1
|
Zhang Z, Pan Z, Fan L, Su Y, Fei J. Comparative Metabolomics Reveals Changes in the Metabolic Pathways of Ampicillin- and Gentamicin-Resistant Staphylococcus aureus. J Proteome Res 2024; 23:4480-4494. [PMID: 39294851 DOI: 10.1021/acs.jproteome.4c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Antibiotic resistance is a major global challenge requiring new treatments and a better understanding of the bacterial resistance mechanisms. In this study, we compared ampicillin-resistant (R-AMP) and gentamicin-resistant (R-GEN) Staphylococcus aureus strains with a sensitive strain (ATCC6538) using metabolomics. We identified 109 metabolites; 28 or 31 metabolites in R-AMP or R-GEN differed from those in ATCC6538. Moreover, R-AMP and R-GEN were enriched in five and four pathways, respectively. R-AMP showed significantly up-regulated amino acid metabolism and down-regulated energy metabolism, whereas R-GEN exhibited an overall decrease in metabolism, including carbohydrate, energy, and amino acid metabolism. Furthermore, the activities of the metabolism-related enzymes pyruvate dehydrogenase and TCA cycle dehydrogenases were inhibited in antibiotic-resistant bacteria. Significant decreases in NADH and ATP levels were also observed. In addition, the arginine biosynthesis pathway, which is related to nitric oxide (NO) production, was enriched in both antibiotic-resistant strains. Enhanced NO synthase activity in S. aureus promoted NO production, which further reduced reactive oxygen species, mediating the development of bacterial resistance to ampicillin and gentamicin. This study reveals that bacterial resistance affects metabolic profile, and changes in energy metabolism and arginine biosynthesis are important factors leading to drug resistance in S. aureus.
Collapse
Affiliation(s)
- Ziyi Zhang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhiyu Pan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lvyuan Fan
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
2
|
Jothi R, Kamaladevi A, Muthuramalingam P, Malligarjunan N, Karutha Pandian S, Gowrishankar S. Untargeted metabolomics uncovers prime pathways linked to antibacterial action of citral against bacterial vaginosis-causing Gardnerella vaginalis: An in vitro and in vivo study. Heliyon 2024; 10:e27983. [PMID: 38545203 PMCID: PMC10966606 DOI: 10.1016/j.heliyon.2024.e27983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Global increase in recurrence of bacterial vaginosis (BV) and worrisome rise in antimicrobial resistance pose an urgent call for new/novel antibacterial agents. In light of the circumstance, the present study demonstrates the in vitro and in vivo antibacterial activity of a phytochemical citral, with a particular emphasis to elucidate its mechanistic action against Gardnerella vaginalis -a potential cause of BV. Out of 21 phytochemicals screened initially against G. vaginalis, citral was envisaged to be a phenomenal antibacterial agent showing MIC and MBC at 128 μg/mL. Citral's rapid killing ability was revealed by a time-killing kinetics assay supported by CFU, signifying that it completely killed the given inoculum of planktonic G. vaginalis cells within 60 min. Further, citral was found to exhibit 1 min contact-killing efficacy together with mature-biofilm disintegrating ability at increasing MICs. To further understand the molecular action of citral, in vitro investigations such as ROS estimation, PI staining and intracellular protein release assay were performed, which demonstrated that citral deteriorated the membrane integrity of G. vaginalis. Galleria mellonella, a simple invertebrate model used to evaluate citral's non-toxic and antibacterial activity in vivo, demonstrates that citral completely restored the larvae from G. vaginalis infection. The metabolite level investigation using LC-MS revealed that citral had negative impact on biotin metabolism (via., biotin), spermidine metabolism (via., 5'-methylthioadenosine and spermidine) and nucleotide metabolism (via., guanine, adenine and uridine). Since that biotin is associated with seven different metabolic pathways, it is conceivable that citral could target biotin biosynthesis or its metabolism and as a result, disrupt other metabolic pathways, such as lipid and fatty acid synthesis, which is essential for the creation of cell membranes. Thus, the current study is the first of its kind to delineate the promising in vitro and in vivo antibacterial efficacy of citral and decipher its plausible antibacterial action mechanism through metabolomic approach, which concomitantly emphasizes citral as a viable natural therapeutic alternative to manage and control BV.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Arumugam Kamaladevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, South Korea
| | - Nambiraman Malligarjunan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
3
|
Li X, Feng D, Zhou J, Wu W, Zheng W, Gan W, Jiang M, Li H, Peng X, Zhang T. Metabolomics Method in Understanding and Sensitizing Carbapenem-Resistant Acinetobacter baumannii to Meropenem. ACS Infect Dis 2024; 10:184-195. [PMID: 37991817 PMCID: PMC10788854 DOI: 10.1021/acsinfecdis.3c00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) strains are prevalent worldwide and represent a major threat to public health. However, treatment options for infections caused by CRAB are very limited as they are resistant to most of the commonly used antibiotics. Consequently, understanding the mechanisms underlying carbapenem resistance and restoring bacterial susceptibility to carbapenems hold immense importance. The present study used gas chromatography-mass spectrometry (GC-MS)-based metabolomics to investigate the metabolic mechanisms of antibiotic resistance in clinically isolated CRAB. Inactivation of the pyruvate cycle and purine metabolism is the most typical characteristic of CRAB. The CRAB exhibited a reduction in the activity of enzymes involved in the pyruvate cycle, proton motive force, and ATP levels. This decline in central carbon metabolism resulted in a decrease in the metabolic flux of the α-ketoglutarate-glutamate-glutamine pathway toward purine metabolism, ultimately leading to a decline in adenine nucleotide interconversion. Exogenous adenosine monophosphate (AMP) and adenosine triphosphate (ATP) enhance the killing efficacy of Meropenem against CRAB. The combination of ATP and Meropenem also has a synergistic effect on eliminating CRAB persisters and the biofilm, as well as protecting mice against peritonitis-sepsis. This study presents a novel therapeutic modality to treat infections caused by CRAB based on the metabolism reprogramming strategy.
Collapse
Affiliation(s)
- Xia Li
- Department
of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital
of Sun Yat-sen University, Institute of
Respiratory Diseases of Sun Yat-sen University, Guangzhou 510630, People’s Republic of China
| | - Dingyun Feng
- Department
of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital
of Sun Yat-sen University, Institute of
Respiratory Diseases of Sun Yat-sen University, Guangzhou 510630, People’s Republic of China
| | - Jianxia Zhou
- Department
of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital
of Sun Yat-sen University, Institute of
Respiratory Diseases of Sun Yat-sen University, Guangzhou 510630, People’s Republic of China
| | - Wenbin Wu
- Department
of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital
of Sun Yat-sen University, Institute of
Respiratory Diseases of Sun Yat-sen University, Guangzhou 510630, People’s Republic of China
| | - Wenzheng Zheng
- Department
of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital
of Sun Yat-sen University, Institute of
Respiratory Diseases of Sun Yat-sen University, Guangzhou 510630, People’s Republic of China
| | - Wenlei Gan
- Department
of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital
of Sun Yat-sen University, Institute of
Respiratory Diseases of Sun Yat-sen University, Guangzhou 510630, People’s Republic of China
| | - Ming Jiang
- Institute
of Animal Science, Guangdong Academy of
Agricultural Sciences, Guangzhou 510640, People’s
Republic of China
| | - Hui Li
- School
of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Xuanxian Peng
- School
of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Tiantuo Zhang
- Department
of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital
of Sun Yat-sen University, Institute of
Respiratory Diseases of Sun Yat-sen University, Guangzhou 510630, People’s Republic of China
| |
Collapse
|
4
|
Jeyaraj EJ, Han ML, Li J, Choo WS. Metabolic perturbations and key pathways associated with the bacteriostatic activity of Clitoria ternatea flower anthocyanin fraction against Escherichia coli. Access Microbiol 2023; 5:acmi000535.v5. [PMID: 37424541 PMCID: PMC10323780 DOI: 10.1099/acmi.0.000535.v5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Clitoria ternatea flowers are rich in anthocyanins and possess various biological activities. Specifically, the antibacterial mechanism of action of C. ternatea anthocyanins remains unknown and was investigated in Escherichia coli . A time-kill assay was used to assess the antibacterial activity and the metabolic perturbations in E. coli were investigated utilizing liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Pathway analyses were carried out for metabolites showing ≥2-fold changes. The anthocyanin fraction remarkably reduced the growth of E. coli at 4 h by 95.8 and 99.9 % at minimum inhibitory concentration (MIC) and 2× MIC, respectively. The anthocyanin fraction (MIC) had a bacteriostatic effect and was shown to have perturbed glycerophospholipids (1-acyl-sn-glycero-3-phosphoethanolamine, phosphatidylglycerol, diacylglycerol and cardiolipin), amino acids (valine, tyrosine and isoleucine) and energy (ubiquinone and NAD) metabolites at 1 and 4 h. This study demonstrated significant metabolic perturbations of the glycerophospholipid, amino acid and energy metabolism, with these being the key pathways involved in the bacteriostatic activity of anthocyanins from C. ternatea, which may have promise as bacteriostatic agents for E. coli -related infections.
Collapse
Affiliation(s)
- Ethel Jeyaseela Jeyaraj
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Mei-Ling Han
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
5
|
Abstract
Acinetobacter infections have high rates of mortality due to an increasing incidence of infections by multidrug-resistant (MDR) and extensively-drug-resistant (XDR) strains. Therefore, new therapeutic strategies for the treatment of Acinetobacter infections are urgently needed. Acinetobacter spp. are Gram-negative coccobacilli that are obligate aerobes and can utilize a wide variety of carbon sources. Acinetobacter baumannii is the main cause of Acinetobacter infections, and recent work has identified multiple strategies A. baumannii uses to acquire nutrients and replicate in the face of host nutrient restriction. Some host nutrient sources also serve antimicrobial and immunomodulatory functions. Hence, understanding Acinetobacter metabolism during infection may provide new insights into novel infection control measures. In this review, we focus on the role of metabolism during infection and in resistance to antibiotics and other antimicrobial agents and discuss the possibility that metabolism may be exploited to identify novel targets to treat Acinetobacter infections.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Mahamad Maifiah MH, Zhu Y, Tsuji BT, Creek DJ, Velkov T, Li J. Integrated metabolomic and transcriptomic analyses of the synergistic effect of polymyxin-rifampicin combination against Pseudomonas aeruginosa. J Biomed Sci 2022; 29:89. [PMID: 36310165 PMCID: PMC9618192 DOI: 10.1186/s12929-022-00874-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the mechanism of antimicrobial action is critical for improving antibiotic therapy. For the first time, we integrated correlative metabolomics and transcriptomics of Pseudomonas aeruginosa to elucidate the mechanism of synergistic killing of polymyxin-rifampicin combination. METHODS Liquid chromatography-mass spectrometry and RNA-seq analyses were conducted to identify the significant changes in the metabolome and transcriptome of P. aeruginosa PAO1 after exposure to polymyxin B (1 mg/L) and rifampicin (2 mg/L) alone, or in combination over 24 h. A genome-scale metabolic network was employed for integrative analysis. RESULTS In the first 4-h treatment, polymyxin B monotherapy induced significant lipid perturbations, predominantly to fatty acids and glycerophospholipids, indicating a substantial disorganization of the bacterial outer membrane. Expression of ParRS, a two-component regulatory system involved in polymyxin resistance, was increased by polymyxin B alone. Rifampicin alone caused marginal metabolic perturbations but significantly affected gene expression at 24 h. The combination decreased the gene expression of quorum sensing regulated virulence factors at 1 h (e.g. key genes involved in phenazine biosynthesis, secretion system and biofilm formation); and increased the expression of peptidoglycan biosynthesis genes at 4 h. Notably, the combination caused substantial accumulation of nucleotides and amino acids that last at least 4 h, indicating that bacterial cells were in a state of metabolic arrest. CONCLUSION This study underscores the substantial potential of integrative systems pharmacology to determine mechanisms of synergistic bacterial killing by antibiotic combinations, which will help optimize their use in patients.
Collapse
Affiliation(s)
- Mohd Hafidz Mahamad Maifiah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- International Institute for Halal Research and Training, International Islamic University Malaysia, 50728, Kuala Lumpur, Malaysia
| | - Yan Zhu
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Brian T Tsuji
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
7
|
Zhu S, Zhang J, Song C, Liu Y, Oo C, Heinrichs MT, Lv Z, Zhu Y, Sy SKB, Deng P, Yu M. Metabolomic profiling of polymyxin-B in combination with meropenem and sulbactam against multi-drug resistant Acinetobacter baumannii. Front Microbiol 2022; 13:1013934. [PMID: 36212889 PMCID: PMC9539534 DOI: 10.3389/fmicb.2022.1013934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Empirical therapies using polymyxins combined with other antibiotics are recommended in the treatment of Acinetobacter baumannii infections. In the present study, the synergistic activities of polymyxin-B, meropenem, and sulbactam as combination therapy were investigated using metabolomic analysis. The metabolome of A. baumannii was investigated after treatment with polymyxin-B alone (2 mg/l), meropenem (2 mg/l) alone, combination of polymyxin-B/meropenem at their clinical breakpoints, and triple-antibiotic combination of polymyxin-B/meropenem and 4 mg/l sulbactam. The triple-antibiotic combination significantly changed the metabolite levels involved in cell outer membrane and cell wall biosynthesis, including fatty acid, glycerophospholipid, lipopolysaccharide, peptidoglycan, and nucleotide within 15 min of administration. In contrast, significant changes in metabolome were observed after 1 h in sample treated with either meropenem or polymyxin-B alone. After 1 h of administration, the double and triple combination therapies significantly disrupted nucleotide and amino acid biosynthesis pathways as well as the central carbon metabolism, including pentose phosphate and glycolysis/gluconeogenesis pathways, and tricarboxylic acid cycle. The addition of sulbactam to polymyxin-B and meropenem combination appeared to be an early disruptor of A. baumannii metabolome, which paves the way for further antibiotic penetration into bacteria cells. Combination antibiotics consisting of sulbactam/meropenem/polymyxin-B can effectively confer susceptibility to A. baumannii harboring OXA-23 and other drug resistant genes. Metabolomic profiling reveals underlying mechanisms of synergistic effects of polymyxin-B combined with meropenem and sulbactam against multi-drug resistant A. baumannii.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chu Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yuwei Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Charles Oo
- SunLife Biopharma, Morris, NJ, United States
| | - M. Tobias Heinrichs
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Mingming Yu, ; Pan Deng, ; Zhihua Lv,
| | - Yuanqi Zhu
- Department of Laboratory Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sherwin K. B. Sy
- Department of Statistics, State University of Maringá, Paraná, Brazil
| | - Pan Deng
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- *Correspondence: Mingming Yu, ; Pan Deng, ; Zhihua Lv,
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Mingming Yu, ; Pan Deng, ; Zhihua Lv,
| |
Collapse
|
8
|
Chung WY, Zhu Y, Mahamad Maifiah MH, Hawala Shivashekaregowda NK, Wong EH, Abdul Rahim N. Exogenous metabolite feeding on altering antibiotic susceptibility in Gram-negative bacteria through metabolic modulation: a review. Metabolomics 2022; 18:47. [PMID: 35781167 DOI: 10.1007/s11306-022-01903-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The rise of antimicrobial resistance at an alarming rate is outpacing the development of new antibiotics. The worrisome trends of multidrug-resistant Gram-negative bacteria have enormously diminished existing antibiotic activity. Antibiotic treatments may inhibit bacterial growth or lead to induce bacterial cell death through disruption of bacterial metabolism directly or indirectly. In light of this, it is imperative to have a thorough understanding of the relationship of bacterial metabolism with antimicrobial activity and leverage the underlying principle towards development of novel and effective antimicrobial therapies. OBJECTIVE Herein, we explore studies on metabolic analyses of Gram-negative pathogens upon antibiotic treatment. Metabolomic studies revealed that antibiotic therapy caused changes of metabolites abundance and perturbed the bacterial metabolism. Following this line of thought, addition of exogenous metabolite has been employed in in vitro, in vivo and in silico studies to activate the bacterial metabolism and thus potentiate the antibiotic activity. KEY SCIENTIFIC CONCEPTS OF REVIEW Exogenous metabolites were discovered to cause metabolic modulation through activation of central carbon metabolism and cellular respiration, stimulation of proton motive force, increase of membrane potential, improvement of host immune protection, alteration of gut microbiome, and eventually facilitating antibiotic killing. The use of metabolites as antimicrobial adjuvants may be a promising approach in the fight against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Wan Yean Chung
- School of Pharmacy, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection and Immunity Program, Department of Microbiology, Monash University, 3800, Victoria, Australia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), 53100, Jalan Gombak, Selangor, Malaysia
| | - Naveen Kumar Hawala Shivashekaregowda
- Center for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | | |
Collapse
|
9
|
Mohd Kamal K, Mahamad Maifiah MH, Abdul Rahim N, Hashim YZHY, Abdullah Sani MS, Azizan KA. Bacterial Metabolomics: Sample Preparation Methods. Biochem Res Int 2022; 2022:9186536. [PMID: 35465444 PMCID: PMC9019480 DOI: 10.1155/2022/9186536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolomics is a comprehensive analysis of metabolites existing in biological systems. As one of the important "omics" tools, the approach has been widely employed in various fields in helping to better understand the complex cellular metabolic states and changes. Bacterial metabolomics has gained a significant interest as bacteria serve to provide a better subject or model at systems level. The approach in metabolomics is categorized into untargeted and targeted which serves different paradigms of interest. Nevertheless, the bottleneck in metabolomics has been the sample or metabolite preparation method. A custom-made method and design for a particular species or strain of bacteria might be necessary as most studies generally refer to other bacteria or even yeast and fungi that may lead to unreliable analysis. The paramount aspect of metabolomics design comprises sample harvesting, quenching, and metabolite extraction procedures. Depending on the type of samples and research objective, each step must be at optimal conditions which are significantly important in determining the final output. To date, there are no standardized nor single designated protocols that have been established for a specific bacteria strain for untargeted and targeted approaches. In this paper, the existing and current developments of sample preparation methods of bacterial metabolomics used in both approaches are reviewed. The review also highlights previous literature of optimized conditions used to propose the most ideal methods for metabolite preparation, particularly for bacterial cells. Advantages and limitations of methods are discussed for future improvement of bacterial metabolomics.
Collapse
Affiliation(s)
- Khairunnisa Mohd Kamal
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | | | - Yumi Zuhanis Has-Yun Hashim
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | - Muhamad Shirwan Abdullah Sani
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor 43600, Malaysia
| |
Collapse
|
10
|
Unraveling antimicrobial resistance using metabolomics. Drug Discov Today 2022; 27:1774-1783. [PMID: 35341988 DOI: 10.1016/j.drudis.2022.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The emergence of antimicrobial resistance (AMR) in bacterial pathogens represents a global health threat. The metabolic state of bacteria is associated with a range of genetic and phenotypic resistance mechanisms. This review provides an overview of the roles of metabolic processes that are associated with AMR mechanisms, including energy production, cell wall synthesis, cell-cell communication, and bacterial growth. These metabolic processes can be targeted with the aim of re-sensitizing resistant pathogens to antibiotic treatments. We discuss how state-of-the-art metabolomics approaches can be used for comprehensive analysis of microbial AMR-related metabolism, which may facilitate the discovery of novel drug targets and treatment strategies. TEASER: Novel treatment strategies are needed to address the emerging threat of antimicrobial resistance (AMR) in bacterial pathogens. Metabolomics approaches may help to unravel the biochemical underpinnings of AMR, thereby facilitating the discovery of metabolism-associated drug targets and treatment strategies.
Collapse
|
11
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
12
|
Polymyxin-Induced Metabolic Perturbations in Human Lung Epithelial Cells. Antimicrob Agents Chemother 2021; 65:e0083521. [PMID: 34228550 DOI: 10.1128/aac.00835-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhaled polymyxins are associated with toxicity in human lung epithelial cells that involves multiple apoptotic pathways. However, the mechanism of polymyxin-induced pulmonary toxicity remains unclear. This study aims to investigate polymyxin-induced metabolomic perturbations in human lung epithelial A549 cells. A549 cells were treated with 0.5 or 1.0 mM polymyxin B or colistin for 1, 4, and 24 h. Cellular metabolites were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and significantly perturbed metabolites (log2 fold change [log2FC] ≥ 1; false-discovery rate [FDR] ≤ 0.2) and key pathways were identified relative to untreated control samples. At 1 and 4 h, very few significant changes in metabolites were observed relative to the untreated control cells. At 24 h, taurine (log2FC = -1.34 ± 0.64) and hypotaurine (log2FC = -1.20 ± 0.27) were significantly decreased by 1.0 mM polymyxin B. The reduced form of glutathione (GSH) was significantly depleted by 1.0 mM polymyxin B at 24 h (log2FC = -1.80 ± 0.42). Conversely, oxidized glutathione (GSSG) was significantly increased by 1.0 mM both polymyxin B (log2FC = 1.38 ± 0.13 at 4 h and 2.09 ± 0.20 at 24 h) and colistin (log2FC = 1.33 ± 0.24 at 24 h). l-Carnitine was significantly decreased by 1.0 mM of both polymyxins at 24 h, as were several key metabolites involved in biosynthesis and degradation of choline and ethanolamine (log2FC ≤ -1); several phosphatidylserines were also increased (log2FC ≥ 1). Polymyxins perturbed key metabolic pathways that maintain cellular redox balance, mitochondrial β-oxidation, and membrane lipid biogenesis. These mechanistic findings may assist in developing new pharmacokinetic/pharmacodynamic strategies to attenuate the pulmonary toxicities of inhaled polymyxins and in the discovery of new-generation polymyxins.
Collapse
|
13
|
Aye SM, Galani I, Han ML, Karaiskos I, Creek DJ, Zhu Y, Lin YW, Velkov T, Giamarellou H, Li J. Lipid A profiling and metabolomics analysis of paired polymyxin-susceptible and -resistant MDR Klebsiella pneumoniae clinical isolates from the same patients before and after colistin treatment. J Antimicrob Chemother 2021; 75:2852-2863. [PMID: 32696049 DOI: 10.1093/jac/dkaa245] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The increased incidence of polymyxin-resistant MDR Klebsiella pneumoniae has become a major global health concern. OBJECTIVES To characterize the lipid A profiles and metabolome differences between paired polymyxin-susceptible and -resistant MDR K. pneumoniae clinical isolates. METHODS Three pairs of K. pneumoniae clinical isolates from the same patients were examined [ATH 7 (polymyxin B MIC 0.25 mg/L) versus ATH 8 (64 mg/L); ATH 15 (0.5 mg/L) versus ATH 16 (32 mg/L); and ATH 17 (0.5 mg/L) versus ATH 18 (64 mg/L)]. Lipid A and metabolomes were analysed using LC-MS and bioinformatic analysis was conducted. RESULTS The predominant species of lipid A in all three paired isolates were hexa-acylated and 4-amino-4-deoxy-l-arabinose-modified lipid A species were detected in the three polymyxin-resistant isolates. Significant metabolic differences were evident between the paired isolates. Compared with their corresponding polymyxin-susceptible isolates, the levels of metabolites in amino sugar metabolism (UDP-N-acetyl-α-d-glucosamine and UDP-N-α-acetyl-d-mannosaminuronate) and central carbon metabolism (e.g. pentose phosphate pathway and tricarboxylic acid cycle) were significantly reduced in all polymyxin-resistant isolates [fold change (FC) > 1.5, P < 0.05]. Similarly, nucleotides, amino acids and key metabolites in glycerophospholipid metabolism, namely sn-glycerol-3-phosphate and sn-glycero-3-phosphoethanolamine, were significantly reduced across all polymyxin-resistant isolates (FC > 1.5, P < 0.05) compared with polymyxin-susceptible isolates. However, higher glycerophospholipid levels were evident in polymyxin-resistant ATH 8 and ATH 16 (FC > 1.5, P < 0.05) compared with their corresponding susceptible isolates. CONCLUSIONS To our knowledge, this study is the first to reveal significant metabolic perturbations associated with polymyxin resistance in K. pneumoniae.
Collapse
Affiliation(s)
- Su Mon Aye
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Irene Galani
- Fourth Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Mei-Ling Han
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Ilias Karaiskos
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052 Victoria, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Yu-Wei Lin
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Helen Giamarellou
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Jian Li
- Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Abdul Rahim N, Zhu Y, Cheah SE, Johnson MD, Yu HH, Sidjabat HE, Butler MS, Cooper MA, Fu J, Paterson DL, Nation RL, Boyce JD, Creek DJ, Bergen PJ, Velkov T, Li J. Synergy of the Polymyxin-Chloramphenicol Combination against New Delhi Metallo-β-Lactamase-Producing Klebsiella pneumoniae Is Predominately Driven by Chloramphenicol. ACS Infect Dis 2021; 7:1584-1595. [PMID: 33834753 DOI: 10.1021/acsinfecdis.0c00661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbapenem-resistant Klebsiella pneumoniae has been classified as an Urgent Threat by the Centers for Disease Control and Prevention (CDC). The combination of two "old" antibiotics, polymyxin and chloramphenicol, displays synergistic killing against New Delhi metallo-β-lactamase (NDM)-producing K. pneumoniae. However, the mechanism(s) underpinning their synergistic killing are not well studied. We employed an in vitro pharmacokinetic/pharmacodynamic model to mimic the pharmacokinetics of the antibiotics in patients and examined bacterial killing against NDM-producing K. pneumoniae using a metabolomic approach. Metabolomic analysis was integrated with an isolate-specific genome-scale metabolic network (GSMN). Our results show that metabolic responses to polymyxin B and/or chloramphenicol against NDM-producing K. pneumoniae involved the inhibition of cell envelope biogenesis, metabolism of arginine and nucleotides, glycolysis, and pentose phosphate pathways. Our metabolomic and GSMN modeling results highlight the novel mechanisms of a synergistic antibiotic combination at the network level and may have a significant potential in developing precision antimicrobial chemotherapy in patients.
Collapse
Affiliation(s)
- Nusaibah Abdul Rahim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Soon-Ee Cheah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew D. Johnson
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi H. Yu
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Hanna E. Sidjabat
- University of Queensland Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - Mark S. Butler
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - David L. Paterson
- University of Queensland Centre for Clinical Research, Herston, Queensland 4029, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Queensland 4029, Australia
| | - Roger L. Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John D. Boyce
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Phillip J. Bergen
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre for Medicine Use and Safety, Monash University, Parkville, Victoria 3052, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Tao Y, Acket S, Beaumont E, Galez H, Duma L, Rossez Y. Colistin Treatment Affects Lipid Composition of Acinetobacter baumannii. Antibiotics (Basel) 2021; 10:antibiotics10050528. [PMID: 34063718 PMCID: PMC8147793 DOI: 10.3390/antibiotics10050528] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/15/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii (A. baumannii) causes severe and often fatal healthcare-associated infections due partly to antibiotic resistance. There are no studies on A. baumannii lipidomics of susceptible and resistant strains grown at lethal and sublethal concentrations. Therefore, we analyzed the impact of colistin resistance on glycerolipids’ content by using untargeted lipidomics on clinical isolate. Nine lipid sub-classes were annotated, including phosphatidylcholine, rarely detected in the bacterial membrane among 130 different lipid species. The other lipid sub-classes detected are phosphatidylethanolamine (PE), phosphatidylglycerol (PG), lysophosphatidylethanolamine, hemibismonoacylglycerophosphate, cardiolipin, monolysocardiolipin, diacylglycerol, and triacylglycerol. Under lethal and sublethal concentrations of colistin, significant reduction of PE was observed on the resistant and susceptible strain, respectively. Palmitic acid percentage was higher at colistin at low concentration but only for the susceptible strain. When looking at individual lipid species, the most abundant PE and PG species (PE 34:1 and PG 34:1) are significantly upregulated when the susceptible and the resistant strains are cultivated with colistin. This is, to date, the most exhaustive lipidomics data compilation of A. baumannii cultivated in the presence of colistin. This work is highlighting the plasma membrane plasticity used by this gram-negative bacterium to survive colistin treatment.
Collapse
|
16
|
Zhao J, Han ML, Zhu Y, Lin YW, Wang YW, Lu J, Hu Y, Tony Zhou Q, Velkov T, Li J. Comparative metabolomics reveals key pathways associated with the synergistic activity of polymyxin B and rifampicin combination against multidrug-resistant Acinetobacter baumannii. Biochem Pharmacol 2020; 184:114400. [PMID: 33387481 DOI: 10.1016/j.bcp.2020.114400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023]
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii presents a critical challenge to human health worldwide and polymyxins are increasingly used as a last-line therapy. Due to the rapid emergence of resistance during polymyxin monotherapy, synergistic combinations (e.g. with rifampicin) are recommended to treat A. baumannii infections. However, most combination therapies are empirical, owing to a dearth of understanding on the mechanism of synergistic antibacterial killing. In the present study, we employed metabolomics to investigate the synergy mechanism of polymyxin B-rifampicin against A. baumannii AB5075, an MDR clinical isolate. The metabolomes of A. baumannii AB5075 were compared at 1 and 4 h following treatments with polymyxin B alone (0.75 mg/L, i.e. 3 × MIC), rifampicin alone (1 mg/L, i.e. 0.25 × MIC) and their combination. Polymyxin B monotherapy significantly perturbed glycerophospholipid and fatty acid metabolism at 1 h, reflecting its activity on bacterial outer membrane. Rifampicin monotherapy significantly perturbed glycerophospholipid, nucleotide and amino acid metabolism, which are related to the inhibition of RNA synthesis. The combination treatment significantly perturbed the metabolism of nucleotides, amino acids, fatty acids and glycerophospholipids at 1 and 4 h. Notably, the intermediate metabolite pools from pentose phosphate pathway were exclusively enhanced by the combination, while most metabolites from the nucleotide and amino acid biosynthesis pathways were significantly decreased. Overall, the synergistic activity of the combination was initially driven by polymyxin B which impacted pathways associated with outer membrane biogenesis; and subsequent effects were mainly attributed to rifampicin via the inhibition of RNA synthesis. This study is the first to reveal the synergistic killing mechanism of polymyxin-rifampicin combination against polymyxin-susceptible MDR A. baumannii at the network level. Our findings provide new mechanistic insights for optimizing this synergistic combination in patients.
Collapse
Affiliation(s)
- Jinxin Zhao
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Mei-Ling Han
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yan Zhu
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yu-Wei Lin
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yi-Wen Wang
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne 3010, Australia
| | - Jing Lu
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yang Hu
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, Indiana 47907, United States
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne 3010, Australia
| | - Jian Li
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia.
| |
Collapse
|
17
|
Zhu Y, Lu J, Han M, Jiang X, Azad MAK, Patil NA, Lin Y, Zhao J, Hu Y, Yu HH, Chen K, Boyce JD, Dunstan RA, Lithgow T, Barlow CK, Li W, Schneider‐Futschik EK, Wang J, Gong B, Sommer B, Creek DJ, Fu J, Wang L, Schreiber F, Velkov T, Li J. Polymyxins Bind to the Cell Surface of Unculturable Acinetobacter baumannii and Cause Unique Dependent Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000704. [PMID: 32775156 PMCID: PMC7403960 DOI: 10.1002/advs.202000704] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Indexed: 05/13/2023]
Abstract
Multidrug-resistant Acinetobacter baumannii is a top-priority pathogen globally and polymyxins are a last-line therapy. Polymyxin dependence in A. baumannii (i.e., nonculturable on agar without polymyxins) is a unique and highly-resistant phenotype with a significant potential to cause treatment failure in patients. The present study discovers that a polymyxin-dependent A. baumannii strain possesses mutations in both lpxC (lipopolysaccharide biosynthesis) and katG (reactive oxygen species scavenging) genes. Correlative multiomics analyses show a significantly remodeled cell envelope and remarkably abundant phosphatidylglycerol in the outer membrane (OM). Molecular dynamics simulations and quantitative membrane lipidomics reveal that polymyxin-dependent growth emerges only when the lipopolysaccharide-deficient OM distinctively remodels with ≥ 35% phosphatidylglycerol, and with "patch" binding on the OM by the rigid polymyxin molecules containing strong intramolecular hydrogen bonding. Rather than damaging the OM, polymyxins bind to the phosphatidylglycerol-rich OM and strengthen the membrane integrity, thereby protecting bacteria from external reactive oxygen species. Dependent growth is observed exclusively with polymyxin analogues, indicating a critical role of the specific amino acid sequence of polymyxins in forming unique structures for patch-binding to bacterial OM. Polymyxin dependence is a novel antibiotic resistance mechanism and the current findings highlight the risk of 'invisible' polymyxin-dependent isolates in the evolution of resistance.
Collapse
Affiliation(s)
- Yan Zhu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Jing Lu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Mei‐Ling Han
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Xukai Jiang
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Mohammad A. K. Azad
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Nitin A. Patil
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Yu‐Wei Lin
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Jinxin Zhao
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Yang Hu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Heidi H. Yu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Ke Chen
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - John D. Boyce
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | | | - Weifeng Li
- School of Physics and State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | | | - Jiping Wang
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Bin Gong
- School of Computer Science and TechnologyShandong UniversityJinan250100China
| | - Bjorn Sommer
- Department of Computer and Information ScienceUniversity of KonstanzKonstanz78457Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityMelbourne3052Australia
| | - Jing Fu
- Department of Mechanical and Aerospace EngineeringMonash UniversityMelbourne3800Australia
| | - Lushan Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao CampusQingdao266237China
| | - Falk Schreiber
- Department of Computer and Information ScienceUniversity of KonstanzKonstanz78457Germany
| | - Tony Velkov
- Department of Pharmacology and TherapeuticsUniversity of MelbourneMelbourne3010Australia
| | - Jian Li
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| |
Collapse
|
18
|
Li J, Rumancev C, Lutze HV, Schmidt TC, Rosenhahn A, Schmitz OJ. Effect of ozone stress on the intracellular metabolites from Cobetia marina. Anal Bioanal Chem 2020; 412:5853-5861. [PMID: 32676676 PMCID: PMC7413921 DOI: 10.1007/s00216-020-02810-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023]
Abstract
A GCxGC-MS system was employed with a non-polar × mid-polar column set for the metabolic non-target analysis of Cobetia marina, the model bacteria for marine biofouling. C. marina was treated with ozone to investigate the intracellular metabolic state change under oxidative stress. A minimal inhibitory concentration test was involved to guarantee that the applied ozone dosages were not lethal for the cells. In this study, non-target analyses were performed to identify the metabolites according to the NIST database. As a result, over 170 signals were detected under normal living conditions including 35 potential metabolites. By the comparison of ozone-treated and non-treated samples, five compounds were selected to describe observed trends of signals in the contour plots. Oleic acid exhibited a slight growth by increasing ozone dosage. In contrast, other metabolites such as the amino acid L-proline showed less abundance after ozone treatment, which was more evident once ozone dosage was raised. Thus, this work could provide a hint for searching for up/downregulating factors in such environmental stress conditions for C. marina. Graphical abstract.
Collapse
Affiliation(s)
- Junjie Li
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Christoph Rumancev
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitaetsstr. 150, 44780, Bochum, Germany
| | - Holger V Lutze
- Instrumental Analytical Chemistry and Centre for Environmental and Water Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.,Technical University of Darmstadt, Department of Civil and Environmental Engineering, Institut IWAR, Franziska Braun Str. 7, 64287, Darmstadt, Germany.,IWW Water Centre, Moritzstr. 26, 45476, Mülheim an der Ruhr, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Environmental and Water Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.,IWW Water Centre, Moritzstr. 26, 45476, Mülheim an der Ruhr, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Universitaetsstr. 150, 44780, Bochum, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry & Teaching and Research Center for Separation, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.
| |
Collapse
|
19
|
Depke T, Thöming JG, Kordes A, Häussler S, Brönstrup M. Untargeted LC-MS Metabolomics Differentiates Between Virulent and Avirulent Clinical Strains of Pseudomonas aeruginosa. Biomolecules 2020; 10:biom10071041. [PMID: 32668735 PMCID: PMC7407980 DOI: 10.3390/biom10071041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is a facultative pathogen that can cause, inter alia, acute or chronic pneumonia in predisposed individuals. The gram-negative bacterium displays considerable genomic and phenotypic diversity that is also shaped by small molecule secondary metabolites. The discrimination of virulence phenotypes is highly relevant to the diagnosis and prognosis of P. aeruginosa infections. In order to discover small molecule metabolites that distinguish different virulence phenotypes of P. aeruginosa, 35 clinical strains were cultivated under standard conditions, characterized in terms of virulence and biofilm phenotype, and their metabolomes were investigated by untargeted liquid chromatography-mass spectrometry. The data was both mined for individual candidate markers as well as used to construct statistical models to infer the virulence phenotype from metabolomics data. We found that clinical strains that differed in their virulence and biofilm phenotype also had pronounced divergence in their metabolomes, as underlined by 332 features that were significantly differentially abundant with fold changes greater than 1.5 in both directions. Important virulence-associated secondary metabolites like rhamnolipids, alkyl quinolones or phenazines were found to be strongly upregulated in virulent strains. In contrast, we observed little change in primary metabolism. A hitherto novel cationic metabolite with a sum formula of C12H15N2 could be identified as a candidate biomarker. A random forest model was able to classify strains according to their virulence and biofilm phenotype with an area under the Receiver Operation Characteristics curve of 0.84. These findings demonstrate that untargeted metabolomics is a valuable tool to characterize P. aeruginosa virulence, and to explore interrelations between clinically important phenotypic traits and the bacterial metabolome.
Collapse
Affiliation(s)
- Tobias Depke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Janne Gesine Thöming
- Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, 30625 Hannover, Germany; (J.G.T.); (A.K.); (S.H.)
| | - Adrian Kordes
- Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, 30625 Hannover, Germany; (J.G.T.); (A.K.); (S.H.)
| | - Susanne Häussler
- Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, 30625 Hannover, Germany; (J.G.T.); (A.K.); (S.H.)
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
20
|
Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, Machiraju R, Mathé EA. Metabolomics and Multi-Omics Integration: A Survey of Computational Methods and Resources. Metabolites 2020; 10:E202. [PMID: 32429287 PMCID: PMC7281435 DOI: 10.3390/metabo10050202] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
As researchers are increasingly able to collect data on a large scale from multiple clinical and omics modalities, multi-omics integration is becoming a critical component of metabolomics research. This introduces a need for increased understanding by the metabolomics researcher of computational and statistical analysis methods relevant to multi-omics studies. In this review, we discuss common types of analyses performed in multi-omics studies and the computational and statistical methods that can be used for each type of analysis. We pinpoint the caveats and considerations for analysis methods, including required parameters, sample size and data distribution requirements, sources of a priori knowledge, and techniques for the evaluation of model accuracy. Finally, for the types of analyses discussed, we provide examples of the applications of corresponding methods to clinical and basic research. We intend that our review may be used as a guide for metabolomics researchers to choose effective techniques for multi-omics analyses relevant to their field of study.
Collapse
Affiliation(s)
- Tara Eicher
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Computer Science and Engineering Department, The Ohio State University College of Engineering, Columbus, OH 43210, USA
| | - Garrett Kinnebrew
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA;
- Bioinformatics Shared Resource Group, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Patt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20892, USA;
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle Spencer
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Nationwide Children’s Research Hospital, Columbus, OH 43210, USA
| | - Kevin Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA;
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Qin Ma
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
| | - Raghu Machiraju
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Computer Science and Engineering Department, The Ohio State University College of Engineering, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Ewy A. Mathé
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20892, USA;
| |
Collapse
|
21
|
Abstract
Acinetobacter baumannii is an important Gram-negative opportunistic pathogen commonly infecting critically ill patients. It possesses a remarkable ability to survive in the hospital environment and acquires resistance determinants corresponding to a wide range of antibacterial agents. Given that the current treatment options for multidrug resistant A. baumannii are extremely limited, colistin administration has become the treatment of last resort. However, colistin-resistant A. baumannii strains have recently been reported. The mechanism of resistance to colistin in A. baumannii has rarely been reported. Here, we found two novel mutations in pmrA (I13M) and pmrB (Q270P) that caused colistin resistance. It is also first reported here that the presence of miaA with a I221V mutation enhanced the colistin resistance of pmrAP102R. Colistin is used as the “last resort” to treat infections caused by multidrug-resistant Acinetobacter baumannii, which is at the top of the World Health Organization’s list of the most dangerous bacterial species that threaten human health. Unfortunately, colistin resistance has emerged in A. baumannii. To broaden the study of the resistance mechanism of colistin in A. baumannii, we obtained colistin-resistant mutants via two methods: (i) screening and isolation from a mariner-based A. baumannii ATCC 19606 transposon mutant library; (ii) selection from challenge of ATCC 19606 with successively increasing concentrations of colistin. A total of 41 mutants with colistin MIC of 4 μg/ml to 64 μg/ml were obtained by transposon mutant library screening. Five highly resistant mutants with colistin MICs ranging from 256 μg/ml to 512 μg/ml were selected from successive colistin challenges. Genotypic complementation and remodeling of the transposon mutants revealed that the genes inactivated by the transposon insertion were not responsible for resistance. Whole-genome sequence analysis of the colistin-resistant strains revealed that the main causes of the resistance to colistin were mutations in the pmrA-pmrB genes, including pmrAP102R, pmrBP233S, and pmrBT235N and the novel alleles pmrAI13M and pmrBQ270P. Interestingly, we found that miaAI221V mutation of A. baumannii strain ATCC 19606 (pmrAP102R) resulted in 4-fold increases in the colistin MIC, which rose from 32 μg/ml to 128 μg/ml. But miaAI221V itself had little effect on the colistin susceptibility of ATCC 19606. These data broaden knowledge of the scope of chromosomally encoded mechanisms of resistance to colistin. IMPORTANCEAcinetobacter baumannii is an important Gram-negative opportunistic pathogen commonly infecting critically ill patients. It possesses a remarkable ability to survive in the hospital environment and acquires resistance determinants corresponding to a wide range of antibacterial agents. Given that the current treatment options for multidrug resistant A. baumannii are extremely limited, colistin administration has become the treatment of last resort. However, colistin-resistant A. baumannii strains have recently been reported. The mechanism of resistance to colistin in A. baumannii has rarely been reported. Here, we found two novel mutations in pmrA (I13M) and pmrB (Q270P) that caused colistin resistance. It is also first reported here that the presence of miaA with a I221V mutation enhanced the colistin resistance of pmrAP102R.
Collapse
|
22
|
Zhu Y, Lu J, Zhao J, Zhang X, Yu HH, Velkov T, Li J. Complete genome sequence and genome-scale metabolic modelling of Acinetobacter baumannii type strain ATCC 19606. Int J Med Microbiol 2020; 310:151412. [PMID: 32081464 DOI: 10.1016/j.ijmm.2020.151412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/29/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii is a critical threat to global health. The type strain ATCC 19606 has been widely used in studying the virulence, pathogenesis and mechanisms of antimicrobial resistance in A. baumannii. However, the lack of a complete genome sequence is a hindrance towards detailed bioinformatic studies. Here we report the generation of a complete genome for ATCC 19606 using PacBio sequencing. ATCC 19606 genome consists of a 3,980,848-bp chromosome and a 9,450-bp plasmid pMAC, and harbours a chromosomal dihydropteroate synthase gene sul2 conferring resistance to sulphonamides and a plasmid-borne ohr gene conferring resistance to peroxides. The genome also contains 69 virulence genes involved in surface adherence, biofilm formation, extracellular phospholipase, iron uptake, immune evasion and quorum sensing. Insertion sequences ISCR2 and ISAba11 are embedded in a 36.1-Kb genomic island, suggesting an IS-mediated large-scale DNA recombination. Furthermore, a genome-scale metabolic model (GSMM) iATCC19606v2 was constructed using the complete genome annotation. The model iATCC19606v2 incorporated a periplasmic compartment, 1,422 metabolites, 2,114 reactions and 1,009 genes, and a set of protein crowding constraints taking into account enzyme abundance limitation. The prediction of bacterial growth on 190 carbon and 95 nitrogen sources achieved a high accuracy of 85.6% compared to Biolog experiment results. Based upon two transposon mutant libraries of AB5075 and ATCC 17978, the predictions of essential genes reached the accuracy of 87.6% and 82.1%, respectively. Together, the complete genome sequence and high-quality GSMM iATCC19606v2 provide valuable tools for antimicrobial systems pharmacological investigations on A. baumannii.
Collapse
Affiliation(s)
- Yan Zhu
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Jing Lu
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Xinru Zhang
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Heidi H Yu
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
23
|
Lin YW, Han ML, Zhao J, Zhu Y, Rao G, Forrest A, Song J, Kaye KS, Hertzog P, Purcell A, Creek D, Zhou QT, Velkov T, Li J. Synergistic Combination of Polymyxin B and Enrofloxacin Induced Metabolic Perturbations in Extensive Drug-Resistant Pseudomonas aeruginosa. Front Pharmacol 2019; 10:1146. [PMID: 31632279 PMCID: PMC6785843 DOI: 10.3389/fphar.2019.01146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022] Open
Abstract
Polymyxins are used as a last-resort class of antibiotics against multidrug-resistant (MDR) Gram-negative Pseudomonas aeruginosa. As polymyxin monotherapy is associated with potential development of resistance, combination therapy is highly recommended. This study investigated the mechanism underlying the synergistic killing of polymyxin B and enrofloxacin against extensive drug-resistant (XDR) P. aeruginosa. An XDR isolate P. aeruginosa 12196 was treated with clinically relevant concentrations of polymyxin B (2 mg/L) and enrofloxacin (1 mg/L) alone or in combination. Metabolome profiles were investigated from bacterial samples collected at 1-and 4-h posttreatment using liquid chromatography with tandem mass spectrometry (LC-MS/MS), and data were analyzed using univariate and multivariate statistics. Significantly perturbed metabolites (q < 0.05, fold change ≥ 2) were subjected to pathway analysis. The synergistic killing by polymyxin B–enrofloxacin combination was initially driven by polymyxin B as indicated by the perturbation of lipid metabolites at 1 h in particular. The killing was subsequently driven by enrofloxacin via the inhibition of DNA replication, resulting in the accumulation of nucleotides at 4 h. Furthermore, the combination uniquely altered levels of metabolites in energy metabolism and cell envelope biogenesis. Most importantly, the combination significantly minimized polymyxin resistance via the inhibition of lipid A modification pathway, which was most evident at 4 h. This is the first study to elucidate the synergistic mechanism of polymyxin B–enrofloxacin combination against XDR P. aeruginosa. The metabolomics approach taken in this study highlights its power to elucidate the mechanism of synergistic killing by antibiotic combinations at the systems level.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Mei-Ling Han
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Jinxin Zhao
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Gauri Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Alan Forrest
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Keith S Kaye
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Paul Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Anthony Purcell
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Darren Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
24
|
Rodman N, Martinez J, Fung S, Nakanouchi J, Myers AL, Harris CM, Dang E, Fernandez JS, Liu C, Mendoza AM, Jimenez V, Nikolaidis N, Brennan CA, Bonomo RA, Sieira R, Ramirez MS. Human Pleural Fluid Elicits Pyruvate and Phenylalanine Metabolism in Acinetobacter baumannii to Enhance Cytotoxicity and Immune Evasion. Front Microbiol 2019; 10:1581. [PMID: 31379769 PMCID: PMC6650585 DOI: 10.3389/fmicb.2019.01581] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023] Open
Abstract
Acinetobacter baumannii (Ab) is one of the most treacherous pathogens among those causing hospital-acquired pneumonia (HAP). A. baumannii possesses an adaptable physiology, seen not only in its antibiotic resistance and virulence phenotypes but also in its metabolic versatility. In this study, we observed that A. baumannii undergoes global transcriptional changes in response to human pleural fluid (PF), a key host-derived environmental signal. Differential gene expression analyses combined with experimental approaches revealed changes in A. baumannii metabolism, affecting cytotoxicity, persistence, bacterial killing, and chemotaxis. Over 1,220 genes representing 55% of the differentially expressed transcriptomic data corresponded to metabolic processes, including the upregulation of glutamate, short chain fatty acid, and styrene metabolism. We observed an upregulation by 1.83- and 2.61-fold of the pyruvate dehydrogenase complex subunits E3 and E2, respectively. We also found that pyruvate (PYR), in conjunction with PF, triggers an A. baumannii pathogenic behavior that adversely impacts human epithelial cell viability. Interestingly, PF also amplified A. baumannii cytotoxicity against murine macrophages, suggesting an immune evasion strategy implemented by A. baumannii. Moreover, we uncovered opposing metabolic strategies dependent on the degree of pathogenicity of the strains, where less pathogenic strains demonstrated greater utilization of PYR to promote persister formation in the presence of PF. Additionally, our transcriptomic analysis and growth studies of A. baumannii suggest the existence of an alternative phenylalanine (PA) catabolic route independent of the phenylacetic acid pathway, which converts PA to phenylpyruvate (PP) and shuttles intermediates into styrene metabolism. This alternative route promoted a neutrophil-evasive state, as PF-induced degradation of PP significantly reduced overall human neutrophil chemotaxis in ex vivo chemotactic assays. Taken together, these data highlight A. baumannii pathoadaptabililty in response to host signals and provide further insight into the role of bacterial metabolism in virulence traits, antibiotic persistence strategies, and host innate immune evasion.
Collapse
Affiliation(s)
- Nyah Rodman
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Sammie Fung
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Jun Nakanouchi
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Amber L. Myers
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Caitlin M. Harris
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Emily Dang
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Jennifer S. Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Christine Liu
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Anthony M. Mendoza
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Veronica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Nikolas Nikolaidis
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Catherine A. Brennan
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Robert A. Bonomo
- Medical Service and Geriatrics Research, Education and Clinical Center (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| | - Rodrigo Sieira
- Fundacioìn Instituto Leloir-IIBBA CONICET, Buenos Aires, Argentina
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
25
|
Zhu Y, Zhao J, Maifiah MHM, Velkov T, Schreiber F, Li J. Metabolic Responses to Polymyxin Treatment in Acinetobacter baumannii ATCC 19606: Integrating Transcriptomics and Metabolomics with Genome-Scale Metabolic Modeling. mSystems 2019; 4:e00157-18. [PMID: 30746493 PMCID: PMC6365644 DOI: 10.1128/msystems.00157-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/08/2019] [Indexed: 02/04/2023] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii has emerged as a very problematic pathogen over the past decades, with a high incidence in nosocomial infections. Discovered in the late 1940s but abandoned in the 1970s, polymyxins (i.e., polymyxin B and colistin) have been revived as the last-line therapy against Gram-negative "superbugs," including MDR A. baumannii. Worryingly, resistance to polymyxins in A. baumannii has been increasingly reported, urging the development of novel antimicrobial therapies to rescue this last-line class of antibiotics. In the present study, we integrated genome-scale metabolic modeling with multiomics data to elucidate the mechanisms of cellular responses to colistin treatment in A. baumannii. A genome-scale metabolic model, iATCC19606, was constructed for strain ATCC 19606 based on the literature and genome annotation, containing 897 genes, 1,270 reactions, and 1,180 metabolites. After extensive curation, prediction of growth on 190 carbon sources using iATCC19606 achieved an overall accuracy of 84.3% compared to Biolog experimental results. Prediction of gene essentiality reached a high accuracy of 86.1% and 82.7% compared to two transposon mutant libraries of AB5075 and ATCC 17978, respectively. Further integrative modeling with our correlative transcriptomics and metabolomics data deciphered the complex regulation on metabolic responses to colistin treatment, including (i) upregulated fluxes through gluconeogenesis, the pentose phosphate pathway, and amino acid and nucleotide biosynthesis; (ii) downregulated TCA cycle and peptidoglycan and lipopolysaccharide biogenesis; and (iii) altered fluxes over respiratory chain. Our results elucidated the interplay of multiple metabolic pathways under colistin treatment in A. baumannii and provide key mechanistic insights into optimizing polymyxin combination therapy. IMPORTANCE Combating antimicrobial resistance has been highlighted as a critical global health priority. Due to the drying drug discovery pipeline, polymyxins have been employed as the last-line therapy against Gram-negative "superbugs"; however, the detailed mechanisms of antibacterial killing remain largely unclear, hampering the improvement of polymyxin therapy. Our integrative modeling using the constructed genome-scale metabolic model iATCC19606 and the correlative multiomics data provide the fundamental understanding of the complex metabolic responses to polymyxin treatment in A. baumannii at the systems level. The model iATCC19606 may have a significant potential in antimicrobial systems pharmacology research in A. baumannii.
Collapse
Affiliation(s)
- Yan Zhu
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Jinxin Zhao
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Mohd Hafidz Mahamad Maifiah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Jian Li
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Mahamad Maifiah MH, Velkov T, Creek DJ, Li J. Global Metabolic Analyses of Acinetobacter baumannii. Methods Mol Biol 2019; 1946:321-328. [PMID: 30798566 DOI: 10.1007/978-1-4939-9118-1_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acinetobacter baumannii is rapidly emerging as a multidrug-resistant pathogen responsible for nosocomial infections including pneumonia, bacteremia, wound infections, urinary tract infections, and meningitis. Metabolomics provides a powerful tool to gain a system-wide snapshot of cellular biochemical networks under defined conditions and has been increasingly applied to bacterial physiology and drug discovery. Here we describe an optimized sample preparation method for untargeted metabolomics studies in A. baumannii. Our method provides a significant recovery of intracellular metabolites to demonstrate substantial differences in global metabolic profiles among A. baumannii strains.
Collapse
Affiliation(s)
- Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training, International Islamic University Malaysia, Gombak, Selangor, Malaysia.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jian Li
- Laboratory of Antimicrobial Systems Pharmacology, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Carretero-Ledesma M, García-Quintanilla M, Martín-Peña R, Pulido MR, Pachón J, McConnell MJ. Phenotypic changes associated with Colistin resistance due to Lipopolysaccharide loss in Acinetobacter baumannii. Virulence 2018; 9:930-942. [PMID: 29638177 PMCID: PMC5955468 DOI: 10.1080/21505594.2018.1460187] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii can acquire resistance to colistin via complete loss of lipopolysaccharide (LPS) biosynthesis due to mutations in the lpxA, lpxC and lpxD genes. However, although colistin is increasingly being used for the treatment of multidrug resistant infections, very few A. baumannii clinical isolates develop colistin resistance through loss of LPS biosynthesis. This may suggest that LPS loss affects virulence traits that play a role in the transmission and pathogenesis of A. baumannii. In this study we characterize multiple virulence phenotypes of colistin resistant, LPS-deficient derivatives of the ATCC 19606 strain and five multidrug resistant clinical isolates and their colistin resistant, LPS-deficient derivatives. Our results indicate that LPS loss results in growth defects compared to the parental strain in vitro both in laboratory media and human serum (competition indices of 0.58 and 7.0 × 10−7, respectively) and reduced ability to grow and disseminate in vivo (competition index 6.7 × 10−8). Infection with the LPS-deficient strain resulted in lower serum levels of pro-inflammatory cytokines TNF-α and IL-6 compared to the parent strain, and was less virulent in a mouse model of disseminated sepsis. LPS loss also significantly affected biofilm production, surface motility, growth under iron limitation and susceptibility to multiple disinfectants used in the clinical setting. These results demonstrate that LPS loss has a significant effect on multiple virulence traits, and may provide insight into the low incidence of colistin resistant strains lacking LPS that have been reported in the clinical setting.
Collapse
Affiliation(s)
- Marta Carretero-Ledesma
- a Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine; Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC /University of Seville , Seville , Spain
| | - Meritxell García-Quintanilla
- a Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine; Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC /University of Seville , Seville , Spain
| | - Reyes Martín-Peña
- a Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine; Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC /University of Seville , Seville , Spain
| | - Marina R Pulido
- a Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine; Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC /University of Seville , Seville , Spain
| | - Jerónimo Pachón
- a Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine; Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC /University of Seville , Seville , Spain.,b Department of Medicine , University of Seville , Seville , Spain
| | - Michael J McConnell
- a Clinical Unit of Infectious Diseases, Clinical Microbiology and Preventive Medicine; Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC /University of Seville , Seville , Spain
| |
Collapse
|
28
|
Emergence of High-Level Colistin Resistance in an Acinetobacter baumannii Clinical Isolate Mediated by Inactivation of the Global Regulator H-NS. Antimicrob Agents Chemother 2018; 62:AAC.02442-17. [PMID: 29712662 DOI: 10.1128/aac.02442-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
Colistin is a crucial last-line drug used for the treatment of life-threatening infections caused by multidrug-resistant strains of the Gram-negative bacterium Acinetobacter baumannii However, colistin-resistant A. baumannii isolates can still be isolated following failed colistin therapy. Resistance is most often mediated by the addition of phosphoethanolamine (pEtN) to lipid A by PmrC, following missense mutations in the pmrCAB operon encoding PmrC and the two-component signal transduction system PmrA/PmrB. We recovered a pair of A. baumannii isolates from a single patient before (6009-1) and after (6009-2) failed colistin treatment. These strains displayed low and very high levels of colistin resistance (MICs, 8 to 16 μg/ml and 128 μg/ml), respectively. To understand how increased colistin resistance arose, we sequenced the genome of each isolate, which revealed that 6009-2 had an extra copy of the insertion sequence element ISAba125 within a gene encoding an H-NS family transcriptional regulator. To confirm the role of H-NS in colistin resistance, we generated an hns deletion mutant in 6009-1 and showed that colistin resistance increased upon the deletion of hns We also provided 6009-2 with an intact copy of hns and showed that the strain was no longer resistant to high concentrations of colistin. Transcriptomic analysis of the clinical isolates identified more than 150 genes as being differentially expressed in the colistin-resistant hns mutant 6009-2. Importantly, the expression of eptA, encoding a second lipid A-specific pEtN transferase but not pmrC, was increased in the hns mutant. This is the first time an H-NS family transcriptional regulator has been associated with a pEtN transferase and colistin resistance.
Collapse
|
29
|
Alterations of Metabolic and Lipid Profiles in Polymyxin-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.02656-17. [PMID: 29632014 DOI: 10.1128/aac.02656-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa presents a global medical challenge, and polymyxins are a key last-resort therapeutic option. Unfortunately, polymyxin resistance in P. aeruginosa has been increasingly reported. The present study was designed to define metabolic differences between paired polymyxin-susceptible and -resistant P. aeruginosa strains using untargeted metabolomics and lipidomics analyses. The metabolomes of wild-type P. aeruginosa strain K ([PAK] polymyxin B MIC, 1 mg/liter) and its paired pmrB mutant strains, PAKpmrB6 and PAKpmrB12 (polymyxin B MICs of 16 mg/liter and 64 mg/liter, respectively) were characterized using liquid chromatography-mass spectrometry, and metabolic differences were identified through multivariate and univariate statistics. PAKpmrB6 and PAKpmrB12, which displayed lipid A modifications with 4-amino-4-deoxy-l-arabinose, showed significant perturbations in amino acid and carbohydrate metabolism, particularly the intermediate metabolites from 4-amino-4-deoxy-l-arabinose synthesis and the methionine salvage cycle pathways. The genomics result showed a premature termination (Y275stop) in speE (encoding spermidine synthase) in PAKpmrB6, and metabolomics data revealed a decreased intracellular level of spermidine in PAKpmrB6 compared to that in PAKpmrB12 Our results indicate that spermidine may play an important role in high-level polymyxin resistance in P. aeruginosa Interestingly, both pmrB mutants had decreased levels of phospholipids, fatty acids, and acyl-coenzyme A compared to those in the wild-type PAK. Moreover, the more resistant PAKpmrB12 mutant exhibited much lower levels of phospholipids than the PAKpmrB6 mutant, suggesting that the decreased phospholipid level was associated with polymyxin resistance. In summary, this study provides novel mechanistic information on polymyxin resistance in P. aeruginosa and highlights its impacts on bacterial metabolism.
Collapse
|
30
|
Zhu Y, Czauderna T, Zhao J, Klapperstueck M, Maifiah MHM, Han ML, Lu J, Sommer B, Velkov T, Lithgow T, Song J, Schreiber F, Li J. Genome-scale metabolic modeling of responses to polymyxins in Pseudomonas aeruginosa. Gigascience 2018; 7:4931736. [PMID: 29688451 PMCID: PMC6333913 DOI: 10.1093/gigascience/giy021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/19/2018] [Accepted: 02/22/2018] [Indexed: 01/06/2023] Open
Abstract
Background Pseudomonas aeruginosa often causes multidrug-resistant infections in immunocompromised patients, and polymyxins are often used as the last-line therapy. Alarmingly, resistance to polymyxins has been increasingly reported worldwide recently. To rescue this last-resort class of antibiotics, it is necessary to systematically understand how P. aeruginosa alters its metabolism in response to polymyxin treatment, thereby facilitating the development of effective therapies. To this end, a genome-scale metabolic model (GSMM) was used to analyze bacterial metabolic changes at the systems level. Findings A high-quality GSMM iPAO1 was constructed for P. aeruginosa PAO1 for antimicrobial pharmacological research. Model iPAO1 encompasses an additional periplasmic compartment and contains 3022 metabolites, 4265 reactions, and 1458 genes in total. Growth prediction on 190 carbon and 95 nitrogen sources achieved an accuracy of 89.1%, outperforming all reported P. aeruginosa models. Notably, prediction of the essential genes for growth achieved a high accuracy of 87.9%. Metabolic simulation showed that lipid A modifications associated with polymyxin resistance exert a limited impact on bacterial growth and metabolism but remarkably change the physiochemical properties of the outer membrane. Modeling with transcriptomics constraints revealed a broad range of metabolic responses to polymyxin treatment, including reduced biomass synthesis, upregulated amino acid catabolism, induced flux through the tricarboxylic acid cycle, and increased redox turnover. Conclusions Overall, iPAO1 represents the most comprehensive GSMM constructed to date for Pseudomonas. It provides a powerful systems pharmacology platform for the elucidation of complex killing mechanisms of antibiotics.
Collapse
Affiliation(s)
- Yan Zhu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Tobias Czauderna
- Faculty of Information Technology, Monash University, Melbourne 3800, Australia
| | - Jinxin Zhao
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | | | | | - Mei-Ling Han
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne 3052, Australia
| | - Jing Lu
- Monash Institute of Cognitive and Clinical Neurosciences, Department of Anatomy and development biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Björn Sommer
- Department of Computer and Information Science, University of Konstanz, Konstanz 78457, Germany
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne 3010, Australia
| | - Trevor Lithgow
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| | - Falk Schreiber
- Faculty of Information Technology, Monash University, Melbourne 3800, Australia
- Department of Computer and Information Science, University of Konstanz, Konstanz 78457, Germany
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|
31
|
Smith NM, Bulman ZP, Sieron AO, Bulitta JB, Holden PN, Nation RL, Li J, Wright GD, Tsuji BT. Pharmacodynamics of dose-escalated 'front-loading' polymyxin B regimens against polymyxin-resistant mcr-1-harbouring Escherichia coli. J Antimicrob Chemother 2018; 72:2297-2303. [PMID: 28505268 DOI: 10.1093/jac/dkx121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/24/2017] [Indexed: 01/09/2023] Open
Abstract
Objectives Gram-negative bacteria harbouring the mcr-1 plasmid are resistant to the 'last-line' polymyxins and have been reported worldwide. Our objective was to define the impact of increasing the initial polymyxin B dose intensity against an mcr-1 -harbouring strain to delineate the impact of plasmid-mediated polymyxin resistance on the dynamics of bacterial killing and resistance. Methods A hollow fibre infection model (HFIM) was used to simulate polymyxin B regimens against an mcr-1 -harbouring Escherichia coli (MIC 8 mg/L) over 10 days. Four escalating polymyxin B 'front-loading' regimens (3.33, 6.66, 13.3 or 26.6 mg/kg for one dose followed by 1.43 mg/kg every 12 h starting 12 h later) simulating human pharmacokinetics were utilized in the HFIM. A mechanism-based, mathematical model was developed using S-ADAPT to characterize bacterial killing. Results The 3.33 mg/kg 'front-loading' regimen resulted in regrowth mirroring the growth control. The 6.66, 13.3 and 26.6 mg/kg 'front-loading' regimens resulted in maximal bacterial reductions of 1.91, 3.79 and 6.14 log 10 cfu/mL, respectively. Irrespective of the early polymyxin B exposure (24 h AUC), population analysis profiles showed similar growth of polymyxin B-resistant subpopulations. The HFIM data were well described by the mechanism-based model integrating three subpopulations (susceptible, intermediate and resistant). Compared with the susceptible subpopulation of mcr-1 -harbouring E. coli , the resistant subpopulation had an approximately 10-fold lower rate of killing due to polymyxin B treatment. Conclusions Manipulating initial dose intensity of polymyxin B was not able to overcome plasmid-mediated resistance due to mcr-1 in E. coli . This reinforces the need to develop new combinatorial strategies to combat these highly resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Zackery P Bulman
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Arthur O Sieron
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| | - Jürgen B Bulitta
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Patricia N Holden
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Gerard D Wright
- Michael G. DeGroote Institute for Infectious Disease Research and the Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario, Canada
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,New York State Center of Excellence in Life Sciences and Bioinformatics, Buffalo, NY, USA
| |
Collapse
|
32
|
Lenhard JR, Thamlikitkul V, Silveira FP, Garonzik SM, Tao X, Forrest A, Soo Shin B, Kaye KS, Bulitta JB, Nation RL, Li J, Tsuji BT. Polymyxin-resistant, carbapenem-resistant Acinetobacter baumannii is eradicated by a triple combination of agents that lack individual activity. J Antimicrob Chemother 2018; 72:1415-1420. [PMID: 28333347 DOI: 10.1093/jac/dkx002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/29/2016] [Indexed: 12/13/2022] Open
Abstract
Objectives The emergence of polymyxin resistance threatens to leave clinicians with few options for combatting drug-resistant Acinetobacter baumannii . The objectives of the current investigation were to define the in vitro emergence of polymyxin resistance and identify a combination regimen capable of eradicating A. baumannii with no apparent drug susceptibilities. Methods Two clonally related, paired, A. baumannii isolates collected from a critically ill patient who developed colistin resistance while receiving colistin methanesulfonate in a clinical population pharmacokinetic study were evaluated: an A. baumannii isolate collected before (03-149.1, polymyxin-susceptible, MIC 0.5 mg/L) and an isolate collected after (03-149.2, polymyxin-resistant, MIC 32 mg/L, carbapenem-resistant, ampicillin/sulbactam-resistant). Using the patient's unique pharmacokinetics, the patient's actual regimen received in the clinic was recreated in a hollow-fibre infection model (HFIM) to track the emergence of polymyxin resistance against 03-149.1. A subsequent HFIM challenged the pan-resistant 03-149.2 isolate against polymyxin B, meropenem and ampicillin/sulbactam alone and in two-drug and three-drug combinations. Results Despite achieving colistin steady-state targets of an AUC 0-24 >60 mg·h/L and C avg of >2.5 mg/L, colistin population analysis profiles confirmed the clinical development of polymyxin resistance. During the simulation of the patient's colistin regimen in the HFIM, no killing was achieved in the HFIM and amplification of polymyxin resistance was observed by 96 h. Against the polymyxin-resistant isolate, the triple combination of polymyxin B, meropenem and ampicillin/sulbactam eradicated the A. baumannii by 96 h in the HFIM, whereas monotherapies and double combinations resulted in regrowth. Conclusions To combat polymyxin-resistant A. baumannii , the triple combination of polymyxin B, meropenem and ampicillin/sulbactam holds great promise.
Collapse
Affiliation(s)
- Justin R Lenhard
- Laboratory for Antimicrobial Dynamics, NYS Center of Excellence in Bioinformatics & Life Sciences and School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Fernanda P Silveira
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Samira M Garonzik
- Laboratory for Antimicrobial Dynamics, NYS Center of Excellence in Bioinformatics & Life Sciences and School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA
| | - Xun Tao
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Alan Forrest
- Laboratory for Antimicrobial Dynamics, NYS Center of Excellence in Bioinformatics & Life Sciences and School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, Korea
| | - Keith S Kaye
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jürgen B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Brian T Tsuji
- Laboratory for Antimicrobial Dynamics, NYS Center of Excellence in Bioinformatics & Life Sciences and School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA.,Veterans Administration Western New York Healthcare System, Buffalo, NY, USA
| |
Collapse
|
33
|
Ko KS, Choi Y, Lee JY. Old drug, new findings: colistin resistance and dependence of Acinetobacter baumannii. PRECISION AND FUTURE MEDICINE 2017. [DOI: 10.23838/pfm.2017.00184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
34
|
Interplay between Colistin Resistance, Virulence and Fitness in Acinetobacter baumannii. Antibiotics (Basel) 2017; 6:antibiotics6040028. [PMID: 29160808 PMCID: PMC5745471 DOI: 10.3390/antibiotics6040028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is an important opportunistic nosocomial pathogen often resistant to multiple antibiotics classes. Colistin, an “old” antibiotic, is now considered a last-line treatment option for extremely resistant isolates. In the meantime, resistance to colistin has been reported in clinical A. baumannii strains. Colistin is a cationic peptide that disrupts the outer membrane (OM) of Gram-negative bacteria. Colistin resistance is primarily due to post-translational modification or loss of the lipopolysaccharide (LPS) molecules inserted into the outer leaflet of the OM. LPS modification prevents the binding of polymyxin to the bacterial surface and may lead to alterations in bacterial virulence. Antimicrobial pressure drives the evolution of antimicrobial resistance and resistance is often associated with a reduced bacterial fitness. Therefore, the alterations in LPS may induce changes in the fitness of A. baumannii. However, compensatory mutations in clinical A. baumannii may ameliorate the cost of resistance and may play an important role in the dissemination of colistin-resistant A. baumannii isolates. The focus of this review is to summarize the colistin resistance mechanisms, and understand their impact on the fitness and virulence of bacteria and on the dissemination of colistin-resistant A. baumannii strains.
Collapse
|
35
|
Powers MJ, Trent MS. Expanding the paradigm for the outer membrane: Acinetobacter baumannii in the absence of endotoxin. Mol Microbiol 2017; 107:47-56. [PMID: 29114953 DOI: 10.1111/mmi.13872] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 12/30/2022]
Abstract
Asymmetry in the outer membrane has long defined the cell envelope of Gram-negative bacteria. This asymmetry, with lipopolysaccharide (LPS) or lipooligosaccharide (LOS) exclusively in the outer leaflet of the membrane, establishes an impermeable barrier that protects the cell from a number of stressors in the environment. Work done over the past 5 years has shown that Acinetobacter baumannii has the remarkable capability to survive with inactivated production of lipid A biosynthesis and the absence of LOS in its outer membrane. The implications of LOS-deficient A. baumannii are far-reaching - from impacts on cell envelope biogenesis and maintenance, bacterial physiology, antibiotic resistance and virulence. This review examines recent work that has contributed to our understanding of LOS-deficiency and compares it to studies done on Neisseria meningitidis and Moraxella catarrhalis; the two other organisms with this capability.
Collapse
Affiliation(s)
- Matthew Joseph Powers
- Department of Infectious Diseases, University of Georgia, 510 DW Brooks Drive, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, 510 DW Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
36
|
Transition of colistin dependence into colistin resistance in Acinetobacter baumannii. Sci Rep 2017; 7:14216. [PMID: 29079752 PMCID: PMC5660220 DOI: 10.1038/s41598-017-14609-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/10/2017] [Indexed: 12/05/2022] Open
Abstract
We recently demonstrated a high rate of colistin dependence in Acinetobacter baumannii isolates exposed to colistin in vitro. In the present study, we obtained a colistin-resistant (H08-391R) and colistin-dependent mutant (H08-391D) from a colistin-susceptible parental strain (H08-391). We found that the colistin-dependent mutant converted into a stable colistin-resistant mutant (H08-391D-R) in vitro after four serial passages without colistin. H08-391D and H08-391D-R were both found to harbor defective lipid A, as indicated by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry analysis. Additionally, both contained an ISAba1 insertion in lpxC, which encodes a lipid A biosynthetic enzyme. Further, membrane potential measurements using the fluorescent dye 3,3′-diethyloxacarbocyanine iodide (DiOC2[3]) showed that the membrane potential of H08-391D and H08-391D-R was significantly decreased as compared to that of the parental strain, H08-391. Moreover, these mutant strains exhibited increased susceptibilities to antibiotics other than colistin, which may be attributed to their outer membrane fragility. Such phenomena were identified in other A. baumannii strains (H06-855 and its derivatives). Taken together, our study reveals that the colistin-dependent phenotype is a transient phenotype that allows A. baumannii to survive under colistin pressure, and can transition to the extremely resistant phenotype, even in an antibiotic-free environment.
Collapse
|
37
|
Lopalco P, Stahl J, Annese C, Averhoff B, Corcelli A. Identification of unique cardiolipin and monolysocardiolipin species in Acinetobacter baumannii. Sci Rep 2017; 7:2972. [PMID: 28592862 PMCID: PMC5462836 DOI: 10.1038/s41598-017-03214-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/20/2017] [Indexed: 01/05/2023] Open
Abstract
Acidic glycerophospholipids play an important role in determining the resistance of Gram-negative bacteria to stress conditions and antibiotics. Acinetobacter baumannii, an opportunistic human pathogen which is responsible for an increasing number of nosocomial infections, exhibits broad antibiotic resistances. Here lipids of A. baumannii have been analyzed by combined MALDI-TOF/MS and TLC analyses; in addition GC-MS analyses of fatty acid methyl esters released by methanolysis of membrane phospholipids have been performed. The main glycerophospholipids are phosphatidylethanolamine, phosphatidylglycerol, acyl-phosphatidylglycerol and cardiolipin together with monolysocardiolipin, a lysophospholipid only rarely detected in bacterial membranes. The major acyl chains in the phospholipids are C16:0 and C18:1, plus minor amounts of short chain fatty acids. The structures of the cardiolipin and monolysocardiolipin have been elucidated by post source decay mass spectrometry analysis. A large variety of cardiolipin and monolysocardiolipin species were found in A. baumannii. Similar lysocardiolipin levels were found in the two clinical strains A. baumannii ATCC19606T and AYE whereas in the nonpathogenic strain Acinetobacter baylyi ADP1 lysocardiolipin levels were highly reduced.
Collapse
Affiliation(s)
- Patrizia Lopalco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Julia Stahl
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Cosimo Annese
- Italian National Council for Research - Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Bari, Italy
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy. .,Italian National Council for Research - Institute for Chemical-Physical Processes (CNR- IPCF), Bari, Italy.
| |
Collapse
|
38
|
Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii. Sci Rep 2017; 7:45527. [PMID: 28358014 PMCID: PMC5371981 DOI: 10.1038/srep45527] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Combination therapy is deployed for the treatment of multidrug-resistant Acinetobacter baumannii, as it can rapidly develop resistance to current antibiotics. This is the first study to investigate the synergistic effect of colistin/doripenem combination on the metabolome of A. baumannii. The metabolite levels were measured using LC-MS following treatment with colistin (2 mg/L) or doripenem (25 mg/L) alone, and their combination at 15 min, 1 hr and 4 hr (n = 4). Colistin caused early (15 min and 1 hr) disruption of the bacterial outer membrane and cell wall, as demonstrated by perturbation of glycerophospholipids and fatty acids. Concentrations of peptidoglycan biosynthesis metabolites decreased at 4 hr by doripenem alone, reflecting its mechanism of action. The combination induced significant changes to more key metabolic pathways relative to either monotherapy. Down-regulation of cell wall biosynthesis (via D-sedoheptulose 7-phosphate) and nucleotide metabolism (via D-ribose 5-phosphate) was associated with perturbations in the pentose phosphate pathway induced initially by colistin (15 min and 1 hr) and later by doripenem (4 hr). We discovered that the combination synergistically killed A. baumannii via time-dependent inhibition of different key metabolic pathways. Our study highlights the significant potential of systems pharmacology in elucidating the mechanism of synergy and optimizing antibiotic pharmacokinetics/pharmacodynamics.
Collapse
|
39
|
A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proc Natl Acad Sci U S A 2016; 113:E6228-E6237. [PMID: 27681618 DOI: 10.1073/pnas.1611594113] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Gram-negative bacterial outer membrane fortifies the cell against environmental toxins including antibiotics. Unique glycolipids called lipopolysaccharide/lipooligosaccharide (LPS/LOS) are enriched in the cell-surface monolayer of the outer membrane and promote antimicrobial resistance. Colistin, which targets the lipid A domain of LPS/LOS to lyse the cell, is the last-line treatment for multidrug-resistant Gram-negative infections. Lipid A is essential for the survival of most Gram-negative bacteria, but colistin-resistant Acinetobacter baumannii lacking lipid A were isolated after colistin exposure. Previously, strain ATCC 19606 was the only A. baumannii strain demonstrated to subsist without lipid A. Here, we show that other A. baumannii strains can also survive without lipid A, but some cannot, affording a unique model to study endotoxin essentiality. We assessed the capacity of 15 clinical A. baumannii isolates including 9 recent clinical isolates to develop colistin resistance through inactivation of the lipid A biosynthetic pathway, the products of which assemble the LOS precursor. Our investigation determined that expression of the well-conserved penicillin-binding protein (PBP) 1A, prevented LOS-deficient colony isolation. The glycosyltransferase activity of PBP1A, which aids in the polymerization of the peptidoglycan cell wall, was lethal to LOS-deficient A. baumannii Global transcriptomic analysis of a PBP1A-deficient mutant and four LOS-deficient A. baumannii strains showed a concomitant increase in transcription of lipoproteins and their transporters. Examination of the LOS-deficient A. baumannii cell surface demonstrated that specific lipoproteins were overexpressed and decorated the cell surface, potentially compensating for LOS removal. This work expands our knowledge of lipid A essentiality and elucidates a drug resistance mechanism.
Collapse
|
40
|
Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents 2016; 48:583-591. [PMID: 27524102 DOI: 10.1016/j.ijantimicag.2016.06.023] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Colistin, also referred to as polymyxin E, is an effective antibiotic against most multidrug-resistant Gram-negative bacteria and is currently used as a last-line drug for treating severe bacterial infections. Colistin resistance has increased gradually for the last few years, and knowledge of its multifaceted mechanisms is expanding. This includes the newly discovered plasmid-mediated colistin resistance gene mcr-1, which has been detected in over 20 countries within 3 months of its first report. We previously reported all of the known mechanisms of polymyxin resistance in our first review in 2014, but an update seems necessary in 2016, considering the significant recent discoveries that have been made in this domain. This review provides an update about what is already known, what is new, and some unresolved questions with respect to colistin resistance.
Collapse
Affiliation(s)
- Sophie Baron
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Linda Hadjadj
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| | - Abiola Olumuyiwa Olaitan
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
41
|
Lee MY, Singh D, Kim SH, Lee SJ, Lee CH. Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng. Molecules 2016; 21:E816. [PMID: 27338333 PMCID: PMC6273588 DOI: 10.3390/molecules21060816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 12/14/2022] Open
Abstract
Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples.
Collapse
Affiliation(s)
- Mee Youn Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Sung Han Kim
- Nutrex Technology Co., Seongnam, Gyeonggi-do 13494, Korea.
| | - Sang Jun Lee
- Holistic Bio Co., Seongnam, Gyeonggi-do 13494, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|