1
|
Yang Q, Zhang Y, Han L, Sheng J, Tian Y. Ionic liquid-functionalized metal-organic frameworks adsorbents for effective extraction of dibutyl phthalate in edible oil: A new strategy for selectivity and low cost. Food Chem 2025; 482:144182. [PMID: 40187323 DOI: 10.1016/j.foodchem.2025.144182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/09/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Dibutyl phthalate (DBP), a typical plasticizer with toxicity and potential carcinogenicity, is facing analytical challenges in complex edible oil matrices. A selective and cost-effective dispersive solid-phase microextraction (DSPME) was established by employing ionic liquid (IL)-functionalized ZIF-8 nanocomposites as adsorbing materials in detecting dibutyl phthalate (DBP) from edible oil. The selectivity and affinity of nanocomposites for DBP were remarkably improved by optimizing the types of ILs and the coating procedures. Adsorption kinetics, isotherm model, and possible adsorption mechanism were determined, and selectivity was clarified further. After optimization, a good linearity was observed over a broad range of 10-500.0 μg L-1 with low LOD (0.73 μg L-1), low LOQ (2.44 μg L-1), great reproducibility (intra-day: 0.70-2.27 %; inter-day: 0.17-2.84 %), and achieved high recoveries in real oil systems (86.76-109.95 %) with RSD ≤ 4.31 %. This work offers a novel strategy for synthesizing and producing purpose-specific nanocomposites for selectively detecting pollutants in food.
Collapse
Affiliation(s)
- Qian Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, PR China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, PR China
| | - Yuwei Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, PR China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, PR China
| | - Lei Han
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, PR China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, PR China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, PR China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, PR China; Puer University, Puer 665000, PR China.
| |
Collapse
|
2
|
Sun C, Pham ST, Boyall SL, Douglas B, Britton AJ, Micklethwaite S, Chamberlain TW, Besenhard MO, Drummond-Brydson R, Wu KJ, Collins SM. Ultrasound-assisted continuous aqueous synthesis of sulfonate, imidazolate, and carboxylate MOFs with high space time yield. Commun Chem 2025; 8:154. [PMID: 40379945 DOI: 10.1038/s42004-025-01548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
The boom in metal-organic frameworks (MOFs) for applications from chemical separations and gas storage to membranes for energy conversion and storage has stimulated interest in scalable MOF production methods. Combining the increased heat and mass transfer of flow reactors with the enhanced mixing and nucleation rates of sono-chemical synthesis, we developed an ultrasound-assisted two-phase flow platform for the aqueous synthesis of MOFs spanning three ligand chemistries, sulfonate Ca-NDS (water), imidazolate ZIF-8, and carboxylate UiO-66-NH2. We show that this reactor does not foul, facilitating continuous operation at an STY of 3.4 × 104 (±1 × 103) kg m-3 day-1 of proton-conducting Ca-NDS (water). ZIF-8 and UiO-66-NH2 MOFs prepared in ultrasound-assisted flow with smaller, uniform particle sizes exhibited matched or superior gas sorption to those made in batch. These results highlight the potential of ultrasound-assisted flow synthesis for MOFs, offering enhanced nucleation alongside process intensification, and paving the way for more efficient MOF production.
Collapse
Affiliation(s)
- Chao Sun
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Sang T Pham
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
| | | | - Ben Douglas
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Andrew J Britton
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
| | - Stuart Micklethwaite
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
| | | | | | - Rik Drummond-Brydson
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
| | - Ke-Jun Wu
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK.
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| | - Sean M Collins
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK.
- School of Chemistry, University of Leeds, Leeds, UK.
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK.
| |
Collapse
|
3
|
Zhang H, Chen HC, Feizpoor S, Li L, Zhang X, Xu X, Zhuang Z, Li Z, Hu W, Snyders R, Wang D, Wang C. Tailoring Oxygen Reduction Reaction Kinetics of Fe-N-C Catalyst via Spin Manipulation for Efficient Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400523. [PMID: 38594481 DOI: 10.1002/adma.202400523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Indexed: 04/11/2024]
Abstract
The interaction between oxygen species and metal sites of various orbitals exhibits intimate correlation with the oxygen reduction reaction (ORR) kinetics. Herein, a new approach for boosting the inherent ORR activity of atomically dispersed Fe-N-C matrix is represented by implanting Fe atomic clusters nearby. The as-prepared catalyst delivers excellent ORR activity with half-wave potentials of 0.78 and 0.90 V in acidic and alkaline solutions, respectively. The decent ORR activity can also be validated from the high-performance rechargeable Zn-air battery. The experiments and density functional theory calculations reveal that the electron spin-state of monodispersed Fe active sites is transferred from the low spin (LS, t2g 6 eg 0) to the medium spin (MS, t2g 5 eg 1) due to the involvement of Fe atomic clusters, leading to the spin electron filling in σ∗ orbit, by which it favors OH- desorption and in turn boosts the reaction kinetics of the rate-determining step. This work paves a solid way for rational design of high-performance Fe-based single atom catalysts through spin manipulation.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Solmaz Feizpoor
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Linfeng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhishan Li
- Faculty of Metallurgical and Energy Engineering, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Wenyu Hu
- Department of Physics, Southern University of Science and Technology, ShenZhen, 518055, P. R. China
| | - Rony Snyders
- Chimie des Interactions Plasma Surfaces (ChIPS), University of Mons, 7000 Mons, Belgium; Materia Nova Research Center, Mons, B-7000, Belgium
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
4
|
Ahmad M, Patel R, Lee DT, Corkery P, Kraetz A, Prerna, Tenney SA, Nykypanchuk D, Tong X, Siepmann JI, Tsapatsis M, Boscoboinik JA. ZIF-8 Vibrational Spectra: Peak Assignments and Defect Signals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27887-27897. [PMID: 38753657 DOI: 10.1021/acsami.4c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Zeolitic imidazolate framework (ZIF-8) is a promising material for gas separation applications. It also serves as a prototype for numerous ZIFs, including amorphous ones, with a broader range of possible applications, including sensors, catalysis, and lithography. It consists of zinc coordinated with 2-methylimidazolate (2mIm) and has been synthesized with methods ranging from liquid-phase to solvent-free synthesis, which aim to control its crystal size and shape, film thickness and microstructure, and incorporation into nanocomposites. Depending on the synthesis method and postsynthesis treatments, ZIF-8 materials may deviate from the nominal defect-free ZIF-8 crystal structure due to defects like missing 2mIm, missing zinc, and physically adsorbed 2mIm trapped in the ZIF-8 pores, which may alter its performance and stability. Infrared (IR) spectroscopy has been used to assess the presence of defects in ZIF-8 and related materials. However, conflicting interpretations by various authors persist in the literature. Here, we systematically investigate ZIF-8 vibrational spectra by combining experimental IR spectroscopy and first-principles molecular dynamics simulations, focusing on assigning peaks and elucidating the spectroscopic signals of putative defects present in the ZIF-8 material. We attempt to resolve conflicting assignments from the literature and to provide a comprehensive understanding of the vibrational spectra of ZIF-8 and its defect-induced variations, aiming toward more precise quality control and design of ZIF-8-based materials for emerging applications.
Collapse
Affiliation(s)
- Mueed Ahmad
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-0701, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Roshan Patel
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Dennis T Lee
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-0701, United States
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
| | - Andrea Kraetz
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
| | - Prerna
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Samuel A Tenney
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - J Ilja Siepmann
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, United States
| | - J Anibal Boscoboinik
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-0701, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
5
|
Gamal S, Kospa DA, Ibrahim AA, Ahmed AI, Ouf AMA. A comparative study of α-Ni(OH) 2 and Ni nanoparticle supported ZIF-8@reduced graphene oxide-derived nitrogen doped carbon for electrocatalytic ethanol oxidation. RSC Adv 2024; 14:5524-5541. [PMID: 38352684 PMCID: PMC10863423 DOI: 10.1039/d3ra08208c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Ethanol electrooxidation is an important reaction for fuel cells, however, the major obstacle to ethanol electrocatalysis is the splitting of the carbon-carbon bond to CO2 at lower overpotentials. Herein, a ZIF-8@graphene oxide-derived highly porous nitrogen-doped carbonaceous platform containing zinc oxide was attained for supporting a non-precious Ni-based catalyst. The support was doped with the disordered α-phase Ni(OH)2 NPs and Ni NPs that are converted to Ni(OH)2 through potential cycling in alkaline media. The Ni-based catalysts exhibit high electroactivity owing to the formation of the NiOOH species which has more unpaired d electrons that can bond with the adsorbed species. From CV curves, the EOR onset potential of the α-Ni(OH)2/ZNC@rGO electrode is strongly shifted to negative potential (Eonset = 0.34 V) with a high current density of 8.3 mA cm-2 relative to Ni/ZNC@rGO. The high catalytic activity is related to the large interlayer spacing of α-Ni(OH)2 which facilitates the ion-solvent intercalation. Besides, the porous structure of the NC and the high conductivity of rGO facilitate the kinetic transport of the reactants and electrons. Finally, the catalyst displays a high stability of 92% after 900 cycles relative to the Ni/ZNC@rGO and commercial Pt/C catalysts. Hence, the fabricated α-Ni(OH)2/ZNC@rGO catalyst could be regarded as a potential catalyst for direct EOR in fuel cells.
Collapse
Affiliation(s)
- Soliman Gamal
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Doaa A Kospa
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Amr Awad Ibrahim
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Awad I Ahmed
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - A M A Ouf
- Chemistry Department, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| |
Collapse
|
6
|
Kim SJ, Lee J, Bae JS, Lee JW. The Impact of ZIF-8 Particle Size Control on Low-Humidity Sensor Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:284. [PMID: 38334555 PMCID: PMC10857053 DOI: 10.3390/nano14030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
An accurate humidity measurement is essential in various industries, including product stability, pharmaceutical and food preservation, environmental control, and precise humidity management in experiments and industrial processes. Crafting effective humidity sensors through precise material selection is crucial for detecting minute humidity levels across various fields, ultimately enhancing productivity and maintaining product quality. Metal-organic frameworks (MOFs), particularly zeolitic imidazolate frameworks (ZIFs), exhibit remarkable properties and offer a wide range of applications in catalysis, sensing, and gas storage due to their structural stability, which resembles zeolites. The previous research on MOF-based humidity sensors have primarily used electrical resistance-based methods. Recently, however, interest has shifted to capacitive-based sensors using MOFs due to the need for humidity sensors at low humidity and the resulting high sensitivity. Nevertheless, further studies are required to optimize particle structure and size. This study analyzes ZIF-8, a stable MOF synthesized in varying particle sizes, to evaluate its performance as a humidity sensor. The structural, chemical, and sensing properties of synthesized ZIF-8 particles ranging from 50 to 200 nanometers were examined through electron microscopy, spectroscopic, and electrochemical analyses. The fabricated copper electrodes combined with these particles demonstrated stable and linear humidity sensing capabilities within the range of 3% to 30% relative humidity (RH).
Collapse
Affiliation(s)
- Sang Jun Kim
- Institute of Materials Technology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jaemin Lee
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea;
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
7
|
Wei G, Li Y, Liu X, Huang J, Liu M, Luan D, Gao S, Lou XWD. Single-Atom Zinc Sites with Synergetic Multiple Coordination Shells for Electrochemical H 2 O 2 Production. Angew Chem Int Ed Engl 2023; 62:e202313914. [PMID: 37789565 DOI: 10.1002/anie.202313914] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/05/2023]
Abstract
Precise manipulation of the coordination environment of single-atom catalysts (SACs), particularly the simultaneous engineering of multiple coordination shells, is crucial to maximize their catalytic performance but remains challenging. Herein, we present a general two-step strategy to fabricate a series of hollow carbon-based SACs featuring asymmetric Zn-N2 O2 moieties simultaneously modulated with S atoms in higher coordination shells of Zn centers (n≥2; designated as Zn-N2 O2 -S). Systematic analyses demonstrate that the synergetic effects between the N2 O2 species in the first coordination shell and the S atoms in higher coordination shells lead to robust discrete Zn sites with the optimal electronic structure for selective O2 reduction to H2 O2 . Remarkably, the Zn-N2 O2 moiety with S atoms in the second coordination shell possesses a nearly ideal Gibbs free energy for the key OOH* intermediate, which favors the formation and desorption of OOH* on Zn sites for H2 O2 generation. Consequently, the Zn-N2 O2 -S SAC exhibits impressive electrochemical H2 O2 production performance with high selectivity of 96 %. Even at a high current density of 80 mA cm-2 in the flow cell, it shows a high H2 O2 production rate of 6.924 mol gcat -1 h-1 with an average Faradaic efficiency of 93.1 %, and excellent durability over 65 h.
Collapse
Affiliation(s)
- Gangya Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Yunxiang Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Xupo Liu
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Jinrui Huang
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Mengran Liu
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Shuyan Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
- School of Materials Science and Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
8
|
Zhang X, Zhu J, Yang Z, Li Y, Zhang P, Li H. Enhancing photocathodic protection with Bi quantum dots and ZIF-8 nanoparticle co-sensitized TiO 2nanotubes. NANOTECHNOLOGY 2023; 35:045701. [PMID: 37863074 DOI: 10.1088/1361-6528/ad0594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Since hole trapping agents do not persist in the marine environment, it is more practical to test metal protection in 3.5 wt% NaCl solution so that the photocathodic protection (PCP) technique can be effectively applied in an actual marine environment. In this paper, Bi quantum dots (QDs) and ZIF-8 nanoparticles (NPs) were successfully deposited on TiO2by hydrothermal and impregnation methods. The PCP performances of ZIF-8/Bi/TiO2composites in the marine environment without hole trapping agents were evaluated, and compared with the performances of pure TiO2, Bi/TiO2and ZIF-8/TiO2. The electrochemical impedance spectrum (EIS) fitting results demonstrate that theRctvalue of the ZIF-8/Bi/TiO2composite coupled with 316 stainless steel (SS) decreased from 7678 Ω cm2to 519.3 Ω cm2in 3.5 wt% NaCl solution, which is a decrease of about 14.8-fold compared with TiO2under the same conditions. This indicates that the deposition of Bi QDs and ZIF-8 NPs on TiO2nanotubes can improve the electron transport efficiency, which in turn slows down the rate of corrosion of 316 SS and significantly improves the PCP performance. This is not only attributable to the Schottky junction and heterojunction structures formed by Bi QDs and ZIF-8 NPs with TiO2, but also to the surface plasmon resonance effect of Bi QDs and the N-Ti-O bond structure formed between ZIF-8 and TiO2, leading to a lower electron-hole recombination efficiency and a higher electron transfer efficiency.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Jinke Zhu
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Zhanyuan Yang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Pengfei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Hong Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| |
Collapse
|
9
|
Gao Z, Mansor MH, Winder N, Demiral S, Maclnnes J, Zhao X, Muthana M. Microfluidic-Assisted ZIF-Silk-Polydopamine Nanoparticles as Promising Drug Carriers for Breast Cancer Therapy. Pharmaceutics 2023; 15:1811. [PMID: 37513998 PMCID: PMC10384305 DOI: 10.3390/pharmaceutics15071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Metal-organic frameworks (MOFs) are heralded as potential nanoplatforms for biomedical applications. Zeolitic imidazolate framework-8 (ZIF-8), as one of the most well known MOFs, has been widely applied as a drug delivery carrier for cancer therapy. However, the application of ZIF-8 nanoparticles as a therapeutic agent has been hindered by the challenge of how to control the release behaviour of anti-cancer zinc ions to cancer cells. In this paper, we designed microfluidic-assisted core-shell ZIF-8 nanoparticles modified with silk fibroin (SF) and polydopamine (PDA) for sustained release of zinc ions and curcumin (CUR) and tested these in vitro in various human breast cancer cells. We report that microfluidic rapid mixing is an efficient method to precisely control the proportion of ZIF-8, SF, PDA, and CUR in the nanoparticles by simply adjusting total flow rates (from 1 to 50 mL/min) and flow rate ratios. Owing to sufficient and rapid mixing during microfluidic-assisted nanoprecipitation, our designer CUR@ZIF-SF-PDA nanoparticles had a desired particle size of 170 nm with a narrow size distribution (PDI: 0.08), which is much smaller than nanoparticles produced using traditional magnetic stirrer mixing method (over 1000 nm). Moreover, a properly coated SF layer successfully enhanced the capability of ZIF-8 as a reservoir of zinc ions. Meanwhile, the self-etching reaction between ZIF-8 and PDA naturally induced a pH-responsive release of zinc ions and CUR to a therapeutic level in the MDA-MB-231, SK-BR-3, and MCF-7 breast cancer cell lines, resulting in a high cellular uptake efficiency, cytotoxicity, and cell cycle arrest. More importantly, the high biocompatibility of designed CUR@ZIF-SF-PDA nanoparticles remained low in cytotoxicity on AD-293 non-cancer cells. We demonstrate the potential of prepared CUR@ZIF-SF-PDA nanoparticles as promising carriers for the controlled release of CUR and zinc ions in breast cancer therapy.
Collapse
Affiliation(s)
- Zijian Gao
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Muhamad Hawari Mansor
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Natalie Winder
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Secil Demiral
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jordan Maclnnes
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
10
|
Li S, Wang F, Xie Z, Ng D, Shen B. A novel core-shell structured Fe@CeO2-ZIF-8 catalyst for the reduction of NO by CO. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Selective liquid-phase oxidation of toluene over heterogeneous Mn@ZIF-8 derived catalyst with molecular oxygen in the solvent-free conditions. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
12
|
Redwan N, Tsegaye D, Abebe B. Synthesis of iron-magnetite nanocomposites for hexavalent chromium sorption. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
13
|
Rodríguez Mejía Y, Romero Romero F, Basavanag Unnamatla MV, Ballesteros Rivas MF, Varela Guerrero V. Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.
Collapse
Affiliation(s)
- Yetzin Rodríguez Mejía
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
| | - Fernando Romero Romero
- Universidad Autónoma del Estado de México, Facultad de Química , Carretera Toluca-Ixtlahuaca Km. 15, Unidad el Cerrillo , Toluca , Estado de México , 50200 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Murali Venkata Basavanag Unnamatla
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Maria Fernanda Ballesteros Rivas
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Victor Varela Guerrero
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| |
Collapse
|
14
|
Sharma A, Karuppasamy K, Vikraman D, Cho Y, Adaikalam K, Korvink JG, Kim HS, Sharma B. Metal Organic Framework-Derived ZnO@GC Nanoarchitecture as an Effective Hydrogen Gas Sensor with Improved Selectivity and Gas Response. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44516-44526. [PMID: 36162987 DOI: 10.1021/acsami.2c10706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although they are not as favorable as other influential gas sensors, metal-oxide semiconductor-based chemiresistors ensure minimal surface reactivity, restricting their gas selectivity, gas response, and reaction kinetics, particularly when functioning at room temperature (RT). A hybrid design, which includes metal-oxide/carbon nanostructures and passivation with specific gas filtration layers, can address the concerns of surface reactivity. We present a novel hierarchical nanostructured zinc oxide (ZnO), decorated with graphitic carbon (GC) and synthesized via a wet-chemical strategy, which is then followed by the self-assembly of a zeolitic imidazolate framework (ZIF-8). Because of its large surface area, high porosity, and efficient inspection of other analyte (interfering) gases, the ZnO@GC can provide intensified surface reactivity at RT. In the present study, such a hybrid sensor confirmed extraordinary gas sensing properties, which was characterized by excellent H2 selectivity, fast response, rapid recovery kinetics, and high gas response (ΔR/R0 ∼ 124.6%@10 ppm), particularly in extremely humid environments. The results reveal that adsorption sites provided by the ZIF-8 template-based ZnO@GC frameworks facilitate the adsorption and desorption of H2.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, 206-Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Yoona Cho
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Kathalingam Adaikalam
- Millimeter-Wave Innovation Technology (MINT) Research Centre, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermonn-Von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Bharat Sharma
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermonn-Von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
15
|
Keshmiri N, Najmi P, Ramezanzadeh M, Ramezanzadeh B. A novel approach towards controlled growth of metal-organic framework ZIF-8 thin film on steel with excellent corrosion protection. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Chen S, Xie Y, Guo X, Sun D. Self-supporting electrochemical sensors for monitoring of cell-released H2O2 based on metal nanoparticle/MOF nanozymes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Recovery of Palladium and Gold from PGM Ore and Concentrates Using ZnAl-Layered Double Hydroxide@zeolitic Imidazolate Framework-8 Nanocomposite. SEPARATIONS 2022. [DOI: 10.3390/separations9100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Gold (Au) and palladium (Pd) are platinum group metals (PGMs) that are considered critical in society because they are required in several industrial applications. Their shortage has caused the urgent need for their recovery from secondary resources. Therefore, there is a need to develop functional materials with high adsorption capacity and selectivity for recovery of PGMs from various secondary sources. In this study, a Zn-Al-layered double hydroxide@zeolitic imidazolate framework-8 (Zn–Al–LDH@ZIF–8) nanocomposite was used as an adsorbent for the recovery of Au and Pd from ore concentrates. The Zn–Al–LDH@ZIF–8 nanocomposite was characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, zeta potential, and X-ray diffraction (XRD) spectroscopy. The recovery of Au(III) and Pd(II) was achieved using ultrasound-assisted dispersive µ-solid-phase extraction (UA-D-µ-SPE) and their quantification was attained using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the surface of the adsorbent remained positively charged in a wide pH range, which endowed the nanocomposite with high adsorption affinity towards Au(III) and Pd(II). Under optimised conditions, the equilibrium studies revealed that the adsorption of Au(III) and Pd(II) ions followed the Langmuir isotherm model with maximum sorption capacities of 163 mg g−1 and 177 mg g−1 for Au(III) and Pd(II), respectively. The nanocomposite possessed relatively good regeneration, reusability, and stability characteristics, with its performance decreasing by only 10% after five adsorption–desorption cycles.
Collapse
|
18
|
Loloei M, Kaliaguine S, Rodrigue D. CO2-Selective mixed matrix membranes of bimetallic Zn/Co-ZIF vs. ZIF-8 and ZIF-67. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Kaang BK, Ha L, Joo JU, Kim DP. Laminar flow-assisted synthesis of amorphous ZIF-8-based nano-motor with enhanced transmigration for photothermal cancer therapy. NANOSCALE 2022; 14:10835-10843. [PMID: 35838155 DOI: 10.1039/d2nr02501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of their biocompatibility, there are promising applications in various fields for enzyme-powered nano-motors. However, enzymes can undergo denaturation under harsh conditions. Here, we report the flow-assisted synthesis of an enzyme-based amorphous ZIF-8 nano-motor (A-motor; Pdop@urease@aZIF-8) for enhanced movement and protection of polydopamine and enzymes. Multiple laminar flow types with varied input ratios effectively entrapped enzymes into amorphous ZIF-8 shells in a serial flow with a momentary difference. The obtained A-motor exhibited superior enzymatic activity and photothermal ablation properties with excellent durability due to the protection the amorphous shell offers from the external environment. Furthermore, in the bio-mimic 2D membrane model, the enhanced mobility of the A-motor afforded high transmigration (>80%), which had a powerful effect on bladder cancer cell ablation via photothermal therapy. This work envisages that the rapid flow approach will facilitate scalable manufacturing of the nano-motors under low stress to vulnerable biomolecules, which would be extended to nano-biomedical applications in various body environments.
Collapse
Affiliation(s)
- Byung Kwon Kaang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Laura Ha
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Jeong-Un Joo
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis (CIMPS), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
20
|
|
21
|
Li Y, Zhang SL, Cheng W, Chen Y, Luan D, Gao S, Lou XWD. Loading Single-Ni Atoms on Assembled Hollow N-Rich Carbon Plates for Efficient CO 2 Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105204. [PMID: 34610187 DOI: 10.1002/adma.202105204] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The rational design of catalysts' spatial structure is vitally important to boost catalytic performance through exposing the active sites, enhancing the mass transfer, and confining the reactants. Herein, a dual-linker zeolitic tetrazolate framework-engaged strategy is developed to construct assembled hollow plates (AHP) of N-rich carbon (NC), which is loaded with single-Ni atoms to form a highly efficient electrocatalyst (designated as Ni-NC(AHP)). In the carbonization process, the thermally unstable linker (5-aminotetrazole) serves as the self-sacrificial template and the other linker (2-methylimidazole) mainly serves as the carbon and nitrogen source to form hollow NC matrix. The formed Ni-NC(AHP) catalyst possesses enhanced mesoporosity and more available surface area, thus promoting mass transport and affording abundant accessible single-Ni sites. These features contribute to remarkable performance for electrochemical CO2 reduction with exceptionally high selectivity of nearly 100% towards CO in a wide potential range and dramatically enhanced CO partial current density.
Collapse
Affiliation(s)
- Yunxiang Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Song Lin Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Weiren Cheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Ye Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Deyan Luan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Shuyan Gao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Xiong Wen David Lou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
22
|
Du L, Zhang T, Li P, Chen W, Wu C. Zeolitic imidazolate framework-8/Bacterial Cellulose Composite for Iodine Loading and Its Antibacterial Performance. Dalton Trans 2022; 51:14317-14322. [DOI: 10.1039/d2dt01414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial cellulose (BC), produced by bacteria and fungi, is a promising material in the biomedical field. However, non-antibacterial activity limits its broad applications. Herein, antibacterial composites (BC/ZIF-8-Iodine) were prepared by...
Collapse
|
23
|
Li JJ, Zhang Q, Zhang LY, Zhang JY, Liu Y, Zhang N, Fang YZ. Interfacial band bending induced charge-transfer regulation over Ag@ZIF-8@g-C 3N 4 to boost photocatalytic CO 2 reduction into syngas. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00403h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of the AZC-10 heterostructure enables excellent syngas production rates of 4076.4 μmol gcatalyst−1 h−1 and 3326.55 μmol gcatalyst−1 h−1 for CO and H2, respectively, much higher than other reported photocatalysts.
Collapse
Affiliation(s)
- Jia-Jia Li
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qing Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Lin-Yan Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jian-Yong Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yufeng Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Na Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yong-Zheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
24
|
Guo G, Li W, Ahmed T, Hu D, Cui R, Zhang B, Zhang X. Production of liquid fuels from Kraft lignin over bimetallic Ni-Mo supported on ZIF-derived porous carbon catalyst. RSC Adv 2021; 11:37932-37941. [PMID: 35498074 PMCID: PMC9044013 DOI: 10.1039/d1ra05354j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Non-noble bimetallic NiMo supported on zeolitic imidazolate framework-derived porous carbon (NiMo@FDC) catalyst for lignin depolymerization has been successfully developed. The synergism between Ni and Mo species in NiMo@FDC catalyst could promote the catalytic cleavage of C–O linkages in Kraft lignin. At a low reaction temperature of 240 °C and under 4 MPa H2, the lignin liquefaction yield was 98.85 wt% and minimum coke yield was 1 wt%, particularly when using 10%NiMo@FDC catalyst. Additionally, at a high reaction temperature of 300 °C and under 2 MPa H2, there was an overall yield of 86 wt% of liquid product and 42 wt% of petroleum ether soluble product. The higher heating value (HHV) increased from 27.65 MJ kg−1 to 34.11 MJ kg−1. In the cycling experiment, the bifunctional catalyst also demonstrated reversability and stability. The synergy of Ni hydrogenation sites and Mo coupled adsorption sites identified a possible mechanism path, which could offer considerable potential for lignin depolymerization. The structure and synergy of NiMo@FDC catalyst have a significant effect on realizing the production of lignin-derived liquid fuels from Kraft lignin.![]()
Collapse
Affiliation(s)
- Ge Guo
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 PR China
| | - Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 PR China .,Institute of Energy, Hefei Comprehensive National Science Center Hefei 230031 PR China
| | - Tauseef Ahmed
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 PR China
| | - DuoDuo Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 PR China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 PR China
| | - Baikai Zhang
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 PR China
| | - Xia Zhang
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China 96 Jinzhai Road Hefei 230026 PR China
| |
Collapse
|
25
|
Abd Al-Jabbar S, Atiroğlu V, Hameed RM, Guney Eskiler G, Atiroğlu A, Deveci Ozkan A, Özacar M. Fabrication of dopamine conjugated with protein @metal organic framework for targeted drug delivery: A biocompatible pH-Responsive nanocarrier for gemcitabine release on MCF‑7 human breast cancer cells. Bioorg Chem 2021; 118:105467. [PMID: 34781115 DOI: 10.1016/j.bioorg.2021.105467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/31/2021] [Indexed: 01/05/2023]
Abstract
Metal-organic structures (MOF), modern extremely proliferous materials consisting of metal ions and organic coordinating molecules, has become a promising biomedical material because of its unusual features, including great surface area, wide pore volume, flexible functionality and superior performance for drug loading. In the current investigation, Gemcitabine Hydrochloride (Gem), an anticancer drug, and Amygdalin (Amy) were loaded into a nanocomposite structure formed from bovine serum albumin (BSA) as a center and zeolytic imidazolate framework-8 (ZIF-8) as a pH sensitive protective coating. The formed BSA-Gem@ZIF-8 and BSA-Gem-Amy@ZIF-8 were successively coated by polydopamine, chelated by Au3+ and conjugated via gallic acid (GA), acquired ZIF-8 structure as a multifunctional nanocarrier at the end. It was confirmed by different characterization methods that the nanocarrier was successfully produced. Due to the nature of ZIF-8, pH dependent releases of BSA-Gem@ZIF-8/Dopa/GA and BSA-Gem-Amy@ZIF-8/Dopa/GA were observed in in vitro studies. Cytotoxicity and apoptotic effects of these nanocarriers were evaluated using WST-1 and acridine orange staining in MCF-7 human breast cancer and HUVEC control cell lines. In-vitro cytotoxicity studies showed that both BSA-Gem@ZIF-8/Dopa/GA and BSA-Gem-Amy@ZIF-8/Dopa/GA were more effective than gemcitabine alone in MCF-7 cells with less toxicity in HUVEC cells. Additionally, both pH-responsive nanocarriers induced more apoptotic cell death in MCF-7 cells. We therefore believe that the built multifunctional nanocarrier based on ZIF-8 could be an alternative therapeutic strategy the use of gemcitabine for cancer therapy.
Collapse
Affiliation(s)
- Shatha Abd Al-Jabbar
- Karbala University, Faculty of Medicine, Department of Biochemistry, 54187 Karbala, Iraq
| | - Vesen Atiroğlu
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187 Sakarya, Turkey.
| | - Rana M Hameed
- Karbala University, Faculty of Medicine, Department of Biochemistry, 54187 Karbala, Iraq
| | - Gamze Guney Eskiler
- Sakarya University, Faculty of Medicine, Department of Medical Biology, 54290 Sakarya, Turkey
| | - Atheer Atiroğlu
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54187 Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Sakarya University, Faculty of Medicine, Department of Medical Biology, 54290 Sakarya, Turkey
| | - Mahmut Özacar
- Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), 54187 Sakarya, Turkey; Sakarya University, Science & Arts Faculty, Department of Chemistry, 54187 Sakarya, Turkey
| |
Collapse
|
26
|
Tocco D, Carucci C, Todde D, Shortall K, Otero F, Sanjust E, Magner E, Salis A. Enzyme immobilization on metal organic frameworks: Laccase from Aspergillus sp. is better adapted to ZIF-zni rather than Fe-BTC. Colloids Surf B Biointerfaces 2021; 208:112147. [PMID: 34634655 DOI: 10.1016/j.colsurfb.2021.112147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Laccase from Aspergillus sp. (LC) was immobilized within Fe-BTC and ZIF-zni metal organic frameworks through a one-pot synthesis carried out under mild conditions (room temperature and aqueous solution). The Fe-BTC, ZIF-zni MOFs, and the LC@Fe-BTC, LC@ZIF-zni immobilized LC samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The kinetic parameters (KM and Vmax) and the specific activity of the free and immobilized laccase were determined. Immobilized LCs resulted in a lower specific activity compared with that of the free LC (7.7 µmol min-1 mg-1). However, LC@ZIF-zni was almost 10 times more active than LC@Fe-BTC (1.32 µmol min-1 mg-1 vs 0.17 µmol min-1 mg-1) and only 5.8 times less active than free LC. The effect of enzyme loading showed that LC@Fe-BTC had an optimal loading of 45.2 mg g-1, at higher enzyme loadings the specific activity decreased. In contrast, the specific activity of LC@ZIF-zni increased linearly over the loading range investigated. The storage stability of LC@Fe-BTC was low with a significant decrease in activity after 5 days, while LC@ZIF retained up to 50% of its original activity after 30 days storage. The difference in activity and stability between LC@Fe-BTC and LC@ZIF-zni is likely due to release of Fe3+ and the low stability of Fe-BTC MOF. Together, these results indicate that ZIF-zni is a superior support for the immobilization of laccase.
Collapse
Affiliation(s)
- Davide Tocco
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Debora Todde
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy
| | - Kim Shortall
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Fernando Otero
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Enrico Sanjust
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari, and Centro NanoBiotecnologie Sardegna (CNBS), Cittadella Universitaria, SS 554 bivio Sestu, 09042, Monserrato (CA), Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy; Unità Operativa University of Cagliari, Italy; Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
27
|
A protein-sulfosalicylic acid/boswellic acids @metal-organic framework nanocomposite as anticancer drug delivery system. Colloids Surf B Biointerfaces 2021; 204:111788. [PMID: 33932885 DOI: 10.1016/j.colsurfb.2021.111788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 01/10/2023]
Abstract
The metal-organic frameworks (MOF) have shown fascinating possibilities in biomedical applications, designing a multifunctional drug delivery system based on the MOF is important. In this study, 5-sulfosalicylic acid and boswellic acids (BAs) were loaded to the pH sensitive zeolitic imidazolate framework-8 (ZIF-8) nanocomposite containing bovine serum albumin (BSA) as the center. The ZIF layer acts as a capsule for the nontoxic storage of 5-sulfosalicylic acid and boswellic acids (BAs) under physiological conditions. The results of the characterization demonstrated the performance of the nanocarrier formation. The pH-sensitive drug release of 5-sulfosalicylic acid was detected due to the innate pH-dependent stability of ZIF-8. An effective pH-sensitive drug delivery system using a 5-sulfosalicylic acid/BSA@ZIF-8, and 5-sulfosalicylic acid/BSA/BAs@ZIF-8, in which the 5-sulfosalicylicacid is not free in physiological pH but it is released at acidic pH (5.0) has been fabricated. The best biocompatibility has been found in 5-sulfosalicylic acid/BSA/BAs@ZIF-8 comparing to the 5-sulfosalicylic acid/BSA, 5-sulfosalicylic acid /BSA/BAs, and 5-sulfosalicylic acid/BSA@ZIF-8. Additionally, 5-sulfosalicylic acid/BSA /BAs@ZIF-8 exhibited higher effectiveness than other compounds against the breast cancer cell line, MCF-7, with less toxicity. It is concluded from the results of the current study that the fabricated ZIF-8 based nanocarrier may potentially provide therapeutic effects on breast cancer cells.
Collapse
|
28
|
Karuppasamy K, Rabani I, Vikraman D, Bathula C, Theerthagiri J, Bose R, Yim CJ, Kathalingam A, Seo YS, Kim HS. ZIF-8 templated assembly of La 3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116018. [PMID: 33257147 DOI: 10.1016/j.envpol.2020.116018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
The use of lanthanum-anchored zinc oxide distorted hexagon (La@ZnO DH) nanoclusters as an active material for the photodegradation of rhodamine B (Rh-B) dye via hydrogen bonding, electrostatic, and π-π interactions is examined herein. The active photocatalyst is derived from porous zeolite imidazole frameworks (ZIF-8) via a combined ultrasonication and calcination process. The distorted hexagon nanocluster morphology with controlled surface area is shown to provide excellent catalytic activity, chemical stability and demarcated pore volume. In addition, the low bandgap (3.57 eV) of La@ZnO DH is shown to expand the degradation of Rh-B under irradiation of UV light as compared to the pristine ZIF-8-derived ZnO photocatalyst due to inhibited recombination of electrons and holes. The outstanding physicochemical stability and enhanced performance of La@ZnO DH could be ascribed to the synergistic interaction among La3+ particles and the ZnO nanoclusters and provide a route for their utilization as a promising catalyst for the detoxification of Rh-B.
Collapse
Affiliation(s)
- K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Iqra Rabani
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - J Theerthagiri
- Centre of Excellence for Energy Research, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, 600119, India
| | - Ranjith Bose
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Chang-Joo Yim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - A Kathalingam
- Millimeter-Wave Innovation Technology Research Center (MINT), Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young-Soo Seo
- Interface Lab, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
29
|
Abebe B, Zereffa EA, Murthy HCA. Synthesis of Poly(vinyl alcohol)-Aided ZnO/Mn 2O 3 Nanocomposites for Acid Orange-8 Dye Degradation: Mechanism and Antibacterial Activity. ACS OMEGA 2021; 6:954-964. [PMID: 33458547 PMCID: PMC7808141 DOI: 10.1021/acsomega.0c05597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 05/24/2023]
Abstract
Zinc oxide is one of the novel metal oxides utilized for diverse applications. The sol-gel and unintended self-propagation procedures were applied to synthesize the porous and high surface area ZnO-based metal oxide nanocomposite. The p-type manganese(III) oxide was successfully coupled with n-type ZnO. The physical property characterization results revealed the surface area, porosity, and charge transfer capability improvement on the poly(vinyl alcohol) (PVA)-aided binary nanocomposite (PVA-ZnO/Mn2O3), compared to ZnO. The XRD patterns and TEM image analysis validated the nanometer size range for the materials (15-60 nm). The SEM micrographs and BET spectral details have confirmed the porous nature of the PVA-ZnO/Mn2O3 nanocomposite. The supporting results were obtained from the HRTEM (IFFT) and SAED pattern analyses. The EDX and HRTEM analyses were used for the confirmation of elemental composition and reality of the PVA-ZnO/Mn2O3 composite, respectively. The presence of the improved charge transfer property for PVA-ZnO/Mn2O3, compared to ZnO, was evidenced from acid orange-8 dye degradation. The highest zone of inhibition (14 mm) was recorded on Escherichia coli bacteria for the uncalcined PVA-ZnO/Mn2O3 nanocomposite compared to PVA, yet, less zone of inhibition compared to the calcined PVA-ZnO/Mn2O3 nanocomposite. The authors recommend the formation of the couple between metal oxides by electrochemical technique analyses as a future work.
Collapse
Affiliation(s)
- Buzuayehu Abebe
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Enyew A. Zereffa
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - H C Ananda Murthy
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
30
|
Rapid microwave-assisted construction of ZIF-8 derived ZnO and ZnO@Ta2O5 nanocomposite as an efficient electrode for methanol and urea electro-oxidation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114634] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Abebe B, Murthy HCA, Zereffa EA, Adimasu Y. Synthesis and characterization of ZnO/PVA nanocomposites for antibacterial and electrochemical applications. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1814338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Enyew Amare Zereffa
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Yeshaneh Adimasu
- Department of Applied Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
32
|
Liu W, Erol O, Gracias DH. 3D Printing of an In Situ Grown MOF Hydrogel with Tunable Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33267-33275. [PMID: 32644785 DOI: 10.1021/acsami.0c08880] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to their precisely modifiable microporosity and chemical functionality, Metal-Organic Frameworks (MOFs) have revolutionized catalysis, separations, gas storage, drug delivery, and sensors. However, because of their rigid and brittle powder morphology, it is challenging to build customizable MOF shapes with tunable mechanical properties. Here, we describe a new three-dimensional (3D) printing approach to create stretchable and tough MOF hydrogel structures with tunable mechanical properties. We formulate a printable ink by combining prepolymers of a versatile double network (DN) hydrogel of acrylamide and alginate, a shear-thinning agent, and MOF ligands. Importantly, by simultaneous cross-linking of alginate and in situ growth of the HKUST-1 using copper ions, we are able to create composites with high MOF dispersity in the DN hydrogel matrix with high pore accessibility. We extensively characterize the inks and uncover parameters to tune modulus, strength, and toughness of the 3D prints. We also demonstrate the excellent performance of the MOF hydrogels for dye absorption. Our approach incorporates all of the advantageous attributes of 3D printing while offering a rational approach to merge stretchable hydrogels and MOFs, and our findings are of broad relevance to wearables, implantable and flexible sensors, chemical separations, and soft robotics.
Collapse
Affiliation(s)
- Wangqu Liu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ozan Erol
- Department of Mechanical Engineering and Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David H Gracias
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
33
|
Abuzalat O, Wong D, Park SS, Kim S. Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection. NANOSCALE 2020; 12:13523-13530. [PMID: 32555819 DOI: 10.1039/d0nr01653e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitroaromatic explosives, such as 2-4-6 trinitrotoluene (TNT) are dangerous materials that pose safety and environmental risks. Even though many sensors have been reported for the detection of nitroaromatic explosives, a facile, rapid, cost-effective sensor is still sought-after in the field. Here we demonstrate a facile and rapid method to synthesize a fluorescent metal-organic framework for the highly selective and sensitive detection of nitroaromatic explosives. Zeolitic imidazole framework-8 (ZIF-8) is synthesized and enhanced with fluorescent 8-hydroxyquinoline zinc (ZnQ). The synthesized material shows visible colour changes upon exposure to TNT from ivory to light red. In addition, fluorescence quenching is noted under UV illumination when the ZnQ@ZIF-8 is exposed to TNT. The ZnQ@ZIF-8-coated paper sensors show the highest fluorescence quenching at an emission wavelength of 455 nm with TNT concentration as low as 1 ppm. Therefore, the proposed strategy not only offers a fast and convenient protocol for selective detection of TNT but also offers great potential in practical applications, especially for airport/railway security inspection and prevention of terrorist attacks.
Collapse
Affiliation(s)
- Osama Abuzalat
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada. and Department of Chemical Engineering, Military Technical College, Cairo, Egypt
| | - Danny Wong
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Simon S Park
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Seonghwan Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
34
|
Cheng X, Zhu Z, Liu Y, Xue Y, Gao X, Wang J, Pei X, Wan Q. Zeolitic Imidazolate Framework-8 Encapsulating Risedronate Synergistically Enhances Osteogenic and Antiresorptive Properties for Bone Regeneration. ACS Biomater Sci Eng 2020; 6:2186-2197. [PMID: 33455339 DOI: 10.1021/acsbiomaterials.0c00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bisphosphonates (BPs) are routinely administered for the treatment of turnover bone diseases. To avoid the undesirable adverse effects of long-term usage of bisphosphonates and improve their bioavailability in the bone microenvironment, we initially encapsulated risedronate (RIS) molecules inside nanoscale zeolitic imidazolate framework-8 particles (nZIF-8) by a one-step synthesis method to generate RIS@ZIF-8 nanoparticles. RIS@ZIF-8 nanoparticles displayed high loading encapsulation efficiency (64.21 ± 2.48%), good biocompatibility, controlled drug release capacity, and dual effects for bone regeneration. This work explored the potential of RIS@ZIF-8 nanoparticles, which could not only enhance ATP production, induce extracellular matrix (ECM) mineralization, and upregulate the expression levels of osteogenic genes but also effectively inhibit the formation of multinucleated giant osteocasts and decrease the Rankl/Opg ratio. Overall, RIS@ZIF-8 nanoparticles could be a very promising approach to synergistically enhance osteogenic and antiresorptive properties for bone regeneration, which could be utilized for the local treatment of bone defects.
Collapse
Affiliation(s)
- Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiyuan Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaomeng Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
35
|
Liu J, Li Y, He J, Wang L, Lei J, Rong L. Ni-Based Non-Sulfided Inexpensive Catalysts for Hydrocracking/ Hydrotreating of Jatropha Oil. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190122164046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conventional hydrocracking catalysts generally to retain their active form. However, sulfuration
may cause sulfur dioxide emissions, corrosion, and sulfur residue in products, as plant oils
become freed of sulfur compounds. The high price of this noble metal also limits industrial applications.
Therefore, non-sulfided catalysts can eliminate the presulfurization step and mitigate sulfiderelated
threats on both the environment and human health. The purpose of this paper is to review current
developments in the species and application of inexpensive non-sulfided catalysts for the hydrocracking
of non-edible Jatropha curcas L. oil. This mini-review predominantly concerns Nibased
catalysts supported by rare-earth metals or heteropoly acid. These catalysts were used in the
hydrotreating or hydrocracking of Jatropha oil to produce green diesel.
Collapse
Affiliation(s)
- Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yucheng Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jiandu Lei
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Long Rong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing 100191, China
| |
Collapse
|
36
|
Comparison of Catalytic Activity of ZIF-8 and Zr/ZIF-8 for Greener Synthesis of Chloromethyl Ethylene Carbonate by CO2 Utilization. ENERGIES 2020. [DOI: 10.3390/en13030521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The catalytic activity of both ZIF-8 and Zr/ZIF-8 has been investigated for the synthesis of chloromethyl ethylene carbonate (CMEC) using carbon dioxide (CO2) and epichlorohydrin (ECH) under solvent-free conditions. Published results from literature have highlighted the weak thermal, chemical, and mechanical stability of ZIF-8 catalyst, which has limited its large-scale industrial applications. The synthesis of novel Zr/ZIF-8 catalyst for cycloaddition reaction of ECH and CO2 to produce CMEC has provided a remarkable reinforcement to this weak functionality, which is a significant contribution to knowledge in the field of green and sustainable engineering. The enhancement in the catalytic activity of Zr in Zr/ZIF-8 can be attributed to the acidity/basicity characteristics of the catalyst. The comparison of the catalytic performance of the two catalysts has been drawn based on the effect of different reaction conditions such as temperature, CO2 pressure, catalyst loading, reaction time, stirring speed, and catalyst reusability studies. Zr/ZIF-8 has been assessed as a suitable heterogeneous catalyst outperforming the catalytic activities of ZIF-8 catalyst with respect to conversion of ECH, selectivity and yield of CMEC. At optimum conditions, the experimental results for direct synthesis of CMEC agree well with similar literature on Zr/MOF catalytic performance, where the conversion of ECH, selectivity and the yield of CMEC are 93%, 86%, and 76%, respectively.
Collapse
|
37
|
Zhao W, Yan G, Zheng Y, Liu B, Jia D, Liu T, Cui L, Zheng R, Wei D, Liu J. Bimetal-organic framework derived Cu(NiCo) 2S 4/Ni 3S 4 electrode material with hierarchical hollow heterostructure for high performance energy storage. J Colloid Interface Sci 2020; 565:295-304. [PMID: 31978792 DOI: 10.1016/j.jcis.2020.01.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
Rational design of electrical active materials with high performance for energy storage and conversion is of great significance. Herein, Cu(NiCo)2S4/Ni3S4, a three-dimensional (3D) hierarchical hollow heterostructured electrode material, is designed by etching the well-defined bimetal organic framework (MOF) via sequential in-situ ion-exchange processes. This trimetallic sulfides with unique structure provide large surface area, hierarchical pore distribution and enhanced electrical conductivity, can enrich the active sites for redox reactions, facilitate electrolyte penetration and rapid charge transfer kinetics. As a result, the Cu(NiCo)2S4/Ni3S4 electrode exhibits a high specific capacitance of 1320 F/g at 1 A/g and excellent rate performance (only 15% of capacitance is attenuated when the current density is increased by 20 times). Furthermore, a fabricated hybrid supercapacitor of Cu(NiCo)2S4/Ni3S4/AC can deliver a maximum energy density of 40.8 Wh/kg, remarkable power density of 7859.2 W/kg and superior cycling stability (85% retention of capacitance after 5000 cycles), demonstrating great potential for practical applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Wei Zhao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Guowen Yan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Yiwei Zheng
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Bingping Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266071, Shandong, China
| | - Dedong Jia
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Taiwei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China
| | - Liang Cui
- College of Materials Science and Engineering, Linyi University, Linyi 276400, Shandong, China.
| | - Rongkun Zheng
- College of Materials Science and Engineering, Linyi University, Linyi 276400, Shandong, China
| | - Di Wei
- College of Materials Science and Engineering, Linyi University, Linyi 276400, Shandong, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China; College of Materials Science and Engineering, Linyi University, Linyi 276400, Shandong, China.
| |
Collapse
|
38
|
Luo D, Wang C, Tong Y, Liu C, Xiao Y, Zhu Z, Liu D, Wang Y. An NIF-doped ZIF-8 hybrid membrane for continuous antimicrobial treatment. RSC Adv 2020; 10:7360-7367. [PMID: 35492192 PMCID: PMC9049784 DOI: 10.1039/d0ra00108b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Sodium alginate (ALG) composites with ZIF-8 and niflumic acid (NIF) were prepared by a one-pot method at room temperature and characterized by FTIR, SEM and XRD studies. In the composite, ZIF-8 was used as a highly connected node in a supercrosslinked polymer network. In addition, the material exhibits good antibacterial activity against Staphylococcus aureus and Escherichia coli in vitro. Compared to the original ALG membrane and ZIF-8, the ZIF–NIF–ALG membrane has the following advantages: stronger antibacterial properties; slow release of Zn(ii); high drug loading; and longer sustained release time. This research introduces new concepts for the design and manufacture of various antimicrobial membranes and broadens the range of applications of MOFs. A ZIF-8 hybrid film has shows continuous medical effects, with including antibacterial and anti-inflammatory effects.![]()
Collapse
Affiliation(s)
- Dan Luo
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Cuijuan Wang
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Yan Tong
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Cheng Liu
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Yumei Xiao
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Zixin Zhu
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - DongNing Liu
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Yaoyu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry
- Northwest University
- Xi'an 710069
- China
| |
Collapse
|
39
|
High Surface Proton Conduction in Nanostructured ZIF-8. NANOMATERIALS 2019; 9:nano9101369. [PMID: 31554306 PMCID: PMC6835583 DOI: 10.3390/nano9101369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/23/2022]
Abstract
The zeolitic imidazolate framework-8 (ZIF-8) combines a significantly high microporosity with an excellent thermal, chemical, and hydrothermal stability. Here, we demonstrated that ZIF-8 can display significant levels of protonic conductivity through a water-mediated surface transport mechanism associated to the presence of di-coordinated Zn ions revealed by X-ray photoelectron spectroscopy. A set of powders with particle sizes from 2.8 µm down to 80 nm studied by dynamic water vapour sorption analysis was used to demonstrate that water adsorbs predominantly in the micropore cavities of microcrystalline ZIF-8, whereas adsorption on the external surface becomes the dominant contribution for the nanostructured material. Impedance spectroscopy in turn revealed that the protonic conductivity of the nanocrystalline ZIF-8 was two orders of magnitude higher than that of the micron-sized powders, reaching approximately 0.5 mS·cm−1 at 94 °C and 98% relative humidity. Simple relations were derived in order to estimate the potential gains in water uptake and conductivity as a function of the particle size. This new strategy combining particle nanostructuring with surface defects, demonstrated here for one of the most know metal organic framework, is of general application to potentially boost the conductivity of other materials avoiding chemical functionalization strategies that in most if not all cases compromise their chemical stability, particularly under high humidity and high temperature conditions.
Collapse
|
40
|
Wu Y, Yuan D, He D, Xing J, Zeng S, Xu S, Xu Y, Liu Z. Decorated Traditional Zeolites with Subunits of Metal–Organic Frameworks for CH
4
/N
2
Separation. Angew Chem Int Ed Engl 2019; 58:10241-10244. [DOI: 10.1002/anie.201905014] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Yaqi Wu
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Danhua Yuan
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Dawei He
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiacheng Xing
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shu Zeng
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Yunpeng Xu
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
41
|
Wu Y, Yuan D, He D, Xing J, Zeng S, Xu S, Xu Y, Liu Z. Decorated Traditional Zeolites with Subunits of Metal–Organic Frameworks for CH
4
/N
2
Separation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yaqi Wu
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Danhua Yuan
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Dawei He
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiacheng Xing
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shu Zeng
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Yunpeng Xu
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to OlefinsDalian National Laboratory for Clean EnergyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
42
|
Azad M, Rostamizadeh S, Estiri H, Nouri F. Ultra‐small and highly dispersed Pd nanoparticles inside the pores of ZIF‐8: Sustainable approach to waste‐minimized Mizoroki–Heck cross‐coupling reaction based on reusable heterogeneous catalyst. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4952] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mohammad Azad
- Faculty of ChemistryK. N. Toosi University of Technology PO Box 15875‐4416 Tehran Iran
| | - Shahnaz Rostamizadeh
- Faculty of ChemistryK. N. Toosi University of Technology PO Box 15875‐4416 Tehran Iran
| | - Hamid Estiri
- Faculty of ChemistryK. N. Toosi University of Technology PO Box 15875‐4416 Tehran Iran
| | - Fatemeh Nouri
- Faculty of ChemistryK. N. Toosi University of Technology PO Box 15875‐4416 Tehran Iran
| |
Collapse
|
43
|
Arul P, John SA. Organic solvent free in situ growth of flower like Co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Tayebee R, Fattahi Abdizadeh M, Erfaninia N, Amiri A, Baghayeri M, Kakhki RM, Maleki B, Esmaili E. Phosphotungstic acid grafted zeolite imidazolate framework as an effective heterogeneous nanocatalyst for the one‐pot solvent‐free synthesis of 3,4‐dihydropyrimidinones. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reza Tayebee
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
- Department of ChemistryPayame Noor University (PNU) Tehran 19395‐4697 Iran
| | | | - Nasrin Erfaninia
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
| | - Amirhassan Amiri
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
| | - Mehdi Baghayeri
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
| | | | - Behrooz Maleki
- Department of ChemistryHakim Sabzevari University Sabzevar 96179‐76487 Iran
| | - Effat Esmaili
- Department of ChemistryPayame Noor University (PNU) Tehran 19395‐4697 Iran
| |
Collapse
|
45
|
Panda J, Sahoo JK, Panda PK, Sahu SN, Samal M, Pattanayak SK, Sahu R. Adsorptive behavior of zeolitic imidazolate framework-8 towards anionic dye in aqueous media: Combined experimental and molecular docking study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Kumar A, Prajapati PK, Aathira MS, Bansiwal A, Boukherroub R, Jain SL. Highly improved photoreduction of carbon dioxide to methanol using cobalt phthalocyanine grafted to graphitic carbon nitride as photocatalyst under visible light irradiation. J Colloid Interface Sci 2019; 543:201-213. [PMID: 30802767 DOI: 10.1016/j.jcis.2019.02.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 11/20/2022]
Abstract
A substantially improved methanol yield was achieved from the photoreduction of carbon dioxide under visible light by using a hybrid photocatalyst consisting of molecular cobalt phthalocyanine tetracarboxylic acid (CoPc-COOH) complex immobilized to the organic semiconductor graphitic carbon nitride (g-C3N4) and triethylamine as sacrificial electron donor. The structural and morphological features of the hybrid photocatalyst determined by various techniques like FTIR, UV-Vis, Raman, XPS, TGA, BET etc. After 24 h of light irradiation, the methanol yield by using g-C3N4/CoPc-COOH photocatalyst (50 mg) was found to be 646.5 µmol g-1cat or 12.9 mmol g-1cat with conversion rate 538.75 µmol h-1 g-1cat. However, the use of homogeneous CoPc-COOH (6.5 µmol Co, equivalent to g-C3N4/CoPc-COOH) and g-C3N4 (50 mg) provided 88.5 μmol (1770 μmol g-1cat) and 59.2 μmol (1184 μmol g-1cat) yield of methanol, respectively under identical conditions. The improved photocatalytic efficiency of the hybrid was attributed to the binding ability of CoPc-COOH to CO2 that provided the higher CO2 concentration on the support. Further, the semiconductor support provided better electron mobility and charge separation with the integrated benefit of facile recovery and recycling of the material at the end of the reduction process.
Collapse
Affiliation(s)
- Anurag Kumar
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Pankaj Kumar Prajapati
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - M S Aathira
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Amit Bansiwal
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France
| | - Suman L Jain
- Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India.
| |
Collapse
|
47
|
Chakraborty A, Islam DA, Acharya H. Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Beka LG, Bu X, Li X, Wang X, Han C, Liu W. A 2D metal–organic framework/reduced graphene oxide heterostructure for supercapacitor application. RSC Adv 2019; 9:36123-36135. [PMID: 35540587 PMCID: PMC9074924 DOI: 10.1039/c9ra07061c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Metal organic frameworks (MOFs) with two dimensional (2D) nanosheets have attracted special attention for supercapacitor application due to their exceptional large surface area and high surface-to-volume atom ratios. However, their electrochemical performance is greatly hindered by their poor electrical conductivity. Herein, we report a 2D nanosheet nickel cobalt based MOF (NiCo-MOF)/reduced graphene oxide heterostructure as an electrode material for supercapacitors. The NiCo-MOF 2D nanosheets are in situ grown on rGO surfaces by simple room temperature precipitation. In such hybrid structure the MOF ultrathin nanosheets provide large surface area with abundant channels for fast mass transport of ions while the rGO conductive and physical support provides rapid electron transport. Thus, using the synergistic advantage of rGO and NiCo-MOF nanosheets an excellent specific capacitance of 1553 F g−1 at a current density of 1 A g−1 is obtained. Additionally, the as synthesized hybrid material showed excellent cycling capacity of 83.6% after 5000 cycles of charge–discharge. Interestingly, the assembled asymmetric device showed an excellent energy density of 44 W h kg−1 at a power density of 3168 W kg−1. The electrochemical performance obtained in this report illustrates hybridization of MOF nanosheets with carbon materials is promising for next generation supercapacitors. In this 2D NiCo-MOF/rGO hybrid, the MOF nanosheets provide abundant active sites while the conductive rGO provide rapid electron transport.![]()
Collapse
Affiliation(s)
- Lemu Girma Beka
- School of Microelectronics
- School of Electronic and Information Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Xiangrui Bu
- School of Microelectronics
- School of Electronic and Information Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Xin Li
- School of Microelectronics
- School of Electronic and Information Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Xiaoli Wang
- School of Microelectronics
- School of Electronic and Information Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Chuanyu Han
- School of Microelectronics
- School of Electronic and Information Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Weihua Liu
- School of Microelectronics
- School of Electronic and Information Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| |
Collapse
|
49
|
Li X, Li J, Shi Y, Zhang M, Fan S, Yin Z, Qin M, Lian T, Li X. Rational design of cobalt and nitrogen co-doped carbon hollow frameworks for efficient photocatalytic degradation of gaseous toluene. J Colloid Interface Sci 2018; 528:45-52. [DOI: 10.1016/j.jcis.2018.05.067] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 11/26/2022]
|
50
|
Pham TT, Le LN, Nguyen HN, Luong TTK, Pham TN, Nguyen HL, Nguyen TK. Encapsulating gold nanoparticles in zeolitic imidazolate framework crystal for novel optical response. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|