1
|
Zhang T, Zhang S, Wang Y, Peng Z, Xin B, Zhong C. Tandem GGDEF-EAL Domain Proteins Pleiotropically Modulate c-di-GMP Metabolism Enrolled in Bacterial Cellulose Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1982-1993. [PMID: 39794331 DOI: 10.1021/acs.jafc.4c07301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is a crucial secondary messenger that regulates bacterial cellulose (BC) synthesis. It is synthesized by diguanylate cyclase (DGC) containing a Gly-Gly-Asp/Glu-Glu-Phe (GGDEF) domain and degraded by phosphodiesterase (PDE) with a Glu-Ala-Leu (EAL) domain. In this work, a systematic analysis of ten GGDEF-EAL tandem domain proteins from Komagataeibacter xylinus CGMCC 2955 assessed their c-di-GMP metabolic functions and effects on BC titer and structure. Of these, five proteins exhibited DGC activity, and five exhibited PDE activity in vitro. GE03 was identified as a bifunctional protein. Most mutant strains deficient in GGDEF-EAL protein showed changes in BC metabolism, motility, and c-di-GMP levels. The combined knockout of identified PDE proteins increased the BC titer by 48.1% compared to the wild type. Overall, our findings advance our understanding of c-di-GMP signaling and its role in BC synthesis, introducing novel concepts and effective strategies for enhancing industrial BC production.
Collapse
Affiliation(s)
- Tianzhen Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
- Haihe Laboratory of Synthetic Biology, Tianjin 300051, People's Republic of China
| | - Shiqi Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
- Haihe Laboratory of Synthetic Biology, Tianjin 300051, People's Republic of China
| | - Yan Wang
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
- Haihe Laboratory of Synthetic Biology, Tianjin 300051, People's Republic of China
| | - Zhaojun Peng
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
- Haihe Laboratory of Synthetic Biology, Tianjin 300051, People's Republic of China
| | - Bo Xin
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
- Haihe Laboratory of Synthetic Biology, Tianjin 300051, People's Republic of China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
- Haihe Laboratory of Synthetic Biology, Tianjin 300051, People's Republic of China
| |
Collapse
|
2
|
Feng S, Zhang M, Song J, Ruan X, Xue W. Discovery of Highly Effective Antibacterial Agents Based on Chalcone-Benzisothiazolinone against Plant Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27808-27817. [PMID: 39636244 DOI: 10.1021/acs.jafc.4c09234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In this study, a series of novel chalcone compounds containing 1,2-benzisothiazolin-3-one were designed, synthesized, and screened for the prevention and control of plant bacterial diseases. The results showed that most of the target compounds displayed excellent antibacterial activities. Especially, F17 (2-(3-(4-cinnamoylphenoxy)propyl)benzo[d]isothiazol-3(2H)-one) exhibited remarkable efficacy against Xanthomonas oryzae pv Oryzae in vitro, with a half effective concentration (EC50) of 0.5 μg/mL, better than that of the commercial antibacterial agent thiodiazole-copper (TC, 56.1 μg/mL). Furthermore, F17 showed excellent effects against rice bacterial leaf blight in vivo, with protective and curative activities of 59.2% and 48.8% at 200 μg/mL, respectively, which were higher than those of TC (38.3% and 36.6%). Moreover, the bacteriostatic mechanism of F17 was elucidated through a series of biochemical experiments. The results indicated that F17 could inhibit the expression of multiple pathogenic factors and induce the host's resistance to disease by enhancing the activities of defense enzymes. Therefore, F17, which revealed the ability to combat plant bacterial diseases by orchestrating the control of multiple factors, might provide a new perspective for solving the problem of plant pathogen resistance. Overall, the results of this work demonstrated that chalcone compounds containing benzisothiazolinone as highly effective antibacterial candidates hold potential for the management of plant bacterial diseases.
Collapse
Affiliation(s)
- Shuang Feng
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, P. R. China
| | - Miaohe Zhang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550025, P. R. China
| | - Junrong Song
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, P. R. China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, P. R. China
| | - Xianghui Ruan
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
3
|
Wang K, Li W, Cui H, Qin S. Phylogenetic distribution and characterization of conserved C-di-GMP metabolizing proteins in filamentous cyanobacterium Arthrospira. Gene 2024; 927:148643. [PMID: 38844269 DOI: 10.1016/j.gene.2024.148643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger in bacteria that regulates multiple biological functions, including biofilm formation, virulence, and intercellular communication. However, c-di-GMP signaling is virtually unknown in economically important filamentous cyanobacteria, Arthrospira. In this study, we predicted 31 genes encoding GGDEF-domain proteins from A. platensis NIES39 as potential diguanylate cyclases (DGCs). Phylogenetic distribution analysis showed five genes (RS09460, RS04865, RS26155, M01840, and E02220) with highly conserved distribution across 25 Arthrospira strains. Adc1 encoded by RS09460 was further characterized as a typical DGC. By establishing the genetic transformation system of Arthrospira, we demonstrated that the overexpression of Adc1 promoted the production of extracellular polymeric substances (EPS), which in turn caused the aggregation of filaments. We also confirmed that RS04865 and RS26155 may encode active DGCs, while enzymatic activity assays showed that proteins encoded by M01840 and E02220 have phosphodiesterase (PDE) activity. Meta-analysis revealed that the expression profiles of RS09460 and RS04865 were unaffected under 31 conditions, suggesting that they may function as conserved genes in maintaining the basal level of c-di-GMP in Arthrospira. In summary, this report will provide the basis for further studies of c-di-GMP signal in Arthrospira.
Collapse
Affiliation(s)
- Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenjun Li
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
4
|
Verma RK, Gondu P, Saha T, Chatterjee S. The Global Transcription Regulator XooClp Governs Type IV Pili System-Mediated Bacterial Virulence by Directly Binding to TFP-Chp Promoters to Coordinate Virulence Associated Functions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:357-369. [PMID: 38105438 DOI: 10.1094/mpmi-07-23-0100-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Parimala Gondu
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Tirthankar Saha
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | | |
Collapse
|
5
|
Yang W, Liu X, Liu M, Wei F, Yang L, Yuan M, Li G. High-quality complete genome sequence of Xanthomonas oryzae pv. oryzicola ( Xoc) strain HB8. Microbiol Resour Announc 2023; 12:e0045923. [PMID: 37526442 PMCID: PMC10508111 DOI: 10.1128/mra.00459-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Here, we report a high-quality genome of Xanthomonas oryzae pv. oryzicola (Xoc) strain HB8, which causes bacterial leaf streaks in rice. The genome size of HB8 is 4,800,100 bp, with a GC content of 64.03%, which serves as an important resource for the study of the Xanthomonas-rice pathosystem.
Collapse
Affiliation(s)
- Wei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xingxun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meng Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fengmei Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Ximinies AD, Dou Y, Mishra A, Zhang K, Deivanayagam C, Wang C, Fletcher HM. The Oxidative Stress-Induced Hypothetical Protein PG_0686 in Porphyromonas gingivalis W83 Is a Novel Diguanylate Cyclase. Microbiol Spectr 2023; 11:e0441122. [PMID: 36719196 PMCID: PMC10101095 DOI: 10.1128/spectrum.04411-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
The survival/adaptation of Porphyromonas gingivalis to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Several functional classes of genes, depending on the severity and duration of the exposure, were induced in P. gingivalis under H2O2-induced oxidative stress. The PG_0686 gene was highly upregulated under prolonged oxidative stress. PG_0686, annotated as a hypothetical protein of unknown function, is a 60 kDa protein that carries several domains including hemerythrin, PAS10, and domain of unknown function (DUF)-1858. Although PG_0686 showed some relatedness to several diguanylate cyclases (DGCs), it is missing the classical conserved, active site sequence motif (GGD[/E]EF), commonly observed in other bacteria. PG_0686-related proteins are observed in other anaerobic bacterial species. The isogenic mutant P. gingivalis FLL361 (ΔPG_0686::ermF) showed increased sensitivity to H2O2, and decreased gingipain activity compared to the parental strain. Transcriptome analysis of P. gingivalis FLL361 showed the dysregulation of several gene clusters/operons, known oxidative stress resistance genes, and transcriptional regulators, including PG_2212, CdhR and PG_1181 that were upregulated under normal anaerobic conditions. The intracellular level of c-di-GMP in P. gingivalis FLL361 was significantly decreased compared to the parental strain. The purified recombinant PG_0686 (rPG_0686) protein catalyzed the formation of c-di-GMP from GTP. Collectively, our data suggest a global regulatory property for PG_0686 that may be part of an unconventional second messenger signaling system in P. gingivalis. Moreover, it may coordinately regulate a pathway(s) vital for protection against environmental stress, and is significant in the pathogenicity of P. gingivalis and other anaerobes. IMPORTANCE Porphyromonas gingivalis is an important etiological agent in periodontitis and other systemic diseases. There is still a gap in our understanding of the mechanisms that P. gingivalis uses to survive the inflammatory microenvironment of the periodontal pocket. The hypothetical PG_0686 gene was highly upregulated under prolonged oxidative stress. Although the tertiary structure of PG_0686 showed little relatedness to previously characterized diguanylate cyclases (DGCs), and does not contain the conserved GGD(/E)EF catalytic domain motif sequence, an ability to catalyze the formation of c-di-GMP from GTP is demonstrated. The second messenger pathway for c-di-GMP was previously predicted to be absent in P. gingivalis. PG_0686 paralogs are identified in other anaerobic bacteria. Thus, PG_0686 may represent a novel class of DGCs, which is yet to be characterized. In conclusion, we have shown, for the first time, evidence for the presence of c-di-GMP signaling with environmental stress protective function in P. gingivalis.
Collapse
Affiliation(s)
- Alexia D. Ximinies
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yuetan Dou
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Arunima Mishra
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Kangling Zhang
- Department of Pharmacology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama, USA
| | - Charles Wang
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Hansel M. Fletcher
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
7
|
Dey S, Shahrear S, Afroj Zinnia M, Tajwar A, Islam ABMMK. Functional Annotation of Hypothetical Proteins From the Enterobacter cloacae B13 Strain and Its Association With Pathogenicity. Bioinform Biol Insights 2022; 16:11779322221115535. [PMID: 35958299 PMCID: PMC9358594 DOI: 10.1177/11779322221115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022] Open
Abstract
Enterobacter cloacae B13 strain is a rod-shaped gram-negative bacterium that belongs to the Enterobacteriaceae family. It can cause respiratory and urinary tract infections, and is responsible for several outbreaks in hospitals. E. cloacae has become an important pathogen and an emerging global threat because of its opportunistic and multidrug resistant ability. However, little knowledge is present about a large portion of its proteins and functions. Therefore, functional annotation of the hypothetical proteins (HPs) can provide an improved understanding of this organism and its virulence activity. The workflow in the study included several bioinformatic tools which were utilized to characterize functions, family and domains, subcellular localization, physiochemical properties, and protein-protein interactions. The E. cloacae B13 strain has overall 604 HPs, among which 78 were functionally annotated with high confidence. Several proteins were identified as enzymes, regulatory, binding, and transmembrane proteins with essential functions. Furthermore, 23 HPs were predicted to be virulent factors. These virulent proteins are linked to pathogenesis with their contribution to biofilm formation, quorum sensing, 2-component signal transduction or secretion. Better knowledge about the HPs’ characteristics and functions will provide a greater overview of the proteome. Moreover, it will help against E. cloacae in neonatal intensive care unit (NICU) outbreaks and nosocomial infections.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sazzad Shahrear
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Ahnaf Tajwar
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
8
|
Lin Y, Mi D, Hou Y, Lin M, Xie Q, Niu X, Chen Y, He C, Tao J, Li C. Systematic analysis of the roles of c-di-GMP signaling in Xanthomonas oryzae pv. oryzae virulence. FEMS Microbiol Lett 2022; 369:6650349. [PMID: 35883214 DOI: 10.1093/femsle/fnac068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022] Open
Abstract
Cyclic di-guanosine monophosphate (c-di-GMP) is a ubiquitous second messenger that is essential to bacterial adaptation to environments. Cellular c-di-GMP level is regulated by the diguanylate cyclases and the phosphodiesterases, and the signal transduction depends on its receptors. In Xanthomonas oryzae pv. oryzae strain PXO99A, 37 genes were predicted to encode GGDEF, EAL, GGDEF/EAL, HD-GYP, FleQ, MshE, PilZ, CuxR, Clp, YajQ proteins that may be involved in c-di-GMP turnover or function as c-di-GMP receptors. Although the functions of some of these genes have been studied, but the rest have not been extensively studied. Here, we deleted these 37 genes from PXO99A and analyzed the virulence, motility, biofilm and EPS production of these mutants. Our results show that most of these genes are required for PXO99A virulence, motility, biofilm formation or exopolysaccharide production. Although some of them have been reported in previous studies, we found four novel genes (gedpX8, gdpX11, pliZX4 and yajQ) are implicated in X. oryzae pv. oryzae virulence. Our data demonstrate that c-di-GMP signaling is vital for X. oryzae pv. oryzae virulence and some virulence-related factors production, but there is no positive correlation between them in most cases. Taken together, our systematic research provides a new light to understand the c-di-GMP signaling network in X. oryzae pv. oryzae.
Collapse
Affiliation(s)
- Yunuan Lin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,School of Life Sciences
| | - Duo Mi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yunyu Hou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,School of Life Sciences
| | - Maojuan Lin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qingbiao Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,School of Life Sciences
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,School of Life Sciences
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jun Tao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chunxia Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources.,College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
The HD-GYP domain protein of Shewanella putrefaciens YZ08 regulates biofilm formation and spoilage activities. Food Res Int 2022; 157:111466. [DOI: 10.1016/j.foodres.2022.111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
10
|
Sequence conservation, domain architectures, and phylogenetic distribution of the HD-GYP type c-di-GMP phosphodiesterases. J Bacteriol 2021; 204:e0056121. [PMID: 34928179 DOI: 10.1128/jb.00561-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HD-GYP domain, named after two of its conserved sequence motifs, was first described in 1999 as a specialized version of the widespread HD phosphohydrolase domain that had additional highly conserved amino acid residues. Domain associations of HD-GYP indicated its involvement in bacterial signal transduction and distribution patterns of this domain suggested that it could serve as a hydrolase of the bacterial second messenger c-di-GMP, in addition to or instead of the EAL domain. Subsequent studies confirmed the ability of various HD-GYP domains to hydrolyze c-di-GMP to linear pGpG and/or GMP. Certain HD-GYP-containing proteins hydrolyze another second messenger, cGAMP, and some HD-GYP domains participate in regulatory protein-protein interactions. The recently solved structures of HD-GYP domains from four distinct organisms clarified the mechanisms of c-di-GMP binding and metal-assisted hydrolysis. However, the HD-GYP domain is poorly represented in public domain databases, which causes certain confusion about its phylogenetic distribution, functions, and domain architectures. Here, we present a refined sequence model for the HD-GYP domain and describe the roles of its most conserved residues in metal and/or substrate binding. We also calculate the numbers of HD-GYPs encoded in various genomes and list the most common domain combinations involving HD-GYP, such as the RpfG (REC-HD-GYP), Bd1817 (DUF3391- HD-GYP), and PmGH (GAF-HD-GYP) protein families. We also provide the descriptions of six HD-GYP-associated domains, including four novel integral membrane sensor domains. This work is expected to stimulate studies of diverse HD-GYP-containing proteins, their N-terminal sensor domains and the signals to which they respond. IMPORTANCE The HD-GYP domain forms class II of c-di-GMP phosphodiesterases that control the cellular levels of the universal bacterial second messenger c-di-GMP and therefore affect flagellar and/or twitching motility, cell development, biofilm formation, and, often, virulence. Despite more than 20 years of research, HD-GYP domains are insufficiently characterized; they are often confused with 'classical' HD domains that are involved in various housekeeping activities and may participate in signaling, hydrolyzing (p)ppGpp and c-di-AMP. This work provides an updated description of the HD-GYP domain, including its sequence conservation, phylogenetic distribution, domain architectures, and the most widespread HD-GYP-containing protein families. This work shows that HD-GYP domains are widespread in many environmental bacteria and are predominant c-di-GMP hydrolases in many lineages, including clostridia and deltaproteobacteria.
Collapse
|
11
|
Wei C, Wang S, Liu P, Cheng ST, Qian G, Wang S, Fu Y, Qian W, Sun W. The PdeK-PdeR two-component system promotes unipolar localization of FimX and pilus extension in Xanthomonas oryzae pv. oryzicola. Sci Signal 2021; 14:eabi9589. [PMID: 34520229 DOI: 10.1126/scisignal.abi9589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chao Wei
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Pengwei Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shou-Ting Cheng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shuwei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxian Sun
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China.,College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| |
Collapse
|
12
|
Wan X, Yang J, Ahmed W, Liu Q, Wang Y, Wei L, Ji G. Functional analysis of pde gene and its role in the pathogenesis of Xanthomonas oryzae pv. oryzicola. INFECTION GENETICS AND EVOLUTION 2021; 94:105008. [PMID: 34284137 DOI: 10.1016/j.meegid.2021.105008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/16/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a devastating disease of rice worldwide, including China. The second messenger c-di-GMP plays an important role in the transduction of intercellular signals. However, little is known about the function of EAL domain protein in c-di-GMP that regulates the virulence in Xoc. In this study, the function of EAL domain protein encoded by pde (FE36_09715) gene in the regulation of c-di-GMP was investigated. Results of this study, showed that the deletion of pde gene led to a significant reduction in the virulence of Xoc and was positively related to the reduction of exopolysaccharides production, biofilm formation, and flagellar motility. However, these significantly impaired properties from the ∆pde mutant strain were partially recovered in the complementary strain. In addition, the deletion of pde gene in Xoc strain YM15 had no visible effect on the colony morphology, amylase, and protease activities of Xoc. It is concluded that, as a regulator for the c-di-GMP level, the pde gene plays an important role in partial biological processes in Xoc and is essential for its virulence.
Collapse
Affiliation(s)
- Xiaoyan Wan
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Yang
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China
| | - Waqar Ahmed
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Qi Liu
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yanfang Wang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lanfang Wei
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghai Ji
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
13
|
Li W, Liu M, Siddique MS, Graham N, Yu W. Contribution of bacterial extracellular polymeric substances (EPS) in surface water purification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116998. [PMID: 33780840 DOI: 10.1016/j.envpol.2021.116998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Naturally present aquatic microorganisms play an important role in water purification systems, such as the self-purification of surface waters. In this study, two water sources representing polluted surface water (Olympic Green; OG) and unpolluted surface water (Jingmi river; JM), were used to explore the self-purification of surface water by bacteria under different environmental conditions. The dominant bacterial community of OG and JM waters (both are Firmicutes and Proteobacteria) were isolated, cultured, and then used to carry out flocculation tests. Results showed that the flocculation ability of the dominant bacteria and extracellular polymeric substances (EPS) obtained from OG isolation was significantly greater than that from JM. Further examination illustrated that the main components of EPS were polysaccharides, which played an important role in improving the flocculation ability of bacteria. EPS from dominant cultural bacteria strains (OG1 and JM3) isolated from the two different sources lacked hydrophilic groups (e.g. COOH) and had a networked structure which are the main reasons to enhance the flocculation ability. The bacterial diversity and redundancy analysis (RDA) results also showed that microbial community composition is determined by water quality (SS, TOC, and NH4+), and different Bacteroidetes, Actinobacteria and Proteobacteria community structures can improve the water body's ability to remove environmental pollutants (such as SS, humic acid and fulvic acid). These findings provide new information showing how bacterial communities change with environmental factors while maintaining the purity of surface water.
Collapse
Affiliation(s)
- Weihua Li
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom.
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| |
Collapse
|
14
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
15
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
16
|
Pinski A, Zur J, Hasterok R, Hupert-Kocurek K. Comparative Genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila Revealed Characteristic Features of Both Species. Int J Mol Sci 2020; 21:E4922. [PMID: 32664682 PMCID: PMC7404187 DOI: 10.3390/ijms21144922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Although Stenotrophomonas maltophilia strains are efficient biocontrol agents, their field applications have raised concerns due to their possible threat to human health. The non-pathogenic Stenotrophomonas rhizophila species, which is closely related to S. maltophilia, has been proposed as an alternative. However, knowledge regarding the genetics of S. rhizophila is limited. Thus, the aim of the study was to define any genetic differences between the species and to characterise their ability to promote the growth of plant hosts as well as to enhance phytoremediation efficiency. We compared 37 strains that belong to both species using the tools of comparative genomics and identified 96 genetic features that are unique to S. maltophilia (e.g., chitin-binding protein, mechanosensitive channels of small conductance and KGG repeat-containing stress-induced protein) and 59 that are unique to S. rhizophila (e.g., glucosylglycerol-phosphate synthase, cold shock protein with the DUF1294 domain, and pteridine-dependent dioxygenase-like protein). The strains from both species have a high potential for biocontrol, which is mainly related to the production of keratinases (KerSMD and KerSMF), proteinases and chitinases. Plant growth promotion traits are attributed to the biosynthesis of siderophores, spermidine, osmoprotectants such as trehalose and glucosylglycerol, which is unique to S. rhizophila. In eight out of 37 analysed strains, the genes that are required to degrade protocatechuate were present. While our results show genetic differences between the two species, they had a similar growth promotion potential. Considering the information above, S. rhizophila constitutes a promising alternative for S. maltophilia for use in agricultural biotechnology.
Collapse
Affiliation(s)
- Artur Pinski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (J.Z.); (R.H.)
| | | | | | - Katarzyna Hupert-Kocurek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032 Katowice, Poland; (J.Z.); (R.H.)
| |
Collapse
|
17
|
Nie H, Xiao Y, He J, Liu H, Nie L, Chen W, Huang Q. Phenotypic-genotypic analysis of GGDEF/EAL/HD-GYP domain-encoding genes in Pseudomonas putida. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:38-48. [PMID: 31691501 DOI: 10.1111/1758-2229.12808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Cyclic diguanylate (c-di-GMP) is a broadly conserved bacterial signalling molecule that modulates diverse cellular processes, such as biofilm formation, colony morphology and swimming motility. The intracellular level of c-di-GMP is controlled by diguanylate cyclases (DGCs) with GGDEF domain and phosphodiesterases (PDEs) with either EAL or HD-GYP domain. Pseudomonas putida KT2440 has a large group of genes on its genome encoding proteins with GGDEF/EAL/HD-GYP domains. However, phenotypic-genotypic correlation and c-di-GMP metabolism of these genes were largely unknown. Herein, by systematically constructing deletion mutants/overexpression strains of the 42 predicted c-di-GMP metabolism-related genes and analysing the phenotypes, we preliminarily revealed the role of each gene in biofilm formation, colony morphology and swimming motility. Subsequent results from protein sequence alignments and cellular c-di-GMP assessment indicated that 25 out of the 42 genes were likely to encode DGCs, nine genes were predicted to encode PDEs, four genes encoded bifunctional enzymes and the other four genes encoded enzymatically inactive proteins. This study offers a basic understanding of the roles of these 42 genes and can serve as a toolkit for investigators to further elucidate the functions of these GGDEF and EAL/HD-GYP domain-containing proteins.
Collapse
Affiliation(s)
- Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinzhi He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
18
|
Wang F, Wang Y, Cen C, Fu L, Wang Y. A tandem GGDEF-EAL domain protein-regulated c-di-GMP signal contributes to spoilage-related activities of Shewanella baltica OS155. Appl Microbiol Biotechnol 2020; 104:2205-2216. [PMID: 31927761 DOI: 10.1007/s00253-020-10357-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 11/26/2022]
Abstract
Cyclic diguanylate (c-di-GMP) is a second messenger involved in the regulation of various physiological processes in bacteria. However, its function in spoilage bacteria has not yet been addressed. Here, we studied the function of a tandem GGDEF-EAL domain protein, Sbal_3235, in the spoilage bacterium Shewanella baltica OS155. The deletion of sbal_3235 significantly reduced the c-di-GMP level, biofilm formation, and exopolysaccharide, trimethylamine (TMA), and putrescine production; sbal_3235 deletion also downregulated the expression of the torS and speF genes and affected membrane fatty acid composition. Site-directed mutagenesis in conserved GGDEF and EAL motifs abolished diguanylate cyclase (DGC) and phosphodiesterase (PDE) activity, respectively. These data indicate that Sbal_3235 is an essential contributor to the c-di-GMP pool with bifunctional DGC and PDE activity, which is involved in the biofilm formation and spoilage activity of S. baltica OS155. Our findings expand the biochemical role of c-di-GMP and uncover its link to spoilage activities, providing novel targets for food quality and safety controlling.
Collapse
Affiliation(s)
- Feifei Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Yongzheng Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Congnan Cen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
19
|
Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Organisms can respond to varying light conditions using a wide range of sensory photoreceptors. These photoreceptors can be standalone proteins or represent a module in multidomain proteins, where one or more modules sense light as an input signal which is converted into an output response via structural rearrangements in these receptors. The output signals are utilized downstream by effector proteins or multiprotein clusters to modulate their activity, which could further affect specific interactions, gene regulation or enzymatic catalysis. The blue-light using flavin (BLUF) photosensory module is an autonomous unit that is naturally distributed among functionally distinct proteins. In this study, we identified 34 BLUF photoreceptors of prokaryotic and eukaryotic origin from available bioinformatics sequence databases. Interestingly, our analysis shows diverse BLUF-effector arrangements with a functional association that was previously unknown or thought to be rare among the BLUF class of sensory proteins, such as endonucleases, tet repressor family (tetR), regulators of G-protein signaling, GAL4 transcription family and several other previously unidentified effectors, such as RhoGEF, Phosphatidyl-Ethanolamine Binding protein (PBP), ankyrin and leucine-rich repeats. Interaction studies and the indexing of BLUF domains further show the diversity of BLUF-effector combinations. These diverse modular architectures highlight how the organism’s behaviour, cellular processes, and distinct cellular outputs are regulated by integrating BLUF sensing modules in combination with a plethora of diverse signatures. Our analysis highlights the modular diversity of BLUF containing proteins and opens the possibility of creating a rational design of novel functional chimeras using a BLUF architecture with relevant cellular effectors. Thus, the BLUF domain could be a potential candidate for the development of powerful novel optogenetic tools for its application in modulating diverse cell signaling.
Collapse
|
20
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
21
|
Yang F, Xue D, Tian F, Hutchins W, Yang CH, He C. Identification of c-di-GMP Signaling Components in Xanthomonas oryzae and Their Orthologs in Xanthomonads Involved in Regulation of Bacterial Virulence Expression. Front Microbiol 2019; 10:1402. [PMID: 31354637 PMCID: PMC6637768 DOI: 10.3389/fmicb.2019.01402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight of rice, one of the most devastating bacterial diseases of this staple crop worldwide. Xoo produces a range of virulence-related factors to facilitate its pathogenesis in rice, however, the regulatory mechanisms of Xoo virulence expression have been not fully elucidated. Recent studies have revealed that virulence factor production is regulated via cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway that is well-conserved in Xoo and other Xanthomonas species. A set of GGDEF, EAL, HD-GYP, and PilZ domain proteins with diverse signal sensory domains for c-di-GMP synthesis, hydrolysis, and binding is encoded in the Xoo genome. Bioinformatic, genetic, and biochemical analysis has identified an array of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), as well as degenerate GGDEF/EAL, PilZ domain proteins along with a transcription regulator. These signaling components have been characterized to regulate various bacterial cellular processes, such as virulence, exopolysaccharide (EPS) production, biofilm formation, motility, and adaptation at the transcriptional, post-translational, and protein-protein interaction levels. This review summarized the recent progress in understanding the importance and complexity of c-di-GMP signaling in regulating bacterial virulence expression, highlighting the identified key signal elements and orthologs found in Xanthomonads, discussing the diverse functions of GGDEF/EAL/HD-GYP domains, existence of a complicated multifactorial network between DGCs, PDEs, and effectors, and further exploration of the new c-di-GMP receptor domains. These findings and knowledge lay the groundwork for future experimentation to further elucidate c-di-GMP regulatory circuits involved in regulation of bacterial pathogenesis.
Collapse
Affiliation(s)
- Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dingrong Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - William Hutchins
- Department of Biology, Carthage College, Kenosha, WI, United States
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
López-Baena FJ, Vinardell JM, Medina C. Regulation of Protein Secretion Systems Mediated by Cyclic Diguanylate in Plant-Interacting Bacteria. Front Microbiol 2019; 10:1289. [PMID: 31263457 PMCID: PMC6584795 DOI: 10.3389/fmicb.2019.01289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
The ubiquitous second messenger cyclic diguanylate (c-di-GMP) is involved in the regulation of different processes in bacteria. In phytopathogens, intracellular fluctuations in the concentration of this molecule contribute to the lifestyle switching from a motile and virulent stage to a sessile and biofilm-forming phase. Among the virulence mechanisms used by bacterial pathogens, different specific type secretion systems (TSSs) and the effector proteins that they translocate are included. Some of these TSS are conceived to suppress host immune responses during bacterial colonization. The modulation of the expression of secretion systems components and/or effector proteins can be influenced by c-di-GMP levels at transcriptional, translational, or post-translational levels and can take place directly by binding to specific or global regulators, or via transducer proteins. Different genera of plant-interacting bacteria have been analyzed to shed some light in the implications of c-di-GMP in the regulation of host plant colonization through protein secretion systems. Expression of (1) adhesins secreted by Type 1 secretion systems to bind the host plant in Pectobacterium (formerly Erwinia) and some beneficial Pseudomonas strains; (2) catalytic exoproteins delivered by Type 2 secretion systems to break plant cell wall in Dickeya; (3) effectors secreted by Type 3 secretion systems to suppress plant immunity in Xanthomonas; or (4) the activity of Type 6 secretion systems to export an ATPase in Pseudomonas, are finely tuned by c-di-GMP levels. In this minireview, we summarize the knowledge available about the implications of c-di-GMP in the regulation of protein secretion in different plant-interacting bacteria. Topic: Secretion systems and effector proteins of phytopathogenic and beneficial bacteria regulated by NSM.
Collapse
Affiliation(s)
| | - Jose María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Carlos Medina
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
23
|
Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Appl Environ Microbiol 2019; 85:AEM.01741-18. [PMID: 30478234 PMCID: PMC6344628 DOI: 10.1128/aem.01741-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/17/2018] [Indexed: 01/08/2023] Open
Abstract
Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens. The rhizobacterium Pseudomonas pseudoalcaligenes AVO110, isolated by the enrichment of competitive avocado root tip colonizers, controls avocado white root rot disease caused by Rosellinia necatrix. Here, we applied signature-tagged mutagenesis (STM) during the growth and survival of AVO110 in fungal exudate-containing medium with the goal of identifying the molecular mechanisms linked to the interaction of this bacterium with R. necatrix. A total of 26 STM mutants outcompeted by the parental strain in fungal exudate, but not in rich medium, were selected and named growth-attenuated mutants (GAMs). Twenty-one genes were identified as being required for this bacterial-fungal interaction, including membrane transporters, transcriptional regulators, and genes related to the metabolism of hydrocarbons, amino acids, fatty acids, and aromatic compounds. The bacterial traits identified here that are involved in the colonization of fungal hyphae include proteins involved in membrane maintenance (a dynamin-like protein and ColS) or cyclic-di-GMP signaling and chemotaxis. In addition, genes encoding a DNA helicase (recB) and a regulator of alginate production (algQ) were identified as being required for efficient colonization of the avocado rhizosphere. IMPORTANCE Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens.
Collapse
|
24
|
Yang Y, Li Y, Gao T, Zhang Y, Wang Q. C-di-GMP turnover influences motility and biofilm formation in Bacillus amyloliquefaciens PG12. Res Microbiol 2018; 169:205-213. [PMID: 29859892 DOI: 10.1016/j.resmic.2018.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Bis-(3'→5') cyclic dimeric guanosine monophosphate (c-di-GMP) is defined as a highly versatile secondary messenger in bacteria, coordinating diverse aspects of bacterial growth and behavior, including motility and biofilm formation. Bacillus amyloliquefaciens PG12 is an effective biocontrol agent against apple ring rot caused by Botryosphaeria dothidea. In this study, we characterized the core regulators of c-di-GMP turnover in B. amyloliquefaciens PG12. Using bioinformatic analysis, heterologous expression and biochemical characterization of knockout and overexpression derivatives, we identified and characterized two active diguanylate cyclases (which catalyze c-di-GMP biosynthesis), YhcK and YtrP and one active c-di-GMP phosphodiesterase (which degrades c-di-GMP), YuxH. Furthermore, we showed that elevating c-di-GMP levels up to a certain threshold inhibited the swimming motility of B. amyloliquefaciens PG12. Although yhcK, ytrP and yuxH knockout mutants did not display defects in biofilm formation, significant increases in c-di-GMP levels induced by YtrP or YuxH overexpression stimulated biofilm formation in B. amyloliquefaciens PG12. Our results indicate that B. amyloliquefaciens possesses a functional c-di-GMP signaling system that influences the bacterium's motility and ability to form biofilms. Since motility and biofilm formation influence the efficacy of biological control agent, our work provides a basis for engineering a more effective strain of B. amyloliquefaciens PG12.
Collapse
Affiliation(s)
- Yang Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Tantan Gao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yue Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Mata AR, Pacheco CM, Cruz Pérez JF, Sáenz MM, Baca BE. In silico comparative analysis of GGDEF and EAL domain signaling proteins from the Azospirillum genomes. BMC Microbiol 2018; 18:20. [PMID: 29523074 PMCID: PMC5845226 DOI: 10.1186/s12866-018-1157-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/09/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The cyclic-di-GMP (c-di-GMP) second messenger exemplifies a signaling system that regulates many bacterial behaviors of key importance; among them, c-di-GMP controls the transition between motile and sessile life-styles in bacteria. Cellular c-di-GMP levels in bacteria are regulated by the opposite enzymatic activities of diguanylate cyclases and phosphodiesterases, which are proteins that have GGDEF and EAL domains, respectively. Azospirillum is a genus of plant-growth-promoting bacteria, and members of this genus have beneficial effects in many agronomically and ecologically essential plants. These bacteria also inhabit aquatic ecosystems, and have been isolated from humus-reducing habitats. Bioinformatic and structural approaches were used to identify genes predicted to encode GG[D/E]EF, EAL and GG[D/E]EF-EAL domain proteins from nine genome sequences. RESULTS The analyzed sequences revealed that the genomes of A. humicireducens SgZ-5T, A. lipoferum 4B, Azospirillum sp. B510, A. thiophilum BV-ST, A. halopraeferens DSM3675, A. oryzae A2P, and A. brasilense Sp7, Sp245 and Az39 encode for 29 to 41 of these predicted proteins. Notably, only 15 proteins were conserved in all nine genomes: eight GGDEF, three EAL and four GGDEF-EAL hybrid domain proteins, all of which corresponded to core genes in the genomes. The predicted proteins exhibited variable lengths, architectures and sensor domains. In addition, the predicted cellular localizations showed that some of the proteins to contain transmembrane domains, suggesting that these proteins are anchored to the membrane. Therefore, as reported in other soil bacteria, the Azospirillum genomes encode a large number of proteins that are likely involved in c-di-GMP metabolism. In addition, the data obtained here strongly suggest host specificity and environment specific adaptation. CONCLUSIONS Bacteria of the Azospirillum genus cope with diverse environmental conditions to survive in soil and aquatic habitats and, in certain cases, to colonize and benefit their host plant. Gaining information on the structures of proteins involved in c-di-GMP metabolism in Azospirillum appears to be an important step in determining the c-di-GMP signaling pathways, involved in the transition of a motile cell towards a biofilm life-style, as an example of microbial genome plasticity under diverse in situ environments.
Collapse
Affiliation(s)
- Alberto Ramírez Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, Col. San Manuel Puebla Pue, CP72570 Puebla, Mexico
| | - César Millán Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad #1001, Col. Chamilpa, C.P, 62209 Cuernavaca, Morelos Mexico
| | - José F. Cruz Pérez
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, Col. San Manuel Puebla Pue, CP72570 Puebla, Mexico
| | - Martha Minjárez Sáenz
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, Col. San Manuel Puebla Pue, CP72570 Puebla, Mexico
| | - Beatriz E. Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, Col. San Manuel Puebla Pue, CP72570 Puebla, Mexico
| |
Collapse
|
26
|
Kumar B, Sorensen JL, Cardona ST. A c-di-GMP-Modulating Protein Regulates Swimming Motility of Burkholderia cenocepacia in Response to Arginine and Glutamate. Front Cell Infect Microbiol 2018. [PMID: 29541628 PMCID: PMC5835511 DOI: 10.3389/fcimb.2018.00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic bacterium that can thrive in different environments, including the amino acid-rich mucus of the cystic fibrosis (CF) lung. B. cenocepacia responds to the nutritional conditions that mimic the CF sputum by increasing flagellin expression and swimming motility. Individual amino acids also induce swimming but not flagellin expression. Here, we show that modulation of the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) levels by the PAS-containing c-di-GMP phosphodiesterase, BCAL1069 (CdpA), regulates the swimming motility of B. cenocepacia K56-2 in response to CF sputum nutritional conditions. Heterologous expression of WspR, a diguanylate cyclase, in B. cenocepacia K56-2 caused an increase in c-di-GMP levels and reduced swimming motility but did not affect flagellin expression or flagellar biosynthesis. After insertional mutagenesis of 12 putative genes encoding c-di-GMP metabolizing enzymes, one mutant of the locus BCAL1069 (cdpA), exhibited decreased swimming motility independent of flagellin expression in CF sputum nutritional conditions and an increase in intracellular c-di-GMP levels. The reduced swimming motility phenotype of the BCAL1069 mutant was observed in the presence of arginine and glutamate, but not of histidine, phenylalanine, or proline. The B. cenocepacia CdpA was also found to be involved in regulation of protease activity but not in biofilm formation. Altogether, these results highlight a role of B. cenocepacia BCAL1069 (CdpA) in sensing the nutritional conditions of the CF sputum and eliciting a pathogenic response that includes swimming motility toward amino acids and an increase in protease activity.
Collapse
Affiliation(s)
- Brijesh Kumar
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - John L Sorensen
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Silvia T Cardona
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada.,Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
27
|
Muriel C, Arrebola E, Redondo-Nieto M, Martínez-Granero F, Jalvo B, Pfeilmeier S, Blanco-Romero E, Baena I, Malone JG, Rivilla R, Martín M. AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113. Sci Rep 2018; 8:1979. [PMID: 29386661 PMCID: PMC5792552 DOI: 10.1038/s41598-018-20419-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/18/2018] [Indexed: 01/17/2023] Open
Abstract
The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs.
Collapse
Affiliation(s)
- Candela Muriel
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Eva Arrebola
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | | | - Blanca Jalvo
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Sebastian Pfeilmeier
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, NR47UH, Norwich, UK
| | - Esther Blanco-Romero
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Irene Baena
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, NR47UH, Norwich, UK
| | - Rafael Rivilla
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin, 2, 28034, Madrid, Spain.
| |
Collapse
|
28
|
Abstract
Cyclic diguanylate (c-di-GMP) is a near universal signaling molecule produced by diguanylate cyclases that can direct a variety of bacterial behaviors. A major area of research over the last several years has been aimed at understanding how a cell with dozens of diguanylate cyclases can deploy a given subset of them to produce a desired phenotypic outcome without undesired cross talk between c-di-GMP-dependent systems. Several models have been put forward to address this question, including specificity of cyclase activation, tuned binding constants of effector proteins, and physical interaction between cyclases and effectors. Additionally, recent evidence has suggested that there may be a link between the catalytic state of a cyclase and its physical contact with an effector. This review highlights several key studies, examines the proposed global and local models of c-di-GMP signaling specificity in bacteria, and attempts to identify the most fruitful steps that can be taken to better understand how dynamic networks of sibling cyclases and effector proteins result in sensible outputs that govern cellular behavior.
Collapse
Affiliation(s)
- Kurt M Dahlstrom
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| |
Collapse
|
29
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A, Sundin GW. Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics 2017; 18:365. [PMID: 28486968 PMCID: PMC5424326 DOI: 10.1186/s12864-017-3763-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pPT23A family of plasmids appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. pPT23A-family plasmids (PFPs) are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. The occurrence of repeated sequences including duplicated insertion sequences on PFPs has made obtaining closed plasmid genome sequences difficult. Therefore, our objective was to obtain complete genome sequences from PFPs from divergent P. syringae pathovars and also from strains of P. syringae pv. syringae isolated from different hosts. RESULTS The eight plasmids sequenced ranged in length from 61.6 to 73.8 kb and encoded from 65 to 83 annotated orfs. Virulence genes including type III secretion system effectors were encoded on two plasmids, and one of these, pPt0893-29 from P. syringae pv. tabaci, encoded a wide variety of putative virulence determinants. The PFPs from P. syringae pv. syringae mostly encoded genes of importance to ecological fitness including the rulAB determinant conferring tolerance to ultraviolet radiation. Heavy metal resistance genes encoding resistance to copper and arsenic were also present in a few plasmids. The discovery of part of the chromosomal genomic island GI6 from P. syringae pv. syringae B728a in two PFPs from two P. syringae pv. syringae hosts is further evidence of past intergenetic transfers between plasmid and chromosomal DNA. Phylogenetic analyses also revealed new subgroups of the pPT23A plasmid family and confirmed that plasmid phylogeny is incongruent with P. syringae pathovar or host of isolation. In addition, conserved genes among seven sequenced plasmids within the same phylogenetic group were limited to plasmid-specific functions including maintenance and transfer functions. CONCLUSIONS Our sequence analysis further revealed that PFPs from P. syringae encode suites of accessory genes that are selected at species (universal distribution), pathovar (interpathovar distribution), and population levels (intrapathovar distribution). The conservation of type IV secretion systems encoding conjugation functions also presumably contributes to the distribution of these plasmids within P. syringae populations.
Collapse
Affiliation(s)
- José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|