1
|
Kim HN, Gasmi-Seabrook GMC, Uchida A, Gebregiworgis T, Marshall CB, Ikura M. Switch II Pocket Inhibitor Allosterically Freezes KRAS G12D Nucleotide-binding Site and Arrests the GTPase Cycle. J Mol Biol 2025; 437:169162. [PMID: 40268231 DOI: 10.1016/j.jmb.2025.169162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
KRAS is frequently mutated in multiple cancers, with the most common mutation being G12D. The recently developed KRASG12D inhibitor MRTX1133 binds a cryptic allosteric pocket near switch II (SII-P), similar to covalent G12C inhibitors, with remarkable picoM non-covalent affinity. Despite its advancement to clinical trials, some aspects of the molecular mechanisms-of-action remain unclear, indicating a need to uncover the mechanisms underlying MRTX1133 efficacy and potential acquired resistance, thus we characterized the biochemical and biophysical outcomes of MRTX1133 binding KRAS. Hydrogen/deuterium exchange experiments showed that MRTX1133 binding to the induced SII-P reduces the overall conformational plasticity of KRASG12D. This extends well beyond SII-P, with the nucleotide-binding regions (P-loop and G-3/4/5-box motifs) particularly exhibiting stabilization. This conformational rigidification by MRTX1133 is coupled with complete arrest of the GTPase cycle: When the compound engages KRASG12D-GDP, both intrinsic and GEF-mediated nucleotide exchange are blocked while engagement of KRASG12D-GTP blocks both intrinsic and GAP-mediated hydrolysis. MRTX1133 attenuates the interaction between activated KRASG12D and the RAS-binding domain of the effector BRAF. The binding site in Switch I remains flexible, which enables binding, albeit with ∼10-fold lower affinity, and remarkably, this interaction with BRAF reverses the compound's blockage of intrinsic GTP hydrolysis. Unlike KRASWT, GDP-loaded KRASG12D surprisingly maintains a low-affinity interaction with BRAF-RBD, but MRTX1133 can circumvent this mutant-specific abnormal interaction. Taken together, MRTX1133 allosterically 'freezes' the KRASG12D nucleotide-binding site conformation, arresting the canonical GTPase cycle of this oncogenic mutant. This provides a framework for understanding the mechanisms-of-action of SII-P-directed inhibitors and how tumours may acquire resistance.
Collapse
Affiliation(s)
- Ha-Neul Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | - Arisa Uchida
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
2
|
Nussinov R. Pioneer in Molecular Biology: Conformational Ensembles in Molecular Recognition, Allostery, and Cell Function. J Mol Biol 2025; 437:169044. [PMID: 40015370 PMCID: PMC12021580 DOI: 10.1016/j.jmb.2025.169044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
In 1978, for my PhD, I developed the efficient O(n3) dynamic programming algorithm for the-then open problem of RNA secondary structure prediction. This algorithm, now dubbed the "Nussinov algorithm", "Nussinov plots", and "Nussinov diagrams", is still taught across Europe and the U.S. As sequences started coming out in the 1980s, I started seeking genome-encoded functional signals, later becoming a bioinformatics trend. In the early 1990s I transited to proteins, co-developing a powerful computer vision-based docking algorithm. In the late 1990s, I proposed the foundational role of conformational ensembles in molecular recognition and allostery. At the time, conformational ensembles and free energy landscapes were viewed as physical properties of proteins but were not associated with function. The classical view of molecular recognition and binding was based on only two conformations captured by crystallography: open and closed. I proposed that all conformational states preexist. Proteins always have not one folded form-nor two-but many folded forms. Thus, rather than inducing fit, binding can work by shifting the ensembles between states, and this shifting, or redistributing the ensembles to maintain equilibrium, is the origin of the allosteric effect and protein, thus cell, function. This transformative paradigm impacted community views in allosteric drug design, catalysis, and regulation. Dynamic conformational ensemble shifts are now acknowledged as the origin of recognition, allostery, and signaling, underscoring that conformational ensembles-not proteins-are the workhorses of the cell, pioneering the fundamental idea that dynamic ensembles are the driving force behind cellular processes. Nussinov was recognized as pioneer in molecular biology by JMB.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
3
|
Merdler-Rabinowicz R, Dadush A, Patiyal S, Rajagopal PS, Daya G, Ben-Aroya S, Schäffer A, Eisenberg E, Ruppin E, Levanon E. A systematic evaluation of the therapeutic potential of endogenous-ADAR editors in cancer prevention and treatment. NAR Cancer 2025; 7:zcaf016. [PMID: 40330550 PMCID: PMC12053386 DOI: 10.1093/narcan/zcaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/10/2025] [Accepted: 05/05/2025] [Indexed: 05/08/2025] Open
Abstract
Adenosine deaminases acting on RNA (ADAR) enzymes constitute a natural cellular mechanism that induces A-to-I(G) editing, introducing genetic changes at the RNA level. Recently, interest in the endogenous-ADAR editor has emerged for correcting genetic mutations, consisting of a programmed oligonucleotide that attracts the native ADAR, thereby offering opportunities for medical therapy. Here, we systematically chart the scope of cancer mutations that endogenous-ADAR can correct. First, analyzing germline single nucleotide variants in cancer predisposition genes, we find that endogenous-ADAR can revert a fifth of them, reducing the risk of cancer development later in life. Second, examining somatic mutations across various cancer types, we find that it has the potential to correct at least one driver mutation in over a third of the samples, suggesting a promising future treatment strategy. We also highlight key driver mutations that are amenable to endogenous-ADAR, and are thus of special clinical interest. As using endogenous-ADAR entails delivering relatively small payloads, the prospects of delivering endogenous-ADAR to various cancers seem promising. We expect that the large scope of correctable mutations that are systematically charted here for the first time will pave the way for a new era of cancer treatment options.
Collapse
Affiliation(s)
- Rona Merdler-Rabinowicz
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, 5290002, Israel
| | - Ariel Dadush
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, 5290002, Israel
| | - Sumeet Patiyal
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Padma Sheila Rajagopal
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Gulzar N Daya
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Shay Ben-Aroya
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Alejandro A Schäffer
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar‐Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
4
|
Alshahrani M, Parikh V, Foley B, Hu G, Verkhivker G. Probing binding and allosteric mechanisms of the KRAS interactions with monobodies and affimer proteins: ensemble-based mutational profiling and thermodynamic analysis of binding energetics and allostery reveal diversity of functional hotspots and cryptic pockets linked by conserved communication network. Phys Chem Chem Phys 2025; 27:11242-11263. [PMID: 40384021 DOI: 10.1039/d5cp00966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
KRAS, a historically "undruggable" oncogenic driver, has eluded targeted therapies due to its lack of accessible binding pockets in its active state. This study investigates the conformational dynamics, binding mechanisms, and allosteric communication networks of KRAS in complexes with monobodies (12D1, 12D5) and affimer proteins (K6, K3, K69) to characterize the binding and allosteric mechanisms and hotspots of KRAS binding. Through molecular dynamics simulations, mutational scanning, binding free energy analysis and network-based analyses, we identified conserved allosteric hotspots that serve as critical nodes for long-range communication in KRAS. Key residues in β-strand 4 (F78, L80, F82), α-helix 3 (I93, H95, Y96), β-strand 5 (V114, N116), and α-helix 5 (Y157, L159, R164) consistently emerged as hotspots across diverse binding partners, forming contiguous networks linking functional regions of KRAS. Notably, β-strand 4 acts as a central hub for propagating conformational changes, while the cryptic allosteric pocket centered around H95/Y96 positions targeted by clinically approved inhibitors was identified as a universal hotspot for both binding and allostery. The study also reveals the interplay between structural rigidity and functional flexibility, where stabilization of one region induces compensatory flexibility in others, reflecting KRAS's adaptability to perturbations. We found that monobodies stabilize the switch II region of KRAS, disrupting coupling between switch I and II regions and leading to enhanced mobility in switch I of KRAS. Similarly, affimer K3 leverages the α3-helix as a hinge point to amplify its effects on KRAS dynamics. Mutational scanning and binding free energy analysis highlighted the energetic drivers of KRAS interactions. Revealing key hotspot residues, including H95 and Y96 in the α3 helix, as major contributors to binding affinity and selectivity. Network analysis identified β-strand 4 as a central hub for propagating conformational changes, linking distant functional sites. The predicted allosteric hotspots strongly aligned with experimental data, validating the robustness of the computational approach. Despite distinct binding interfaces, shared hotspots highlight a conserved allosteric infrastructure, reinforcing their universal importance in KRAS signaling. The results of this study can inform rational design of small-molecule inhibitors that mimic the effects of monobodies and affimer proteins, challenging the "undruggable" reputation of KRAS.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Vedant Parikh
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Brandon Foley
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Guang Hu
- Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
5
|
Song J, Wang B, Zou M, Zhou H, Ding Y, Ren W, Fang L, Zhang J. Mapping the Interactome of KRAS and Its G12C/D/V Mutants by Integrating TurboID Proximity Labeling with Quantitative Proteomics. BIOLOGY 2025; 14:477. [PMID: 40427667 PMCID: PMC12109396 DOI: 10.3390/biology14050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
KRAS mutations are major drivers of human cancers, yet how distinct mutations rewire protein interactions and metabolic pathways to promote tumorigenesis remains poorly understood. To address this, we systematically mapped the protein interaction networks of wild-type KRAS and three high-frequency oncogenic mutants (G12C, G12D, and G12V) using TurboID proximity labeling coupled with quantitative proteomics. Bioinformatic analysis revealed mutant-specific binding partners and metabolic pathway alterations, including significant enrichment in insulin signaling, reactive oxygen species regulation, and glucose/lipid metabolism. These changes collectively drive tumor proliferation and immune evasion. Comparative analysis identified shared interactome shifts across all mutants: reduced binding to LZTR1, an adaptor for KRAS degradation, and enhanced recruitment of LAMTOR1, a regulator of mTORC1-mediated growth signaling. Our multi-dimensional profiling establishes the first comprehensive map of KRAS-mutant interactomes and links specific mutations to metabolic reprogramming. These findings provide mechanistic insights into KRAS-driven malignancy and highlight LZTR1 and LAMTOR1 as potential therapeutic targets. The study further lays a foundation for developing mutation-specific strategies to counteract KRAS oncogenic signaling.
Collapse
Affiliation(s)
- Jiangwei Song
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (J.S.); (J.Z.)
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210029, China; (B.W.); (M.Z.); (H.Z.); (Y.D.)
| | - Busong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210029, China; (B.W.); (M.Z.); (H.Z.); (Y.D.)
| | - Mingjie Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210029, China; (B.W.); (M.Z.); (H.Z.); (Y.D.)
| | - Haiyuan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210029, China; (B.W.); (M.Z.); (H.Z.); (Y.D.)
| | - Yibing Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210029, China; (B.W.); (M.Z.); (H.Z.); (Y.D.)
| | - Wei Ren
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (J.S.); (J.Z.)
| | - Lei Fang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (J.S.); (J.Z.)
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210029, China; (B.W.); (M.Z.); (H.Z.); (Y.D.)
| | - Jingzi Zhang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (J.S.); (J.Z.)
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210029, China; (B.W.); (M.Z.); (H.Z.); (Y.D.)
| |
Collapse
|
6
|
Liu Z, Lenz HJ, Yu J, Zhang L. Differential Response and Resistance to KRAS-Targeted Therapy. Mol Carcinog 2025. [PMID: 40256920 DOI: 10.1002/mc.23908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 04/22/2025]
Abstract
KRAS is the most frequently mutated oncogene. In epithelial malignancies such as lung, colorectal, and pancreatic tumors, KRAS is mutated in 25 to above 90% cases. KRAS was considered undruggable for over three decades until the recent development of covalent inhibitors targeting the KRAS G12C mutant. The recent approval of the KRAS G12C inhibitors sotorasib and adagrasib has ushered in a new era of KRAS-targeted therapy. Despite this success, a major challenge in KRAS-targeted therapy is intrinsic and acquired resistance to KRAS inhibitors. Clinical studies have shown that many patients with KRAS G12C cancers did not respond to sotorasib and adagrasib. Colorectal cancer, in particular, has a markedly lower response rate to KRAS G12C inhibitors compared to non-small cell lung cancer. Furthermore, the therapeutic response to KRAS G12C inhibition was short-lived, with quick emergence of acquired resistance. In this review, we summarize several major themes that have emerged from recent clinical and preclinical studies on the mechanisms of intrinsic and acquired resistance to KRAS-targeted therapy in colorectal, lung, and pancreatic cancers. We also discuss various combination strategies for targeting these mechanisms to overcome resistance to KRAS inhibitors.
Collapse
Affiliation(s)
- Zhaojin Liu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Jian Yu
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Lin Zhang
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, California, USA
- Keck School of Medicine of USC, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
7
|
Geng C, Zeng J, Deng X, Xia F, Xu X. Molecular Dynamics Investigation into the Stability of KRas and CRaf Multimeric Complexes. J Phys Chem B 2025; 129:3306-3316. [PMID: 40126127 DOI: 10.1021/acs.jpcb.4c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In the Ras/Raf/MAPK signaling pathway, Ras and Raf proteins interact synergistically to form a tetrameric complex. NMR experiments have demonstrated that Ras dimerizes in solution and binds stably to Raf, forming Ras·Raf complexes. In this study, we constructed the ternary and quaternary complexes of KRas and CRaf based on crystal structures, denoted as (KRas)2·CRaf and (KRas)2·(CRaf)2, respectively. Molecular dynamics (MD) simulations were performed to investigate the stability of these complexes, while hydrogen bonds as well as salt bridges formed at the protein-protein interaction interfaces were analyzed based on simulation trajectories. The results revealed that the KRas·CRaf complex is more stable in explicit solvent compared with the KRas dimer. Formation of the stable quaternary complex (KRas)2·(CRaf)2 might be attributed to the association of two binary KRas·CRaf complexes. Additionally, MD simulations of the KRasG12D·CRaf complex revealed a stable and extended binding site at the KRas-CRaf interaction interface. This binding site was identified as a potential therapeutic target to block abnormal signal transmission in the pathway.
Collapse
Affiliation(s)
- Chongli Geng
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen University, 361003 Xiamen, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Maki H, Ayabe RI, Haddad A, Nishioka Y, Newhook TE, Tran Cao HS, Chun YS, Tzeng CWD, Vauthey JN. Associations of KRAS Point Mutations with Survival of Patients Who Underwent Curative-Intent Resection of Colorectal Liver Metastases. Ann Surg Oncol 2025; 32:2425-2434. [PMID: 39821490 DOI: 10.1245/s10434-024-16822-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND The oncologic significance of specific KRAS point mutations for patients with colorectal liver metastases (CLM) is uncertain. This study aimed to assess the prognostic impact of KRAS point mutations on patients who underwent surgery for CLM. METHODS Patients who underwent curative-intent surgery for CLM from 2001 to 2020 were selected for the study. In the study, KRAS point mutations and other clinicopathologic variables were examined for association with survival. RESULTS The study classified 798 patients into five groups by KRAS mutation status as follows: wild-type (n = 412, 51.6%), G12D (n = 123, 15.4%), G12V (n = 88, 11.0%), G13D (n = 61, 7.6%), and "Other" mutations (n = 114, 14.3%). For the patients with G12V substitutions, TP53 mutation was associated with worse overall survival (OS) (hazard ratio [HR], 2.64; 95% confidence interval [CI], 1.04-6.66; P = 0.041), but was not associated with a survival difference for the other four groups. The patients with co-occurring KRAS G12V and TP53 had a median OS of 4.4 years and a 5-year OS rate of 39.8%. In contrast, the patients with KRAS G12V mutation and wild-type TP53 had a median OS of 7.3 years and a 5-year OS rate of 75.9%, similar to the corresponding values for the patients with wild-type KRAS. Co-occurring KRAS G12V and TP53 mutations were independently associated with worse OS in the entire cohort (HR, 2.08; 95% CI, 1.15-3.76; P = 0.015). CONCLUSIONS This study showed that KRAS G12V mutation is associated with worse OS for patients undergoing curative-intent CLM resection, but only those with co-occurring TP53 mutation. Prognosis after surgery for CLM should not be stratified by KRAS mutation site alone.
Collapse
Affiliation(s)
- Harufumi Maki
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reed I Ayabe
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antony Haddad
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujiro Nishioka
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy E Newhook
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hop S Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Shin Chun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ching-Wei D Tzeng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Landgraf AD, Brenner R, Ghozayel MK, Bum-Erdene K, Gonzalez-Gutierrez G, Meroueh SO. Small-Molecule KRAS Inhibitors by Tyrosine Covalent Bond Formation. ChemMedChem 2025:e2400624. [PMID: 40099978 DOI: 10.1002/cmdc.202400624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
The development of the KRAS G12C inhibitor sotorasib is a major advance toward drugging KRAS. However, the G12C mutation is only found in about 10% of KRAS-driven tumors. KRAS possesses several tyrosine amino acids that could provide alternative sites for covalent drug development. Here, a library of aryl sulfonyl fluorides identified 1 (SOF-436) as an inhibitor of KRAS nucleotide exchange by guanine exchange factor SOS1 and KRAS binding to effector protein rapidly accelerated fibrosarcoma kinase (RAF). Tyr-64 is the major reaction site of 1 (SOF-436), although minor reaction at Tyr-71 is also observed. The fragment binds to the Switch II pocket of KRAS based on whole protein mass spectrometry, nucleotide exchange, effector protein binding, and nuclear magnetic resonance studies. Cocrystal structures of smaller fragments covalently bound to KRAS at Tyr-71 provide a strategy for the development of Switch I/II KRAS covalent inhibitors. A bioluminescent resonance energy transfer (NanoBRET) assay reveals that the compounds inhibit KRAS binding to RAF in mammalian cells. Although not yet suitable as chemical probes, these fragments provide starting points to develop small molecules to investigate tyrosine as a nucleophile for covalent inhibition of KRAS in tumors.
Collapse
Affiliation(s)
- Alexander D Landgraf
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert Brenner
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mona K Ghozayel
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 81601, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 81601, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 81601, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 81601, USA
| |
Collapse
|
10
|
Alshahrani M, Parikh V, Foley B, Hu G, Verkhivker G. Atomistic Profiling of KRAS Interactions with Monobodies and Affimer Proteins Through Ensemble-Based Mutational Scanning Unveils Conserved Residue Networks Linking Cryptic Pockets and Regulating Mechanisms of Binding, Specificity and Allostery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642708. [PMID: 40161650 PMCID: PMC11952430 DOI: 10.1101/2025.03.11.642708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
KRAS, a historically "undruggable" oncogenic driver, has eluded targeted therapies due to its lack of accessible binding pockets in its active state. This study investigates the conformational dynamics, binding mechanisms, and allosteric communication networks of KRAS in complexes with monobodies (12D1, 12D5) and affimer proteins (K6, K3, K69) to characterize the binding and allosteric mechanisms and hotspots of KRAS binding. Through molecular dynamics simulations, mutational scanning, binding free energy analysis and network-based analyses, we identified conserved allosteric hotspots that serve as critical nodes for long-range communication in KRAS. Key residues in β-strand 4 (F78, L80, F82), α-helix 3 (I93, H95, Y96), β-strand 5 (V114, N116), and α-helix 5 (Y157, L159, R164) consistently emerged as hotspots across diverse binding partners, forming contiguous networks linking functional regions of KRAS. Notably, β-strand 4 acts as a central hub for propagating conformational changes, while the cryptic allosteric pocket centered around H95/Y96 positions targeted by clinically approved inhibitors was identified as a universal hotspot for both binding and allostery. The study also reveals the interplay between structural rigidity and functional flexibility, where stabilization of one region induces compensatory flexibility in others, reflecting KRAS's adaptability to perturbations. We found that monobodies stabilize the switch II region of KRAS, disrupting coupling between switch I and II regions and leading to enhanced mobility in switch I of KRAS. Similarly, affimer K3 leverages the α3-helix as a hinge point to amplify its effects on KRAS dynamics. Mutational scanning and binding free energy analysis highlighted the energetic drivers of KRAS interactions. revealing key hotspot residues, including H95 and Y96 in the α3 helix, as major contributors to binding affinity and selectivity. Network analysis identified β-strand 4 as a central hub for propagating conformational changes, linking distant functional sites. The predicted allosteric hotspots strongly aligned with experimental data, validating the robustness of the computational approach. Despite distinct binding interfaces, shared hotspots highlight a conserved allosteric infrastructure, reinforcing their universal importance in KRAS signaling. The results of this study can inform rational design of small-molecule inhibitors that mimic the effects of monobodies and affimer proteins, challenging the "undruggable" reputation of KRAS.
Collapse
|
11
|
Li A, Li S, Wang P, Dang C, Fan X, Chen M, Liu D, Li F, Liu H, Zhang W, Wang Y, Wang Y. Design, Structure Optimization, and Preclinical Characterization of JAB-21822, a Covalent Inhibitor of KRAS G12C. J Med Chem 2025; 68:2422-2436. [PMID: 39875337 DOI: 10.1021/acs.jmedchem.4c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
KRAS is the most frequently mutated driver oncogene in human cancer, and KRASG12C mutation is commonly found in non-small-cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). Inhibitors that covalently modify the mutated codon 12 cysteine have completed proof-of-concept studies in the clinic. Here, we describe structure-based design and cocrystal-aided drug optimization of a series of compounds with the 1,8-naphthyridine-3-carbonitrile scaffold. Biopharmaceutical optimization of the resulting leads to improve the solubility of the compounds and block the possible metabolic hotspots led to the identification of JAB-21822, a covalent KRASG12C inhibitor with high potency and excellent cross-species pharmacokinetic properties. JAB-21822 has finished the pivotal Phase II clinical trials in NSCLC, and a new drug application was submitted to the National Medical Products Administration in 2024.
Collapse
Affiliation(s)
- Amin Li
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Sujing Li
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Peng Wang
- Biology Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Chaojie Dang
- Process Development Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Xinrui Fan
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Mengran Chen
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Dan Liu
- Biology Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Fu Li
- Medicinal Chemistry Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing 100176, P. R. China
| | - Huan Liu
- Process Development Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Wei Zhang
- Hits Discovery Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Yanping Wang
- Pharmacology Department, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| | - Yinxiang Wang
- Chief executive officer, Jacobio Pharmaceuticals Group Co., Ltd., Beijing100176, P. R. China
| |
Collapse
|
12
|
Rathod LS, Sakle NS, Mokale SN. KRAS inhibitors in drug resistance and potential for combination therapy. TUMORI JOURNAL 2025; 111:20-40. [PMID: 39506389 DOI: 10.1177/03008916241289206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Kirsten Rat Sarcoma (KRAS) is a potent target for cancer therapy because it acts as a signaling hub, engaging in various signaling pathways and regulating a number of cellular functions like cell differentiation, proliferation, and survival. Recently, an emergency approval from the US-FDA has been issued for KRASG12C inhibitors (sotorasib and adagrasib) for metastatic lung cancer treatment. However, clinical studies on covalent KRASG12C inhibitors have rapidly confronted resistance in patients. Many methods are being assessed to overcome this resistance, along with various combinatorial clinical studies that are in process. Moreover, because KRASG12D and KRASG12V are more common than KRASG12C, focus must be placed on the therapeutic strategies for this type of patient, along with sustained efforts in research on these targets. In the present review, we try to focus on various strategies to overcome rapid resistance through the use of combinational treatments to improve the activity of KRASG12C inhibitors.
Collapse
|
13
|
Lin Y, Zheng Y. Structural Dynamics of Rho GTPases. J Mol Biol 2025; 437:168919. [PMID: 39708912 PMCID: PMC11757035 DOI: 10.1016/j.jmb.2024.168919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Rho family GTPases are a part of the Ras superfamily and are signaling hubs for many cellular processes. While the detailed understanding of Ras structure and function has led to tremendous progress in oncogenic Ras-targeted drug discovery, studies of the related Rho GTPases are still catching up as the recurrent cancer-related Rho GTPase mutations have only been discovered in the last decade. Like that of Ras, an in-depth understanding of the structural basis of how Rho GTPases and their mutants behave as key oncogenic drivers benefits the development of clinically effective therapies. Recent studies of structure dynamics in Rho GTPase structure-function relationship have added new twists to the conventional wisdom of Rho GTPase signaling mechanism.
Collapse
Affiliation(s)
- Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Wlodarczyk A, Treda C, Pacholczyk M, Rutkowska A, Wegierska M, Kierasinska-Kalka A, Wasiak K, Ciunowicz D, Grot D, Glowacki P, Stoczynska-Fidelus E, Rieske P. First molecules to reactivate RAS G12V GTPase activity. BMC Cancer 2025; 25:182. [PMID: 39891136 PMCID: PMC11783748 DOI: 10.1186/s12885-025-13580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Small-molecule compounds that even partially restore the GTPase activity of RASG12V can be used in anticancer therapy. Until now, attempts to obtain such compounds have failed. Compounds with this ability have been defined in our research. METHODS The compounds were initially identified through virtual screening, and their optimal binding conformation in the RAS SW-II pocket was determined using the flexible docking technique. Efficacy was verified based on the IC50 determination, GTPase activity, as well as the AKT and ERK phospho WB assays. RESULTS The IC50 of the tested compounds was significantly lower against cells with the RASG12V mutation than against selected types of normal cells. The molecular mechanism of action of these compounds was proposed - minimization of the negative impact of the V12 sidechain on GTP hydrolysis of RASG12V. The work also indicates that the model of action of RAS mutants in cell lines is incomplete. The analysed cell line (SW-480) with RAS mutations does not always show increased ERK and AKT activity. CONCLUSIONS We have demonstrated molecules that partially restore the GTPase activity of RASG12V. Their mechanism of action is well explained based on current RAS mutant conformation and mechanistic models. These molecules inhibit the RAS-AKT pathway and show higher cytotoxicity against cancer cells with the RASG12V mutation (SW-480 cell line). However, SW-480 cells can switch into the subline proliferating independently of AKT phosphorylation and show partial resistance to the molecules described in this article.
Collapse
Affiliation(s)
- Aneta Wlodarczyk
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland.
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland.
| | - Cezary Treda
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Marcin Pacholczyk
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16 St, Gliwice, 44-100, Poland
| | - Adrianna Rutkowska
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90-752, Poland
| | - Marta Wegierska
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Amelia Kierasinska-Kalka
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Katarzyna Wasiak
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Damian Ciunowicz
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90-752, Poland
| | - Dagmara Grot
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| | - Pawel Glowacki
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90-752, Poland
| | - Piotr Rieske
- Department of Research and Development, Personather, LTD, Inwestycyjna 7 St, Konstantynow Lodzki, 95-050, Poland
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St, Lodz, 90- 752, Poland
| |
Collapse
|
15
|
Xiao S, Alshahrani M, Hu G, Tao P, Verkhivker G. Accurate Characterization of the Allosteric Energy Landscapes, Binding Hotspots and Long-Range Communications for KRAS Complexes with Effector Proteins : Integrative Approach Using Microsecond Molecular Dynamics, Deep Mutational Scanning of Binding Energetics and Allosteric Network Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635141. [PMID: 39975035 PMCID: PMC11838311 DOI: 10.1101/2025.01.27.635141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
KRAS is a pivotal oncoprotein that regulates cell proliferation and survival through interactions with downstream effectors such as RAF1. Oncogenic mutations in KRAS, including G12V, G13D, and Q61R, drive constitutive activation and hyperactivation of signaling pathways, contributing to cancer progression. Despite significant advances in understanding KRAS biology, the structural and dynamic mechanisms of KRAS binding and allostery by which oncogenic mutations enhance KRAS-RAF1 binding and signaling remain incompletely understood. In this study, we employ microsecond molecular dynamics simulations, Markov State Modeling, mutational scanning and binding free energy calculations together with dynamic network modeling to elucidate the effect of KRAS mutations and characterize the thermodynamic and allosteric drivers and hotspots of KRAS binding and oncogenic activation. Our simulations revealed that oncogenic mutations stabilize the open active conformation of KRAS by differentially modulating the flexibility of the switch I and switch II regions, thereby enhancing RAF1 binding affinity. The G12V mutation rigidifies both switch I and switch II, locking KRAS in a stable, active state. In contrast, the G13D mutation moderately reduces switch I flexibility while increasing switch II dynamics, restoring a balance between stability and flexibility. The Q61R mutation induces a more complex conformational landscape, characterized by the increased switch II flexibility and expansion of functional macrostates, which promotes prolonged RAF1 binding and signaling. Mutational scanning of KRAS-RAF1 complexes identified key binding affinity hotspots, including Y40, E37, D38, and D33, and together with the MM-GBSA analysis revealed the hotspots leverage synergistic electrostatic and hydrophobic binding interactions in stabilizing the KRAS-RAF1 complexes. Network-based analysis of allosteric communication identifies critical KRAS residues (e.g., L6, E37, D57, R97) that mediate long-range interactions between the KRAS core and the RAF1 binding interface. The central β-sheet of KRAS emerges as a hub for transmitting conformational changes, linking distant functional sites and facilitating allosteric regulation. Strikingly, the predicted allosteric hotspots align with experimentally identified allosteric binding hotspots that define the energy landscape of KRAS allostery. This study highlights the power of integrating computational modeling with experimental data to unravel the complex dynamics of KRAS and its mutants. The identification of binding hotspots and allosteric communication routes offers new opportunities for developing targeted therapies to disrupt KRAS-RAF1 interactions and inhibit oncogenic signaling. Our results underscore the potential of computational approaches to guide the design of allosteric inhibitors and mutant-specific therapies for KRAS-driven cancers.
Collapse
|
16
|
Liu Y, Zhang W, Jang H, Nussinov R. mTOR Variants Activation Discovers PI3K-like Cryptic Pocket, Expanding Allosteric, Mutant-Selective Inhibitor Designs. J Chem Inf Model 2025; 65:966-980. [PMID: 39792006 PMCID: PMC12091942 DOI: 10.1021/acs.jcim.4c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
mTOR plays a crucial role in PI3K/AKT/mTOR signaling. We hypothesized that mTOR activation mechanisms driving oncogenesis can advise effective therapeutic designs. To test this, we combined cancer genomic analysis with extensive molecular dynamics simulations of mTOR oncogenic variants. We observed that conformational changes within mTOR kinase domain are associated with multiple mutational activation events. The mutations disturb the α-packing formed by the kαAL, kα3, kα9, kα9b, and kα10 helices in the kinase domain, creating cryptic pocket. Its opening correlates with opening of the catalytic cleft, including active site residues realignment, favoring catalysis. The cryptic pocket created by disrupted α-packing coincides with the allosteric pocket in PI3Kα can be harmoniously fitted by the PI3Kα allosteric inhibitor RLY-2608, suggesting that analogous drugs designed based on RLY-2608 can restore the packed α-structure, resulting in mTOR inactive conformation. Our results exemplify that knowledge of detailed kinase activation mechanisms can inform innovative allosteric inhibitor development.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wengang Zhang
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Claringbold B, Vance S, Paul AR, Williamson J, Garrett MD, Serpell CJ. Sequence-defined phosphoestamers for selective inhibition of the KRAS G12D/RAF1 interaction. Chem Sci 2024; 16:113-123. [PMID: 39600501 PMCID: PMC11588021 DOI: 10.1039/d4sc07218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
RAS proteins are the most frequently mutated in cancer, yet they have proved extremely difficult to target in drug discovery, largely because interfering with the interaction of RAS with its downstream effectors comes up against the challenge of protein-protein interactions (PPIs). Sequence-defined synthetic oligomers could combine the precision and customisability of synthetic molecules with the size required to address entire PPI surfaces. We have adapted the phosphoramidite chemistry of oligonucleotide synthesis to produce a library of nearly one million non-nucleosidic oligophosphoester sequences (phosphoestamers) composed of units taken from synthetic supramolecular chemistry, and used a fluorescent-activated bead sorting (FABS) process to select those that inhibit the interaction between KRASG12D (the most prevalent, and undrugged, RAS mutant) and RAF, a downstream effector of RAS that drives cell proliferation. Hits were identified using tandem mass spectrometry, and orthogonal validation showed effective inhibition of KRASG12D with IC50 values as low as 25 nM, and excellent selectivity over the wild type form. These findings have the potential to lead to new drugs that target mutant RAS-driven cancers, and provide proof-of-principle for the phosphoestamer chemical platform against PPIs in general - opening up new possibilities in neurodegenerative disease, viral infection, and many more conditions.
Collapse
Affiliation(s)
- Bini Claringbold
- School of Chemistry and Forensic Science, University of Kent Canterbury Kent CT2 7NH UK
| | - Steven Vance
- Cancer Research UK Scotland Institute Glasgow G61 1BD UK
| | - Alexandra R Paul
- School of Chemistry and Forensic Science, University of Kent Canterbury Kent CT2 7NH UK
| | - James Williamson
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | | | - Christopher J Serpell
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| |
Collapse
|
18
|
Chao T, Wang ZX, Bowne WB, Yudkoff CJ, Torjani A, Swaminathan V, Kavanagh TR, Roadarmel A, Sholevar CJ, Cannaday S, Krampitz G, Zhan T, Gorgov E, Nevler A, Lavu H, Yeo CJ, Peiper SC, Jiang W. Association of Mutant KRAS Alleles With Morphology and Clinical Outcomes in Pancreatic Ductal Adenocarcinoma. Arch Pathol Lab Med 2024; 148:1299-1309. [PMID: 38452805 DOI: 10.5858/arpa.2023-0005-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 03/09/2024]
Abstract
CONTEXT.— Mutant KRAS is the main oncogenic driver in pancreatic ductal adenocarcinomas (PDACs). However, the clinical and phenotypic implications of harboring different mutant KRAS alleles remain poorly understood. OBJECTIVE.— To characterize the potential morphologic and clinical outcome differences in PDACs harboring distinct mutant KRAS alleles. DESIGN.— Cohort 1 consisted of 127 primary conventional PDACs with no neoadjuvant therapy, excluding colloid/mucinous, adenosquamous, undifferentiated, and intraductal papillary mucinous neoplasm-associated carcinomas, for which an in-house 42-gene mutational panel had been performed. A morphologic classification system was devised wherein each tumor was assigned as conventional, papillary/large duct (P+LD, defined as neoplastic glands with papillary structure and/or with length ≥0.5 mm), or poorly differentiated (when the aforementioned component was 60% or more of the tumor). Cohort 2 was a cohort of 88 PDACs in The Cancer Genome Atlas, which were similarly analyzed. RESULTS.— In both cohorts, there was significant enrichment of P+LD morphology in PDACs with KRAS G12V and G12R compared with G12D. In the entire combined cohort, Kaplan-Meier analyses showed longer overall survival (OS) with KRAS G12R as compared with G12D (median OS of 1255 versus 682 days, P = .03) and in patients whose PDACs displayed P+LD morphology as compared with conventional morphology (median OS of 1175 versus 684 days, P = .04). In the adjuvant-only subset, KRAS G12R had the longest OS compared with G12D, G12V, and other alleles (median OS unreached/undefined versus 1009, 1129, and 1222 days, respectively). CONCLUSIONS.— PDACs with different mutant KRAS alleles are associated with distinct morphologies and clinical outcomes, with KRAS G12R allele associated with P+LD morphology and longer OS when compared with G12D using Kaplan-Meier studies.
Collapse
Affiliation(s)
- Timothy Chao
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Zi-Xuan Wang
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Wilbur B Bowne
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Clifford J Yudkoff
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Ava Torjani
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Vishal Swaminathan
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Taylor R Kavanagh
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Austin Roadarmel
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Cyrus J Sholevar
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Shawnna Cannaday
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Geoffrey Krampitz
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Tingting Zhan
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Eliyahu Gorgov
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Avinoam Nevler
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Harish Lavu
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Charles J Yeo
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| | - Stephen C Peiper
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Wei Jiang
- From the Department of Pathology and Genomic Medicine (Chao, Wang, Peiper, Jiang), the Department of Surgery (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo), Sidney Kimmel Medical College (Yudkoff, Torjani, Swaminathan, Kavanagh, Roadarmel, Sholevar), and the Division of Biostatistics in the Department of Pharmacology & Experimental Therapeutics (Zhan), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
- the Pancreatic, Biliary and Related Cancer Center, Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, Pennsylvania (Bowne, Cannaday, Krampitz, Gorgov, Nevler, Lavu, Yeo, Jiang)
| |
Collapse
|
19
|
Ancy I, Penislusshiyan S, Ameen F, Chitra L. Microsecond Molecular Dynamics Simulation to Gain Insight Into the Binding of MRTX1133 and Trametinib With KRAS G12D Mutant Protein for Drug Repurposing. J Mol Recognit 2024; 37:e3103. [PMID: 39318275 DOI: 10.1002/jmr.3103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
The Kirsten Rat Sarcoma (KRAS) G12D mutant protein is a primary driver of pancreatic ductal adenocarcinoma, necessitating the identification of targeted drug molecules. Repurposing of drugs quickly finds new uses, speeding treatment development. This study employs microsecond molecular dynamics simulations to unveil the binding mechanisms of the FDA-approved MEK inhibitor trametinib with KRASG12D, providing insights for potential drug repurposing. The binding of trametinib was compared with clinical trial drug MRTX1133, which demonstrates exceptional activity against KRASG12D, for better understanding of interaction mechanism of trametinib with KRASG12D. The resulting stable MRTX1133-KRASG12D complex reduces root mean square deviation (RMSD) values, in Switch I and II domains, highlighting its potential for inhibiting KRASG12D. MRTX1133's robust interaction with Tyr64 and disruption of Tyr96-Tyr71-Arg68 network showcase its ability to mitigate the effects of the G12D mutation. In contrast, trametinib employs a distinctive binding mechanism involving P-loop, Switch I and II residues. Extended simulations to 1 μs reveal sustained network interactions with Tyr32, Thr58, and GDP, suggesting a role of trametinib in maintaining KRASG12D in an inactive state and impede the further cell signaling. The decomposition binding free energy values illustrate amino acids' contributions to binding energy, elucidating ligand-protein interactions and molecular stability. The machine learning approach reveals that van der Waals interactions among the residues play vital role in complex stability and the potential amino acids involved in drug-receptor interactions of each complex. These details provide a molecular-level understanding of drug binding mechanisms, offering essential knowledge for further drug repurposing and potential drug discovery.
Collapse
Affiliation(s)
- Iruthayaraj Ancy
- Research and Development Center, Bioinnov Solutions LLP, Salem, Tamil Nadu, India
| | | | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Loganathan Chitra
- Research and Development Center, Bioinnov Solutions LLP, Salem, Tamil Nadu, India
- Department of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
20
|
Mahran R, Kapp JN, Valtonen S, Champagne A, Ning J, Gillette W, Stephen AG, Hao F, Plückthun A, Härmä H, Pantsar T, Kopra K. Beyond KRAS(G12C): Biochemical and Computational Characterization of Sotorasib and Adagrasib Binding Specificity and the Critical Role of H95 and Y96. ACS Chem Biol 2024; 19:2152-2164. [PMID: 39283696 DOI: 10.1021/acschembio.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mutated KRAS proteins are frequently expressed in some of the most lethal human cancers and thus have been a target of intensive drug discovery efforts for decades. Lately, KRAS(G12C) switch-II pocket (SII-P)-targeting covalent small molecule inhibitors have finally reached clinical practice. Sotorasib (AMG-510) was the first FDA-approved covalent inhibitor to treat KRAS(G12C)-positive nonsmall cell lung cancer (NSCLC), followed soon by adagrasib (MRTX849). Both drugs target the GDP-bound state of KRAS(G12C), exploiting the strong nucleophilicity of acquired cysteine. Here, we evaluate the similarities and differences between sotorasib and adagrasib in their RAS SII-P binding by applying biochemical, cellular, and computational methods. Exact knowledge of SII-P engagement can enable targeting this site by reversible inhibitors for KRAS mutants beyond G12C. We show that adagrasib is strictly KRAS- but not KRAS(G12C)-specific due to its strong and unreplaceable interaction with H95. Unlike adagrasib, sotorasib is less dependent on H95 for its binding, making it a RAS isoform-agnostic compound, having a similar functionality also with NRAS and HRAS G12C mutants. Our results emphasize the accessibility of SII-P beyond oncogenic G12C and aid in understanding the molecular mechanism behind the clinically observed drug resistance, associated especially with secondary mutations on KRAS H95 and Y96.
Collapse
Affiliation(s)
- Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Jonas N Kapp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Salla Valtonen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Allison Champagne
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Jinying Ning
- KYinno Biotechnology Co., Ltd., Yizhuang Biomedical Park, No. 88 Kechuang Six Street, BDA, Beijing 101111, China
| | - William Gillette
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Feng Hao
- KYinno Biotechnology Co., Ltd., Yizhuang Biomedical Park, No. 88 Kechuang Six Street, BDA, Beijing 101111, China
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonrinne 3, 70210 Kuopio, Finland
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
21
|
Parise A, Cresca S, Magistrato A. Molecular dynamics simulations for the structure-based drug design: targeting small-GTPases proteins. Expert Opin Drug Discov 2024; 19:1259-1279. [PMID: 39105536 DOI: 10.1080/17460441.2024.2387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sofia Cresca
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
22
|
Than MT, O'Hara M, Stanger BZ, Reiss KA. KRAS-Driven Tumorigenesis and KRAS-Driven Therapy in Pancreatic Adenocarcinoma. Mol Cancer Ther 2024; 23:1378-1388. [PMID: 39118358 PMCID: PMC11444872 DOI: 10.1158/1535-7163.mct-23-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with significant morbidity and mortality and is projected to be the second leading cause of cancer-related deaths by 2030. Mutations in KRAS are found in the vast majority of PDAC cases and plays an important role in the development of the disease. KRAS drives tumor cell proliferation and survival through activating the MAPK pathway to drive cell cycle progression and to lead to MYC-driven cellular programs. Moreover, activated KRAS promotes a protumorigenic microenvironment through forming a desmoplastic stroma and by impairing antitumor immunity. Secretion of granulocyte-macrophage colony-stimulating factor and recruitment of myeloid-derived suppressor cells and protumorigenic macrophages results in an immunosuppressive environment while secretion of secrete sonic hedgehog and TGFβ drive fibroblastic features characteristic of PDAC. Recent development of several small molecules to directly target KRAS marks an important milestone in precision medicine. Many molecules show promise in preclinical models of PDAC and in early phase clinical trials. In this review, we discuss the underlying cell intrinsic and extrinsic roles of KRAS in PDAC tumorigenesis, the pharmacologic development of KRAS inhibition, and therapeutic strategies to target KRAS in PDAC.
Collapse
Affiliation(s)
- Minh T Than
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark O'Hara
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kim A Reiss
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Chen J, Wang J, Yang W, Zhao L, Hu G. Conformations of KRAS4B Affected by Its Partner Binding and G12C Mutation: Insights from GaMD Trajectory-Image Transformation-Based Deep Learning. J Chem Inf Model 2024; 64:6880-6898. [PMID: 39197061 DOI: 10.1021/acs.jcim.4c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Binding of partners and mutations highly affects the conformational dynamics of KRAS4B, which is of significance for deeply understanding its function. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) and principal component analysis (PCA) were carried out to probe the effect of G12C and binding of three partners NF1, RAF1, and SOS1 on the conformation alterations of KRAS4B. DL reveals that G12C and binding of partners result in alterations in the contacts of key structure domains, such as the switch domains SW1 and SW2 together with the loops L4, L5, and P-loop. Binding of NF1, RAF1, and SOS1 constrains the structural fluctuation of SW1, SW2, L4, and L5; on the contrary, G12C leads to the instability of these four structure domains. The analyses of free energy landscapes (FELs) and PCA also show that binding of partners maintains the stability of the conformational states of KRAS4B while G12C induces greater mobility of the switch domains SW1 and SW2, which produces significant impacts on the interactions of GTP with SW1, L4, and L5. Our findings suggest that partner binding and G12C play important roles in the activity and allosteric regulation of KRAS4B, which may theoretically aid in further understanding the function of KRAS4B.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
24
|
Shakeel I, Haider S, Khan S, Ahmed S, Hussain A, Alajmi MF, Chakrabarty A, Afzal M, Imtaiyaz Hassan M. Thymoquinone, artemisinin, and thymol attenuate proliferation of lung cancer cells as Sphingosine kinase 1 inhibitors. Biomed Pharmacother 2024; 177:117123. [PMID: 39004062 DOI: 10.1016/j.biopha.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shahbaz Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
25
|
Lokhandwala J, Smalley TB, Tran TH. Structural perspectives on recent breakthrough efforts toward direct drugging of RAS and acquired resistance. Front Oncol 2024; 14:1394702. [PMID: 38841166 PMCID: PMC11150659 DOI: 10.3389/fonc.2024.1394702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
The Kirsten rat sarcoma viral oncoprotein homolog (KRAS) is currently a primary focus of oncologists and translational scientists, driven by exciting results with KRAS-targeted therapies for non-small cell lung cancer (NSCLC) patients. While KRAS mutations continue to drive high cancer diagnosis and death, researchers have developed unique strategies to target KRAS variations. Having been investigated over the past 40 years and considered "undruggable" due to the lack of pharmacological binding pockets, recent breakthroughs and accelerated FDA approval of the first covalent inhibitors targeting KRASG12C, have largely sparked further drug development. Small molecule development has targeted the previously identified primary location alterations such as G12, G13, Q61, and expanded to address the emerging secondary mutations and acquired resistance. Of interest, the non-covalent KRASG12D targeting inhibitor MRTX-1133 has shown promising results in humanized pancreatic cancer mouse models and is seemingly making its way from bench to bedside. While this manuscript was under review a novel class of first covalent inhibitors specific for G12D was published, These so-called malolactones can crosslink both GDP and GTP bound forms of G12D. Inhibition of the latter state suppressed downstream signaling and cancer cell proliferation in vitro and in mouse xenografts. Moreover, a non-covalent pan-KRAS inhibitor, BI-2865, reduced tumor proliferation in cell lines and mouse models. Finally, the next generation of KRAS mutant-specific and pan-RAS tri-complex inhibitors have revolutionized RAS drug discovery. This review will give a structural biology perspective on the current generation of KRAS inhibitors through the lens of emerging secondary mutations and acquired resistance.
Collapse
Affiliation(s)
- Jameela Lokhandwala
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tracess B. Smalley
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Timothy H. Tran
- Chemical Biology Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
26
|
Liu S, Liu F, Hou X, Zhang Q, Ren Y, Zhu H, Yang Z, Xu X. KRAS Mutation Detection with (2 S,4 R)-4-[ 18F]FGln for Noninvasive PDAC Diagnosis. Mol Pharm 2024; 21:2034-2042. [PMID: 38456403 PMCID: PMC10989612 DOI: 10.1021/acs.molpharmaceut.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which has a poor prognosis and nonspecific symptoms and progresses rapidly, is the most common pancreatic cancer type. Inhibitors targeting KRAS G12D and G12C mutations have been pivotal in PDAC treatment. Cancer cells with different KRAS mutations exhibit various degrees of glutamine dependency; in particular, cells with KRAS G12D mutations exhibit increased glutamine uptake. (2S,4R)-4-[18F]FGln has recently been developed for clinical cancer diagnosis and tumor cell metabolism analysis. Thus, we verified the heterogeneity of glutamine dependency in PDAC models with different KRAS mutations by a visual and noninvasive method with (2S,4R)-4-[18F]FGln. Two tumor-bearing mouse models (bearing the KRAS G12D or G12C mutation) were injected with (2S,4R)-4-[18F]FGln, and positron emission tomography (PET) imaging features and biodistribution were observed and analyzed. The SUVmax in the regions of interest (ROI) was significantly higher in PANC-1 (G12D) tumors than in MIA PaCa-2 (G12C) tumors. Biodistribution analysis revealed higher tumor accumulation of (2S,4R)-4-[18F]FGln and other metrics, such as T/M and T/B, in the PANC-1 mouse models compared to those in the MIAPaCa-2 mouse models. In conclusion, PDAC cells with the KRAS G12D and G12C mutations exhibit various degrees of (2S,4R)-4-[18F]FGln uptake, indicating that (2S,4R)-4-[18F]FGln might be applied to detect KRAS G12C and G12D mutations and provide treatment guidance.
Collapse
Affiliation(s)
| | | | - Xingguo Hou
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Zhang
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ya’nan Ren
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoxia Xu
- State Key Laboratory
of Holistic
Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory
of Carcinogenesis and Translational Research, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals (National Medical
Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
27
|
Lee SY, Lee KY. Conditional Cooperativity in RAS Assembly Pathways on Nanodiscs and Altered GTPase Cycling. Angew Chem Int Ed Engl 2024; 63:e202316942. [PMID: 38305637 DOI: 10.1002/anie.202316942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Self-assemblies (i.e., nanoclusters) of the RAS GTPase on the membrane act as scaffolds that activate downstream RAF kinases and drive MAPK signaling for cell proliferation and tumorigenesis. However, the mechanistic details of nanoclustering remain largely unknown. Here, size-tunable nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses revealed the structural basis of the cooperative assembly processes of fully processed KRAS, mutated in a quarter of human cancers. The cooperativity is modulated by the mutation and nucleotide states of KRAS and the lipid composition of the membrane. Notably, the oncogenic mutants assemble in nonsequential pathways with two mutually cooperative 'α/α' and 'α/β' interfaces, while α/α dimerization of wild-type KRAS promotes the secondary α/β interaction sequentially. Mutation-based interface engineering was used to selectively trap the oligomeric intermediates of KRAS and probe their favorable interface interactions. Transiently exposed interfaces were available for the assembly. Real-time NMR demonstrated that higher-order oligomers retain higher numbers of active GTP-bound protomers in KRAS GTPase cycling. These data provide a deeper understanding of the nanocluster-enhanced signaling in response to the environment. Furthermore, our methodology is applicable to assemblies of many other membrane GTPases and lipid nanoparticle-based formulations of stable protein oligomers with enhanced cooperativity.
Collapse
Affiliation(s)
- Soo-Yeon Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-Do, South Korea
| | - Ki-Young Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-Do, South Korea
| |
Collapse
|
28
|
Hu F, Wang Y, Zeng J, Deng X, Xia F, Xu X. Unveiling the State Transition Mechanisms of Ras Proteins through Enhanced Sampling and QM/MM Simulations. J Phys Chem B 2024; 128:1418-1427. [PMID: 38323538 DOI: 10.1021/acs.jpcb.3c07666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In cells, wild-type RasGTP complexes exist in two distinct states: active State 2 and inactive State 1. These complexes regulate their functions by transitioning between the two states. However, the mechanisms underlying this state transition have not been clearly elucidated. To address this, we conducted a detailed simulation study to characterize the energetics of the stable states involved in the state transitions of the HRasGTP complex, specifically from State 2 to State 1. This was achieved by employing multiscale quantum mechanics/molecular mechanics and enhanced sampling molecular dynamics methods. Based on the simulation results, we constructed the two-dimensional free energy landscapes that provide crucial information about the conformational changes of the HRasGTP complex from State 2 to State 1. Furthermore, we also explored the conformational changes from the intermediate state to the product state during guanosine triphosphate hydrolysis. This study on the conformational changes involved in the HRas state transitions serves as a valuable reference for understanding the corresponding events of both KRas and NRas as well.
Collapse
Affiliation(s)
- Fangchen Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yiqiu Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
29
|
Haspel N, Jang H, Nussinov R. Allosteric Activation of RhoA Complexed with p115-RhoGEF Deciphered by Conformational Dynamics. J Chem Inf Model 2024; 64:862-873. [PMID: 38215280 DOI: 10.1021/acs.jcim.3c01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The Ras homologue family member A (RhoA) is a member of the Rho family, a subgroup of the Ras superfamily. RhoA interacts with the 115 kDa guanine nucleotide exchange factor (p115-RhoGEF), which assists in activation and binding with downstream effectors. Here, we use molecular dynamics (MD) simulations and essential dynamics analysis of the inactive RhoA-GDP and active RhoA-GTP, when bound to p115-RhoGEF to decipher the mechanism of RhoA activation at the structural level. We observe that inactive RhoA-GDP maintains its position near the catalytic site on the Dbl homology (DH) domain of p115-RhoGEF through the interaction of its Switch I region with the DH domain. We further show that the active RhoA-GTP is engaged in more interactions with the p115-RhoGEF membrane-bound Pleckstrin homology (PH) domain as compared to RhoA-GDP. We hypothesize that the role of the interactions between the active RhoA-GTP and the PH domain is to help release it from the DH domain upon activation. Our results support this premise, and our simulations uncover the beginning of this process and provide structural details. They also point to allosteric communication pathways that take part in RhoA activation to promote and strengthen the interaction between the active RhoA-GTP and the PH domain. Allosteric regulation also occurs among other members of the Rho superfamily. Collectively, we suggest that in the activation process, the role of the RhoA-GTP interaction with the PH domain is to release RhoA-GTP from the DH domain after activation, making it available to downstream effectors.
Collapse
Affiliation(s)
- Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
30
|
Caughey BA, Strickler JH. Targeting KRAS-Mutated Gastrointestinal Malignancies with Small-Molecule Inhibitors: A New Generation of Breakthrough Therapies. Drugs 2024; 84:27-44. [PMID: 38109010 DOI: 10.1007/s40265-023-01980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Kirsten rat sarcoma virus (KRAS) is one of the most important and frequently mutated oncogenes in cancer and the mutational prevalence is especially high in many gastrointestinal malignancies, including colorectal cancer and pancreatic ductal adenocarcinoma. The KRAS protein is a small GTPase that functions as an "on/off" switch to activate downstream signaling, mainly through the mitogen-activated protein kinase pathway. KRAS was previously considered undruggable because of biochemical constraints; however, recent breakthroughs have enabled the development of small-molecule inhibitors of KRAS G12C. These drugs were initially approved in lung cancer and have now shown substantial clinical activity in KRAS G12C-mutated pancreatic ductal adenocarcinoma as well as colorectal cancer when combined with anti-EGFR monoclonal antibodies. Early data are encouraging for other gastrointestinal cancers as well and many other combination strategies are being investigated. Several new KRAS G12C inhibitors and novel inhibitors of other KRAS alterations have recently entered the clinic. These molecules employ a variety of innovative mechanisms and have generated intense interest. These novel drugs are especially important as KRAS G12C is rare in gastrointestinal malignancies compared with other KRAS alterations, representing potentially groundbreaking advances. Soon, the rapidly evolving landscape of novel KRAS inhibitors may substantially shift the therapeutic landscape for gastrointestinal cancers and offer meaningful survival improvements.
Collapse
Affiliation(s)
- Bennett A Caughey
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA.
| | - John H Strickler
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
31
|
Moghaddam PA, Young RH, Ismiil ND, Bennett JA, Oliva E. An Unusual Endometrial Stromal Neoplasm With JAZF1-BCORL1 Rearrangement. Int J Gynecol Pathol 2024; 43:33-40. [PMID: 36811828 DOI: 10.1097/pgp.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Endometrial stromal tumors represent the second most common category of uterine mesenchymal tumors. Several different histologic variants and underlying genetic alterations have been recognized, one such being a group associated with BCORL1 rearrangements. They are usually high-grade endometrial stromal sarcomas, often associated with prominent myxoid background and aggressive behavior. Here, we report an unusual endometrial stromal neoplasm with JAZF1-BCORL1 rearrangement and briefly review the literature. The neoplasm formed a well-circumscribed uterine mass in a 50-yr-old woman and had an unusual morphologic appearance that did not warrant a high-grade categorization. It was characterized by a predominant population of epithelioid cells with clear to focally eosinophilic cytoplasm growing in interanastomosing cords and trabeculae set in a hyalinized stroma as well as nested and fascicular growths imparting focal resemblance to a uterine tumor resembling ovarian sex-cord tumor, PEComa, and a smooth muscle neoplasm. A minor storiform growth of spindle cells reminiscent of the fibroblastic variant of low-grade endometrial stromal sarcoma was also noted but conventional areas of low-grade endometrial stromal neoplasm were not identified. This case expands the spectrum of morphologic features seen in endometrial stromal tumors, especially when associated with a BCORL1 fusion and highlights the utility of immunohistochemical and molecular techniques in the diagnosis of these tumors, not all of which are high grade.
Collapse
|
32
|
Shakeel I, Khan S, Roy S, Sherwani F, Ahmad SF, Sohal SS, Afzal M, Hassan MI. Investigating potential of cholic acid, syringic acid, and mangiferin as cancer therapeutics through sphingosine kinase 1 inhibition. Int J Biol Macromol 2023; 253:127036. [PMID: 37788733 DOI: 10.1016/j.ijbiomac.2023.127036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The signaling of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) regulates various diseases, including multiple sclerosis, atherosclerosis, rheumatoid arthritis, inflammation-related ailments, diabetes, and cancer. SphK1 is considered an attractive potential drug target and is extensively explored in cancer and other inflammatory diseases. In this study, we have investigated the inhibitory potential and binding affinity of SphK1 with cholic acid (CA), syringic acid (SA), and mangiferin (MF) using a combination of docking and molecular dynamics (MD) simulation studies followed by experimental measurements of binding affinity and enzyme inhibition assays. We observed these compounds bind to SphK1 with a significantly high affinity and eventually inhibit its kinase activity with IC50 values of 28.23 μM, 33.35 μM, and 57.2 μM for CA, SA, and MF, respectively. Further, the docking and 100 ns MD simulation studies showed that CA, SA, and MF bind with the active site residues of SphK1 with favorable energy and strong non-covalent interactions that might be accountable for inhibiting its kinase activity. Our finding indicates that CA, SA, and MF may be implicated in designing novel anti-cancer therapeutics with an improved affinity and lesser side effects by targeting SphK1.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fakhir Sherwani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7001, Tasmania, Australia
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
33
|
Kazi A, Ranjan A, Kumar M.V. V, Agianian B, Garcia Chavez M, Vudatha V, Wang R, Vangipurapu R, Chen L, Kennedy P, Subramanian K, Quirke JC, Beato F, Underwood PW, Fleming JB, Trevino J, Hergenrother PJ, Gavathiotis E, Sebti SM. Discovery of KRB-456, a KRAS G12D Switch-I/II Allosteric Pocket Binder That Inhibits the Growth of Pancreatic Cancer Patient-derived Tumors. CANCER RESEARCH COMMUNICATIONS 2023; 3:2623-2639. [PMID: 38051103 PMCID: PMC10754035 DOI: 10.1158/2767-9764.crc-23-0222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/26/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Currently, there are no clinically approved drugs that directly thwart mutant KRAS G12D, a major driver of human cancer. Here, we report on the discovery of a small molecule, KRB-456, that binds KRAS G12D and inhibits the growth of pancreatic cancer patient-derived tumors. Protein nuclear magnetic resonance studies revealed that KRB-456 binds the GDP-bound and GCP-bound conformation of KRAS G12D by forming interactions with a dynamic allosteric binding pocket within the switch-I/II region. Isothermal titration calorimetry demonstrated that KRB-456 binds potently to KRAS G12D with 1.5-, 2-, and 6-fold higher affinity than to KRAS G12V, KRAS wild-type, and KRAS G12C, respectively. KRB-456 potently inhibits the binding of KRAS G12D to the RAS-binding domain (RBD) of RAF1 as demonstrated by GST-RBD pulldown and AlphaScreen assays. Treatment of KRAS G12D-harboring human pancreatic cancer cells with KRB-456 suppresses the cellular levels of KRAS bound to GTP and inhibits the binding of KRAS to RAF1. Importantly, KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer whose tumors harbor KRAS G12D and KRAS G12V and who relapsed after chemotherapy and radiotherapy. These results warrant further development of KRB-456 for pancreatic cancer. SIGNIFICANCE There are no clinically approved drugs directly abrogating mutant KRAS G12D. Here, we discovered a small molecule, KRB-456, that binds a dynamic allosteric binding pocket within the switch-I/II region of KRAS G12D. KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer. This discovery warrants further advanced preclinical and clinical studies in pancreatic cancer.
Collapse
Affiliation(s)
- Aslamuzzaman Kazi
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Alok Ranjan
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Vasantha Kumar M.V.
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Bogos Agianian
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Martin Garcia Chavez
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Rui Wang
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | | | - Liwei Chen
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Perry Kennedy
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Karthikeyan Subramanian
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan C.K. Quirke
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Francisca Beato
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | - Jason B. Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Jose Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Paul J. Hergenrother
- Department of Chemistry, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Said M. Sebti
- Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
34
|
Lin X, Ma Q, Chen L, Guo W, Huang Z, Huang T, Cai YD. Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods. Biochim Biophys Acta Gen Subj 2023; 1867:130484. [PMID: 37805078 DOI: 10.1016/j.bbagen.2023.130484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Targeted therapy has revolutionized cancer treatment, greatly improving patient outcomes and quality of life. Lung cancer, specifically non-small cell lung cancer, is frequently driven by the G12C mutation at the KRAS locus. The development of KRAS inhibitors has been a breakthrough in the field of cancer research, given the crucial role of KRAS mutations in driving tumor growth and progression. However, over half of patients with cancer bypass inhibition show limited response to treatment. The mechanisms underlying tumor cell resistance to this treatment remain poorly understood. METHODS To address above gap in knowledge, we conducted a study aimed to elucidate the differences between tumor cells that respond positively to KRAS (G12C) inhibitor therapy and those that do not. Specifically, we analyzed single-cell gene expression profiles from KRAS G12C-mutant tumor cell models (H358, H2122, and SW1573) treated with KRAS G12C (ARS-1620) inhibitor, which contained 4297 cells that continued to proliferate under treatment and 3315 cells that became quiescent. Each cell was represented by the expression levels on 8687 genes. We then designed an innovative machine learning based framework, incorporating seven feature ranking algorithms and four classification algorithms to identify essential genes and establish quantitative rules. RESULTS Our analysis identified some top-ranked genes, including H2AFZ, CKS1B, TUBA1B, RRM2, and BIRC5, that are known to be associated with the progression of multiple cancers. CONCLUSION Above genes were relevant to tumor cell resistance to targeted therapy. This study provides important insights into the molecular mechanisms underlying tumor cell resistance to KRAS inhibitor treatment.
Collapse
Affiliation(s)
- Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou 350014, China.
| | - QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Zhiyi Huang
- College of Chemistry, Fuzhou University, Fuzhou 350000, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
35
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
36
|
Nussinov R, Liu Y, Zhang W, Jang H. Protein conformational ensembles in function: roles and mechanisms. RSC Chem Biol 2023; 4:850-864. [PMID: 37920394 PMCID: PMC10619138 DOI: 10.1039/d3cb00114h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/02/2023] [Indexed: 11/04/2023] Open
Abstract
The sequence-structure-function paradigm has dominated twentieth century molecular biology. The paradigm tacitly stipulated that for each sequence there exists a single, well-organized protein structure. Yet, to sustain cell life, function requires (i) that there be more than a single structure, (ii) that there be switching between the structures, and (iii) that the structures be incompletely organized. These fundamental tenets called for an updated sequence-conformational ensemble-function paradigm. The powerful energy landscape idea, which is the foundation of modernized molecular biology, imported the conformational ensemble framework from physics and chemistry. This framework embraces the recognition that proteins are dynamic and are always interconverting between conformational states with varying energies. The more stable the conformation the more populated it is. The changes in the populations of the states are required for cell life. As an example, in vivo, under physiological conditions, wild type kinases commonly populate their more stable "closed", inactive, conformations. However, there are minor populations of the "open", ligand-free states. Upon their stabilization, e.g., by high affinity interactions or mutations, their ensembles shift to occupy the active states. Here we discuss the role of conformational propensities in function. We provide multiple examples of diverse systems, including protein kinases, lipid kinases, and Ras GTPases, discuss diverse conformational mechanisms, and provide a broad outlook on protein ensembles in the cell. We propose that the number of molecules in the active state (inactive for repressors), determine protein function, and that the dynamic, relative conformational propensities, rather than the rigid structures, are the hallmark of cell life.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| |
Collapse
|
37
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
38
|
Gadanecz M, Fazekas Z, Pálfy G, Karancsiné Menyhárd D, Perczel A. NMR-Chemical-Shift-Driven Protocol Reveals the Cofactor-Bound, Complete Structure of Dynamic Intermediates of the Catalytic Cycle of Oncogenic KRAS G12C Protein and the Significance of the Mg 2+ Ion. Int J Mol Sci 2023; 24:12101. [PMID: 37569478 PMCID: PMC10418480 DOI: 10.3390/ijms241512101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, catalytically significant states of the oncogenic G12C variant of KRAS, those of Mg2+-free and Mg2+-bound GDP-loaded forms, have been determined using CS-Rosetta software and NMR-data-driven molecular dynamics simulations. There are several Mg2+-bound G12C KRAS/GDP structures deposited in the Protein Data Bank (PDB), so this system was used as a reference, while the structure of the Mg2+-free but GDP-bound state of the RAS cycle has not been determined previously. Due to the high flexibility of the Switch-I and Switch-II regions, which also happen to be the catalytically most significant segments, only chemical shift information could be collected for the most important regions of both systems. CS-Rosetta was used to derive an "NMR ensemble" based on the measured chemical shifts, which, however, did not contain the nonprotein components of the complex. We developed a torsional restraint set for backbone torsions based on the CS-Rosetta ensembles for MD simulations, overriding the force-field-based parametrization in the presence of the reinserted cofactors. This protocol (csdMD) resulted in complete models for both systems that also retained the structural features and heterogeneity defined by the measured chemical shifts and allowed a detailed comparison of the Mg2+-bound and Mg2+-free states of G12C KRAS/GDP.
Collapse
Affiliation(s)
- Márton Gadanecz
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Zsolt Fazekas
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
- Department of Biology, Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Dóra Karancsiné Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary; (M.G.); (D.K.M.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
39
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
40
|
Hsu AP. Not too little, not too much: the impact of mutation types in Wiskott-Aldrich syndrome and RAC2 patients. Clin Exp Immunol 2023; 212:137-146. [PMID: 36617178 PMCID: PMC10128166 DOI: 10.1093/cei/uxad001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Primary immune deficiencies (PIDs) are genetic disorders impacting the appropriate development or functioning of any portion of the immune system. The broad adoption of high-throughput sequencing has driven discovery of new genes as well as expanded phenotypes associated with known genes. Beginning with the identification of WAS mutations in patients with severe Wiskott-Aldrich Syndrome, recognition of WAS mutations in additional patients has revealed phenotypes including isolated thrombocytopenia and X-linked neutropenia. Likewise RAC2 patients present with vastly different phenotypes depending on the mutation-ranging from reticular dysgenesis or severe neutrophil dysfunction with neonatal presentation to later onset common variable immune deficiency. This review examines genotype-phenotype correlations in patients with WAS (Wiskott-Aldrich Syndrome) and RAC2 mutations, highlighting functional protein domains, how mutations alter protein interactions, and how specific mutations can affect isolated functions of the protein leading to disparate phenotypes.
Collapse
Affiliation(s)
- Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Shi S, Zheng L, Ren Y, Wang Z. Impacts of Mutations in the P-Loop on Conformational Alterations of KRAS Investigated with Gaussian Accelerated Molecular Dynamics Simulations. Molecules 2023; 28:molecules28072886. [PMID: 37049650 PMCID: PMC10095679 DOI: 10.3390/molecules28072886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
G12 mutations heavily affect conformational transformation and activity of KRAS. In this study, Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the GDP-bound wild-type (WT), G12A, G12D, and G12R KRAS to probe mutation-mediated impacts on conformational alterations of KRAS. The results indicate that three G12 mutations obviously affect the structural flexibility and internal dynamics of the switch domains. The analyses of the free energy landscapes (FELs) suggest that three G12 mutations induce more conformational states of KRAS and lead to more disordered switch domains. The principal component analysis shows that three G12 mutations change concerted motions and dynamics behavior of the switch domains. The switch domains mostly overlap with the binding region of KRAS to its effectors. Thus, the high disorder states and concerted motion changes of the switch domains induced by G12 mutations affect the activity of KRAS. The analysis of interaction network of GDP with KRAS signifies that the instability in the interactions of GDP and magnesium ion with the switch domain SW1 drives the high disordered state of the switch domains. This work is expected to provide theoretical aids for understanding the function of KRAS.
Collapse
Affiliation(s)
- Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Linqi Zheng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yonglian Ren
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Ziyu Wang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
42
|
Narayan B, Kiel C, Buchete NV. Classification of GTP-dependent K-Ras4B active and inactive conformational states. J Chem Phys 2023; 158:091104. [PMID: 36889947 DOI: 10.1063/5.0139181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Classifying reliably active and inactive molecular conformations of wildtype (WT) and mutated oncogenic proteins is a key, ongoing challenge in molecular cancer studies. Here, we probe the GTP-bound K-Ras4B conformational dynamics using long-time atomistic molecular dynamics (MD) simulations. We extract and analyze the detailed underlying free energy landscape of WT K-Ras4B. We use two key reaction coordinates, labeled d1 and d2 (i.e., distances coordinating the Pβ atom of the GTP ligand with two key residues, T35 and G60), shown to correlate closely with activities of WT and mutated K-Ras4B. However, our new K-Ras4B conformational kinetics study reveals a more complex network of equilibrium Markovian states. We show that a new reaction coordinate is required to account for the orientation of acidic K-Ras4B sidechains such as D38 with respect to the interface with binding effector RAF1 and rationalize the activation/inactivation propensities and the corresponding molecular binding mechanisms. We use this understanding to unveil how a relatively conservative mutation (i.e., D33E, in the switch I region) can lead to significantly different activation propensities compared with WT K-Ras4B. Our study sheds new light on the ability of residues near the K-Ras4B-RAF1 interface to modulate the network of salt bridges at the binding interface with the RAF1 downstream effector and, thus, to influence the underlying GTP-dependent activation/inactivation mechanism. Altogether, our hybrid MD-docking modeling approach enables the development of new in silico methods for quantitative assessment of activation propensity changes (e.g., due to mutations or local binding environment). It also unveils the underlying molecular mechanisms and facilitates the rational design of new cancer drugs.
Collapse
Affiliation(s)
- Brajesh Narayan
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | | |
Collapse
|
43
|
Inhibition mechanism of MRTX1133 on KRAS G12D: a molecular dynamics simulation and Markov state model study. J Comput Aided Mol Des 2023; 37:157-166. [PMID: 36849761 DOI: 10.1007/s10822-023-00498-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/11/2023] [Indexed: 03/01/2023]
Abstract
The mutant KRAS was considered as an "undruggable" target for decades, especially KRASG12D. It is a great challenge to develop the inhibitors for KRASG12D which lacks the thiol group for covalently binding ligands. The discovery of MRTX1133 solved the dilemma. Interestingly, MRTX1133 can bind to both the inactive and active states of KRASG12D. The binding mechanism of MRTX1133 with KRASG12D, especially how MRTX1133 could bind the active state KRASG12D without triggering the active function of KRASG12D, has not been fully understood. Here, we used a combination of all-atom molecular dynamics simulations and Markov state model (MSM) to understand the inhibition mechanism of MRTX1133 and its analogs. The stationary probabilities derived from MSM show that MRTX1133 and its analogs can stabilize the inactive or active states of KRASG12D into different conformations. More remarkably, by scrutinizing the conformational differences, MRTX1133 and its analogs were hydrogen bonded to Gly60 to stabilize the switch II region and left switch I region in a dynamically inactive conformation, thus achieving an inhibitory effect. Our simulation and analysis provide detailed inhibition mechanism of KRASG12D induced by MRTX1133 and its analogs. This study will provide guidance for future design of novel small molecule inhibitors of KRASG12D.
Collapse
|
44
|
Luchini C, Mattiolo P, Basturk O, Mafficini A, Ozcan K, Lawlor RT, Hong SM, Brosens LA, Marchegiani G, Pea A, Manfrin E, Sciacca G, Zampieri F, Polati R, De Robertis R, Milella M, D'Onofrio M, Malleo G, Salvia R, Adsay V, Scarpa A. Acinar Cystic Transformation of the Pancreas: Histomorphology and Molecular Analysis to Unravel its Heterogeneous Nature. Am J Surg Pathol 2023; 47:379-386. [PMID: 36649476 DOI: 10.1097/pas.0000000000002017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acinar cystic transformation (ACT) of the pancreas, previously called acinar cell cystadenoma, is a poorly understood and rare entity among pancreatic cystic lesions. This study aims to clarify its real nature. This research cohort included 25 patients with pancreatic ACT, representing the largest series in the literature. We describe their clinicopathological features and molecular profile using next-generation sequencing. ACT arose more often in women (F/M≃2:1), in the body-tail region, with a mean size of ~4 cm. At the latest follow-up, all patients were alive and disease free. Histologically, a typical acinar epithelium lined all cysts, intermingled with ductal-like epithelium in 11/25 (44%) cases. All the cases lacked any evidence of malignancy. Three ACT showed peculiar features: 1 showed an extensive and diffuse microcystic pattern, and the other 2 harbored foci of low-grade pancreatic intraepithelial neoplasia (PanIN) in the ductal-like epithelium. Next-generation sequencing revealed the presence of 2 pathogenic/likely pathogenic mutations in 2 different cases, 1 with ductal-like epithelium and 1 with PanIN, and affecting KRAS (c.34G>C, p.G12R) and SMO (c.1685G>A, p.R562Q) genes, respectively. The other case with PanIN was not available for sequencing. Overall, our findings support that ACT is a benign entity, potentially arising from heterogeneous conditions/background, including: (1) acinar microcysts, (2) malformations, (3) obstructive/inflammatory setting, (4) genetic predisposition, (5) possible neoplastic origin. Although all indications are that ACT is benign, the potential occurrence of driver mutations suggests discussing a potential role of long-term surveillance for these patients.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Kerem Ozcan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, NY
| | - Rita T Lawlor
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Lodewijk A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, and Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Antonio Pea
- Department of Surgery, The Pancreas Institute
| | - Erminia Manfrin
- Department of Diagnostics and Public Health, Section of Pathology
| | - Giuseppe Sciacca
- Department of Diagnostics and Public Health, Section of Pathology
| | | | - Rita Polati
- Department of Diagnostics and Public Health, Section of Pathology
| | | | - Michele Milella
- Department of Medicine, Section of Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Mirko D'Onofrio
- Department of Diagnostics and Public Health, Section of Radiology
| | | | | | - Volkan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology
- ARC-Net Research Center for Applied Research on Cancer, University of Verona, Verona, Italy
| |
Collapse
|
45
|
Kolch W, Berta D, Rosta E. Dynamic regulation of RAS and RAS signaling. Biochem J 2023; 480:1-23. [PMID: 36607281 PMCID: PMC9988006 DOI: 10.1042/bcj20220234] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dénes Berta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
46
|
Chen S, Zhang Z, Zhang Y, Choi T, Zhao Y. Activation Mechanism of RhoA Caused by Constitutively Activating Mutations G14V and Q63L. Int J Mol Sci 2022; 23:ijms232415458. [PMID: 36555100 PMCID: PMC9778661 DOI: 10.3390/ijms232415458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
RhoA, a member of Rho GTPases, regulates myriad cellular processes. Abnormal expression of RhoA has been implicated in various diseases, including cancers, developmental disorders and bacterial infections. RhoA mutations G14V and Q63L have been reported to constitutively activate RhoA. To figure out the mechanisms, in total, 1.8 μs molecular dynamics (MD) simulations were performed here on RhoAWT and mutants G14V and Q63L in GTP-bound forms, followed by dynamic analysis. Both mutations were found to affect the conformational dynamics of RhoA switch regions, especially switch I, shifting the whole ensemble from the wild type's open inactive state to different active-like states, where T37 and Mg2+ played important roles. In RhoAG14V, both switches underwent thorough state transition, whereas in RhoAQ63L, only switch I was sustained in a much more closed conformation with additional hydrophobic interactions introduced by L63. Moreover, significantly decreased solvent exposure of the GTP-binding site was observed in both mutants with the surrounding hydrophobic regions expanded, which furnished access to water molecules required for hydrolysis more difficult and thereby impaired GTP hydrolysis. These structural and dynamic differences first suggested the potential activation mechanism of RhoAG14V and RhoAQ63L. Together, our findings complemented the understanding of RhoA activation at the atomic level and can be utilized in the development of novel therapies for RhoA-related diseases.
Collapse
|
47
|
The dynamicity of mutant KRAS β2 strand modulates its downstream activation and predicts anticancer KRAS inhibition. Life Sci 2022; 310:121053. [DOI: 10.1016/j.lfs.2022.121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
48
|
Nussinov R, Tsai CJ, Jang H. A New View of Activating Mutations in Cancer. Cancer Res 2022; 82:4114-4123. [PMID: 36069825 PMCID: PMC9664134 DOI: 10.1158/0008-5472.can-22-2125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
A vast effort has been invested in the identification of driver mutations of cancer. However, recent studies and observations call into question whether the activating mutations or the signal strength are the major determinant of tumor development. The data argue that signal strength determines cell fate, not the mutation that initiated it. In addition to activating mutations, factors that can impact signaling strength include (i) homeostatic mechanisms that can block or enhance the signal, (ii) the types and locations of additional mutations, and (iii) the expression levels of specific isoforms of genes and regulators of proteins in the pathway. Because signal levels are largely decided by chromatin structure, they vary across cell types, states, and time windows. A strong activating mutation can be restricted by low expression, whereas a weaker mutation can be strengthened by high expression. Strong signals can be associated with cell proliferation, but too strong a signal may result in oncogene-induced senescence. Beyond cancer, moderate signal strength in embryonic neural cells may be associated with neurodevelopmental disorders, and moderate signals in aging may be associated with neurodegenerative diseases, like Alzheimer's disease. The challenge for improving patient outcomes therefore lies in determining signaling thresholds and predicting signal strength.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, NCI, Frederick, Maryland
| |
Collapse
|
49
|
Discovering and Targeting Dynamic Drugging Pockets of Oncogenic Proteins: The Role of Magnesium in Conformational Changes of the G12D Mutated Kirsten Rat Sarcoma-Guanosine Diphosphate Complex. Int J Mol Sci 2022; 23:ijms232213865. [PMID: 36430338 PMCID: PMC9692486 DOI: 10.3390/ijms232213865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
KRAS-G12D mutations are the one of most frequent oncogenic drivers in human cancers. Unfortunately, no therapeutic agent directly targeting KRAS-G12D has been clinically approved yet, with such mutated species remaining undrugged. Notably, cofactor Mg2+ is closely related to the function of small GTPases, but no investigation has been conducted yet on Mg2+ when associated with KRAS. Herein, through microsecond scale molecular dynamics simulations, we found that Mg2+ plays a crucial role in the conformational changes of the KRAS-GDP complex. We located two brand new druggable dynamic pockets exclusive to KRAS-G12D. Using the structural characteristics of these two dynamic pockets, we designed in silico the inhibitor DBD15-21-22, which can specifically and tightly target the KRAS-G12D-GDP-Mg2+ ternary complex. Overall, we provide two brand new druggable pockets located on KRAS-G12D and suitable strategies for its inhibition.
Collapse
|
50
|
Poole A, Karuppiah V, Hartt A, Haidar JN, Moureau S, Dobrzycki T, Hayes C, Rowley C, Dias J, Harper S, Barnbrook K, Hock M, Coles C, Yang W, Aleksic M, Lin AB, Robinson R, Dukes JD, Liddy N, Van der Kamp M, Plowman GD, Vuidepot A, Cole DK, Whale AD, Chillakuri C. Therapeutic high affinity T cell receptor targeting a KRAS G12D cancer neoantigen. Nat Commun 2022; 13:5333. [PMID: 36088370 PMCID: PMC9464187 DOI: 10.1038/s41467-022-32811-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Neoantigens derived from somatic mutations are specific to cancer cells and are ideal targets for cancer immunotherapy. KRAS is the most frequently mutated oncogene and drives the pathogenesis of several cancers. Here we show the identification and development of an affinity-enhanced T cell receptor (TCR) that recognizes a peptide derived from the most common KRAS mutant, KRASG12D, presented in the context of HLA-A*11:01. The affinity of the engineered TCR is increased by over one million-fold yet fully able to distinguish KRASG12D over KRASWT. While crystal structures reveal few discernible differences in TCR interactions with KRASWT versus KRASG12D, thermodynamic analysis and molecular dynamics simulations reveal that TCR specificity is driven by differences in indirect electrostatic interactions. The affinity enhanced TCR, fused to a humanized anti-CD3 scFv, enables selective killing of cancer cells expressing KRASG12D. Our work thus reveals a molecular mechanism that drives TCR selectivity and describes a soluble bispecific molecule with therapeutic potential against cancers harboring a common shared neoantigen.
Collapse
Affiliation(s)
- Andrew Poole
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | | | - Annabelle Hartt
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, USA
| | - Jaafar N Haidar
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Sylvie Moureau
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Tomasz Dobrzycki
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Conor Hayes
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | | | - Jorge Dias
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Stephen Harper
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Keir Barnbrook
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Miriam Hock
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Charlotte Coles
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Wei Yang
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Milos Aleksic
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Aimee Bence Lin
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Ross Robinson
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Joe D Dukes
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Nathaniel Liddy
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Marc Van der Kamp
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, USA
| | - Gregory D Plowman
- Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Annelise Vuidepot
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - David K Cole
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA
| | - Andrew D Whale
- Immunocore Ltd., 92 Park Drive, Milton Park, Abingdon, OX14 4RY, USA.
| | | |
Collapse
|