1
|
Hammouz RY, Baryła I, Styczeń-Binkowska E, Bednarek AK. Twenty-five years of WWOX insight in cancer: a treasure trove of knowledge. Funct Integr Genomics 2025; 25:100. [PMID: 40327201 PMCID: PMC12055895 DOI: 10.1007/s10142-025-01601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/07/2025]
Abstract
More than two decades ago, MD Anderson Cancer group discovered, characterised, and identified the WW domain-containing oxidoreductase (WWOX) as a genes of interest mapping to the chromosomal region 16q23.3-24.2. This was pioneering research since WWOX is a critical tumour suppressor gene implicated in various cancers, involving interactions with numerous signalling pathways and molecular mechanisms. Notably, it inhibits the Wnt/β-catenin pathway, which is often activated in tumours. This inhibition helps prevent tumour formation by regulating cell proliferation and promoting apoptosis. Restoration of WWOX expression in cancer cell lines has been shown to reduce tumour growth and increased sensitivity to treatments. In addition to its role in tumour suppression, WWOX has been found to interact with proteins involved in critical signalling pathways such as TGF-β. Recent advancements allowed to reveal its interactions with key proteins and microRNAs that regulate cellular adhesion, invasion, and motility. Proteomic studies have shown that WWOX directly interacts with signalling molecules like Dishevelled and SMAD3, further underscoring its role in antagonizing metastasis. Challenges remain in translating this knowledge into clinical applications. For instance, the mechanisms underlying WWOX loss in tumours and its role across diverse cancer types require further investigation. Overall, WWOX serves as a vital player in maintaining cellular stability and preventing cancer progression through its multifaceted functions. Here, we include an updated molecular function of WWOX in cancers to possibly contribute to the potential use of WWOX expression as a biomarker regarding prognosis and response to the treatment. CLINICAL TRIAL NUMBER: Not applicable.
Collapse
Affiliation(s)
- Raneem Y Hammouz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Ewa Styczeń-Binkowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland.
| |
Collapse
|
2
|
Zhao B, Liu C, Qi Y, Zhang T, Wang Y, He X, Wang L, Jin T. Preliminary study of identified novel susceptibility loci for HAPE risk in a Chinese male Han population. Per Med 2024; 21:227-241. [PMID: 38940394 DOI: 10.1080/17410541.2024.2365617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
High altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema. In recent years, association studies have become the main method for identifying HAPE genetic loci. A genome-wide association study (GWAS) of HAPE risk-associated loci was performed in Chinese male Han individuals (164 HAPE cases and 189 healthy controls) by the Precision Medicine Diversity Array Chip with 2,771,835 loci (Applied Biosystems Axiom™). Eight overlapping candidate loci in CCNG2, RP11-445O3.2, NUPL1 and WWOX were finally selected. In silico functional analyses displayed the PPI network, functional enrichment and signal pathways related to CCNG2, NUPL1, WWOX and NRXN1. This study provides data supplements for HAPE susceptibility gene loci and new insights into HAPE susceptibility.
Collapse
Affiliation(s)
- Beibei Zhao
- School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Changchun Liu
- School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yijin Qi
- School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Tianyi Zhang
- School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yuhe Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xue He
- School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Li Wang
- School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Tianbo Jin
- School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| |
Collapse
|
3
|
Molecular Biology of the WWOX Gene That Spans Chromosomal Fragile Site FRA16D. Cells 2021; 10:cells10071637. [PMID: 34210081 PMCID: PMC8305172 DOI: 10.3390/cells10071637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
It is now more than 20 years since the FRA16D common chromosomal fragile site was characterised and the WWOX gene spanning this site was identified. In this time, much information has been discovered about its contribution to disease; however, the normal biological role of WWOX is not yet clear. Experiments leading to the identification of the WWOX gene are recounted, revealing enigmatic relationships between the fragile site, its gene and the encoded protein. We also highlight research mainly using the genetically tractable model organism Drosophila melanogaster that has shed light on the integral role of WWOX in metabolism. In addition to this role, there are some particularly outstanding questions that remain regarding WWOX, its gene and its chromosomal location. This review, therefore, also aims to highlight two unanswered questions. Firstly, what is the biological relationship between the WWOX gene and the FRA16D common chromosomal fragile site that is located within one of its very large introns? Secondly, what is the actual substrate and product of the WWOX enzyme activity? It is likely that understanding the normal role of WWOX and its relationship to chromosomal fragility are necessary in order to understand how the perturbation of these normal roles results in disease.
Collapse
|
4
|
Tanimura K, Nyunoya T. Loss of Endothelial WWOX: A Risk Factor for ARDS in Smokers? Am J Respir Cell Mol Biol 2021; 64:10-11. [PMID: 33105088 PMCID: PMC7780999 DOI: 10.1165/rcmb.2020-0444ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kazuya Tanimura
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and
| | - Toru Nyunoya
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and.,Medical Specialty Service Line Veterans Affairs Pittsburgh Healthcare System Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Zeng Z, Chen W, Moshensky A, Shakir Z, Khan R, Crotty Alexander LE, Ware LB, Aldaz CM, Jacobson JR, Dudek SM, Natarajan V, Machado RF, Singla S. Cigarette Smoke and Nicotine-Containing Electronic-Cigarette Vapor Downregulate Lung WWOX Expression, Which Is Associated with Increased Severity of Murine Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2021; 64:89-99. [PMID: 33058734 PMCID: PMC7780991 DOI: 10.1165/rcmb.2020-0145oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle-treated controls. In separate studies, endothelial (EC)-specific WWOX knockout (KO) versus WWOX flox control mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+ CD45-cells. These were grown in culture, confirmed to be WWOX deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing as well as an FITC dextran transwell assay for their barrier properties during methicillin-resistant Staphylococcus aureus or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to cells from WWOX flox controls during either methicillin-resistant S. aureus or LPS treatment as measured by both electric cell impedance sensing and the transwell assay. The increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | - Zaid Shakir
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Raheel Khan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | | | - C. M. Aldaz
- MD Anderson Cancer Center, University of Texas, Houston, Texas; and
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
6
|
Du Y, Zhang H, Xu Y, Ding Y, Chen X, Mei Z, Ding H, Jie Z. Association among genetic polymorphisms of GSTP1, HO-1, and SOD-3 and chronic obstructive pulmonary disease susceptibility. Int J Chron Obstruct Pulmon Dis 2019; 14:2081-2088. [PMID: 31564855 PMCID: PMC6736021 DOI: 10.2147/copd.s213364] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by incomplete reversible airflow limitation, which is associated with emphysema and chronic inflammation. Oxidative/antioxidant imbalance is one of the mechanisms of the current pathogenesis of COPD and several recent studies have attempted to uncover genetic causes of COPD and its progression. GST, HO-1, and SOD-3 are important susceptibility genes related to COPD. Methods A total of 300 blood samples were included in two groups: Control group and COPD group. We genotyped 4 single nucleotide polymorphisms (SNPs) from these 3 genes in 150 COPD patients and 150 controls to analyze genetic polymorphisms and interactions with COPD-related quantitative traits using correlation analysis and multivariate logistic regression analysis. Results The results indicated that genotype distributions and allele frequencies of GSTP1, HO-1, and SOD-3 were significantly different between the COPD and the control group, while there is no correlation between the polymorphism of GSTP1, HO-1, SOD3, and the different stages of COPD. Furthermore, multivariate logistic regression analysis indicated that COPD GSTP1-exon5 SNP and HO-1 (GT)n SNP are high-risk factors for COPD and there was interaction between GSTP1 exon5 SNPS and HO-1 (GT)n SNP. More important, the genotypes, AG, GG of GSTP1 exon5 and L/M*S, L/L of HO-1 (GT)n associated with increased 8-iso-prostaglandin F (2 alpha) (8-iso-PGF2) and malondialdehyde (MDA) concentration and decreased catalase (CAT) activity. Conclusion Collectively, this study shows that genetic polymorphisms of GSTP1, HO-1, and SOD-3 are associated with COPD susceptibility.
Collapse
Affiliation(s)
- Yong Du
- Department of Pulmonary and Critical Care Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, People's Republic of China
| | - Hui Zhang
- Department of Endocrinology, People's Hospital of Rizhao, Rizhao 276800, People's Republic of China
| | - Yan Xu
- Department of Laboratory Medicine, Rizhao Central Hospital, Rizhao 276800, People's Republic of China
| | - Yi Ding
- Department of Pulmonary and Critical Care Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, People's Republic of China
| | - Xuru Chen
- Department of Pulmonary and Critical Care Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, People's Republic of China
| | - Zhoufang Mei
- Department of Pulmonary and Critical Care Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, People's Republic of China
| | - Heyuan Ding
- Department of Endocrinology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, People's Republic of China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, People's Republic of China
| |
Collapse
|
7
|
Lin YH, Hsiao YH, Wu WJ, Yang SF, Hsu CF, Kang YT, Wang PH. Relationship of genetic variant distributions of WW domain-containing oxidoreductase gene with uterine cervical cancer. Int J Med Sci 2018; 15:1005-1013. [PMID: 30013442 PMCID: PMC6036151 DOI: 10.7150/ijms.25553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
To our knowledge, no study investigates the association of genetic variant distributions of WW domain-containing oxidoreductase (WWOX) gene with development of invasive cancer, clinicopathologic variables and patient survival in uterine cervical cancer for Taiwanese women. We therefore conducted this study to explore the clinical involvements of WWOX single nucleotide polymorphisms (SNPs) in cervical cancer. One hundred and thirty-one patients with cervical invasive cancer and 93 patients with precancerous lesions as well as 316 control women were consecutively enrolled. The genotypic frequencies of WWOX genetic variants rs73569323, rs383362, rs11545028, rs3764340 and rs12918952 were determined by real-time polymerase chain reaction. The results revealed that only WWOX SNP rs3764340 was associated between patients with cervical invasive cancer and normal controls among 5 WWOX genetic variants. Cervical cancer patients with genotypes GA/AA in WWOX SNP rs12918952 were associated with parametrium invasion and pelvic lymph node metastasis. Univariate analysis found that WWOX SNPs rs73569323 and rs11545028 were associated with patient survival, whereas multivariate analysis revealed CT/TT in rs11545028 was the only genetic variant, which could predict better overall survival, among 5 WWOX SNPs in Taiwan. In conclusion, Taiwanese women with CG/GG in WWOX SNP rs3764340 are susceptible to cervical invasive cancer. Cervical cancer patients with GA/AA in rs12918952 tend to have more risk to develop parametrium invasion and pelvic lymph node metastasis. Among 5 WWOX SNPs, rs11545028 is the only genetic variant associated with patient survival, in which CT/TT could predict better overall survival in Taiwanese women.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Wen-Jun Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Fang Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Qiu F, Li Y, Lu X, Xie C, Nong Q, Wu D, Chen J, Yang L, Zhou Y, Lu J. Rare variant ofMAP2K7is associated with increased risk of COPD in southern and eastern Chinese. Respirology 2017; 22:691-698. [DOI: 10.1111/resp.12976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/11/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Fuman Qiu
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Yinyan Li
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Xiaoxiao Lu
- School of Arts and Sciences; Colby-Sawyer College; New London New Hampshire USA
| | - Chenli Xie
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Qingqing Nong
- Department of Environmental Health; Guangxi Medical University; Nanning China
| | - Di Wu
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Jiansong Chen
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Lei Yang
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| | - Yifeng Zhou
- Department of Genetics; Medical College of Soochow University; Suzhou China
| | - Jiachun Lu
- Biomedicine Research Center of The Third Affiliated Hospital of GMU, The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity; Guangzhou Medical University; Guangzhou China
| |
Collapse
|