB stimuli via MAPK/PI3K-Akt/TNF/NF-κB/TCR/TLR signaling pathways. However, the precise immunopotentiation mechanism needs further study. In this study, macrophages from spleen in Liza haematocheila was used to study the effect of β-HB on cell viability and antioxidant function to illustrate the immunopotentiation mechanism of PHB. The results showed that β-HB (100 μg/mL) promoted the viability of macrophages and balanced the production of reactive oxygen species, but inhibited the excessive production of intracellular nitric oxide. In order to further explore the immunopotentiation mechanism of β-HB, LPS (100 μg/mL) was used to induce the inflammation and investigated the inhibitory effect of β-HB on inflammation. The results showed that LPS could induce inflammation successfully, and β-HB exerted anti-inflammatory and antioxidant effects in LPS-stimulated macrophages. Compared with LPS stimuli alone, the expression of anti-inflammatory genes NF-κBIA, MAP3K8 and TLR5 in β-HB pretreatment group was up-regulated, and the expression of pro-inflammatory genes TNFSF6, TNF-α, PI3K, NF-κB and TLR1 down-regulated. It suggested that β-HB inhibited the inflammatory response by up-regulation of anti-inflammatory genes such as NF-κBIA, thereby enhancing the immunity of the body.
Collapse
Affiliation(s)
- Guo Qiao
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Tingli Lv
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Province Liaoning, China
| | - Mingming Zhang
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Peng Chen
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Province Liaoning, China
| | - Qirui Sun
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, Province Liaoning, China
| | - Jialin Zhang
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qiang Li
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| |
Collapse
|
35
|
Zhang H, Wang Q, Zhao J, Liu S, Zhang L, Zhao Y, Yang H, Sun L. Quantitative microbiome profiling links microbial community variation to the intestine regeneration rate of the sea cucumber Apostichopus japonicus. Genomics 2020; 112:5012-5020. [PMID: 32919016 DOI: 10.1016/j.ygeno.2020.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 09/06/2020] [Indexed: 11/26/2022]
Abstract
The intestinal microbiota may play important roles in regenerating intestine of the sea cucumber Apostichopus japonicus, the underlying mechanism remains unclear. In the present study, a germ-free sea cucumber model was developed, and the intestinal microbial differentiation of faster and slower regenerating A. japonicus individuals during intestine regeneration was analyzed. The results revealed that depletion of the intestinal microbiota resulted in elevated abundance of the potential key players Flavobacteriaceae and Rhodobacteraceae during intestine regeneration and thus promoted the intestine regeneration rate of A. japonicus. Metagenomic analysis revealed that the increased abundance of Flavobacteriaceae elevated the enrichment of genes associated with carbohydrate utilization, whereas the abundant Rhodobacteraceae-enriched genes were associated with polyhydroxybutyrate production. We identified microbiota abundance as a key driver of microbial community alterations, especially beneficial microbiota members, in the developing intestine of A. japonicus. This study provides new insights into the mechanism of host-microbiota interactions related to organ regeneration.
Collapse
Affiliation(s)
- Hongxia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Qing Wang
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Ye Zhao
- Ocean School, Yantai University, Yantai 264005, PR China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, PR China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
36
|
Ziegler A, Gilligan AM, Dillon JG, Pernet B. Schizasterid Heart Urchins Host Microorganisms in a Digestive Symbiosis of Mesozoic Origin. Front Microbiol 2020; 11:1697. [PMID: 32793161 PMCID: PMC7387435 DOI: 10.3389/fmicb.2020.01697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
Because of their lifestyles, abundance, and feeding habits, infaunal marine deposit feeders have a significant impact on the ocean floor. As these animals also ingest microorganisms associated with their sediment and seawater diet, their digestive tract usually contains a diverse array of bacteria. However, while most of these microorganisms are transients, some may become part of a resident gut microbiome, in particular when sheltered from the main flow of digesta in specialized gut compartments. Here, we provide an in-depth analysis of the structure and contents of the intestinal caecum (IC), a hindgut diverticulum found exclusively in schizasterid heart urchins (Echinoidea: Spatangoida: Schizasteridae). Based on specimens of Brisaster townsendi, in addition to various other schizasterid taxa, our structural characterization of the IC shows that the organ is a highly specialized gut compartment with unique structural properties. Next generation sequencing shows that the IC contains a microbial population composed predominantly of Bacteroidales, Desulfobacterales, and Spirochaetales. The microbiome of this gut compartment is significantly different in composition and lower in diversity than the microbial population in the sediment-filled main digestive tract. Inferences on the function and evolution of the IC and its microbiome suggest that this symbiosis plays a distinct role in host nutrition and that it evolved at least 66 million years ago during the final phase of the Mesozoic.
Collapse
Affiliation(s)
- Alexander Ziegler
- Institut für Evolutionsbiologie und Ökologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Ariel M. Gilligan
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Jesse G. Dillon
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| | - Bruno Pernet
- Department of Biological Sciences, California State University, Long Beach, CA, United States
| |
Collapse
|
37
|
Sea Cucumber Intestinal Regeneration Reveals Deterministic Assembly of the Gut Microbiome. Appl Environ Microbiol 2020; 86:AEM.00489-20. [PMID: 32358014 DOI: 10.1128/aem.00489-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
The gut microbiome has far-reaching effects on host organism health, so understanding the processes that underlie microbial community assembly in the developing gut is a current research priority. Here, a holothurian (also known as sea cucumber; phylum Echinodermata) host is explored as a promising model system for studying the assembly of the gut microbiome. Holothurians have a unique capacity for evisceration (expulsion of the internal organs), followed by rapid regeneration of the gut, decoupling host ontogeny from gut tissue development and permitting experimental manipulation of the gut microbiome in mature host individuals. Here, evisceration was induced in the sea cucumber Sclerodactyla briareus, and regenerating stomach and intestine microbiomes were characterized before and on days 0, 13, 17, and 20 after evisceration using Illumina sequencing of 16S rRNA genes. Regenerating stomach and intestine tissues had microbial communities significantly different from those of mature tissues, with much higher alpha diversity and evenness of taxa in regenerating tissues. Despite immersion in a diverse pool of sediment and seawater microbes in flowthrough seawater aquaria, regenerating gut microbiomes differed at each stage of regeneration and displayed a highly similar community structure among replicates, providing evidence for deterministic host selection of a specific microbial consortium. Moreover, regenerating gut tissues acquired a microbiome that likely conferred energetic and immune advantages to the sea cucumber host, including microbes that can fix carbon and degrade invading pathogens.IMPORTANCE The gut microbiome is pertinent to many aspects of animal health, and there is a great need for natural but tractable experimental systems to examine the processes shaping gut microbiome assembly. Here, the holothurian (sea cucumber) Sclerodactyla briareus was explored as an experimental system to study microbial colonization in the gut, as S. briareus individuals have the ability to completely eviscerate and rapidly regenerate their digestive organs. After induced evisceration, microbial community assembly was characterized over 20 days in regenerating animals. This study demonstrated that colonization of the sea cucumber gut was deterministic; despite immersion in a diverse consortium of environmental microbes, a specific subset of microbes proliferated in the gut, including taxa that likely conferred energetic and immune advantages to the host. Sea cucumbers have the potential to revolutionize our understanding of gut microbiome assembly, as rapid and repeatable gut tissue regeneration provides a promising and tractable experimental system.
Collapse
|
38
|
Qiao G, Sun Q, Zhang M, Xu C, Lv T, Qi Z, Yang W, Li Q. Antioxidant system of soiny mullet (Liza haematocheila) is responsive to dietary poly-β-hydroxybutyrate (PHB) supplementation based on immune-related enzyme activity and de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 95:314-327. [PMID: 31669279 DOI: 10.1016/j.fsi.2019.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
As a dietary supplement, poly-β-hydroxybutyrate (PHB) has been reported to positively influence growth, boost the immune system and enhance disease resistance in fish and shellfish. However, the protective mechanism is little known. Thus, the present study was conducted to evaluate the effect of PHB supplementation on immune-related enzyme activity and transcriptome-based gene expression in soiny mullet (Liza haematocheila). Results showed that dietary PHB supplementation could increase antioxidant enzyme activity, including total antioxidant capacity, catalase and superoxide dismutase. A total of 7,082,094,175 and 7,650,341,357 raw reads with mean length of 757 bp were obtained from control and PHB (dietary PHB supplementation at 2%) groups, respectively. There were 46,106 differentially expressed genes (DEGs) between control and PHB groups, including 21,828 upregulated and 24,278 downregulated DEGs. All the DEGs were classified into three gene ontology categories, and 312 DEGs related with immune system process and 760 with the response to a stimulus. Additionally, all DEGs were allocated to 261 Kyoto Encyclopedia of Gene and Genome pathways, and major immune-related pathways were detected, including MAPK/PI3K-Akt/TNF/NF-κB/TCR/TLR signaling pathways. Moreover, the regulation of several observed immune-related genes was confirmed by qRT-PCR. Altogether, this study suggests that antioxidant system is more effective for dietary PHB supplementation and lays the foundation for further study on the precise immunostimulatory mechanism of PHB. Hopefully, it provides insights into exploring biomarker for assessment of immunostimulants in fish culture.
Collapse
Affiliation(s)
- Guo Qiao
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qirui Sun
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Mingming Zhang
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Chen Xu
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Tingli Lv
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Zhitao Qi
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Wenping Yang
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qiang Li
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| |
Collapse
|
39
|
Yamazaki Y, Sakai Y, Mino S, Suda W, Hattori M, Meirelles PM, Thompson F, Sawabe T. Repeated selective enrichment process of sediment microbiota occurred in sea cucumber guts. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:797-807. [PMID: 31469474 DOI: 10.1111/1758-2229.12791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/10/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Deposit-feeding sea cucumbers repeat ingestion of sediments and excretion of faeces daily and consequently increase bacterial abundance in sediments and promote organic matter mineralization. Such ecological roles are expected to be collaborative activities of sea cucumbers and the gut microbiota. Here, we performed a spatiotemporally broad 16S rRNA gene analysis using 109 samples from sea cucumber faeces and habitat sediments to explore potential contribution of their gut microbiota to the ecological roles. Most operational taxonomic units (OTUs) observed in the faecal samples were shared with the sediment samples, nevertheless faecal and sediment microbiota differed from each other in UniFrac analysis. Lower bacterial diversity and increased relative abundance of specific OTUs in the faecal microbiota strongly suggest selective enrichment of ingested sediment microbiota in their guts. Interestingly, representative faecal OTUs were more abundant in sea cucumber-populated sediments than in un-inhabited sediments, indicating bacteria selectively enriched in the guts were spread on ambient sediments via faeces. Moreover, the predicted microbial community metabolic potential showed a higher abundance of genes related to carbohydrate and xenobiotics metabolisms in faeces than in sediments. Our study suggests the repeated selective enrichment transforms ambient sediment microbial communities and maintains the host's ecological roles by promoting organic matter mineralization.
Collapse
Affiliation(s)
- Yohei Yamazaki
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Wataru Suda
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Masahira Hattori
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Pedro Milet Meirelles
- Institute of Biology, Federal University of Bahia, Salvador, Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Salvador, Brazil
| | - Fabiano Thompson
- Institute of Biology and SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
40
|
Voinova V, Bonartseva G, Bonartsev A. Effect of poly(3-hydroxyalkanoates) as natural polymers on mesenchymal stem cells. World J Stem Cells 2019; 11:764-786. [PMID: 31692924 PMCID: PMC6828591 DOI: 10.4252/wjsc.v11.i10.764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are stromal multipotent stem cells that can differentiate into multiple cell types, including fibroblasts, osteoblasts, chondrocytes, adipocytes, and myoblasts, thus allowing them to contribute to the regeneration of various tissues, especially bone tissue. MSCs are now considered one of the most promising cell types in the field of tissue engineering. Traditional petri dish-based culture of MSCs generate heterogeneity, which leads to inconsistent efficacy of MSC applications. Biodegradable and biocompatible polymers, poly(3-hydroxyalkanoates) (PHAs), are actively used for the manufacture of scaffolds that serve as carriers for MSC growth. The growth and differentiation of MSCs grown on PHA scaffolds depend on the physicochemical properties of the polymers, the 3D and surface microstructure of the scaffolds, and the biological activity of PHAs, which was discovered in a series of investigations. The mechanisms of the biological activity of PHAs in relation to MSCs remain insufficiently studied. We suggest that this effect on MSCs could be associated with the natural properties of bacteria-derived PHAs, especially the most widespread representative poly(3-hydroxybutyrate) (PHB). This biopolymer is present in the bacteria of mammalian microbiota, whereas endogenous poly(3-hydroxybutyrate) is found in mammalian tissues. The possible association of PHA effects on MSCs with various biological functions of poly(3-hydroxybutyrate) in bacteria and eukaryotes, including in humans, is discussed in this paper.
Collapse
Affiliation(s)
- Vera Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Garina Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anton Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
41
|
Yu Z, Liu C, Fu Q, Lu G, Han S, Wang L, Song L. The differences of bacterial communities in the tissues between healthy and diseased Yesso scallop (Patinopecten yessoensis). AMB Express 2019; 9:148. [PMID: 31522290 PMCID: PMC6745042 DOI: 10.1186/s13568-019-0870-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 02/02/2023] Open
Abstract
The tissues of marine invertebrates are colonized by species-rich microbial communities. The dysbiosis of host's microbiota is tightly associated with the invertebrate diseases. Yesso scallop (Patinopecten yessoensis), one of the most important maricultured scallops in northern China, has recently suffered massive summer mortalities, which causes huge production losses. The knowledge about the interactions between the Yesso scallop and its microbiota is important to develop the strategy for the disease prevention and control. In the present study, the bacterial communities in hemolymph, intestine, mantle and adductor muscle were compared between the healthy and diseased Yesso scallop based on the high-throughput sequencing of 16S rRNA gene. The results indicated obvious difference of the composition rather than the diversity of the bacterial communities between the healthy and diseased Yesso scallop. Vibrio, Francisella and Photobacterium were found to overgrow and dominate in the mantle, adductor muscle and intestine of the diseased scallops, respectively. The prediction of bacterial community metagenomes and the variations of KEGG pathways revealed that the proportions of the pathways related with neurodegenerative diseases and carbohydrate metabolism both increased significantly in the mantle and hemolymph of the diseased scallops. The abundance of the metabolism pathways including carbohydrate metabolism, lipid metabolism and amino acid metabolism decreased significantly in the intestine of diseased scallops. The results suggested that the changes of bacterial communities might be closely associated with the Yesso scallop's disease, which was helpful for further investigation of the pathogenesis as well as prevention and control of the disease in Yesso scallop.
Collapse
|
42
|
Qiao G, Xu C, Sun Q, Xu DH, Zhang M, Chen P, Li Q. Effects of dietary poly-β-hydroxybutyrate supplementation on the growth, immune response and intestinal microbiota of soiny mullet (Liza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2019; 91:251-263. [PMID: 31121290 DOI: 10.1016/j.fsi.2019.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Soiny mullet (Liza haematocheila) is an important economic fish species in China, but stress and diseases have seriously restricted its culture. There are no effective methods including vaccines to prevent or control these diseases. Alternative methods should be employed, such as using novel immunostimulant poly-β-hydroxybutyrate (PHB). The present study aimed to evaluate effects of dietary PHB supplementation on the growth, antioxidant enzymes activity, immune-related genes expression and intestinal microbiota in soiny mullet. The fish was fed for 30 or 60 days with six diets at different PHB supplementation of 0, 0.5, 1, 2, 4 and 8%, named as groups P0, P0.5, P1, P2, P4 and P8. The results showed that the weight gain and specific growth rate of fish in P2 and P0.5 groups were significantly higher than those in control P0 group at 30 and 60 days, respectively (P < 0.05). The antioxidant enzymes activity of catalase and superoxide dismutase in serum were significantly increased in P0.5/P1/P2 groups after 30 days. The transcriptional levels of penicillin-binding protein A and interleukin-8 analyzed by qRT-PCR were significantly upregulated in P2 and P4 groups compared to those in P0/P0.5/P1/P8 groups at 30 days. The transcriptional level of major histocompatibility complex class II in P2 group was significantly upregulated, and aldehyde oxidase downregulated compared to P0 group. Intestinal microbiota analysis by Illumina high-throughput sequencing showed that the microbiota diversity was not changed significantly, but the microbiota structure shifted significantly post PHB treatment. At the phyla level, Firmicutes and Proteobacteria were predominant in both P0 and P2 groups. At the genus level, the relative abundance of Bacillus spp. in P2 group increased significantly, and abundance of Achromobacter spp. decreased significantly. KEGG pathway analysis by PICRUSt showed that oral administration PHB significantly upregulated abundances of genes responsible for 10 pathways and downregulated genes involved in 17 pathways. In conclusion, soiny mullet fed with 2% PHB supplemental diets for 30 days showed better growth performance, higher antioxidant enzymes activity and immune-related genes expression. Their regulation of growth and immunity might be related with the intestinal microbiota change post PHB supplementation. It will provide very useful basic information to study the regulation mechanism of PHB in aquatic animals, and provide good green method to prevent disease in soiny mullet.
Collapse
Affiliation(s)
- Guo Qiao
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Chen Xu
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qirui Sun
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - De-Hai Xu
- U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832, USA
| | - Mingming Zhang
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Peng Chen
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qiang Li
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| |
Collapse
|
43
|
Zhang H, Wang Q, Liu S, Huo D, Zhao J, Zhang L, Zhao Y, Sun L, Yang H. Genomic and Metagenomic Insights Into the Microbial Community in the Regenerating Intestine of the Sea Cucumber Apostichopus japonicus. Front Microbiol 2019; 10:1165. [PMID: 31214136 PMCID: PMC6558059 DOI: 10.3389/fmicb.2019.01165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022] Open
Abstract
Host-intestine microbiota interactions have been widely studied in aquatic animals, but these interactions in the intestine regeneration process of the sea cucumber Apostichopus japonicus have been rarely investigated. To understand how intestine regeneration impacts the developing intestinal microbiome composition and function, we performed a case study to characterize the intestinal microbial composition and functional genes of A. japonicus during intestine regeneration stages. High-throughput 16S rRNA gene sequencing revealed significantly different intestine microbiota compositions in different regeneration stages. The phylogenetic diversity and composition of the intestinal microbiota changed significantly in the early regeneration stage and tended to recover in the end stage. During the regeneration process, the abundance of Bacteroidetes and Rhodobacterales increased significantly. A network analysis revealed that Rhodobacteraceae and Flavobacteriaceae may function as keystone taxa in the intestinal microbial community of A. japonicus during intestine regeneration. Metagenomic analyses of representative samples revealed that the microbiomes of regenerating intestines were enriched in genes facilitating cell proliferation, digestion and immunity. The increased abundance of Bacteroidetes elevated the enrichment of genes associated with carbohydrate utilization. Some functional features in the subsystem category changed in a pattern that was consistent with the changing pattern of microbiota composition during intestine regeneration. Our results revealed that seemingly regular alterations in the intestinal microbiome composition and function are associated with intestine regeneration stages. Intestinal microbiota can increase the abundance of beneficial bacterial members and upregulate related functional genes to adapt to intestine regeneration and reconstruct a stable community structure. This study provides a new insight into the mechanism of the host-microbiota interaction response to organ regeneration.
Collapse
Affiliation(s)
- Hongxia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Qing Wang
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianmin Zhao
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Bonartsev AP, Bonartseva GA, Reshetov IV, Kirpichnikov MP, Shaitan KV. Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly(3-Hydroxybutyrate). Acta Naturae 2019; 11:4-16. [PMID: 31413875 PMCID: PMC6643351 DOI: 10.32607/20758251-2019-11-2-4-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Biodegradable and biocompatible polymers, polyhydroxyalkanoates (PHAs), are actively used in medicine to produce a wide range of medical devices and dosage formulations. The medical industry mainly utilizes PHAs obtained by chemical synthesis, but interest in the medical application of natural PHAs obtained biotechnologically is also growing. Synthetic PHAs are the biomimetic analogs of bacterial poly(3-hydroxybutyrate) (PHB) and other natural PHAs. This paper addresses the issue of the presence of biological activity in synthetic and natural PHAs (stimulation of cell proliferation and differentiation, tissue regeneration) and their possible association with various biological functions of PHB in bacteria and eukaryotes, including humans.
Collapse
Affiliation(s)
- A. P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bldg. 2, Moscow, 119071, Russia
| | - G. A. Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bldg. 2, Moscow, 119071, Russia
| | - I. V. Reshetov
- Sechenov First Moscow State University, Trubetskaya Str. 8, bldg. 2, Moscow, 119991, Russia
| | - M. P. Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234, Russia
| | - K. V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119234, Russia
| |
Collapse
|
45
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018; 54:547-568. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/11/2025]
|
46
|
Microbiota in the coelomic fluid of two common coastal starfish species and characterization of an abundant Helicobacter-related taxon. Sci Rep 2017; 7:8764. [PMID: 28821872 PMCID: PMC5562702 DOI: 10.1038/s41598-017-09355-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Marine invertebrates associate with diverse microorganisms. Microorganisms even inhabit coelomic fluid (CF), namely, the fluid filling the main body cavity of echinoderms. The CF microbiota potentially impacts host health and disease. Here, we analysed the CF microbiota in two common coastal starfish species, Patiria pectinifera and Asterias amurensis. Although microbial community structures were highly variable among individual starfish, those of P. pectinifera were compositionally similar to those in the surrounding seawater. By contrast, many A. amurensis individuals harboured unique microbes in the CF, which was dominated by the unclassified Thiotrichales or previously unknown Helicobacter-related taxon. In some individuals, the Helicobacter-related taxon was the most abundant genus-level taxon, accounting for up to 97.3% of reads obtained from the CF microbial community. Fluorescence in situ hybridization using a Helicobacter-related-taxon-specific probe suggested that probe-reactive cells in A. amurensis were spiral-shaped, morphologically similar to known Helicobacter species. Electron microscopy revealed that the spiral cells had a prosthecate-like polar appendage that has never been reported in Helicobacter species. Although culture of Helicobacter-related taxon was unsuccessful, this is the first report of the dominance of a Helicobacter-related taxon in invertebrates and non-digestive organs, reshaping our knowledge of the phylogeography of Helicobacter-related taxa.
Collapse
|
47
|
Amin AKMR, Feng G, Al-Saari N, Meirelles PM, Yamazaki Y, Mino S, Thompson FL, Sawabe T, Sawabe T. The First Temporal and Spatial Assessment of Vibrio Diversity of the Surrounding Seawater of Coral Reefs in Ishigaki, Japan. Front Microbiol 2016; 7:1185. [PMID: 27551278 PMCID: PMC4976104 DOI: 10.3389/fmicb.2016.01185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023] Open
Abstract
Coral reefs perform a major role in regulating marine biodiversity and serve as hotspot for highly dynamic and diverse microbiomes as holobionts. Corals around Ishigaki, however, are at risk due to tremendous stressors including elevation of seawater temperature, eutrophication and so on. However, no information is currently available on how Vibrio diversity fluctuates spatially and temporally due to environmental determinants in Ishigaki coral reef ecosystems. The aim of this study is to elucidate spatiotemporal Vibrio diversity dynamic at both community and population levels and to assess the environmental drivers correlated to Vibrio abundance and diversity. The Vibrio community identified based on pyrH gene phylogeny of 685 isolates from seawater directly connecting to Ishigaki coral holobionts consisted of 22 known and 12 potential novel Vibrionaceae species. The most prominent species were V. hyugaensis, V. owensii and V. harveyi followed by V. maritimus/V. variabillis, V. campbellii, V. coralliilyticus, and Photobacterium rosenbergii. The Vibrio community fluctuations, assessed by PCoA with UniFrac distance and clustering with Euclidiean distance were varied less not only by year but also by site. Interestingly, significant positive correlation was observed between rising seawater temperature and the abundance of V. campbellii (r = 0.62; P < 0.05) whereas the opposite was observed for V. owensii (r = -0.58; P < 0.05) and the C6 group of V. hyugaensis (r = -0.62; P < 0.05). AdaptML-based microhabitat differentiation revealed that V. harveyi, V. campbellii, P. rosenbergii, and V. coralliilyticus populations were less-ecologically distinctive whereas V. astriarenae and V. ishigakensis were ecologically diverse. This knowledge could be important clue for the future actions of coral conservation.
Collapse
Affiliation(s)
- A K M R Amin
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Gao Feng
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Nurhidayu Al-Saari
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Pedro M Meirelles
- Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro Brazil
| | - Yohei Yamazaki
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| | - Fabiano L Thompson
- Institute of Biology, SAGE-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro Brazil
| | - Toko Sawabe
- Department of Nutrition, Hakodate Junior College, Hakodate Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate Japan
| |
Collapse
|