1
|
Jagaran K, Habib S, Singh M. Bio-Inspired Polymeric Solid Lipid Nanoparticles for siRNA Delivery: Cytotoxicity and Cellular Uptake In Vitro. Polymers (Basel) 2024; 16:3265. [PMID: 39684010 DOI: 10.3390/polym16233265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Nanomedicine has introduced strategies that provide precise diagnosis and treatment with fewer side effects than traditional therapies. Treatments for neurodegenerative disorders, including Parkinson's disease, are palliative, necessitating an innovative delivery system with a curative function. This study investigated a solid lipid nanoparticle (SLNP) system's ability to bind and safely deliver siRNA in vitro. SLNPS were formulated using sphingomyelin and cholesterol, with Ginkgo biloba leaf extract (GBE) incorporated to enhance biocompatibility and neuroprotection. Poly-L-lysine (PLL) functionalization ensured successful siRNA binding, safe transport, and protection from nuclease degradation. SLNPs were physicochemically characterized, with binding and protection of siRNA assessed using agarose gels. Cytotoxicity, apoptotic induction, and cellular uptake studies were undertaken in the human neuroblastoma (SH-SY5Y) and embryonic kidney (HEK293) cells. The GBE-PLL-SLNPs had an average size of 93.2 nm and demonstrated enhanced binding and protection of the siRNA from enzyme digestion, with minimal cytotoxicity in HEK293 (<10%) and SH-SY5Y cells (<15%). Caspase 3/7 activity was significantly reduced in both cells, while efficient cellular uptake was noted. The present study provided a solid basis as a proof of principle study for future applications of the potential therapeutic in vitro, promising to address the unmet medical needs of patients with neurological disorders.
Collapse
Affiliation(s)
- Keelan Jagaran
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Saffiya Habib
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
2
|
Blood-Brain Barrier Disruption in Preclinical Mouse Models of Stroke Can Be an Experimental Artifact Caused by Craniectomy. eNeuro 2022; 9:ENEURO.0343-22.2022. [PMID: 36224001 PMCID: PMC9595391 DOI: 10.1523/eneuro.0343-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022] Open
Abstract
The pathophysiological features of ischemia-related blood-brain barrier (BBB) disruption are widely studied using preclinical stroke models. However, in many of these models, craniectomy is required to confirm arterial occlusion via laser Doppler flowmetry or to enable direct ligation of the cerebral artery. In the present study, mice were used to construct a distal middle cerebral artery occlusion (dMCAO) model, a preclinical stroke model that requires craniectomy to enable direct ligation of the cerebral artery, or were subjected to craniectomy alone. dMCAO but not craniectomy caused neurodegeneration and cerebral infarction, but both procedures induced an appreciable increase in BBB permeability to Evans blue dye, fluorescein, and endogenous albumin but not to 10 kDa dextran-FITC, leading to cerebral edema. Using rats, we further showed that BBB disruption induced by craniectomy with no evidence of dural tearing was comparable to that induced by craniectomy involving tearing of the dura. In conclusion, our data demonstrated that craniectomy can be a major contributor to BBB disruption and cerebral edema in preclinical stroke models. The implications of this experimental artifact for translational stroke research and preclinical data interpretation are discussed.
Collapse
|
3
|
Evans blue dye as an indicator of albumin permeability across a brain endothelial cell monolayer in vitro. Neuroreport 2021; 32:957-964. [PMID: 34227616 DOI: 10.1097/wnr.0000000000001690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An increase in the brain endothelial (BEnd) cell permeability of blood albumin is often seen as an early sign of blood-brain barrier (BBB) disruption and can precede increases in the BEnd permeability of small molecules and other plasma proteins in the course of brain disease. Therefore, Evans blue dye (EBD), an albumin-binding fluorescent tracer that is simple to detect and quantify, has been widely utilized for studying BEnd permeability during BBB disruption. Here, we investigated whether EBD is a suitable indicator of albumin permeability across mouse BEnd cell monolayers, alone or cocultured with mouse cortical astrocytes, in an in-vitro permeability assay; given the strong affinity of EBD for albumin, we further asked whether EBD can affect albumin permeability and vice versa. Albumin and EBD readily crossed membrane cell culture inserts with pore diameters of no less than 1 µm in the absence of a cellular barrier, and their permeability was substantially reduced when the membranes were overlaid with a monolayer of BEnd cells. In line with albumin binding, the BEnd permeability of EBD was substantially reduced by the presence of albumin. While EBD at an EBD-to-albumin ratio similar to those typically used in in vivo BBB experiments had little effect on the BEnd permeability of albumin, a much higher concentration of EBD augmented the BEnd permeability of albumin. In conclusion, we investigated the use of EBD as an indicator of albumin permeability in vitro, explored some of its drawbacks and further demonstrated that EBD at the concentration used in vivo does not affect albumin permeability.
Collapse
|
4
|
Kim JW, Cho YB, Lee S. Cell Surface GRP94 as a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy. Cells 2021; 10:cells10030670. [PMID: 33802964 PMCID: PMC8002708 DOI: 10.3390/cells10030670] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family. In physiological conditions, it plays a vital role in regulating biological functions, including chaperoning cellular proteins in the ER lumen, maintaining calcium homeostasis, and modulating immune system function. Recently, several reports have shown the functional role and clinical relevance of GRP94 overexpression in the progression and metastasis of several cancers. Therefore, the current review highlights GRP94’s physiological and pathophysiological roles in normal and cancer cells. Additionally, the unmet medical needs of small chemical inhibitors and the current development status of monoclonal antibodies specifically targeting GRP94 will be discussed to emphasize the importance of cell surface GRP94 as an emerging therapeutic target in monoclonal antibody therapy for cancer.
Collapse
|
5
|
Polak D, Talar M, Wolska N, Wojkowska DW, Karolczak K, Kramkowski K, Bonda TA, Watala C, Przygodzki T. Adenosine Receptor Agonist HE-NECA Enhances Antithrombotic Activities of Cangrelor and Prasugrel in vivo by Decreasing of Fibrinogen Density in Thrombus. Int J Mol Sci 2021; 22:3074. [PMID: 33802928 PMCID: PMC8002731 DOI: 10.3390/ijms22063074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Blood platelets' adenosine receptors (AR) are considered to be a new target for the anti-platelet therapy. This idea is based on in vitro studies which show that signaling mediated by these receptors leads to a decreased platelet response to activating stimuli. In vivo evidence for the antithrombotic activity of AR agonists published to date were limited, however, to the usage of relatively high doses given in bolus. The present study was aimed at verifying if these substances used in lower doses in combination with inhibitors of P2Y12 could serve as components of dual anti-platelet therapy. We have found that a selective A2A agonist 2-hexynyl-5'-N-ethylcarboxamidoadenosine (HE-NECA) improved the anti-thrombotic properties of either cangrelor or prasugrel in the model of ferric chloride-induced experimental thrombosis in mice. Importantly, HE-NECA was effective not only when applied in bolus as other AR agonists in the up-to-date published studies, but also when given chronically. In vitro thrombus formation under flow conditions revealed that HE-NECA enhanced the ability of P2Y12 inhibitors to decrease fibrinogen content in thrombi, possibly resulting in their lower stability. Adenosine receptor agonists possess a certain hypotensive effect and an ability to increase the blood-brain barrier permeability. Therefore, the effects of anti-thrombotic doses of HE-NECA on blood pressure and the blood-brain barrier permeability in mice were tested. HE-NECA applied in bolus caused a significant hypotension in mice, but the effect was much lower when the substance was given in doses corresponding to that obtained by chronic administration. At the same time, no significant effect of HE-NECA was observed on the blood-brain barrier. We conclude that chronic administration of the A2A agonist can be considered a potential component of a dual antithrombotic therapy. However, due to the hypotensive effect of the substances, dosage and administration must be elaborated to minimize the side-effects. The total number of animals used in the experiments was 146.
Collapse
Affiliation(s)
- Dawid Polak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Marcin Talar
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Nina Wolska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Dagmara W. Wojkowska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Kamil Karolczak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-089 Bialystok, Poland;
| | - Tomasz A. Bonda
- Department of General and Experimental Pathology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| | - Tomasz Przygodzki
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-235 Lodz, Poland; (D.P.); (M.T.); (N.W.); (D.W.W.); (K.K.); (C.W.)
| |
Collapse
|
6
|
Semwal BC, Garabadu D. 5-N-ethyl Carboxamidoadenosine Stimulates Adenosine-2b Receptor-Mediated Mitogen-Activated Protein Kinase Pathway to Improve Brain Mitochondrial Function in Amyloid Beta-Induced Cognitive Deficit Mice. Neuromolecular Med 2020; 22:542-556. [PMID: 32926328 DOI: 10.1007/s12017-020-08615-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss in memory as one of the cardinal features. 5-N-ethyl carboxamidoadenosine (NECA), an agonist of adenosine-2b receptor, exerts neuroprotective activity against several experimental conditions. Further, NECA activates mitogen-activated protein kinase (MAPK) and also attenuates mitochondrial toxicity in mammalian tissues other than brain. Moreover, there is no report on the role of A2b/MAPK-mediated signaling pathway in Aβ-induced mitochondrial toxicity in the brain of the experimental animals. Therefore, the present study evaluated the neuroprotective activity of NECA with or without MAPK inhibitor against Aβ-induced cognitive deficit and mitochondrial toxicity in the experimental rodents. Further, the effect of NECA with or without MAPK inhibitor was evaluated on Aβ-induced mitochondrial toxicity in the memory-sensitive mice brain regions. Intracerebroventricular (ICV) injection of Aβ 1-42 was injected to healthy male mice through Hamilton syringe via polyethylene tube to induce AD-like behavioral manifestations. NECA attenuated Aβ-induced cognitive impairments in the rodents. In addition, NECA ameliorated Aβ-induced Aβ accumulation and cholinergic dysfunction in the selected memory-sensitive mouse HIP, PFC, and AMY. Further, NECA significantly attenuated Aβ-induced mitochondrial toxicity in terms of decrease in the mitochondrial function, integrity, and bioenergetics in the brain regions of these animals. However, MAPKI diminished the therapeutic effects of NECA on behavioral, biochemical, and molecular observations in AD-like animals. Therefore, it can be speculated that NECA exhibits neuroprotective activity perhaps through MAPK activation in AD-like rodents. Moreover, A2b-mediated MAPK activation could be a promising target in the management of AD.
Collapse
Affiliation(s)
- Bhupesh Chandra Semwal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India.
| |
Collapse
|
7
|
Isoflurane attenuates carbogen-induced blood–brain barrier disruption independent of body temperature in mice and rats. Neuroreport 2020; 31:118-124. [DOI: 10.1097/wnr.0000000000001390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Liang W, Xu W, Zhu J, Zhu Y, Gu Q, Li Y, Guo C, Huang Y, Yu J, Wang W, Hu Y, Zhao Y, Han B, Bei W, Guo J. Ginkgo biloba extract improves brain uptake of ginsenosides by increasing blood-brain barrier permeability via activating A1 adenosine receptor signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112243. [PMID: 31541722 DOI: 10.1016/j.jep.2019.112243] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 12/24/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba leaves and Panax ginseng are Chinese medicine commonly used in combination for cerebral disease. AIM OF THE STUDY To investigate the effect of standard extract of Ginkgo biloba leaves (EGb) on facilitating brain uptake of ginsenoside and its underlying mechanisms. MATERIALS AND METHODS The increasing uptake of ginsenosides in the brain of rats by EGb were detected by LC-MS/MS analysis. Evans blue and FITC-dextran leakage were determined to evaluate blood-brain barrier (BBB) permeability in vivo. Transendothelial electrical resistance (TEER) and Na-F penetration rate were measured with a co-culture of the human cerebral microvascular endothelial cell line (hCMEC/D3) and human normal glial cell line (HEB) in vitro BBB model. WB were used to analyzed the expression of BBB tight junctions (TJs) related protein (ZO-1, Occludin, Claudin-3, p-ERM, and p-MLC), ultrastructure of TJs was determined by transmission electron microscope. RESULTS LC-MS/MS analysis demonstrated that EGb could improve brain uptake of ginsenoside Rg1, Re, Rd and Rb1. In vivo study showed that, BBB permeability was significantly increased after EGb administration, evidenced by the markedly increased penetration of FITC-dextran and Evans Blue into the mice brain parenchyma. In the in vitro BBB model, reduced TEER and increased Na-F penetration rate was observed in EGb group, which was associated with alteration of TJs ultrastructure. Furthermore, the expression of p-ERM and p-MLC in hCMEC/D3 as well as mice brain microvessels were significantly upregulated, but no significant change on the expression of TJs proteins (ZO-1, Occludin and Claudin-3). Moreover, the effect of EGb on in vitro BBB permeability and ERM, MLC phosphorylation was counteracted by DPCPX, an A1 adenosine receptor (A1R) antagonist. CONCLUSIONS EGb might induce ERM/MLC phosphorylation and increase the cell-cell junction gaps to cause a reversible increase of the BBB permeability via A1R signaling pathway. Our results may contribute to better use of EGb in the treatment of brain diseases.
Collapse
Affiliation(s)
- Wenyi Liang
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Wei Xu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Jing Zhu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yadong Zhu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Quanlin Gu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yuping Li
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Caijuan Guo
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yijian Huang
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Jiangfeng Yu
- The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Weixuan Wang
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yinming Hu
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China
| | - Yanqun Zhao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou,510515, China
| | - Bin Han
- College of Traditional Chinese Medicine (TCM), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Weijian Bei
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China.
| | - Jiao Guo
- Guangdong Province Research Centre for Chinese Integrative Medicine Against Metabolic Disease, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), China; Guangdong TCM Key Laboratory for Metabolic Diseases, China; The Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, China.
| |
Collapse
|
9
|
Yuan Y, Zhu L, Li L, Liu J, Chen Y, Cheng J, Peng T, Lu Y. S-Sulfhydration of SIRT3 by Hydrogen Sulfide Attenuates Mitochondrial Dysfunction in Cisplatin-Induced Acute Kidney Injury. Antioxid Redox Signal 2019; 31:1302-1319. [PMID: 31218880 DOI: 10.1089/ars.2019.7728] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aims: Clinical use of cisplatin (Cisp), one of the most widely used, common, and effective chemotherapeutic agents, is limited by its side effects, particularly tubular injury-associated nephrotoxicity. Previous studies suggest that hydrogen sulfide (H2S) alleviates Cisp-induced acute kidney injury (AKI). However, the underlying mechanism remains largely unclear. Results: A single intraperitoneal injection of Cisp is employed to induce AKI, and the mice exhibit severe kidney dysfunction and histological damage at day 4 after Cisp injection. Here, we reported that H2S alleviated Cisp-caused renal toxicity via SIRT3 activation and subsequent improvement of mitochondrial ATP production. Using a biotin-switch assay, we showed that H2S increased S-sulfhydration of SIRT3 and induced deacetylation of its target proteins (OPA1, ATP synthase β, and superoxide dismutase 2). These effects of H2S were associated with a reduction of mitochondrial fragmentation, an increase in ATP generation, and less oxidative injury. Notably, the S-sulfhydration of SIRT3 induced by H2S was abrogated when Cys256, Cys259, Cys280, and Cys283 residues on SIRT3 (two zinc finger domains) were mutated. Innovation and Conclusion: Our data suggest that H2S attenuates Cisp-induced AKI by preventing mitochondrial dysfunction via SIRT3 sulfhydrylation. Antioxid. Redox Signal. 31, 1302-1319.
Collapse
Affiliation(s)
- Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Center for Metabolic and Vascular Biology, School for Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tianqing Peng
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, London, Canada.,Departments of Medicine and Pathology, University of Western Ontario, London, Canada
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, China.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Vascular delivery of intraperitoneal Evans blue dye into the blood–brain barrier-intact and disrupted rat brains. Neuroreport 2018; 29:924-931. [DOI: 10.1097/wnr.0000000000001052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Yerri J, Baati R. Sonogashira Reaction of Bromofluoropyridinaldoxime Nuclei: Convergent Synthesis of Functionalized 2- and 3-Fluoropyridine Scaffolds. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jagadeesh Yerri
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, ICPEES, UMR CNRS 7515; 25 rue Becquerel 67087 Strasbourg France
| | - Rachid Baati
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, ICPEES, UMR CNRS 7515; 25 rue Becquerel 67087 Strasbourg France
| |
Collapse
|
12
|
Cell-penetrating interactomic inhibition of nuclear factor-kappa B in a mouse model of postoperative cognitive dysfunction. Sci Rep 2017; 7:13482. [PMID: 29044209 PMCID: PMC5647420 DOI: 10.1038/s41598-017-14027-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/05/2017] [Indexed: 12/18/2022] Open
Abstract
Some patients experience impaired cognitive functioning after surgery, a phenomenon referred to as postoperative cognitive dysfunction (POCD). Signs of POCD are closely associated with the development of systemic or hippocampal inflammation. However, the precise pathophysiological mechanisms of prevention/treatment options for POCD still remain unclear. After injury, the transcriptional factor nuclear factor-kappa B (NF-κB) is thought to regulate or stimulate inflammation amplification. Therefore, we designed a cell-penetrating fusion protein called nt-p65-TMD, which inhibits NF-κB p65 activation by translocating into the nucleus. In the present study, we discovered that nt-p65-TMD exerted effects on surgery-induced cognitive impairment in mice. Specifically, nt-p65-TMD exhibited strong immunoregulatory properties that were able to reduce surgery-induced elevations in cerebrovascular integrity impairment, subsequent peripheral immune-cell recruitment, and inflammation amplification, which ultimately lead to cognitive decline. The nt-p65-TMD has the unique ability to regulate and reduce systemic inflammation and inflammation amplification, suggesting a new strategy for preventing development of cognitive decline that occurs in POCD.
Collapse
|
13
|
Bader A, Bintig W, Begandt D, Klett A, Siller IG, Gregor C, Schaarschmidt F, Weksler B, Romero I, Couraud PO, Hell SW, Ngezahayo A. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca 2+ influx through cyclic nucleotide-gated channels. J Physiol 2017; 595:2497-2517. [PMID: 28075020 DOI: 10.1113/jp273150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/16/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. ABSTRACT The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP-dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Almke Bader
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Willem Bintig
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Begandt
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anne Klett
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Ina G Siller
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Babette Weksler
- Weill Medical College of Cornell University, New York, NY, USA
| | - Ignacio Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Pierre-Olivier Couraud
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
14
|
Liu YC, Lee YD, Wang HL, Liao KH, Chen KB, Poon KS, Pan YL, Lai TW. Anesthesia-Induced Hypothermia Attenuates Early-Phase Blood-Brain Barrier Disruption but Not Infarct Volume following Cerebral Ischemia. PLoS One 2017; 12:e0170682. [PMID: 28118390 PMCID: PMC5261567 DOI: 10.1371/journal.pone.0170682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/09/2017] [Indexed: 12/27/2022] Open
Abstract
Blood-brain barrier (BBB) disruption is thought to facilitate the development of cerebral infarction after a stroke. In a typical stroke model (such as the one used in this study), the early phase of BBB disruption reaches a peak 6 h post-ischemia and largely recovers after 8–24 h, whereas the late phase of BBB disruption begins 48–58 h post-ischemia. Because cerebral infarct develops within 24 h after the onset of ischemia, and several therapeutic agents have been shown to reduce the infarct volume when administered at 6 h post-ischemia, we hypothesized that attenuating BBB disruption at its peak (6 h post-ischemia) can also decrease the infarct volume measured at 24 h. We used a mouse stroke model obtained by combining 120 min of distal middle cerebral arterial occlusion (dMCAo) with ipsilateral common carotid arterial occlusion (CCAo). This model produced the most reliable BBB disruption and cerebral infarction compared to other models characterized by a shorter duration of ischemia or obtained with dMCAO or CCAo alone. The BBB permeability was measured by quantifying Evans blue dye (EBD) extravasation, as this tracer has been shown to be more sensitive for the detection of early-phase BBB disruption compared to other intravascular tracers that are more appropriate for detecting late-phase BBB disruption. We showed that a 1 h-long treatment with isoflurane-anesthesia induced marked hypothermia and attenuated the peak of BBB disruption when administered 6 h after the onset of dMCAo/CCAo-induced ischemia. We also demonstrated that the inhibitory effect of isoflurane was hypothermia-dependent because the same treatment had no effect on ischemic BBB disruption when the mouse body temperature was maintained at 37°C. Importantly, inhibiting the peak of BBB disruption by hypothermia had no effect on the volume of brain infarct 24 h post-ischemia. In conclusion, inhibiting the peak of BBB disruption is not an effective neuroprotective strategy, especially in comparison to the inhibitors of the neuronal death signaling cascade; these, in fact, can attenuate the infarct volume measured at 24 h post-ischemia when administered at 6 h in our same stroke model.
Collapse
Affiliation(s)
- Yu-Cheng Liu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Da Lee
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Hwai-Lee Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Kate Hsiurong Liao
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Kuen-Bao Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Kin-Shing Poon
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ling Pan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Huang Y, Feng H, Liu W, Zhang S, Tang C, Chen J, Qian Z. Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring. J Mater Chem B 2017; 5:5120-5127. [DOI: 10.1039/c7tb00901a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The self-assembly of CuNCs was driven by aluminum cations and they had a sensing application in the monitoring of β-galactosidase activity.
Collapse
Affiliation(s)
- Yuanyuan Huang
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Hui Feng
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Weidong Liu
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Shasha Zhang
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Cong Tang
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Jianrong Chen
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Zhaosheng Qian
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
16
|
Hurtado-Alvarado G, Domínguez-Salazar E, Velázquez-Moctezuma J, Gómez-González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS One 2016; 11:e0167236. [PMID: 27893847 PMCID: PMC5125701 DOI: 10.1371/journal.pone.0167236] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We administrated a selective A2A adenosine receptor antagonist (SCH58261) in sleep-restricted rats at the 10th day of sleep restriction and evaluated the blood-brain barrier permeability to dextrans coupled to fluorescein (FITC-dextrans) and Evans blue. In addition, we evaluated by western blot the expression of tight junction proteins (claudin-5, occludin, ZO-1), adherens junction protein (E-cadherin), A2A adenosine receptor, adenosine-synthesizing enzyme (CD73), and neuroinflammatory markers (Iba-1 and GFAP) in the cerebral cortex, hippocampus, basal nuclei and cerebellar vermis. Sleep restriction increased blood-brain barrier permeability to FITC-dextrans and Evans blue, and the effect was reverted by the administration of SCH58261 in almost all brain regions, excluding the cerebellum. Sleep restriction increased the expression of A2A adenosine receptor only in the hippocampus and basal nuclei without changing the expression of CD73 in all brain regions. Sleep restriction reduced the expression of tight junction proteins in all brain regions, except in the cerebellum; and SCH58261 restored the levels of tight junction proteins in the cortex, hippocampus and basal nuclei. Finally, sleep restriction induced GFAP and Iba-1 overexpression that was attenuated with the administration of SCH58261. These data suggest that the action of adenosine on its A2A receptor may have a crucial role in blood-brain barrier dysfunction during sleep loss probably by direct modulation of brain endothelial cell permeability or through a mechanism that involves gliosis with subsequent inflammation and increased blood-brain barrier permeability.
Collapse
Affiliation(s)
- Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
- Postgraduate Program in Experimental Biology, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Emilio Domínguez-Salazar
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Beatriz Gómez-González
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
- * E-mail: ,
| |
Collapse
|