1
|
Crane AH, Baldry CJ, Rankin KE, Clarkin CE, Williams KA, Gostling NJ. The three-dimensional structure of medullary bone: Novel criteria for the identification of avian sex-specific bone tissue. Dev Biol 2025; 521:108-121. [PMID: 39938771 DOI: 10.1016/j.ydbio.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/09/2024] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Medullary bone is a fast-growing, ephemeral bone tissue found inside the bone cavities of female birds. Identifying this tissue in the bones of fossil avian and non-avian dinosaurs has the potential to determine which specimens represent reproductively mature females. However, difficulties in distinguishing medullary bone from superficially similar bone pathologies has led to uncertainty as to whether some specimens previously thought to contain medullary bone instead represent sick or injured individuals. The most frequently mentioned of these pathologies is avian osteopetrosis, a virally-induced condition in birds causing bony lesions which can resemble medullary bone. Lists of criteria, primarily using two-dimensional osteohistology, have yet to form a comprehensive framework through which all medullary bone can be positively identified, and all pathology excluded. Here, we use high-resolution computed tomography (μCT) to characterise the three-dimensional structure of medullary bone in modern birds for the first time and make comparisons to the endosteal lesions of avian osteopetrosis. We identify both qualitative and quantitative features which we suggest to be characteristic of medullary bone, including connectivity density and osteocyte lacunar orientation, and highlight conspicuously variable features which require further investigation. We find several three-dimensional which can be used to differentiate between medullary bone and avian osteopetrosis, including structural anisotropy and trabecular thickness. These three-dimensional characters can be added to the growing framework of criteria to identify medullary bone in the fossil record and thus help determine the sex of dinosaurs.
Collapse
Affiliation(s)
- Abi H Crane
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK; School of Ocean and Earth Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Claudia J Baldry
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Kathryn E Rankin
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Claire E Clarkin
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK
| | - Katherine A Williams
- School of the Environment and Life Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK.
| | - Neil J Gostling
- School of Biological Sciences, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton, UK.
| |
Collapse
|
2
|
Bertozzo F, Stein K, Varotto E, Galassi FM, Ruffell A, Murphy E. Histological analysis and etiology of a pathological iguanodontian femur from England. J Anat 2024; 245:490-500. [PMID: 38726991 PMCID: PMC11306762 DOI: 10.1111/joa.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 08/09/2024] Open
Abstract
Derived ornithopods, such as hadrosaurids, show a high occurrence of fossilized lesions and diseases. However, paleopathologies in iguanodontians seem to be less common, considering the rich fossil record of these taxa in Europe, in particular in Belgium, Britain and Spain. Here, we describe an iguanodontian femur discovered in England that exhibits a large overgrowth of its lateral aspect, not previously recognized in any other similar remains. The specimen was scanned with micro-computed tomography (microCT) and later sectioned in three sites of the overgrowth for histological analysis. The femur belongs to an early adult Iguanodontia indet., based on the presence of a woven parallel fibered complex in the outer cortex and three to four lines of arrested growth. Internal analysis of the dome-like overgrowth suggests it can be diagnosed as a fracture callus. The injury might have negatively impacted upon the animal's locomotion as the trauma had occurred in the region above the knee, a crucial spot for hindlimb musculature. Finally, a cancellous medullary bone-like tissue was recognized in the medullary cavity next to the pathological overgrowth. An attempt was made to determine the precise nature of this tissue, as medullary bone is linked with the ovulation period in (avian) dinosaurs, whereas other types of endosteal, medullary bone-like tissue have previously been recognized in pathological bones.
Collapse
Affiliation(s)
- Filippo Bertozzo
- Operational Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Sociedade de Historia Natural, Torres Vedras, Portugal
| | - Koen Stein
- Vrije Universiteit Brussel, Brussels, Belgium
| | - Elena Varotto
- Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Adelaide, South Australia, Australia
- FAPAB Research Center, Avola (SR), Sicily, Italy
| | - Francesco M Galassi
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Alastair Ruffell
- School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Eileen Murphy
- School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
3
|
Schweitzer MH. Paleontology in the 21st Century. BIOLOGY 2023; 12:biology12030487. [PMID: 36979178 PMCID: PMC10045828 DOI: 10.3390/biology12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
For much of its 300+ year history, "modern" paleontology has been a descriptive science, firmly housed within geological sciences [...].
Collapse
Affiliation(s)
- Mary H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Geology, Lund University, 223 62 Lund, Sweden
- Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
4
|
D'Emic MD, O'Connor PM, Sombathy RS, Cerda I, Pascucci TR, Varricchio D, Pol D, Dave A, Coria RA, Curry Rogers KA. Developmental strategies underlying gigantism and miniaturization in non-avialan theropod dinosaurs. Science 2023; 379:811-814. [PMID: 36821658 DOI: 10.1126/science.adc8714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In amniotes, the predominant developmental strategy underlying body size evolution is thought to be adjustments to the rate of growth rather than its duration. However, most theoretical and experimental studies supporting this axiom focus on pairwise comparisons and/or lack an explicit phylogenetic framework. We present the first large-scale phylogenetic comparative analysis examining developmental strategies underlying the evolution of body size, focusing on non-avialan theropod dinosaurs. We reconstruct ancestral states of growth rate and body mass in a taxonomically rich dataset, finding that contrary to expectations, changes in the rate and duration of growth played nearly equal roles in the evolution of the vast body size disparity present in non-avialan theropods-and perhaps that of amniotes in general.
Collapse
Affiliation(s)
- Michael D D'Emic
- Department of Biology, Adelphi University, Garden City, NY, USA
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Patrick M O'Connor
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH, USA
| | - Riley S Sombathy
- Department of Biology, Adelphi University, Garden City, NY, USA
- Ohio Center for Ecological and Evolutionary Studies, Ohio University, Athens, OH, USA
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Ignacio Cerda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, República Argentina
- Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Museo Carlos Ameghino, Cipolletti, Río Negro, Argentina
| | | | - David Varricchio
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Diego Pol
- CONICET-Museo Paleontológico Egidio Feruglio, Trelew, Chubut, Argentina
| | - Anjali Dave
- Department of Biology, Adelphi University, Garden City, NY, USA
| | | | | |
Collapse
|
5
|
Anné J, Canoville A, Edwards NP, Schweitzer MH, Zanno LE. Independent Evidence for the Preservation of Endogenous Bone Biochemistry in a Specimen of Tyrannosaurus rex. BIOLOGY 2023; 12:biology12020264. [PMID: 36829540 PMCID: PMC9953530 DOI: 10.3390/biology12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Biomolecules preserved in deep time have potential to shed light on major evolutionary questions, driving the search for new and more rigorous methods to detect them. Despite the increasing body of evidence from a wide variety of new, high resolution/high sensitivity analytical techniques, this research is commonly met with skepticism, as the long standing dogma persists that such preservation in very deep time (>1 Ma) is unlikely. The Late Cretaceous dinosaur Tyrannosaurus rex (MOR 1125) has been shown, through multiple biochemical studies, to preserve original bone chemistry. Here, we provide additional, independent support that deep time bimolecular preservation is possible. We use synchrotron X-ray fluorescence imaging (XRF) and X-ray absorption spectroscopy (XAS) to investigate a section from the femur of this dinosaur, and demonstrate preservation of elements (S, Ca, and Zn) associated with bone remodeling and redeposition. We then compare these data to the bone of an extant dinosaur (bird), as well as a second non-avian dinosaur, Tenontosaurus tilletti (OMNH 34784) that did not preserve any sign of original biochemistry. Our data indicate that MOR 1125 bone cortices have similar bone elemental distributions to that of an extant bird, which supports preservation of original endogenous chemistry in this specimen.
Collapse
Affiliation(s)
- Jennifer Anné
- The Children’s Museum of Indianapolis, Indianapolis, IN 46208, USA
- Correspondence:
| | | | - Nicholas P. Edwards
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mary H. Schweitzer
- Department of Biological Sciences, Campus Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- Paleontology, North Carolina Museum of Natural Sciences, 11 W. Jones St., Raleigh, NC 27601, USA
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Lindsay E. Zanno
- Department of Biological Sciences, Campus Box 7617, North Carolina State University, Raleigh, NC 27695, USA
- Paleontology, North Carolina Museum of Natural Sciences, 11 W. Jones St., Raleigh, NC 27601, USA
| |
Collapse
|
6
|
Gallagher WB. An unusual theropod specimen from the late Maastrichtian of New Jersey. Anat Rec (Hoboken) 2022. [DOI: 10.1002/ar.25114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022]
Affiliation(s)
- William B. Gallagher
- Department of Geological, Environmental and Marine Sciences Rider University Lawrenceville New Jersey USA
| |
Collapse
|
7
|
The Tyrant Lizard King, Queen and Emperor: Multiple Lines of Morphological and Stratigraphic Evidence Support Subtle Evolution and Probable Speciation Within the North American Genus Tyrannosaurus. Evol Biol 2022. [DOI: 10.1007/s11692-022-09561-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Heck CT, Woodward HN. Intraskeletal bone growth patterns in the North Island Brown Kiwi (Apteryx mantelli): Growth mark discrepancy and implications for extinct taxa. J Anat 2021; 239:1075-1095. [PMID: 34258760 PMCID: PMC8546512 DOI: 10.1111/joa.13503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Osteohistology, the study of bone microstructure, provides an important avenue for assessing extinct and extant vertebrate growth and life history. Cortical vascularity and collagen fibre organization are direct reflections of growth rate, while bone growth marks are indicative of absolute age. However, each skeletal element has its own ontogenetic trajectory and microstructure of certain bones may not be a true representation of whole body growth. Extensive comparative study of modern taxa is required to resolve intraskeletal discrepancies among age, vascularity and tissue organization in extinct vertebrates. Despite their comparative utility, studies of bone microstructure in modern taxa are severely lacking. Here, we add to a growing comparative osteohistological database by describing (1) bone tissue organization, (2) growth mark count, (3) sexually dimorphic bone (e.g. medullary bone) and (4) secondary cortical reconstruction in the bone microstructure of a 14-year-old male and 5-year-old female North Island Brown Kiwi (Apteryx mantelli). Transverse and longitudinal histological ground sections were processed and described for femora, tibiotarsi, tarsometatarsi, humeri, ulnae and radii in both kiwis. Cortical bone can generally be described as parallel-fibered tissue, interrupted by cyclical growth marks, with vascular canals oriented longitudinally within primary and secondary osteons. Tissue morphologically resembling medullary bone is present in the hindlimbs of the female, and coarse compacted cancellous bone (CCCB) is found sporadically in the male and female hindlimbs. Lines of arrested growth (LAGs) are present in all hindlimb bones of both kiwi, but remodelling has obliterated all LAGs in the male ulnae and radii. LAG count varies intraskeletally, but large weight bearing elements such as femora and tibiotarsi have less remodelling and, thus, higher number of LAGs. LAG count did not match absolute age in any skeletal element; a maximum of seven LAGs are present in the male kiwi and a maximum of seven LAGs in the female kiwi. The tissue organization within the forelimbs and hindlimbs is reflective of the protracted growth strategy of the North Island Brown Kiwi and congruent with previous studies of the kiwi. LAGs were highly variable throughout the skeleton of the kiwi and a decoupling of age and LAG deposition is apparent from the male kiwi samples. Excess LAGs in the 5-year-old female kiwi may be a product of hatching, egg laying or captivity. Regardless, LAG count variation in the kiwi stresses the importance of intraskeletal sampling when assessing growth patterns of extinct taxa. An extensive ontogenetic sampling of kiwi is necessary for future investigations of bone growth patterns, CCCB formation, medullary bone and LAG deposition and obliteration in these elusive birds.
Collapse
Affiliation(s)
- Christian T. Heck
- Department of Biomedical SciencesOklahoma State University – Center for Health SciencesTulsaOKUSA
| | - Holly N. Woodward
- Department of Biomedical SciencesOklahoma State University – Center for Health SciencesTulsaOKUSA
| |
Collapse
|
9
|
Zheng X, Bailleul AM, Li Z, Wang X, Zhou Z. Nuclear preservation in the cartilage of the Jehol dinosaur Caudipteryx. Commun Biol 2021; 4:1125. [PMID: 34561538 PMCID: PMC8463611 DOI: 10.1038/s42003-021-02627-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Previous findings on dinosaur cartilage material from the Late Cretaceous of Montana suggested that cartilage is a vertebrate tissue with unique characteristics that favor nuclear preservation. Here, we analyze additional dinosaur cartilage in Caudipteryx (STM4-3) from the Early Cretaceous Jehol biota of Northeast China. The cartilage fragment is highly diagenetically altered when observed in ground-sections but shows exquisite preservation after demineralization. It reveals transparent, alumino-silicified chondrocytes and brown, ironized chondrocytes. The histochemical stain Hematoxylin and Eosin (that stains the nucleus and cytoplasm in extant cells) was applied to both the demineralized cartilage of Caudipteryx and that of a chicken. The two specimens reacted identically, and one dinosaur chondrocyte revealed a nucleus with fossilized threads of chromatin. This is the second example of fossilized chromatin threads in a vertebrate material. These data show that some of the original nuclear biochemistry is preserved in this dinosaur cartilage material and further support the hypothesis that cartilage is very prone to nuclear fossilization and a perfect candidate to further understand DNA preservation in deep time.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Alida M Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai dajie, Beijing, 100044, China.
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China.
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai dajie, Beijing, 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong, 273300, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai dajie, Beijing, 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
| |
Collapse
|
10
|
Canoville A, Zanno LE, Zheng W, Schweitzer MH. Keratan sulfate as a marker for medullary bone in fossil vertebrates. J Anat 2021; 238:1296-1311. [PMID: 33398875 PMCID: PMC8128763 DOI: 10.1111/joa.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022] Open
Abstract
The ability to determine the sex of extinct dinosaurs by examining the bones they leave behind would revolutionize our understanding of their paleobiology; however, to date, definitive sex-specific skeletal traits remain elusive or controversial. Although living dinosaurs (i.e., extant birds) exhibit a sex-specific tissue called medullary bone that is unique to females, the confident identification of this tissue in non-avian archosaurs has proven a challenge. Tracing the evolution of medullary bone is complicated by existing variation of medullary bone tissues in living species; hypotheses that medullary bone structure or chemistry varied during its evolution; and a lack of studies aimed at distinguishing medullary bone from other types of endosteal tissues with which it shares microstructural and developmental characteristics, such as pathological tissues. A recent study attempted to capitalize on the molecular signature of medullary bone, which, in living birds, contains specific markers such as the sulfated glycosaminoglycan keratan sulfate, to support the proposed identification of medullary bone of a non-avian dinosaur specimen (Tyrannosaurus rex MOR 1125). Purported medullary bone samples of MOR 1125 reacted positively to histochemical analyses and the single pathological control tested (avian osteopetrosis) did not, suggesting the presence of keratan sulfate might serve to definitively discriminate these tissues for future studies. To further test these results, we sampled 20 avian bone pathologies of various etiologies (18 species), and several MB samples. Our new data universally support keratan sulfate as a reliable marker of medullary bone in birds. However, we also find that reactivity varies among pathological bone tissues, with reactivity in some pathologies indistinguishable from MB. In the current sample, some pathologies comprised of chondroid bone (often a major constituent of skeletal pathologies and developing fracture calluses in vertebrates) contain keratan sulfate. We note that beyond chemistry, chondroid bone shares many characteristics with medullary bone (fibrous matrix, numerous and large cell lacunae, potential endosteal origin, trabecular architecture) and medullary bone has even been considered by some to be a type of chondroid bone. Our results suggest that the presence of keratan sulfate is not exclusive evidence for MB, but rather must be used as one in a suite of criteria available for identifying medullary bone (and thus gravid females) in non-avian dinosaur specimens. Future studies should investigate whether there are definite chemical or microstructural differences between medullary bone and reactive chondroid bone that can discriminate these tissues.
Collapse
Affiliation(s)
- Aurore Canoville
- PaleontologyNorth Carolina Museum of Natural SciencesRaleighNCUSA
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Lindsay E. Zanno
- PaleontologyNorth Carolina Museum of Natural SciencesRaleighNCUSA
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Wenxia Zheng
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Mary H. Schweitzer
- PaleontologyNorth Carolina Museum of Natural SciencesRaleighNCUSA
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
11
|
Bailleul AM, Lu J, Li Z. DiceCT applied to fossilized hard tissues: A preliminary case study using a miocene bird. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:364-375. [PMID: 33666331 DOI: 10.1002/jez.b.23037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/02/2021] [Accepted: 02/14/2021] [Indexed: 11/12/2022]
Abstract
Iodine-based contrasting agents for computed tomography (CT) have been used for decades in medicine. Agents like Lugol's iodine enhance the contrasts between soft tissues and mineralized (skeletal) tissues. Because a recent study on extant avian heads showed that iodine-ethanol (I2 E) is a better contrast enhancer overall than the standard Lugol's iodine, here, we tested if I2 E could also enhance the CT contrasts of two fossilized skeletal tissues: bone and calcified cartilage. For this, we used a partial ankle joint from an extinct pheasant from the Late Miocene of Northwest China (Linxia Basin). The pre-staining CT scans showed no microstructural details of the sample. After being immersed into a solution of 1% I2 E for 8 days and scanned a second time, the contrasts were drastically enhanced between the mineralized tissues (bony trabeculae and calcified cartilage) and the sediments and minerals inside vascular spaces. After three other staining-scanning cycles in 2%, 3%, and 6% I2 E solutions, the best contrasts were obtained after immersion in 6% I2 E for 7 days. Energy Dispersive Spectroscopy showed that iodine was preferentially absorbed by the mineralized tissues and the minerals in the vascular spaces, but not by the sediments. This method not only effectively increased the contrasts of two different fossilized skeletal tissues, it was also non-destructive and reversible because part of the fossil was successfully de-stained after a few days in pure ethanol. These preliminary results indicate that iodine-ethanol has the potential to be used widely in vertebrate paleontology to improve CT imaging of fossilized tissues.
Collapse
Affiliation(s)
- Alida M Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| |
Collapse
|
12
|
Saitta ET, Stockdale MT, Longrich NR, Bonhomme V, Benton MJ, Cuthill IC, Makovicky PJ. An effect size statistical framework for investigating sexual dimorphism in non-avian dinosaurs and other extinct taxa. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Despite reports of sexual dimorphism in extinct taxa, such claims in non-avian dinosaurs have been rare over the last decade and have often been criticized. Since dimorphism is widespread in sexually reproducing organisms today, under-reporting in the literature might suggest either methodological shortcomings or that this diverse group exhibited highly unusual reproductive biology. Univariate significance testing, especially for bimodality, is ineffective and prone to false negatives. Species recognition and mutual sexual selection hypotheses, therefore, may not be required to explain supposed absence of sexual dimorphism across the grade (a type II error). Instead, multiple lines of evidence support sexual selection and variation of structures consistent with secondary sexual characteristics, strongly suggesting sexual dimorphism in non-avian dinosaurs. We propose a framework for studying sexual dimorphism in fossils, focusing on likely secondary sexual traits and testing against all alternate hypotheses for variation in them using multiple lines of evidence. We use effect size statistics appropriate for low sample sizes, rather than significance testing, to analyse potential divergence of growth curves in traits and constrain estimates for dimorphism magnitude. In many cases, estimates of sexual variation can be reasonably accurate, and further developments in methods to improve sex assignments and account for intrasexual variation (e.g. mixture modelling) will improve accuracy. It is better to compare estimates for the magnitude of and support for dimorphism between datasets than to dichotomously reject or fail to reject monomorphism in a single species, enabling the study of sexual selection across phylogenies and time. We defend our approach with simulated and empirical data, including dinosaur data, showing that even simple approaches can yield fairly accurate estimates of sexual variation in many cases, allowing for comparison of species with high and low support for sexual variation.
Collapse
Affiliation(s)
- Evan T Saitta
- Life Sciences Section, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | | | - Nicholas R Longrich
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Vincent Bonhomme
- Institut des sciences de l’évolution, Université de Montpellier, Montpellier, France
| | | | - Innes C Cuthill
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Peter J Makovicky
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Wang M, O’Connor JK, Bailleul AM, Li Z. Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird. Natl Sci Rev 2020; 7:1068-1078. [PMID: 34692126 PMCID: PMC8289052 DOI: 10.1093/nsr/nwz214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/24/2022] Open
Abstract
Living birds are unique among vertebrates in the formation of a female-specific bone tissue called medullary bone (MB) that is strictly associated with reproductive activity. MB is a rapidly mobilized source of calcium and phosphorus for the production of eggshell. Among living taxa, its skeletal distribution can be highly extensive such that it even exists in the ribs of some species. Due to its ephemeral nature, MB is rarely fossilized and so little is understood with regard to the origin of MB and its skeletal distribution in early taxa. Here we describe a new Early Cretaceous enantiornithine bird, Mirusavis parvus, gen. et. sp. nov., indicating that skeleton-wide distribution of MB appeared early in avian evolution. We suggest that this represents the plesiomorphic condition for the Aves and that the distribution of MB observed among extant neornithines is a product of increased pneumatization in this lineage and natural selection for more efficient distribution of MB.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Jingmai K O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Alida M Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| |
Collapse
|
14
|
Canoville A, Schweitzer MH, Zanno L. Identifying medullary bone in extinct avemetatarsalians: challenges, implications and perspectives. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190133. [PMID: 31928189 DOI: 10.1098/rstb.2019.0133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medullary bone (MB) is a sex-specific tissue produced by female birds during the laying cycle, and it is hypothesized to have arisen within Avemetatarsalia, possibly outside Avialae. Over the years, researchers have attempted to define a set of criteria from which to evaluate the nature of purported MB-like tissues recovered from fossil specimens. However, we argue that the prevalence, microstructural and chemical variability of MB in Neornithes is, as of yet, incompletely known and thus current diagnoses of MB do not capture the extent of variability that exists in modern birds. Based on recently published data and our own observations of MB distribution and structure using computed tomography and histochemistry, we attempt to advance the discourse on identifying MB in fossil specimens. We propose: (i) new insights into the phylogenetic breadth and structural diversity of MB within extant birds; (ii) a reevaluation and refinement of the most recently published list of criteria suggested for confidently identifying MB in the fossil record; (iii) reconsideration of some prior identifications of MB-like tissues in fossil specimens by taking into account the newly acquired data; and (iv) discussions on the challenges of characterizing MB in Neornithes with the goal of improving its diagnosis in extinct avemetatarsalians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Aurore Canoville
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mary H Schweitzer
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Museum of the Rockies, Montana State University, Bozeman, MT 59717, USA.,Department of Geology, Lund University, 223 62 Lund, Sweden
| | - Lindsay Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Bailleul AM, Zheng W, Horner JR, Hall BK, Holliday CM, Schweitzer MH. Evidence of proteins, chromosomes and chemical markers of DNA in exceptionally preserved dinosaur cartilage. Natl Sci Rev 2020; 7:815-822. [PMID: 34692099 PMCID: PMC8289162 DOI: 10.1093/nsr/nwz206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023] Open
Abstract
A histological ground-section from a duck-billed dinosaur nestling (Hypacrosaurus stebingeri) revealed microstructures morphologically consistent with nuclei and chromosomes in cells within calcified cartilage. We hypothesized that this exceptional cellular preservation extended to the molecular level and had molecular features in common with extant avian cartilage. Histochemical and immunological evidence supports in situ preservation of extracellular matrix components found in extant cartilage, including glycosaminoglycans and collagen type II. Furthermore, isolated Hypacrosaurus chondrocytes react positively with two DNA intercalating stains. Specific DNA staining is only observed inside the isolated cells, suggesting endogenous nuclear material survived fossilization. Our data support the hypothesis that calcified cartilage is preserved at the molecular level in this Mesozoic material, and suggest that remnants of once-living chondrocytes, including their DNA, may preserve for millions of years.
Collapse
Affiliation(s)
- Alida M Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Wenxia Zheng
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John R Horner
- Honors Program, Chapman University, Orange, CA 92866, USA
| | - Brian K Hall
- Department of Biology, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mary H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Geology, University of Lund, 22362, Sweden
| |
Collapse
|
16
|
Woodward HN, Tremaine K, Williams SA, Zanno LE, Horner JR, Myhrvold N. Growing up Tyrannosaurus rex: Osteohistology refutes the pygmy " Nanotyrannus" and supports ontogenetic niche partitioning in juvenile Tyrannosaurus. SCIENCE ADVANCES 2020; 6:eaax6250. [PMID: 31911944 PMCID: PMC6938697 DOI: 10.1126/sciadv.aax6250] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Despite its iconic status as the king of dinosaurs, Tyrannosaurus rex biology is incompletely understood. Here, we examine femur and tibia bone microstructure from two half-grown T. rex specimens, permitting the assessments of age, growth rate, and maturity necessary for investigating the early life history of this giant theropod. Osteohistology reveals these were immature individuals 13 to 15 years of age, exhibiting growth rates similar to extant birds and mammals, and that annual growth was dependent on resource abundance. Together, our results support the synonomization of "Nanotyrannus" into Tyrannosaurus and fail to support the hypothesized presence of a sympatric tyrannosaurid species of markedly smaller adult body size. Our independent data contribute to mounting evidence for a rapid shift in body size associated with ontogenetic niche partitioning late in T. rex ontogeny and suggest that this species singularly exploited mid- to large-sized theropod niches at the end of the Cretaceous.
Collapse
Affiliation(s)
- Holly N. Woodward
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, 1111 W. 17th St., Tulsa, OK 74104, USA
| | - Katie Tremaine
- Department of Earth Science, Montana State University, P.O. Box 173480, Bozeman, MT 59717, USA
- Museum of the Rockies, Montana State University, 600 W. Kagy Blvd., Bozeman, MT 59717, USA
| | - Scott A. Williams
- Museum of the Rockies, Montana State University, 600 W. Kagy Blvd., Bozeman, MT 59717, USA
| | - Lindsay E. Zanno
- Paleontology, North Carolina Museum of Natural Sciences, 11 W. Jones St., Raleigh, NC 27601, USA
- Department of Biological Sciences, North Carolina State University, 3510 Thomas Hall, Campus Box 7614, Raleigh, NC 2769, USA
| | - John R. Horner
- Chapman University, 1 University Dr., Orange, CA 92866, USA
| | - Nathan Myhrvold
- Intellectual Ventures, 3150 139th Avenue Southeast, Bellevue, WA 98005, USA
| |
Collapse
|
17
|
Bailleul AM, O’Connor J, Schweitzer MH. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ 2019; 7:e7764. [PMID: 31579624 PMCID: PMC6768056 DOI: 10.7717/peerj.7764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
In the mid-19th century, the discovery that bone microstructure in fossils could be preserved with fidelity provided a new avenue for understanding the evolution, function, and physiology of long extinct organisms. This resulted in the establishment of paleohistology as a subdiscipline of vertebrate paleontology, which has contributed greatly to our current understanding of dinosaurs as living organisms. Dinosaurs are part of a larger group of reptiles, the Archosauria, of which there are only two surviving lineages, crocodilians and birds. The goal of this review is to document progress in the field of archosaur paleohistology, focusing in particular on the Dinosauria. We briefly review the "growth age" of dinosaur histology, which has encompassed new and varied directions since its emergence in the 1950s, resulting in a shift in the scientific perception of non-avian dinosaurs from "sluggish" reptiles to fast-growing animals with relatively high metabolic rates. However, fundamental changes in growth occurred within the sister clade Aves, and we discuss this major evolutionary transition as elucidated by histology. We then review recent innovations in the field, demonstrating how paleohistology has changed and expanded to address a diversity of non-growth related questions. For example, dinosaur skull histology has elucidated the formation of curious cranial tissues (e.g., "metaplastic" tissues), and helped to clarify the evolution and function of oral adaptations, such as the dental batteries of duck-billed dinosaurs. Lastly, we discuss the development of novel techniques with which to investigate not only the skeletal tissues of dinosaurs, but also less-studied soft-tissues, through molecular paleontology and paleohistochemistry-recently developed branches of paleohistology-and the future potential of these methods to further explore fossilized tissues. We suggest that the combination of histological and molecular methods holds great potential for examining the preserved tissues of dinosaurs, basal birds, and their extant relatives. This review demonstrates the importance of traditional bone paleohistology, but also highlights the need for innovation and new analytical directions to improve and broaden the utility of paleohistology, in the pursuit of more diverse, highly specific, and sensitive methods with which to further investigate important paleontological questions.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Jingmai O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Mary H. Schweitzer
- Department of Biology, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Science, Raleigh, NC, USA
- Department of Geology, Lund University, Lund, Sweden
- Museum of the Rockies, Montana State University, Bozeman, MT, USA
| |
Collapse
|
18
|
Schweitzer MH, Schroeter ER, Cleland TP, Zheng W. Paleoproteomics of Mesozoic Dinosaurs and Other Mesozoic Fossils. Proteomics 2019; 19:e1800251. [PMID: 31172628 DOI: 10.1002/pmic.201800251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Molecular studies have contributed greatly to our understanding of evolutionary processes that act upon virtually every aspect of living organisms. However, these studies are limited with regard to extinct organisms, particularly those from the Mesozoic because fossils pose unique challenges to molecular workflows, and because prevailing wisdom suggests no endogenous molecular components can persist into deep time. Here, the power and potential of a molecular approach to Mesozoic fossils is discussed. Molecular methods that have been applied to Mesozoic fossils-including iconic, non-avian dinosaurs- and the challenges inherent in such analyses, are compared and evaluated. Taphonomic processes resulting in the transition of living organisms from the biosphere into the fossil record are reviewed, and the possible effects of taphonomic alteration on downstream analyses that can be problematic for very old material (e.g., molecular modifications, limitations of on comparative databases) are addressed. Molecular studies applied to ancient remains are placed in historical context, and past and current studies are evaluated with respect to producing phylogenetically and/or evolutionarily significant data. Finally, some criteria for assessing the presence of endogenous biomolecules in very ancient fossil remains are suggested as a starting framework for such studies.
Collapse
Affiliation(s)
- Mary Higby Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, 27695, NC.,North Carolina Museum of Natural Sciences, Raleigh, NC.,Museum of the Rockies, Montana State University, Bozeman, MT.,Department of Geology, Lund University, Sölvegatan 12, SE-223 62, Lund, Sweden
| | - Elena R Schroeter
- Department of Biological Sciences, North Carolina State University, Raleigh, 27695, NC
| | - Timothy P Cleland
- Museum Conservation Institute, Smithsonian Institution, Suitland, 20746, MD
| | - Wenxia Zheng
- Department of Biological Sciences, North Carolina State University, Raleigh, 27695, NC
| |
Collapse
|
19
|
Saitta ET, Liang R, Lau MCY, Brown CM, Longrich NR, Kaye TG, Novak BJ, Salzberg SL, Norell MA, Abbott GD, Dickinson MR, Vinther J, Bull ID, Brooker RA, Martin P, Donohoe P, Knowles TDJ, Penkman KEH, Onstott T. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLife 2019; 8:e46205. [PMID: 31210129 PMCID: PMC6581507 DOI: 10.7554/elife.46205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/12/2019] [Indexed: 12/12/2022] Open
Abstract
Fossils were thought to lack original organic molecules, but chemical analyses show that some can survive. Dinosaur bone has been proposed to preserve collagen, osteocytes, and blood vessels. However, proteins and labile lipids are diagenetically unstable, and bone is a porous open system, allowing microbial/molecular flux. These 'soft tissues' have been reinterpreted as biofilms. Organic preservation versus contamination of dinosaur bone was examined by freshly excavating, with aseptic protocols, fossils and sedimentary matrix, and chemically/biologically analyzing them. Fossil 'soft tissues' differed from collagen chemically and structurally; while degradation would be expected, the patterns observed did not support this. 16S rRNA amplicon sequencing revealed that dinosaur bone hosted an abundant microbial community different from lesser abundant communities of surrounding sediment. Subsurface dinosaur bone is a relatively fertile habitat, attracting microbes that likely utilize inorganic nutrients and complicate identification of original organic material. There exists potential post-burial taphonomic roles for subsurface microorganisms.
Collapse
Affiliation(s)
- Evan T Saitta
- Integrative Research Center, Section of Earth SciencesField Museum of Natural HistoryChicagoUnited States
| | - Renxing Liang
- Department of GeosciencesPrinceton UniversityPrincetonUnited States
| | - Maggie CY Lau
- Department of GeosciencesPrinceton UniversityPrincetonUnited States
- Institute of Deep-Sea Science and EngineeringChinese Academy of SciencesSanyaChina
| | - Caleb M Brown
- Royal Tyrrell Museum of PalaeontologyDrumhellerCanada
| | - Nicholas R Longrich
- Department of Biology and BiochemistryUniversity of BathBathUnited Kingdom
- Milner Centre for EvolutionUniversity of BathBathUnited Kingdom
| | - Thomas G Kaye
- Foundation for Scientific AdvancementSierra VistaUnited States
| | - Ben J Novak
- Revive and RestoreSan FranciscoUnited States
| | - Steven L Salzberg
- Department of Biomedical Engineering, Center for Computational Biology, McKusick-Nathans Institute of Genetic MedicineJohns Hopkins UniversityBaltimoreUnited States
- Department of Computer Science, Center for Computational Biology, McKusick-Nathans Institute of Genetic MedicineJohns Hopkins UniversityBaltimoreUnited States
- Department of Biostatistics, Center for Computational Biology, McKusick-Nathans Institute of Genetic MedicineJohns Hopkins UniversityBaltimoreUnited States
| | - Mark A Norell
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkUnited States
| | - Geoffrey D Abbott
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | | | - Jakob Vinther
- School of Earth SciencesUniversity of BristolBristolUnited Kingdom
- School of Biological SciencesUniversity of BristolBristolUnited Kingdom
| | - Ian D Bull
- School of ChemistryUniversity of BristolBristolUnited Kingdom
| | | | - Peter Martin
- School of PhysicsUniversity of BristolBristolUnited Kingdom
| | - Paul Donohoe
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Timothy DJ Knowles
- School of ChemistryUniversity of BristolBristolUnited Kingdom
- School of ArtsUniversity of BristolBristolUnited Kingdom
| | | | - Tullis Onstott
- Department of GeosciencesPrinceton UniversityPrincetonUnited States
| |
Collapse
|
20
|
Fernández SR, Chárraga S, Ávila-Gonzalez E. Evaluation of a new generation phytase on phytate phosphorus release for egg production and tibia strength in hens fed a corn-soybean meal diet. Poult Sci 2019; 98:2087-2093. [PMID: 30590799 PMCID: PMC6448133 DOI: 10.3382/ps/pey558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
To test the effect of several inclusion levels of Citrobacter braakii phytase (CBP), on phytate P release, 420 50-wk-old-Bovans White hens were randomly allocated to 7 treatments with 5 replicates of 12 hens each. The experimental period lasted 12 weeks, first 8 for adaptation and last 4 for data collection. Feed and water were provided ad libitum. Treatments were: (1) a 0.12% basal corn-soybean meal diet deficient only in non-phytate P. Treatments 2 and 3 were added with constant increases of 0.11% inorganic P, to get a linear hen response to P addition. Treatments 4 to 7 were the addition of 300; 600; 1,200; and 1,800 phytase units (FYT)/kg to the basal diet. Variables analyzed were hen productive performance (HPP) and tibia resistance to fracture (TRF), and mineral content. Data were analyzed as a Complete Randomized Design (CRD). The results from treatments 1 to 3 were analyzed by a regression model to test for a significant linear response (P < 0.05). Then for every level of CBP added (treatments 4 to 7), the linear regression equation was solved to find out the equivalent value of released P. Based on hen health and welfare, the response variables that yielded realistic P equivalence values for the CBP levels used in the present trial were the tibia data. Following the significant (P < 0.001) linear response, the equations; TRF, kg (Y = 28.16X + 17.42 R2 = 0.84); Tibia Ca, % (Y = 11.6X + 14.2 R2 = 0.80); Tibia P, % (Y = 11.6X + 6.1 R2 = 0.81); and T ash, % (Y = 33.3X + 38.1 R2 = 0.80). Under the experimental conditions of this trial, the HPP variables were not a sensitive parameter to measure P release; whereas, tibia parameters showed the following average P release values per level of CBP inclusion in the corn- soybean meal diet; 300 FYT/kg = 0.099%, 600 FYT/kg = 0.141%, 1,200 FYT/kg = 0.182%, and 1,800 FYT/kg = 0.198%.
Collapse
Affiliation(s)
- S R Fernández
- DSM Nutritional Products México S.A. de C.V. km 22.5 Carretera Guadalajara El Salto, El Salto, Jalisco, 45680, México
| | - S Chárraga
- DSM Nutritional Products México S.A. de C.V. km 22.5 Carretera Guadalajara El Salto, El Salto, Jalisco, 45680, México
| | - E Ávila-Gonzalez
- Centro de Experimentación, Investigación y Extensión Avícola, FMVZ, Universidad Nacional Autónoma de México, Ciudad de México, 13209, México
| |
Collapse
|
21
|
An Early Cretaceous enantiornithine (Aves) preserving an unlaid egg and probable medullary bone. Nat Commun 2019; 10:1275. [PMID: 30894527 PMCID: PMC6426974 DOI: 10.1038/s41467-019-09259-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/01/2019] [Indexed: 11/09/2022] Open
Abstract
Understanding non-crown dinosaur reproduction is hindered by a paucity of directly associated adults with reproductive traces. Here we describe a new enantiornithine, Avimaia schweitzerae gen. et sp. nov., from the Lower Cretaceous Xiagou Formation with an unlaid egg two-dimensionally preserved within the abdominothoracic cavity. Ground-sections reveal abnormal eggshell proportions, and multiple eggshell layers best interpreted as a multi-layered egg resulting from prolonged oviductal retention. Fragments of the shell membrane and cuticle are both preserved. SEM reveals that the cuticle consists of nanostructures resembling those found in neornithine eggs adapted for infection-prone environments, which are hypothesized to represent the ancestral avian condition. The femur preserves small amounts of probable medullary bone, a tissue found today only in reproductively active female birds. To our knowledge, no other occurrence of Mesozoic medullary bone is associated with indications of reproductive activity, such as a preserved egg, making our identification unique, and strongly supported. The fossil record of the reproductive traits of early birds is limited. Here, Bailleul and colleagues describe the Cretaceous enantiornithine bird Avimaia schweitzerae, which preserves an unlaid egg in the abdominal cavity and putative medullary bone.
Collapse
|
22
|
Canoville A, Schweitzer MH, Zanno LE. Systemic distribution of medullary bone in the avian skeleton: ground truthing criteria for the identification of reproductive tissues in extinct Avemetatarsalia. BMC Evol Biol 2019; 19:71. [PMID: 30845911 PMCID: PMC6407237 DOI: 10.1186/s12862-019-1402-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/25/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Medullary bone (MB) is an estrogen-dependent, sex-specific tissue produced by female birds during lay and inferred to be present in extinct avemetatarsalians (bird-line archosaurs). Although preliminary studies suggest that MB can be deposited within most skeletal elements, these are restricted to commercial layers or hormonally treated male pigeons, which are poor analogues for wild birds. By contrast, studies in wild bird species noted the presence of MB almost exclusively within limb bones, spurring the misconception that MB deposition is largely restricted to these regions. These disparate claims have cast doubt on the nature of MB-like tissues observed in some extinct avemetatarsalians because of their "unusual" anatomical locations. Furthermore, previous work reported that MB deposition is related to blood supply and pneumatization patterns, yet these hypotheses have not been tested widely in birds. To document the skeletal distribution of MB across Neornithes, reassess previous hypotheses pertaining to its deposition/distribution patterns, and refine the set of criteria by which to evaluate the nature of purported MB tissue in extinct avemetatarsalians, we CT-scanned skeletons of 40 female birds (38 species) that died during the egg-laying cycle, recorded presence or absence of MB in 19 skeletal regions, and assessed pneumatization of stylopods. Selected elements were destructively analyzed to ascertain the chemical and histological nature of observed endosteal bone tissues in contentious skeletal regions. RESULTS Although its skeletal distribution varies interspecifically, we find MB to be a systemic tissue that can be deposited within virtually all skeletal regions, including cranial elements. We also provide evidence that the deposition of MB is dictated by skeletal distribution patterns of both pneumaticity and bone marrow; two factors linked to ecology (body size, foraging). Hence, skeletal distribution of MB can be extensive in small-bodied and diving birds, but more restricted in large-bodied species or efficient flyers. CONCLUSIONS Previously outlined anatomical locations of purported MB in extinct taxa are invalid criticisms against their potential reproductive nature. Moreover, the proposed homology of lung tissues between birds and some extinct avemetatarsalians permit us to derive a series of location-based predictions that can be used to critically evaluate MB-like tissues in fossil specimens.
Collapse
Affiliation(s)
- Aurore Canoville
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Mary H Schweitzer
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
23
|
Griffin CT, Bano LS, Turner AH, Smith ND, Irmis RB, Nesbitt SJ. Integrating gross morphology and bone histology to assess skeletal maturity in early dinosauromorphs: new insights from Dromomeron (Archosauria: Dinosauromorpha). PeerJ 2019; 7:e6331. [PMID: 30775169 PMCID: PMC6375289 DOI: 10.7717/peerj.6331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding growth patterns is central to properly interpreting paleobiological signals in tetrapods, but assessing skeletal maturity in some extinct clades may be difficult when growth patterns are poorly constrained by a lack of ontogenetic series. To overcome this difficulty in assessing the maturity of extinct archosaurian reptiles—crocodylians, birds and their extinct relatives—many studies employ bone histology to observe indicators of the developmental stage reached by a given individual. However, the relationship between gross morphological and histological indicators of maturity has not been examined in most archosaurian groups. In this study, we examined the gross morphology of a hypothesized growth series of Dromomeron romeri femora (96.6–144.4 mm long), the first series of a non-dinosauriform dinosauromorph available for such a study. We also histologically sampled several individuals in this growth series. Previous studies reported that D. romeri lacks well-developed rugose muscle scars that appear during ontogeny in closely related dinosauromorph taxa, so integrating gross morphology and histological signal is needed to determine reliable maturity indicators for early bird-line archosaurs. We found that, although there are small, linear scars indicating muscle attachment sites across the femur, the only rugose muscle scar that appears during ontogeny is the attachment of the M. caudofemoralis longus, and only in the largest-sampled individual. This individual is also the only femur with histological indicators that asymptotic size had been reached, although smaller individuals possess some signal of decreasing growth rates (e.g., decreasing vascular density). The overall femoral bone histology of D. romeri is similar to that of other early bird-line archosaurs (e.g., woven-bone tissue, moderately to well-vascularized, longitudinal vascular canals). All these data indicate that the lack of well-developed femoral scars is autapomorphic for this species, not simply an indication of skeletal immaturity. We found no evidence of the high intraspecific variation present in early dinosaurs and other dinosauriforms, but a limited sample size of other early bird-line archosaur growth series make this tentative. The evolutionary history and phylogenetic signal of gross morphological features must be considered when assessing maturity in extinct archosaurs and their close relatives, and in some groups corroboration with bone histology or with better-known morphological characters is necessary.
Collapse
Affiliation(s)
| | - Lauren S Bano
- Department of Biology, Virginia Tech, Blacksburg, VA, USA
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Nathan D Smith
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Randall B Irmis
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA.,Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
24
|
Cullen TM, Longstaffe FJ, Wortmann UG, Goodwin MB, Huang L, Evans DC. Stable isotopic characterization of a coastal floodplain forest community: a case study for isotopic reconstruction of Mesozoic vertebrate assemblages. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181210. [PMID: 30891263 PMCID: PMC6408390 DOI: 10.1098/rsos.181210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Stable isotopes are powerful tools for elucidating ecological trends in extant vertebrate communities, though their application to Mesozoic ecosystems is complicated by a lack of extant isotope data from comparable environments/ecosystems (e.g. coastal floodplain forest environments, lacking significant C4 plant components). We sampled 20 taxa across a broad phylogenetic, body size, and physiological scope from the Atchafalaya River Basin of Louisiana as an environmental analogue to the Late Cretaceous coastal floodplains of North America. Samples were analysed for stable carbon, oxygen and nitrogen isotope compositions from bioapatite and keratin tissues to test the degree of ecological resolution that can be determined in a system with similar environmental conditions, and using similar constraints, as those in many Mesozoic assemblages. Isotopic results suggest a broad overlap in resource use among taxa and considerable terrestrial-aquatic interchange, highlighting the challenges of ecological interpretation in C3 systems, particularly when lacking observational data for comparison. We also propose a modified oxygen isotope-temperature equation that uses mean endotherm and mean ectotherm isotope data to more precisely predict temperature when compared with measured Atchafalaya River water data. These results provide a critical isotopic baseline for coastal floodplain forests, and act as a framework for future studies of Mesozoic palaeoecology.
Collapse
Affiliation(s)
- T M Cullen
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
| | - F J Longstaffe
- Department of Earth Sciences, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - U G Wortmann
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, Canada M5S 3B1
| | - M B Goodwin
- University of California Museum of Paleontology, 1101 Valley Life Sciences, Berkeley, CA 94720-4780, USA
| | - L Huang
- Department of Earth Sciences, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - D C Evans
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6
| |
Collapse
|
25
|
Medullary bone in an Early Cretaceous enantiornithine bird and discussion regarding its identification in fossils. Nat Commun 2018; 9:5169. [PMID: 30518763 PMCID: PMC6281594 DOI: 10.1038/s41467-018-07621-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/05/2018] [Indexed: 11/10/2022] Open
Abstract
Medullary bone is an ephemeral type of bone tissue, today found only in sexually mature female birds, that provides a calcium reservoir for eggshell formation. The presence of medullary bone-like tissues in extant birds, pterosaurs, and dinosaurs distantly related to birds shows that caution must be exercised before concluding that fossils bear medullary bone. Here we describe a new specimen of pengornithid enantiornithine from the Lower Cretaceous Jiufotang Formation. Consisting of an isolated left hindlimb, the three-dimensional preservation contrasts with the crushed preservation characteristic of most Jehol specimens. Histological examinations suggest this resulted from the presence of a thick layer of highly vascular bone spanning the medullary cavities of the femur and tibiotarsus, consistent with expectations for medullary bone in extant birds. Micro-computed tomographic scans reveal small amounts of the same tissue extending into the pedal phalanges. We consider the tissue to be homologous to the medullary bone of Neornithines. Medullary bone is used by modern female birds as a calcium reservoir for eggshell production. Here, O’Connor and colleagues propose criteria for identifying medullary bone in fossils and report medullary bone from a Cretaceous enantiornithine bird fossil.
Collapse
|
26
|
Schweitzer MH, Zheng W, Moyer AE, Sjövall P, Lindgren J. Preservation potential of keratin in deep time. PLoS One 2018; 13:e0206569. [PMID: 30485294 PMCID: PMC6261410 DOI: 10.1371/journal.pone.0206569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
Multiple fossil discoveries and taphonomic experiments have established the durability of keratin. The utility and specificity of antibodies to identify keratin peptides has also been established, both in extant feathers under varying treatment conditions, and in feathers from extinct organisms. Here, we show localization of feather-keratin antibodies to control and heat-treated feathers, testifying to the repeatability of initial data supporting the preservation potential of keratin. We then show new data at higher resolution that demonstrates the specific response of these antibodies to the feather matrix, we support the presence of protein in heat-treated feathers using ToF-SIMS, and we apply these methods to a fossil feather preserved in the unusual environment of sinter hot springs. We stress the importance of employing realistic conditions such as sediment burial when designing experiments intended as proxies for taphonomic processes occurring in the fossil record. Our data support the hypothesis that keratin, particularly the β-keratin that comprises feathers, has potential to preserve in fossil remains.
Collapse
Affiliation(s)
- Mary Higby Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States of America
- Department of Geology, Lund University, Lund, Sweden
| | - Wenxia Zheng
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Alison E. Moyer
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Peter Sjövall
- RISE Research Institutes of Sweden, Chemistry and Materials, Borås, Sweden
| | | |
Collapse
|
27
|
Wiemann J, Fabbri M, Yang TR, Stein K, Sander PM, Norell MA, Briggs DEG. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat Commun 2018; 9:4741. [PMID: 30413693 PMCID: PMC6226439 DOI: 10.1038/s41467-018-07013-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Vertebrate hard tissues consist of mineral crystallites within a proteinaceous scaffold that normally degrades post-mortem. Here we show, however, that decalcification of Mesozoic hard tissues preserved in oxidative settings releases brownish stained extracellular matrix, cells, blood vessels, and nerve projections. Raman Microspectroscopy shows that these fossil soft tissues are a product of diagenetic transformation to Advanced Glycoxidation and Lipoxidation End Products, a class of N-heterocyclic polymers generated via oxidative crosslinking of proteinaceous scaffolds. Hard tissues in reducing environments, in contrast, lack soft tissue preservation. Comparison of fossil soft tissues with modern and experimentally matured samples reveals how proteinaceous tissues undergo diagenesis and explains biases in their preservation in the rock record. This provides a target, focused on oxidative depositional environments, for finding cellular-to-subcellular soft tissue morphology in fossils and validates its use in phylogenetic and other evolutionary studies.
Collapse
Affiliation(s)
- Jasmina Wiemann
- Department of Geology & Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT, 06511, USA.
| | - Matteo Fabbri
- Department of Geology & Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT, 06511, USA
| | - Tzu-Ruei Yang
- Steinmann Institute for Geology, Mineralogy, and Paleontology, University of Bonn, Nussallee 8, 53115, Bonn, Germany
| | - Koen Stein
- Earth System Sciences AMGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - P Martin Sander
- Steinmann Institute for Geology, Mineralogy, and Paleontology, University of Bonn, Nussallee 8, 53115, Bonn, Germany
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA, 90007, USA
| | - Mark A Norell
- Division of Vertebrate Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024-5192, USA
| | - Derek E G Briggs
- Department of Geology & Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT, 06511, USA
| |
Collapse
|
28
|
Prondvai E. Medullary bone in fossils: function, evolution and significance in growth curve reconstructions of extinct vertebrates. J Evol Biol 2016; 30:440-460. [DOI: 10.1111/jeb.13019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/12/2016] [Accepted: 11/15/2016] [Indexed: 02/02/2023]
Affiliation(s)
- E. Prondvai
- Evolutionary Morphology of Vertebrates; Ghent University; Gent Belgium
- MTA - ELTE Lendület Dinosaur Research Group; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|