1
|
Bao Q, Wan N, He Z, Cao J, Yuan W, Hao H, Ye H. Subcellular Proteomic Mapping of Lysine Lactylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39569522 DOI: 10.1021/jasms.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Protein lactylation is a novel post-translational modification (PTM) involved in many important physiological processes such as macrophage polarization, immune regulation, and tumor cell growth. However, traditional methodologies for studying lactylation have predominantly relied on peptide enrichment from whole-cell lysates, which tend to favor the detection of high-abundance peptides, thus limiting the identification of low-abundance lactylated peptides. To address this limitation, here, we employed subcellular fractionation to separate proteins and map lactylated peptides from each isolated subcellular fraction using a model cell line. In brief, we identified 1,217 lysine lactylation (Kla) sites on 553 proteins across four subcellular fractions. Subsequent pathway enrichment analysis revealed that Kla proteins participate in distinct pathways depending on the subcellular contexts. In addition, this subcellular fractionation method enabled the discovery of 36 previously unreported Kla proteins and 223 novel Kla sites, many of which are present in low abundance. Notably, several proteins contain multiple newly identified Kla sites, exemplified by the transcriptional regulator ATRX. Furthermore, our results indicate the possibility of PTM crosstalk between Kla and other PTMs such as ubiquitination and sumoylation. In conclusion, subcellular fractionation facilitates the identification of Kla proteins that have been previously uncovered and could be overlooked by affinity enrichment of whole-cell lysates.
Collapse
Affiliation(s)
- Qiuyu Bao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ning Wan
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Zimeng He
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Ji Cao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Wenjie Yuan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| |
Collapse
|
2
|
Li H, Lv Y, Teng Z, Guo R, Jiang L. Shigella Senses the Environmental Cue Leucine to Promote its Virulence Gene Expression in the Colon. J Mol Biol 2024; 436:168798. [PMID: 39303765 DOI: 10.1016/j.jmb.2024.168798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Shigella is a foodborne enteropathogenic bacteria that causes severe bacillary dysentery in humans. Shigella primarily colonizes the human colon and causes disease via invasion of colon epithelial cells. However, the signal regulatory mechanisms associated with its colonization and pathogenesis in the colon remain poorly defined. Here, we report a leucine-mediated regulatory mechanism that promotes Shigella virulence gene expression and invasion of colon epithelial cells. Shigella in response to leucine, which is highly abundant in the colon, via the leucine-responsive regulator Lrp and the binding of Lrp with leucine induces the expression of a newly identified small RNA SsrV. SsrV then activates the expression of virF and downstream invasion-related virulence genes by increasing the protein level of the LysR-type transcription regulator LrhA, therefore enabling Shigella invasion of colon epithelial cells. Shigella lacking ssrV displays impaired invasion ability. Collectively, these findings suggest that Shigella employs a leucine-responsive environmental activation mechanism to establish colonization and pathogenicity.
Collapse
Affiliation(s)
- Huiying Li
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yongyao Lv
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiqi Teng
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Rui Guo
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China
| | - Lingyan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China.
| |
Collapse
|
3
|
Bai H, Li D. HPLC/ESI-QTOF-MS/MS based untargeted metabolomics authentication of Taxus × media six tissues. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1600-1612. [PMID: 38870256 DOI: 10.1002/pca.3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Taxus media (Taxus × media Rehder) is renowned for its high paclitaxel content, serving as a major source for industrial paclitaxel production. In addition to paclitaxel, T. media contains a diverse range of metabolites, including flavonoids, alkaloids, and terpenoids, which have been shown to possess antioxidant, antibacterial, anti-inflammatory, and immunomodulatory effects. However, these compounds have not been thoroughly studied as key metabolites in T. media. OBJECTIVE The untargeted metabolomics analysis of six T. media tissues provides new insights into the development and utilization of T. media metabolites. METHOD The extracts from six tissues of T. media were analyzed and subjected to analysis using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) and chemometric techniques. RESULTS Using a reliable HPLC-Q-TOF-MS/MS method, we identified 312 compounds in six T. media tissues, including 214 previously unreported in T. media. To identify characteristic compounds across different tissues, 34 metabolites were further screened. KEGG metabolic pathway analysis revealed that these compounds primarily occur in the metabolic pathways of terpene glycosides, flavans, and O-methylated flavonoids. CONCLUSION This study initially utilized an HPLC-QTOF-MS/MS-based metabolomics approach to assess the metabolites in different tissues of T. media, providing a basis for their utilization and management.
Collapse
Affiliation(s)
- Hangyu Bai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Dengwu Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Zhang H, Lin W, Ma R, Zang Y, Hou K, Xu Z, Xi X, Zhang W, Tang S, Liang X, Sun Y, Shen C. Fungal endophytes of Taxus species and regulatory effect of two strains on taxol synthesis. BMC Microbiol 2024; 24:291. [PMID: 39097685 PMCID: PMC11297650 DOI: 10.1186/s12866-024-03445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Taxol, derived from Taxus trees, is a valuable natural resource for the development of anticancer drugs. Endophytic fungi from Taxus trees are a promising alternative source of Taxol. However, the impact of plant-endophytic microbial interaction on the host's Taxol biosynthesis is largely unknown. RESULTS In the current study, the diversity of endophytic fungi in three different Taxus species was analyzed using Internal Transcribed Spacer sequencing. A total of 271 Operational Taxonomic Units (OTUs) were identified, grouping into 2 phyla, 8 classes, 16 orders, 19 families, and 19 genera. Alpha and beta diversity analysis indicated significant differences in endophytic fungal communities among the various Taxus trees. At the genus level, Alternaria and Davidiella were predominantly found in T. mairei and T. media, respectively. By utilizing a previously published dataset, a Pearson correlation analysis was conducted to predict the taxol biosynthesis-related fungal genera. Following screening, two isolates of Alternaria (L7 and M14) were obtained. Effect of inoculation with Alternaria isolates on the gene expression and metabolite accumulation of T. mairei was determined by transcriptomic and untargeted metabolomic studies. The co-inoculation assay suggests that the two Alternaria isolates may have a negative regulatory effect on taxol biosynthesis by influencing hormone signaling pathways. CONCLUSION Our findings will serve as a foundation for advancing the production and utilization of Taxus and will also aid in screening endophytic fungi related to taxol production.
Collapse
Affiliation(s)
- Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wanting Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ruoyun Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yue Zang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zhen Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaoyun Xi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Weiting Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shini Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yiming Sun
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Tan X, Liu K, He Y, Yan Z, Chen J, Zhao R, Sui X, Zhang J, Irwin DM, Zhang S, Li B. Succinylation proteomic analysis identified differentially expressed succinylation sites affecting porcine muscle fiber type function. Food Chem X 2023; 20:100962. [PMID: 38144777 PMCID: PMC10740141 DOI: 10.1016/j.fochx.2023.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Muscle fiber type is a major factor in pork meat quality, however, the role of post-translational protein modifications, especially succinylation, in the regulation of muscle fiber type is not fully understood. Here we performed protein succinylation profiles of fast-type biceps femoris (BF) and slow-type soleus (SOL) muscles. A total of 4,221 succinylation sites were identified from these samples, of which 294 sites were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these succinylated proteins were mainly involved in glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Succinylation modification of the CRAT and RAB10 proteins was verified by co-immunoprecipitation. Protein-protein interaction (PPI) network analysis unveiled the interactions of these succinylated proteins that regulate pig myofiber type conversion. This investigation offers fresh perspectives into the molecular roles of protein succinylation in the regulation of pig myofiber type transformation and meat quality.
Collapse
Affiliation(s)
- Xiaofan Tan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Kaiqing Liu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518000, China
| | - Yu He
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Yan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruixue Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
You H, Li S, Chen Y, Lin J, Wang Z, Dennis M, Li C, Yang D. Global proteome and lysine succinylation analyses provide insights into the secondary metabolism in Salvia miltiorrhiza. J Proteomics 2023; 288:104959. [PMID: 37478968 DOI: 10.1016/j.jprot.2023.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/10/2023] [Accepted: 07/01/2023] [Indexed: 07/23/2023]
Abstract
Danshen, belongs to the Lamiaceae family, and its scientific name is Salvia miltiorrhiza Bunge. It is a valuable medicinal plant to prevent and treat cardiovascular and cerebrovascular diseases. Lysine succinylation, a widespread modification found in various organisms, plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. Our findings reveal 566 lysine succinylation sites in 348 protein sequences. We observed 110 succinylated proteins related to secondary metabolism, totaling 210 modification sites. Our analysis identified 53 types of enzymes among the succinylated proteins, including phenylalanine ammonia-lyase (PAL) and aldehyde dehydrogenase (ALDH). PAL, a crucial enzyme involved in the biosynthesis of rosmarinic acid and flavonoids, displayed succinylation at two sites. ALDH, which participates in the phenylpropane metabolic pathway, was succinylated at 8 eight sites. These observations suggest that lysine succinylation may play a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on plant succinylation, specifically as a reference point. SIGNIFICANCE: Salvia miltiorrhiza Bunge is a valuable medicinal plant that prevents and treats cardiovascular and cerebrovascular diseases. Lysine succinylation plays a critical role in regulating secondary metabolism in plants. The hairy roots of Salvia miltiorrhiza were subject to proteomic analysis to identify lysine succinylation sites using affinity purification and HPLC-MS/MS in this investigation. These observations suggest that lysine succinylation may act as a vital role in regulating the production of secondary metabolites in Salvia miltiorrhiza. Our study may provide valuable insights for further investigation on succinylation in plants, specifically as a reference point.
Collapse
Affiliation(s)
- Huaqian You
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China; College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Shiqing Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China
| | - Yiwen Chen
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Junjie Lin
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Zixuan Wang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China
| | - Mans Dennis
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang, China
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
7
|
Mo Y, Jiang B, Huo J, Lu J, Zeng X, Zhou Y, Zhang T, Yang M, Wei Y, Liu K. Quantitative Ubiquitylomic Analysis of the Dynamic Changes and Extensive Modulation of Ubiquitylation in Papaya During the Fruit Ripening Process. FRONTIERS IN PLANT SCIENCE 2022; 13:890581. [PMID: 35548272 PMCID: PMC9082147 DOI: 10.3389/fpls.2022.890581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Lysine ubiquitination is a highly conserved post-translational modification with diverse biological functions. However, there is little available information on lysine ubiquitination of non-histone proteins in papaya (Carica papaya L.). In total, 3,090 ubiquitination sites on 1,249 proteins with diverse localizations and functions were identified. Five conserved ubiquitinated K motifs were identified. Enrichment analysis showed that many Hsps were differentially ubiquitinated proteins (DUPs), suggesting an essential role of ubiquitination in degradation of molecular chaperone. Furthermore, 12 sugar metabolism-related enzymes were identified as DUPs, including an involvement of ubiquitination in nutrimental changes during the papaya ripening process. The ubiquitination levels of five fruit ripening-related DUPs, including one ethylene-inducible protein, two 1-aminocyclopropane-1-carboxylic acid oxidases, one endochitinase, and one cell wall invertase, were significantly changed during the ripening process. Our study extends the understanding of diverse functions for lysine ubiquitination in regulation of the papaya fruit ripening process.
Collapse
Affiliation(s)
- Yuxing Mo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Bian Jiang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Jingxin Huo
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Jiayi Lu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Xiaoyue Zeng
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Tao Zhang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Min Yang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuerong Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
8
|
The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids. J Biol Chem 2021; 297:101155. [PMID: 34480900 PMCID: PMC8477199 DOI: 10.1016/j.jbc.2021.101155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Acylation modifications, such as the succinylation of lysine, are post-translational modifications and a powerful means of regulating protein activity. Some acylations occur nonenzymatically, driven by an increase in the concentration of acyl group donors. Lysine succinylation has a profound effect on the corresponding site within the protein, as it dramatically changes the charge of the residue. In eukaryotes, it predominantly affects mitochondrial proteins because the donor of succinate, succinyl-CoA, is primarily generated in the tricarboxylic acid cycle. Although numerous succinylated mitochondrial proteins have been identified in Saccharomyces cerevisiae, a more detailed characterization of the yeast mitochondrial succinylome is still lacking. Here, we performed a proteomic MS analysis of purified yeast mitochondria and detected 314 succinylated mitochondrial proteins with 1763 novel succinylation sites. The mitochondrial nucleoid, a complex of mitochondrial DNA and mitochondrial proteins, is one of the structures whose protein components are affected by succinylation. We found that Abf2p, the principal component of mitochondrial nucleoids responsible for compacting mitochondrial DNA in S. cerevisiae, can be succinylated in vivo on at least thirteen lysine residues. Abf2p succinylation in vitro inhibits its DNA-binding activity and reduces its sensitivity to digestion by the ATP-dependent ScLon protease. We conclude that changes in the metabolic state of a cell resulting in an increase in the concentration of tricarboxylic acid intermediates may affect mitochondrial functions.
Collapse
|
9
|
Qi T, Li J, Wang H, Han X, Li J, Du J. Global analysis of protein lysine 2-hydroxyisobutyrylation (K hib) profiles in Chinese herb rhubarb (Dahuang). BMC Genomics 2021; 22:542. [PMID: 34266380 PMCID: PMC8283887 DOI: 10.1186/s12864-021-07847-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysine 2-hydroxyisobutyrylation (Khib) is a newly discovered protein posttranslational modification (PTM) and is involved in the broad-spectrum regulation of cellular processes that are found in both prokaryotic and eukaryotic cells, including in plants. The Chinese herb rhubarb (Dahuang) is one of the most widely used traditional Chinese medicines in clinical applications. To better understand the physiological activities and mechanism of treating diseases with the herb, it is necessary to conduct intensive research on rhubarb. However, Khib modification has not been reported thus far in rhubarb. RESULTS In this study, we performed the first global analysis of Khib-modified proteins in rhubarb by using sensitive affinity enrichment combined with high-accuracy HPLC-MS/MS tandem spectrometry. A total of 4333 overlapping Khib modification peptides matched on 1525 Khib-containing proteins were identified in three independent tests. Bioinformatics analysis showed that these Khib-containing proteins are involved in a wide range of cellular processes, particularly in protein biosynthesis and central carbon metabolism and are distributed mainly in chloroplasts, cytoplasm, nucleus and mitochondria. In addition, the amino acid sequence motif analysis showed that a negatively charged side chain residue (E), a positively charged residue (K), and an uncharged residue with the smallest side chain (G) were strongly preferred around the Khib site, and a total of 13 Khib modification motifs were identified. These identified motifs can be classified into three motif patterns, and some motif patterns are unique to rhubarb and have not been identified in other plants to date. CONCLUSIONS A total of 4333 Khib-modified peptides on 1525 proteins were identified. The Khib-modified proteins are mainly distributed in the chloroplast, cytoplasm, nucleus and mitochondria, and involved in a wide range of cellular processes. Moreover, three types of amino acid sequence motif patterns, including EKhib/KhibE, GKhib and k.kkk….Khib….kkkkk, were extracted from a total of 13 Khib-modified peptides. This study provides comprehensive Khib-proteome resource of rhubarb. The findings from the study contribute to a better understanding of the physiological roles of Khib modification, and the Khib proteome data will facilitate further investigations of the roles and mechanisms of Khib modification in rhubarb.
Collapse
Affiliation(s)
- Tong Qi
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy,, Qingdao Agricultural University, Shandong, 266109, Qingdao, China
| | - Jinping Li
- International Cooperation Department of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy,, Qingdao Agricultural University, Shandong, 266109, Qingdao, China
| | - Xiaofan Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy,, Qingdao Agricultural University, Shandong, 266109, Qingdao, China
| | - Junrong Li
- Bathurst Future Agri-Tech Institute of Qingdao Agricultural University, Qingdao, China
| | - Jinzhe Du
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy,, Qingdao Agricultural University, Shandong, 266109, Qingdao, China.
| |
Collapse
|
10
|
Dong Y, Li P, Li P, Chen C. First comprehensive analysis of lysine succinylation in paper mulberry (Broussonetia papyrifera). BMC Genomics 2021; 22:255. [PMID: 33838656 PMCID: PMC8035759 DOI: 10.1186/s12864-021-07567-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysine succinylation is a naturally occurring post-translational modification (PTM) that is ubiquitous in organisms. Lysine succinylation plays important roles in regulating protein structure and function as well as cellular metabolism. Global lysine succinylation at the proteomic level has been identified in a variety of species; however, limited information on lysine succinylation in plant species, especially paper mulberry, is available. Paper mulberry is not only an important plant in traditional Chinese medicine, but it is also a tree species with significant economic value. Paper mulberry is found in the temperate and tropical zones of China. The present study analyzed the effects of lysine succinylation on the growth, development, and physiology of paper mulberry. RESULTS A total of 2097 lysine succinylation sites were identified in 935 proteins associated with the citric acid cycle (TCA cycle), glyoxylic acid and dicarboxylic acid metabolism, ribosomes and oxidative phosphorylation; these pathways play a role in carbon fixation in photosynthetic organisms and may be regulated by lysine succinylation. The modified proteins were distributed in multiple subcellular compartments and were involved in a wide variety of biological processes, such as photosynthesis and the Calvin-Benson cycle. CONCLUSION Lysine-succinylated proteins may play key regulatory roles in metabolism, primarily in photosynthesis and oxidative phosphorylation, as well as in many other cellular processes. In addition to the large number of succinylated proteins associated with photosynthesis and oxidative phosphorylation, some proteins associated with the TCA cycle are succinylated. Our study can serve as a reference for further proteomics studies of the downstream effects of succinylation on the physiology and biochemistry of paper mulberry.
Collapse
Affiliation(s)
- Yibo Dong
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China
- Department of Plant Protection, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ping Li
- Institute of Grassland Research, Sichuan Academy of Grassland Science, Chengdu, 610000, Sichuan, China
| | - Ping Li
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
11
|
Chen X, Li X, Li P, Chen X, Liu H, Huang J, Luo C, Hsiang T, Zheng L. Comprehensive identification of lysine 2-hydroxyisobutyrylated proteins in Ustilaginoidea virens reveals the involvement of lysine 2-hydroxyisobutyrylation in fungal virulence. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:409-425. [PMID: 33427395 DOI: 10.1111/jipb.13066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib ) is a newly identified post-translational modification (PTM) that plays important roles in transcription and cell proliferation in eukaryotes. However, its function remains unknown in phytopathogenic fungi. Here, we performed a comprehensive assessment of Khib in the rice false smut fungus Ustilaginoidea virens, using Tandem Mass Tag (TMT)-based quantitative proteomics approach. A total of 3 426 Khib sites were identified in 977 proteins, suggesting that Khib is a common and complex PTM in U. virens. Our data demonstrated that the 2-hydroxyisobutyrylated proteins are involved in diverse biological processes. Network analysis of the modified proteins revealed a highly interconnected protein network that included many well-studied virulence factors. We confirmed that the Zn-binding reduced potassium dependency3-type histone deacetylase (UvRpd3) is a major enzyme that removes 2-hydroxyisobutyrylation and acetylation in U. virens. Notably, mutations of Khib sites in the mitogen-activated protein kinase (MAPK) UvSlt2 significantly reduced fungal virulence and decreased the enzymatic activity of UvSlt2. Molecular dynamics simulations demonstrated that 2-hydroxyisobutyrylation in UvSlt2 increased the hydrophobic solvent-accessible surface area and thereby affected binding between the UvSlt2 enzyme and its substrates. Our findings thus establish Khib as a major post-translational modification in U. virens and point to an important role for Khib in the virulence of this phytopathogenic fungus.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiabing Li
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingping Li
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolin Chen
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbin Huang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Lu Zheng
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
12
|
Yun T, Hua J, Ye W, Ni Z, Chen L, Zhang C. The phosphoproteomic responses of duck (Cairna moschata) to classical/novel duck reovirus infections in the spleen tissue. Sci Rep 2020; 10:15315. [PMID: 32943705 PMCID: PMC7499213 DOI: 10.1038/s41598-020-72311-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Duck reovirus (DRV) is a fatal member of the genus Orthoreovirus in the family Reoviridae. The disease caused by DRV leads to huge economic losses to the duck industry. Post-translational modification is an efficient strategy to enhance the immune responses to virus infection. However, the roles of protein phosphorylation in the responses of ducklings to Classic/Novel DRV (C/NDRV) infections are largely unknown. Using a high-resolution LC–MS/MS integrated to highly sensitive immune-affinity antibody method, phosphoproteomes of Cairna moschata spleen tissues under the C/NDRV infections were analyzed, producing a total of 8,504 phosphorylation sites on 2,853 proteins. After normalization with proteomic data, 392 sites on 288 proteins and 484 sites on 342 proteins were significantly changed under the C/NDRV infections, respectively. To characterize the differentially phosphorylated proteins (DPPs), a systematic bioinformatics analyses including Gene Ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation were performed. Two important serine protease system-related proteins, coagulation factor X and fibrinogen α-chain, were identified as phosphorylated proteins, suggesting an involvement of blood coagulation under the C/NDRV infections. Furthermore, 16 proteins involving the intracellular signaling pathways of pattern-recognition receptors were identified as phosphorylated proteins. Changes in the phosphorylation levels of MyD88, NF-κB, RIP1, MDA5 and IRF7 suggested a crucial role of protein phosphorylation in host immune responses of C. moschata. Our study provides new insights into the responses of ducklings to the C/NDRV infections at PTM level.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
13
|
Yu C, Luo X, Zhang C, Xu X, Huang J, Chen Y, Feng S, Zhan X, Zhang L, Yuan H, Zheng B, Wang H, Shen C. Tissue-specific study across the stem of Taxus media identifies a phloem-specific TmMYB3 involved in the transcriptional regulation of paclitaxel biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:95-110. [PMID: 31999384 DOI: 10.1111/tpj.14710] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 05/24/2023]
Abstract
Taxus stem barks can be used for extraction of paclitaxel. However, the composition of taxoids across the whole stem and the stem tissue-specificity of paclitaxel biosynthesis-related enzymes remain largely unknown. We used cultivated Taxus media trees for analyses of the chemical composition and protein of major stem tissues by an integrated metabolomic and proteomic approach, and the role of TmMYB3 in paclitaxel biosynthesis was investigated. The metabolomic landscape analysis showed differences in stem tissue-specific accumulation of metabolites. Phytochemical analysis revealed that there is high accumulation of paclitaxel in the phloem. Ten key enzymes involved in paclitaxel biosynthesis were identified, most of which are predominantly produced in the phloem. The full-length sequence of TmMYB3 and partial promoter sequences of five paclitaxel biosynthesis-related genes were isolated. Several MYB recognition elements were found in the promoters of TBT, DBTNBT and TS. Further in vitro and in vivo investigations indicated that TmMYB3 is involved in paclitaxel biosynthesis by activating the expression of TBT and TS. Differences in the taxoid composition of different stem tissues suggest that the whole stem of T. media has potential for biotechnological applications. Phloem-specific TmMYB3 plays a role in the transcriptional regulation of paclitaxel biosynthesis, and may explain the phloem-specific accumulation of paclitaxel.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chengchao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinyun Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiefang Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yueyue Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Hangzhou, 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Center for Cultivation of Subtropical Forest Resources (CCSFR), Zhejiang A & F University, Hangzhou, 311300, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
14
|
Mao M, Xue Y, He Y, Zhou X, Rafique F, Hu H, Liu J, Feng L, Yang W, Li X, Sun L, Huang Z, Ma J. Systematic identification and comparative analysis of lysine succinylation between the green and white parts of chimeric leaves of Ananas comosus var. bracteatus. BMC Genomics 2020; 21:383. [PMID: 32493214 PMCID: PMC7268518 DOI: 10.1186/s12864-020-6750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/21/2020] [Indexed: 01/26/2023] Open
Abstract
Background Lysine succinylation, an important protein posttranslational modification (PTM), is widespread and conservative. The regulatory functions of succinylation in leaf color has been reported. The chimeric leaves of Ananas comosus var. bracteatus are composed of normal green parts and albino white parts. However, the extent and function of lysine succinylation in chimeric leaves of Ananas comosus var. bracteatus has yet to be investigated. Results Compared to the green (Gr) parts, the global succinylation level was increased in the white (Wh) parts of chimeric leaves according to the Western blot and immunohistochemistry analysis. Furthermore, we quantitated the change in the succinylation profiles between the Wh and Gr parts of chimeric leaves using label-free LFQ intensity. In total, 855 succinylated sites in 335 proteins were identified, and 593 succinylated sites in 237 proteins were quantified. Compared to the Gr parts, 232 (61.1%) sites in 128 proteins were quantified as upregulated targets, and 148 (38.9%) sites in 70 proteins were quantified as downregulated targets in the Wh parts of chimeric leaves using a 1.5-fold threshold (P < 0.05). These proteins with altered succinylation level were mainly involved in crassulacean acid metabolism (CAM) photosynthesis, photorespiration, glycolysis, the citric acid cycle (CAC) and pyruvate metabolism. Conclusions Our results suggested that the changed succinylation level in proteins might function in the main energy metabolism pathways—photosynthesis and respiration. Succinylation might provide a significant effect in the growth of chimeric leaves and the relationship between the Wh and Gr parts of chimeric leaves. This study not only provided a basis for further characterization on the function of succinylated proteins in chimeric leaves of Ananas comosus var. bracteatus but also provided a new insight into molecular breeding for leaf color chimera.
Collapse
Affiliation(s)
- Meiqin Mao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yanbin Xue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yehua He
- Horticultural Biotechnology College, South China Agricultural University, Guangzhou, China
| | - Xuzixing Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fatima Rafique
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Hao Hu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiawen Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijun Feng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Wei Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
15
|
Qiu C, Wang Y, Sun JH, Qian WJ, Xie H, Ding YQ, Ding ZT. A Qualitative Proteome-Wide Lysine Succinylation Profiling of Tea Revealed its Involvement in Primary Metabolism. Mol Biol 2020. [DOI: 10.1134/s0026893320010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Meng X, Mujahid H, Zhang Y, Peng X, Redoña ED, Wang C, Peng Z. Comprehensive Analysis of the Lysine Succinylome and Protein Co-modifications in Developing Rice Seeds. Mol Cell Proteomics 2019; 18:2359-2372. [PMID: 31492684 PMCID: PMC6885699 DOI: 10.1074/mcp.ra119.001426] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/04/2019] [Indexed: 11/06/2022] Open
Abstract
Lysine succinylation has been recognized as a post-translational modification (PTM) in recent years. It is plausible that succinylation may have a vaster functional impact than acetylation because of bulkier structural changes and more significant charge differences on the modified lysine residue. Currently, however, the quantity and identity of succinylated proteins and their corresponding functions in cereal plants remain largely unknown. In this study, we estimated the native succinylation occupancy on lysine was between 2% to 10% in developing rice seeds. Eight hundred fifty-four lysine succinylation sites on 347 proteins have been identified by a thorough investigation in developing rice seeds. Six motifs were revealed as preferred amino acid sequence arrangements for succinylation sites, and a noteworthy motif preference was identified in proteins associated with different biological processes, molecular functions, pathways, and domains. Remarkably, heavy succinylation was detected on major seed storage proteins, in conjunction with critical enzymes involved in central carbon metabolism and starch biosynthetic pathways for rice seed development. Meanwhile, our results showed that the modification pattern of in vitro nonenzymatically succinylated proteins was different from those of the proteins isolated from cells in Western blots, suggesting that succinylation is not generated via nonenzymatic reaction in the cells, at least not completely. Using the acylation data obtained from the same rice tissue, we mapped many sites harboring lysine succinylation, acetylation, malonylation, crotonylation, and 2-hydroxisobutyrylation in rice seed proteins. A striking number of proteins with multiple modifications were shown to be involved in critical metabolic events. Given that these modification moieties are intermediate products of multiple cellular metabolic pathways, these targeted lysine residues may mediate the crosstalk between different metabolic pathways via modifications by different moieties. Our study exhibits a platform for extensive investigation of molecular networks administrating cereal seed development and metabolism via PTMs.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville MS, 39762
| | - Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville MS, 39762
| | - Yadong Zhang
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville MS, 39762; Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou 310018, China
| | - Edilberto D Redoña
- Delta Research and Extension Center, Mississippi State University, Stoneville MS, 38776
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville MS, 39762.
| |
Collapse
|
17
|
Huang KY, Hsu JBK, Lee TY. Characterization and Identification of Lysine Succinylation Sites based on Deep Learning Method. Sci Rep 2019; 9:16175. [PMID: 31700141 PMCID: PMC6838336 DOI: 10.1038/s41598-019-52552-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Succinylation is a type of protein post-translational modification (PTM), which can play important roles in a variety of cellular processes. Due to an increasing number of site-specific succinylated peptides obtained from high-throughput mass spectrometry (MS), various tools have been developed for computationally identifying succinylated sites on proteins. However, most of these tools predict succinylation sites based on traditional machine learning methods. Hence, this work aimed to carry out the succinylation site prediction based on a deep learning model. The abundance of MS-verified succinylated peptides enabled the investigation of substrate site specificity of succinylation sites through sequence-based attributes, such as position-specific amino acid composition, the composition of k-spaced amino acid pairs (CKSAAP), and position-specific scoring matrix (PSSM). Additionally, the maximal dependence decomposition (MDD) was adopted to detect the substrate signatures of lysine succinylation sites by dividing all succinylated sequences into several groups with conserved substrate motifs. According to the results of ten-fold cross-validation, the deep learning model trained using PSSM and informative CKSAAP attributes can reach the best predictive performance and also perform better than traditional machine-learning methods. Moreover, an independent testing dataset that truly did not exist in the training dataset was used to compare the proposed method with six existing prediction tools. The testing dataset comprised of 218 positive and 2621 negative instances, and the proposed model could yield a promising performance with 84.40% sensitivity, 86.99% specificity, 86.79% accuracy, and an MCC value of 0.489. Finally, the proposed method has been implemented as a web-based prediction tool (CNN-SuccSite), which is now freely accessible at http://csb.cse.yzu.edu.tw/CNN-SuccSite/.
Collapse
Affiliation(s)
- Kai-Yao Huang
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu city, 300, Taiwan
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei city, 110, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, 518172, China. .,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
18
|
Yuan H, Chen J, Yang Y, Shen C, Xu D, Wang J, Yan D, He Y, Zheng B. Quantitative succinyl-proteome profiling of Chinese hickory (Carya cathayensis) during the grafting process. BMC PLANT BIOLOGY 2019; 19:467. [PMID: 31684873 PMCID: PMC6829946 DOI: 10.1186/s12870-019-2072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chinese hickory (Carya cathayensis) is a popular nut plant having high economic value. Grafting is applied to accelerate the transition from vegetative phase to reproductive phase. Lysine succinylation occurs frequently in the proteins associated with metabolic pathways, which may participate in the regulation of the grafting process. However, the exact regulatory mechanism underlying grafting process in Chinese hickory has not been studied at post-translational modification level. RESULTS A comprehensive proteome-wide lysine succinylation profiling of Chinese hickory was explored by a newly developed method combining affinity enrichment and high-resolution LC-MS/MS. In total, 259 succinylation sites in 202 proteins were identified, representing the first comprehensive lysine succinylome in Chinese hickory. The succinylation was biased to occur in the cytosolic proteins of Chinese hickory. Moreover, four conserved succinylation motifs were identified in the succinylated peptides. Comparison of two grafting stages of Chinese hickory revealed that the differential expressed succinylated proteins were mainly involved in sugar metabolism, carbon fixation, amino acid metabolism and plant-pathogen interaction. Besides, seven heat shock proteins (HSPs) with 11 succinylation sites were also identified, all of which were observed to be up-regulated during the grafting process. CONCLUSIONS Succinylation of the proteins involved in amino acid biosynthesis might be required for a successful grafting. Succinylated HSPs might play a role in stress tolerance of the grafted Chinese hickory plants. Our results can be a good resource for functional validation of the succinylated proteins and a starting point for the investigation of molecular mechanisms during lysine succinylation occurring at grafting site.
Collapse
Affiliation(s)
- Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Juanjuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Chenjia Shen
- College of Life and Environmental Sciences Hangzhou Normal University, Hangzhou, 310036 People’s Republic of China
| | - Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Junfeng Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
- Center for Cultivation of Subtropical Forest Resources (CCSFR, Zhejiang A&F University, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
19
|
Metabolic Variations of Flavonoids in Leaves of T. media and T. mairei Obtained by UPLC-ESI-MS/MS. Molecules 2019; 24:molecules24183323. [PMID: 31547329 PMCID: PMC6767174 DOI: 10.3390/molecules24183323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
The needles of Taxus species contain a large number of bioactive compounds, such as flavonoids. In the present study, the total flavonoid content in leaves of Taxus media and Taxus mairei was 19.953 and 14.464 mg/g, respectively. A total of 197 flavonoid metabolites (70 flavones, 42 flavonols, 26 flavone C-glycosides, 20 flavanones, 15 anthocyanins, 13 isoflavones, 6 flavonolignans, and 5 proanthocyanidins) were identified for the first time by a widely targeted Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) method within the two Taxus species, containing 160 common metabolites, with 37 unique metabolites merely determined in T. mairei or T. media. Moreover, 42 differential flavonoid metabolites were screened in the two Taxus species, which showed specific metabolic patterns in isoflavonoid biosynthesis, anthocyanin biosynthesis, and flavone and flavonol biosynthesis pathways. Compared to T. mairei, a more activated phenylpropanoid pathway was found in T. media, which could be responsible for the higher content of total flavonoids in T. media. Our results provide new insights into the diversity of flavonoid metabolites between T. mairei and T. media, and provide a theoretical basis for the sufficient utilization of Taxus species and the development of novel drugs.
Collapse
|
20
|
Dong H, Zhai G, Chen C, Bai X, Tian S, Hu D, Fan E, Zhang K. Protein lysine de-2-hydroxyisobutyrylation by CobB in prokaryotes. SCIENCE ADVANCES 2019; 5:eaaw6703. [PMID: 31328167 PMCID: PMC6636992 DOI: 10.1126/sciadv.aaw6703] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/13/2019] [Indexed: 05/06/2023]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) has recently been shown to be an evolutionarily conserved histone mark. Here, we report that CobB serves as a lysine de-2-hydroxyisobutyrylation enzyme that regulates glycolysis and cell growth in prokaryotes. We identified the specific binding of CobB to Khib using a novel self-assembled multivalent photocrosslinking peptide probe and demonstrated that CobB can catalyze lysine de-2-hydroxyisobutyrylation both in vivo and in vitro. R58 of CobB is a critical site for its de-2-hydroxyisobutyrylase activity. Using a quantitative proteomics approach, we identified 99 endogenous substrates that are targeted by CobB for de-2-hydroxyisobutyrylation. We further demonstrated that CobB can regulate the catalytic activities of enolase (ENO) by removing K343hib and K326ac of ENO simultaneously, which account for changes of bacterial growth. In brief, our study dissects a Khib-mediated molecular mechanism that is catalyzed by CobB for the regulation of the activity of metabolic enzymes as well as the cell growth of bacteria.
Collapse
Affiliation(s)
- Hanyang Dong
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Guijin Zhai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Cong Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Deqing Hu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Enguo Fan
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Treatment (Ministry of Education), Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
- Corresponding author.
| |
Collapse
|
21
|
Wang J, Li L, Chai R, Zhang Z, Qiu H, Mao X, Hao Z, Wang Y, Sun G. Succinyl-proteome profiling of Pyricularia oryzae, a devastating phytopathogenic fungus that causes rice blast disease. Sci Rep 2019; 9:3490. [PMID: 30837482 PMCID: PMC6401317 DOI: 10.1038/s41598-018-36852-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/27/2018] [Indexed: 11/21/2022] Open
Abstract
Pyricularia oryzae is the pathogen for rice blast disease, which is a devastating threat to rice production worldwide. Lysine succinylation, a newly identified post-translational modification, is associated with various cellular processes. Here, liquid chromatography tandem-mass spectrometry combined with a high-efficiency succinyl-lysine antibody was used to identify the succinylated peptides in P. oryzae. In total, 2109 lysine succinylation sites in 714 proteins were identified. Ten conserved succinylation sequence patterns were identified, among which, K*******Ksuc, and K**Ksuc, were two most preferred ones. The frequency of lysine succinylation sites, however, greatly varied among organisms, including plants, animals, and microbes. Interestingly, the numbers of succinylation site in each protein of P. oryzae were significantly greater than that of most previous published organisms. Gene ontology and KEGG analysis showed that these succinylated peptides are associated with a wide range of cellular functions, from metabolic processes to stimuli responses. Further analyses determined that lysine succinylation occurs on several key enzymes of the tricarboxylic acid cycle and glycolysis pathway, indicating that succinylation may play important roles in the regulation of basal metabolism in P. oryzae. Furthermore, more than 40 pathogenicity-related proteins were identified as succinylated proteins, suggesting an involvement of succinylation in pathogenicity. Our results provide the first comprehensive view of the P. oryzae succinylome and may aid to find potential pathogenicity-related proteins to control the rice blast disease. Significance Plant pathogens represent a great threat to world food security, and enormous reduction in the global yield of rice was caused by P. oryzae infection. Here, the succinylated proteins in P. oryzae were identified. Furthermore, comparison of succinylation sites among various species, indicating that different degrees of succinylation may be involved in the regulation of basal metabolism. This data facilitates our understanding of the metabolic pathways and proteins that are associated with pathogenicity.
Collapse
Affiliation(s)
- Jiaoyu Wang
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Ling Li
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
- The key laboratory for quality improvement of agricultural products of Zhejiang province, School of agricultural and food sciences, Zhejiang agriculture and forest university, Hangzhou, 311300, China
| | - Rongyao Chai
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Zhen Zhang
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Haiping Qiu
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Xueqin Mao
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Zhongna Hao
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Yanli Wang
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Guochang Sun
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China.
| |
Collapse
|
22
|
Yao Z, Guo Z, Wang Y, Li W, Fu Y, Lin Y, Lin W, Lin X. Integrated Succinylome and Metabolome Profiling Reveals Crucial Role of S-Ribosylhomocysteine Lyase in Quorum Sensing and Metabolism of Aeromonas hydrophila. Mol Cell Proteomics 2019; 18:200-215. [PMID: 30352804 PMCID: PMC6356075 DOI: 10.1074/mcp.ra118.001035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/27/2018] [Indexed: 01/21/2023] Open
Abstract
Protein modification by lysine succinylation is a newly identified post-translational modification (PTM) of lysine residues and plays an important role in diverse physiological functions, although their associated biological characteristics are still largely unknown. Here, we investigated the effects of lysine succinylation on the physiological regulation within a well-known fish pathogen, Aeromonas hydrophila A high affinity purification method was used to enrich peptides with lysine succinylation in A. hydrophila ATCC 7966, and a total of 2,174 lysine succinylation sites were identified on 666 proteins using LC-MS/MS. Gene ontology analysis indicated that these succinylated proteins are involved in diverse metabolic pathways and biological processes, including translation, protein export, and central metabolic pathways. The modifications of several selected candidates were further validated by Western blotting. Using site-directed mutagenesis, we observed that the succinylation of lysines on S-ribosylhomocysteine lyase (LuxS) at the K23 and K30 sites positively regulate the production of the quorum sensing autoinducer AI-2, and that these PTMs ultimately alter its competitiveness with another pathogen, Vibrio alginolyticus Moreover, subsequent metabolomic analyses indicated that K30 succinylation on LuxS may suppress the activated methyl cycle (AMC) and that both the K23 and K30 sites are involved in amino acid metabolism. Taken together, the results from this study provide significant insights into the functions of lysine succinylation and its critical roles on LuxS in regulating the cellular physiology of A. hydrophila.
Collapse
Affiliation(s)
- Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China;; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, PR China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Wanxin Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, PR China;; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China;.
| |
Collapse
|
23
|
Wang X, Chen X, Li J, Zhou X, Liu Y, Zhong L, Tang Y, Zheng H, Liu J, Zhan R, Chen L. Global analysis of lysine succinylation in patchouli plant leaves. HORTICULTURE RESEARCH 2019; 6:133. [PMID: 31814986 PMCID: PMC6885049 DOI: 10.1038/s41438-019-0216-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/25/2019] [Accepted: 10/23/2019] [Indexed: 05/03/2023]
Abstract
Lysine succinylation is a novel, naturally occurring posttranslational modification (PTM) in living organisms. Global lysine succinylation identification has been performed at the proteomic level in various species; however, the study of lysine succinylation in plant species is relatively limited. Patchouli plant (P. cablin (Blanco) Benth., Lamiaceae) is a globally important industrial plant and medicinal herb. In the present study, lysine succinylome analysis was carried out in patchouli plants to determine the potential regulatory role of lysine succinylation in patchouli growth, development, and physiology. The global succinylation sites and proteins in patchouli plants were screened with an immunoprecipitation affinity enrichment technique and advanced mass spectrometry-based proteomics. Several bioinformatic analyses, such as function classification and enrichment, subcellular location predication, metabolic pathway enrichment and protein-protein interaction networking, were conducted to characterize the functions of the identified sites and proteins. In total, 1097 succinylation sites in 493 proteins were detected in patchouli plants, among which 466 succinylation sites in 241 proteins were repeatedly identified within three independent experiments. The functional characterization of these proteins indicated that the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, photosynthesis processes, and amino acid biosynthesis may be regulated by lysine succinylation. In addition, these succinylated proteins showed a wide subcellular location distribution, although the chloroplast and cytoplasm were the top two preferred cellular components. Our study suggested the important role of lysine succinylation in patchouli plant physiology and biology and could serve as a useful reference for succinylation studies in other medicinal plants.
Collapse
Affiliation(s)
- Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Xiuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Junren Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Xuanxuan Zhou
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Yanting Liu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Liting Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Yun Tang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Hai Zheng
- Guangdong Institute of Traditional Chinese Medicine, Guangzhou, Guangdong, 510520 P. R. China
| | - Jiyun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005 P.R. China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, Guangdong, 510006 P. R. China
| |
Collapse
|
24
|
Fang X, Xin Y, Sheng Z, Liu H, Jiang A, Wang F, Yang J, Xi X, Zha Q, Zhang L, Dai L, Yan C, Chen J. Systematic Identification and Analysis of Lysine Succinylation in Strawberry Stigmata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13310-13320. [PMID: 30148364 DOI: 10.1021/acs.jafc.8b02708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The various post-translational modifications (PTMs) of plant proteins have important regulatory roles in development. We therefore examined various modified proteins from strawberry stigmata and found that succinylation of lysine residues was the most abundant type of modification. We then subjected proteins from strawberry stigmata to an efficient enrichment method for succinylated peptides and identified 200 uniquely succinylated lysines (Suks) in 116 proteins. A bioinformatics analysis revealed that these proteins are involved in important biological processes, including stress responses, vesicular transport, and energy metabolism. Proteomics, combined with immunoprecipitation and immunoblotting, revealed an obvious increase in succinylation of the assembly polypeptide 2 (AP2) and clathrin from 0.5 to 2 h after pollination, suggesting that succinylation is involved in the recognition of pollen-stigma signaling substances and vesicular transport. These results suggest that AP2/clathrin-mediated vesicular transport processes are regulated by lysine succinylation during pollen recognition.
Collapse
Affiliation(s)
- Xianping Fang
- Institute of Plant Virology , Ningbo University , Ningbo 315211 , China
- Institute of Forestry and Pomology , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , China
| | - Ya Xin
- Hangzhou Academy of Agricultural Sciences , Hangzhou 310024 , China
| | - Zheliang Sheng
- Institute of Mountain Hazards and Environment , Chinese Academy of Sciences , Chengdu 610041 , China
| | - Hui Liu
- Hangzhou Academy of Agricultural Sciences , Hangzhou 310024 , China
| | - Aili Jiang
- Institute of Forestry and Pomology , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , China
| | - Fang Wang
- Institute of Biotechnology , Ningbo Academy of Agricultural Sciences , Ningbo 315040 , China
| | - Jian Yang
- Institute of Plant Virology , Ningbo University , Ningbo 315211 , China
| | - Xiaojun Xi
- Institute of Forestry and Pomology , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , China
| | - Qian Zha
- Institute of Forestry and Pomology , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , China
| | - Liqing Zhang
- Institute of Forestry and Pomology , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , China
| | - Liangying Dai
- College of Plant Protection , Hunan Agricultural University , Changsha 410128 , China
| | - Chengqi Yan
- Institute of Biotechnology , Ningbo Academy of Agricultural Sciences , Ningbo 315040 , China
| | - Jianping Chen
- Institute of Plant Virology , Ningbo University , Ningbo 315211 , China
| |
Collapse
|
25
|
Liu K, Yuan C, Li H, Chen K, Lu L, Shen C, Zheng X. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep 2018; 8:8230. [PMID: 29844531 PMCID: PMC5974297 DOI: 10.1038/s41598-018-26676-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Lysine crotonylation of histone proteins is a recently-identified post-translational modification with multiple cellular functions. However, no information about lysine crotonylation of non-histone proteins in fruit cells is available. Using high-resolution LC-MS/MS coupled with highly sensitive immune-affinity antibody analysis, a global crotonylation proteome analysis of papaya fruit (Carica papaya L.) was performed. In total, 2,120 proteins with 5,995 lysine crotonylation sites were discovered, among which eight conserved motifs were identified. Bioinformatic analysis linked crotonylated proteins to multiple metabolic pathways, including biosynthesis of antibiotics, carbon metabolism, biosynthesis of amino acids, and glycolysis. particularly, 40 crotonylated enzymes involved in various pathways of amino acid metabolism were identified, suggesting a potential conserved function for crotonylation in the regulation of amino acid metabolism. Numerous crotonylation sites were identified in proteins involved in the hormone signaling and cell wall-related pathways. Our comprehensive crotonylation proteome indicated diverse functions for lysine crotonylation in papaya.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China. .,College of Bioscience and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Kunyan Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Lishi Lu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China.
| |
Collapse
|
26
|
Liu K, Yuan C, Li H, Chen K, Lu L, Shen C, Zheng X. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep 2018. [PMID: 29844531 DOI: 10.1038/s41598018-26676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Lysine crotonylation of histone proteins is a recently-identified post-translational modification with multiple cellular functions. However, no information about lysine crotonylation of non-histone proteins in fruit cells is available. Using high-resolution LC-MS/MS coupled with highly sensitive immune-affinity antibody analysis, a global crotonylation proteome analysis of papaya fruit (Carica papaya L.) was performed. In total, 2,120 proteins with 5,995 lysine crotonylation sites were discovered, among which eight conserved motifs were identified. Bioinformatic analysis linked crotonylated proteins to multiple metabolic pathways, including biosynthesis of antibiotics, carbon metabolism, biosynthesis of amino acids, and glycolysis. particularly, 40 crotonylated enzymes involved in various pathways of amino acid metabolism were identified, suggesting a potential conserved function for crotonylation in the regulation of amino acid metabolism. Numerous crotonylation sites were identified in proteins involved in the hormone signaling and cell wall-related pathways. Our comprehensive crotonylation proteome indicated diverse functions for lysine crotonylation in papaya.
Collapse
Affiliation(s)
- Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China.
- College of Bioscience and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Changchun Yuan
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Haili Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Kunyan Chen
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Lishi Lu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, Guangdong, 524048, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaolin Zheng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310035, China.
| |
Collapse
|
27
|
Hao J, Jiao K, Yu C, Guo H, Zhu Y, Yang X, Zhang S, Zhang L, Feng S, Song Y, Dong M, Wang H, Shen C. Development of SCoT-Based SCAR Marker for Rapid Authentication of Taxus Media. Biochem Genet 2018; 56:255-266. [DOI: 10.1007/s10528-018-9842-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
|
28
|
Yu C, Guo H, Zhang Y, Song Y, Pi E, Yu C, Zhang L, Dong M, Zheng B, Wang H, Shen C. Identification of potential genes that contributed to the variation in the taxoid contents between two Taxus species (Taxus media and Taxus mairei). TREE PHYSIOLOGY 2017; 37:1659-1671. [PMID: 28985439 DOI: 10.1093/treephys/tpx091] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/22/2017] [Indexed: 05/20/2023]
Abstract
Taxol is currently a valuable anticancer drug; however, the accumulated mixture of taxoids can vary greatly among Taxus species. So far, there is very little genomic information for the genus Taxus, except for Taxus baccata. Transcriptome analysis is a powerful approach to explore the different regulatory mechanisms underlying the taxoid biosynthesis pathway in Taxus species. First, we quantified the variation in the taxoid contents between Taxus media and Taxus mairei. The contents of paclitaxel and 10-deacetylpaclitaxel in T. media are higher than that in T. mairei. Then, the transcriptome profiles of T. media and T. mairei were analyzed to investigate the altered expressions. A total of 20,704 significantly differentially expressed genes (DEGs), including 9865 unigenes predominantly expressed in T. media and 10,839 unigenes predominantly expressed in T. mairei, were identified. In total, 120 jasmonic acid-related DEGs were analyzed, suggesting variations in 'response to JA stimulus' and 'JA biosynthetic process' pathways between T. media and T. mairei. Furthermore, a number of genes related to the precursor supply, taxane skeleton formation and hydroxylation, and C13-side chain assembly were also identified. The differential expression of the candidate genes involved in taxoid biosynthetic pathways may explain the variation in the taxoid contents between T. media and T. mairei.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hong Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Yangyang Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yaobin Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenliang Yu
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Ming Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Linan, Hangzhou 311300, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
29
|
Proteome-wide identification of lysine 2-hydroxyisobutyrylation reveals conserved and novel histone modifications in Physcomitrella patens. Sci Rep 2017; 7:15553. [PMID: 29138512 PMCID: PMC5686104 DOI: 10.1038/s41598-017-15854-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/01/2017] [Indexed: 11/30/2022] Open
Abstract
Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly identified post-translational modification found in animal and yeast cells. Previous research suggested that histone Khib is involved in male cell differentiation and plays a critical role in the regulation of chromatin functions in animals. However, information regarding protein Khib in plants is still limited. In this study, using a specific antibody and LC-MS/MS methods, we identified 11,976 Khib sites in 3,001 proteins in Physcomitrella patens. The bioinformatics analysis indicated that these Khib-modified proteins were involved in a wide range of molecular functions and cellular processes, and showed diverse subcellular localizations. Furthermore, an comparism of Khib sites in histone proteins among human, mouse and P. patens found conserved sites in the H3 and H4 histone proteins and novel sites in H1, H2A and H2B histone proteins in P. patens. This is the first report on Khib post-translational modifications in plants, and the study provides a comprehensive profile of Khib sites in histone and non-histone proteins in Physcomitrella patens.
Collapse
|
30
|
Hao J, Guo H, Shi X, Wang Y, Wan Q, Song YB, Zhang L, Dong M, Shen C. Comparative proteomic analyses of two Taxus species (Taxus × media and Taxus mairei) reveals variations in the metabolisms associated with paclitaxel and other metabolites. PLANT & CELL PHYSIOLOGY 2017; 58:1878-1890. [PMID: 29016978 DOI: 10.1093/pcp/pcx128] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/23/2017] [Indexed: 05/20/2023]
Abstract
Taxus species are well-known for paclitaxel, which exhibits antitumor activities and is used for treating various cancers. Although most Taxus species are widespread in many areas, few studies have characterized the variation in metabolism among different Taxus species. Using an integrated approach involving 'tandem mass tag' labeling and liquid chromatography-tandem mass spectrometry (HPLC-MS), proteomes of T. media and T. mairei were investigated and 4078 proteins were quantified. Screening and classification of differentially expressed proteins revealed many metabolism-associated proteins. In detail, four enzymes involved in the flavonoid biosynthesis pathway were predominantly expressed in T. mairei. Four enzymes associated with supplying precursors for paclitaxel biosynthesis and three cytochrome P450 taxoid oxygenases were preferentially expressed in T. media compared with T. mairei. Furthermore, variations in taxoid contents between T. media and T. mairei were determined using HPLC-MS analysis. Variations in flavonoid contents between T. media and T. mairei were determined by HPLC analysis. A number of differentially expressed proteins may provide an explanation for the variation in metabolisms of different Taxus species.
Collapse
Affiliation(s)
- Juan Hao
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hong Guo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Xinai Shi
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Ye Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province 455000, China
| | - Qinghua Wan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Yao-Bin Song
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Ming Dong
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
31
|
Feng S, Jiao K, Guo H, Jiang M, Hao J, Wang H, Shen C. Succinyl-proteome profiling of Dendrobium officinale, an important traditional Chinese orchid herb, revealed involvement of succinylation in the glycolysis pathway. BMC Genomics 2017; 18:598. [PMID: 28797234 PMCID: PMC5553593 DOI: 10.1186/s12864-017-3978-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysine succinylation is a ubiquitous and important protein post-translational modification in various eukaryotic and prokaryotic cells. However, its functions in Dendrobium officinale, an important traditional Chinese orchid herb with high polysaccharide contents, are largely unknown. RESULTS In our study, LC-MS/MS was used to identify the peptides that were enriched by immune-purification with a high-efficiency succinyl-lysine antibody. In total, 314 lysine succinylation sites in 207 proteins were identified. A gene ontology analysis showed that these proteins are associated with a wide range of cellular functions, from metabolic processes to stimuli responses. Moreover, two types of conserved succinylation motifs, '***Ksuc******K**' and '****EKsuc***', were identified. Our data showed that lysine succinylation occurred on five key enzymes in the glycolysis pathway. The numbers of average succinylation sites on these five enzymes in plants were lower than those in bacteria and mammals. Interestingly, two active site amino acids residues, K103 and K225, could be succinylated in fructose-bisphosphate aldolase, indicating a potential function of lysine succinylation in the regulation of glycolytic enzyme activities. Furthermore, the protein-protein interaction network for the succinylated proteins showed that several functional terms, such as glycolysis, TCA cycle, oxidative phosphorylation and ribosome, are consisted. CONCLUSIONS Our results provide the first comprehensive view of the succinylome of D. officinale and may accelerate future biological investigations of succinylation in the synthesis of polysaccharides, which are major active ingredients.
Collapse
Affiliation(s)
- Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Kaili Jiao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Hong Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Mengyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Juan Hao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| |
Collapse
|
32
|
Xu YX, Shen CJ, Ma JQ, Chen W, Mao J, Zhou YY, Chen L. Quantitative Succinyl-Proteome Profiling of Camellia sinensis cv. 'Anji Baicha' During Periodic Albinism. Sci Rep 2017; 7:1873. [PMID: 28500349 PMCID: PMC5431936 DOI: 10.1038/s41598-017-02128-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/06/2017] [Indexed: 12/31/2022] Open
Abstract
Lysine succinylation is a novel dynamic and evolutionarily conserved post-translational modification (PTM) that regulates various biological processes. ‘Anji Baicha’ is an albino tea variety that exhibits temperature-based variability of leaf colour and amino acid concentrations. However, the mechanism underlying albinism in ‘Anji Baicha’ has not been investigated at the level of succinylation. Here, we identify 3530 lysine succinylation sites mapped to 2132 proteins in ‘Anji Baicha’, representing the first extensive data on the lysine succinylome in the tea plant. Eleven conserved succinylation motifs were enriched among the identified succinylated peptides. The protein-protein interaction maps were visualized using Cytoscape software. Comparison across three typical developmental stages of ‘Anji Baicha’ revealed that proteins exhibiting differential succinylation levels were primarily involved in photosynthesis, carbon fixation, biosynthesis of amino acids and porphyrin and chlorophyll metabolism, suggesting that these succinylated proteins are involved in ‘Anji Baicha’ leaf colour variability. These results not only deepen our understanding of the mechanism underlying ‘Anji Baicha’ albinism and the regulatory role of succinylation in the tea plant but also provide new insight into molecular breeding for leaf colour variety.
Collapse
Affiliation(s)
- Yan-Xia Xu
- Tea Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, China
| | - Chen-Jia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jian-Qiang Ma
- Tea Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, China
| | - Wei Chen
- Tea Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, China
| | - Juan Mao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, China
| | - Yan-Yan Zhou
- Jingjie PTM Biolab (Hangzhou) Co., Ltd., Hangzhou, 310018, China
| | - Liang Chen
- Tea Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, China.
| |
Collapse
|
33
|
Xie L, Li J, Deng W, Yu Z, Fang W, Chen M, Liao W, Xie J, Pan W. Proteomic analysis of lysine succinylation of the human pathogen Histoplasma capsulatum. J Proteomics 2017; 154:109-117. [PMID: 28063982 DOI: 10.1016/j.jprot.2016.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 01/02/2023]
Abstract
Histoplasma capsulatum, the causative agent of histoplasmosis (also called "Darling's disease"), can affect both immunocompetent and immunocompromised hosts. Post-translational protein modification by lysine succinylation (Ksuc) is a frequent occurrence in eukaryote and prokaryote. Recently, the roles of succinylation and its regulatory enzymes in regulating metabolic pathway in bacteria, mammalian and fungus were highlighted. Here, we report the first global profiling of lysine succinylation, with 463 modification sites in 202 proteins from H. capsulatum NAM1 identified, coupling immune-affinity enrichment using an anti-succinyllysine antibody with mass spectrometry. The bioinformatics results including GO functional and enrichment analysis showed that these succinylated proteins are mainly involved in central metabolism and protein synthesis, consistent with previous reports. 13 lysine succinylation sites on histones including H2A, H2B, H3 and H4 in H. capsulatum were firstly reported. The data is a good resource for further functional characterization of lysine succinylation in H. capsulatum. BIOLOGICAL SIGNIFICANCE H. capsulatum is the causative agent of lung disease histoplasmosis. The ability of H. capsulatum yeasts to infect and proliferate within macrophages as an intracellular pathogen can be contributed to several virulence factors and metabolic regulation. Lysine succinylation was recently shown to play a critical role in the metabolism regulation of Candida albicans. H. capsulatum succinylated proteins were firstly characterized in this work, and bioinformatics results showed that this modification may also be relevant with central metabolism in H. capsulatum. New succinylation sites on histones were reported. This represents an important resource to address the function of H. capsulatum lysine succinylation.
Collapse
Affiliation(s)
- Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Juan Li
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Zhaoxiao Yu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Wenjie Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|