1
|
Lim D, Song M, Kim M, Park HK, Kim DW, Pang C. Bioinspired Suction-Driven Strategies with Nanoscale Skin-Controllable Adhesive Architectures for Efficient Liquid Formulated Transdermal Patches. ACS NANO 2025; 19:13567-13590. [PMID: 40170569 DOI: 10.1021/acsnano.5c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
For highly efficient and precise drug release, transdermal drug delivery systems (TDDS) have recently evolved through the combination of intelligent material-based structures with various active components. These strategies are an effort to overcome the significant difficulties in delivering large molecule drugs and nanomaterials due to the physical barrier of the skin, especially the stratum corneum, in traditional TDDS. Interestingly, multiscale suction-driven architectures (SDAs) inspired by bioinspired suction adhesion mechanisms have provided innovative solutions to these challenges. These architectures employ negative pressure to enhance nanoscale skin-controllable skin adhesion, temporarily bypass the skin barrier, and facilitate deep penetration of therapeutic agents, thereby, achieving the goals of increasing drug delivery efficiency and maximizing user convenience as a minimal invasive, needle-free platform. This review provides a comprehensive overview of suction-driven transdermal patches and emphasizes their integration with multifunctional materials to achieve stable adhesion and controlled drug release. Next, we present cost-effective and user-friendly suction-driven drug delivery patch devices through optimization of cupping structures without the incorporation of additional devices. Furthermore, we present cost-effective and user-friendly transdermal drug delivery patch devices that optimize multiscale cupping architectures without the need for additional devices. Potential of bioinspired SDAs in localized and systemic drug delivery through challenging and complex skin, as well as future perspectives, are discussed, along with innovative directions for more efficient and patient-centric transdermal drug delivery solutions.
Collapse
Affiliation(s)
- Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Minwoo Song
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Minjin Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Mimetics Co., Ltd, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Da Wan Kim
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Chungbuk 27469, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Paganini V, Monti D, Chetoni P, Burgalassi S, Cesari A, Bellina F, Tampucci S. Nanostructured Strategies for Melanoma Treatment-Part II: Targeted Topical Delivery of Curcumin via Poloxamer-Based Thermosensitive Hydrogels. Pharmaceuticals (Basel) 2025; 18:337. [PMID: 40143116 PMCID: PMC11945081 DOI: 10.3390/ph18030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Curcumin (CUR) is a natural compound with notable antitumor properties but faces limitations in topical applications due to poor aqueous solubility, instability, and insufficient skin penetration. To overcome these challenges, a nanomicellar formulation (TPGS30ELP15) was developed to enhance CUR solubility, stability, and skin penetration. This study aimed at evaluating the skin permeation and retention of CUR when delivered through nanomicelles alone or combined with a thermosensitive hydrogel for potential melanoma therapy. Methods: A CUR-loaded nanomicellar formulation containing CUR 5 mM was developed, characterized by particle sizes of 12-25 nm. Skin permeation studies utilized pig ear skin to assess CUR localization using both HPLC quantitative analysis and confocal microscopy. To improve patient comfort and application efficiency, the nanomicellar dispersion was incorporated into a thermosensitive hydrogel based on 16% Kolliphor® P407 and was able to undergo a sol-gel transition at skin temperature (32-36 °C). Formulations were evaluated for physicochemical properties, stability, and CUR distribution within skin layers using in vitro permeation assays. Results: CUR-loaded nanomicelles demonstrated selective localization in the viable epidermis (100-150 µm depth), bypassing the stratum corneum. The addition of the thermosensitive hydrogel enhanced CUR retention and distribution, prolonging contact at the application site and providing a gradual release profile. The hydrogel's sol-gel transition properties can facilitate ease of use and patient compliance. The combined system effectively delivered CUR to the basal epidermis, a target site for melanoma treatment, achieving therapeutically relevant drug concentrations. Conclusions: The incorporation of CUR-loaded nanomicelles into a thermosensitive hydrogel enhanced the solubility, stability, and targeted delivery of CUR to skin layers. This dual system represents a promising strategy for improving topical drug delivery for melanoma therapy, addressing limitations associated with CUR's physicochemical properties while ensuring patient-friendly application and gradual drug release.
Collapse
Affiliation(s)
- Valentina Paganini
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.T.)
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.T.)
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.T.)
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.T.)
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| | - Andrea Cesari
- Department of Chemistry and industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (F.B.)
| | - Fabio Bellina
- Department of Chemistry and industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (A.C.); (F.B.)
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (V.P.); (P.C.); (S.B.); (S.T.)
- Italian Inter-University Center for the Promotion of the 3Rs in Teaching and Research, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
3
|
Elahi N, Astaneh ME, Ai J, Rizwan M. Atopic dermatitis treatment: A comprehensive review of conventional and novel bioengineered approaches. Int J Biol Macromol 2024; 282:137083. [PMID: 39515724 DOI: 10.1016/j.ijbiomac.2024.137083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Atopic dermatitis (AD) remains a challenging condition, with conventional treatments often leading to adverse effects and limited efficacy. This review explores the diverse landscape of AD treatments, encompassing conventional methods, novel topical and systemic therapies, and emerging bioengineered strategies. While conventional drug administration often requires high dosages or frequent administration, leading to adverse effects, targeted biologics have shown promise. Phototherapy and wet wrap therapy, while helpful, have limitations. Given these factors, the need for modern and effective therapeutic strategies for AD is pressing. Complementary or alternative therapies have garnered significant attention in recent years as a compelling treatment for AD. Among these, functionalized biomaterials and textiles with physicochemical, nanotechnology-based characteristics, or bioengineered features are some of the most common typical adjuvant therapies. The multifunctional-engineered biomaterials, as a new generation of biomedical materials, and stem cells, seem to hold tremendous promise for the treatment of dermatological diseases like AD. Biomaterials have seen great success, especially in various medical fields, due to their unique and adaptable characteristics. These materials, including collagen, PCL, and PLGA, offer unique advantages, such as biocompatibility, biodegradability, controlled drug release, and enhanced drug retention.
Collapse
Affiliation(s)
- Narges Elahi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohammad Ebrahim Astaneh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Rizwan
- Department of Biomedical Engineering, The University of Texas Southwestern Medical center, Dallas, TX, USA
| |
Collapse
|
4
|
Park J, Hassan MA, Nabawy A, Li CH, Jiang M, Parmar K, Reddivari A, Goswami R, Jeon T, Patel R, Rotello VM. Engineered Bacteriophage-Polymer Nanoassemblies for Treatment of Wound Biofilm Infections. ACS NANO 2024; 18:26928-26936. [PMID: 39287559 PMCID: PMC11618879 DOI: 10.1021/acsnano.4c08671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The antibacterial efficacy and specificity of lytic bacteriophages (phages) make them promising therapeutics for treatment of multidrug-resistant bacterial infections. Restricted penetration of phages through the protective matrix of biofilms, however, may limit their efficacy against biofilm infections. Here, engineered polymers were used to generate noncovalent phage-polymer nanoassemblies (PPNs) that penetrate bacterial biofilms and kill resident bacteria. Phage K, active against multiple strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), was assembled with cationic poly(oxanorbornene) polymers into PPNs. The PPNs retained phage infectivity, while demonstrating enhanced biofilm penetration and killing relative to free phages. PPNs achieved 3-log10 bacterial reduction (∼99.9%) against MRSA biofilms in vitro. PPNs were then incorporated into Poloxamer 407 (P407) hydrogels and applied onto in vivo wound biofilms, demonstrating controlled and sustained release. Hydrogel-incorporated PPNs were effective in a murine MRSA wound biofilm model, showing a 1.5-log10 reduction in bacterial load compared to a 0.5 log reduction with phage K in P407 hydrogel. Overall, this work showcases the therapeutic potential of phage K engineered with cationic polymers for treating wound biofilm infections.
Collapse
Affiliation(s)
- Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Cheng Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Krupa Parmar
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, United States
| | - Annika Reddivari
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, 55905, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
5
|
Tao S, Zhang S, Wei K, Maniura-Weber K, Li Z, Ren Q. An Injectable Living Hydrogel with Embedded Probiotics as a Novel Strategy for Combating Multifaceted Pathogen Wound Infections. Adv Healthc Mater 2024; 13:e2400921. [PMID: 38923269 DOI: 10.1002/adhm.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Wound infections pose a significant challenge in healthcare, and traditional antibiotic treatments often result in the development of resistant pathogens. Addressing this gap, ProGel is introduced, a living hydrogel created by entrapping probiotic Lactobacillus plantarum as a therapeutic component within a gelatin matrix. With a double-syringe system, ProGel can be easily mixed and applied, conforming swiftly to any wound shape and forming hydrogel in situ. It also demonstrates robust mechanical and self-healing properties owing to the Schiff-base bonds. ProGel sustains more than 80% viability of the entrapped L. plantarum while restricting their escape from the hydrogel. After a week of storage, more than 70% viability of the entrapped L. plantarum is preserved. Importantly, ProGel exhibits broad-spectrum antimicrobial efficacy against pathogens commonly associated with wound infections, i.e., Pseudomonas aeruginosa (7Log reduction), Staphylococcus aureus (3-7Log reduction), and Candida albicans (40-70% reduction). Moreover, its cytocompatibility is affirmed through coculture with human dermal fibroblasts. The effectiveness of ProGel is further highlighted in more clinically relevant tests on human skin wound models infected with P. aeruginosa and S. aureus, where it successfully prevents the biofilm formation of these pathogens. This study showcases an injectable living hydrogel system for the management of complex wound infections.
Collapse
Affiliation(s)
- Siyuan Tao
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Sixuan Zhang
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Kongchang Wei
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, CH 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Zhihao Li
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| |
Collapse
|
6
|
Durán E, Neira-Carrillo A, Oyarzun-Ampuero F, Valenzuela C. Thermosensitive Chitosan Hydrogels: A Potential Strategy for Prolonged Iron Dextran Parenteral Supplementation. Polymers (Basel) 2023; 16:139. [PMID: 38201804 PMCID: PMC10780544 DOI: 10.3390/polym16010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Iron deficiency anemia (IDA) presents a global health challenge, impacting crucial development stages in humans and other mammals. Pigs, having physiological and metabolic similarities with humans, are a valuable model for studying and preventing anemia. Commonly, a commercial iron dextran formulation (CIDF) with iron dextran particles (IDPs) is intramuscularly administered for IDA prevention in pigs, yet its rapid metabolism limits preventive efficacy. This study aimed to develop and evaluate chitosan thermosensitive hydrogels (CTHs) as a novel parenteral iron supplementation strategy, promoting IDPs' prolonged release and mitigating their rapid metabolism. These CTHs, loaded with IDPs (0.1, 0.2, and 0.4 g of theoretical iron/g of chitosan), were characterized for IM iron supplementation. Exhibiting thermosensitivity, these formulations facilitated IM injection at ~4 °C, and its significant increasing viscosity at 25-37 °C physically entrapped the IDPs within the chitosan's hydrophobic gel without chemical bonding. In vitro studies showed CIDF released all the iron in 6 h, while CTH0.4 had a 40% release in 72 h, mainly through Fickian diffusion. The controlled release of CTHs was attributed to the physical entrapment of IDPs within the CTHs' gel, which acts as a diffusion barrier. CTHs would be an effective hydrogel prototype for prolonged-release parenteral iron supplementation.
Collapse
Affiliation(s)
- Emerson Durán
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana 8820808, Santiago, Chile;
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11.315, La Pintana 8820808, Santiago, Chile
| | - Andrónico Neira-Carrillo
- Laboratorios de Materiales Bio-Relacionados (CIMAT) y Síntesis y Caracterización de Polímeros Funcionalizados y Biomoléculas (POLYFORMS), Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana 8820808, Santiago, Chile;
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia 8380494, Santiago, Chile
| | - Carolina Valenzuela
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana 8820808, Santiago, Chile;
| |
Collapse
|
7
|
White JM, Crabtree AA, Bates FS, Calabrese MA. Effect of chain architecture on the structure, dynamics, and rheology of thermoresponsive poloxamer hydrogels and associated blends. Macromolecules 2023; 56:6834-6847. [PMID: 38774522 PMCID: PMC11104561 DOI: 10.1021/acs.macromol.3c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Poloxamers, ABA triblock polymers composed of a poly(propylene oxide) (PPO) midblock (B) and poly(ethylene oxide) (PEO) endblocks (A), are widely studied for biomedical applications. Aqueous poloxamer 407 (P407; also referred to as F127) undergoes a solution-to-gel transition with increasing temperature, driven by the formation and ordering of micelles onto periodic lattices; however, the gel temperature and resulting modulus has limited tunability. Here, reverse P407 (RP407), a BAB polymer of the same composition and molar mass but the inverted architecture, is synthesized via anionic polymerization. The micellization and gelation temperatures of RP407 are higher than that of P407 and the PPO endblocks allow for intermicelle bridging; however, both single-component solutions favor body-centered cubic (BCC) packings. Further, aqueous RP407 displays a "soft gel" region with interesting rheological behavior, including viscoelastic aging and thermal hysteresis. Combining P407 and RP407 yields solutions with intermediate transition temperatures and alters the size and micelle packing. While the single-component solutions produce BCC packings, the blends form close-packed structures and larger micelles of higher aggregation numbers. Blends of P407 with an analogous AB diblock (E111P32) display similar behavior, whereas RP407/diblock blends form intermediate-sized BCC-packed micelles. These differences in packing and aggregation alter the local environments within the gels, which could have implications for applications such as drug delivery and protein stabilization.
Collapse
Affiliation(s)
- Joanna M White
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455
| | - Adelyn A Crabtree
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN, 55455
| |
Collapse
|
8
|
Ha JH, Lim JH, Lee JM, Chung BG. Electro-Responsive Conductive Blended Hydrogel Patch. Polymers (Basel) 2023; 15:2608. [PMID: 37376253 DOI: 10.3390/polym15122608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The proposed electro-responsive hydrogel has great benefit for transdermal drug delivery system (TDDS) applications. To improve the physical or chemical properties of hydrogels, a number of researchers have previously studied the mixing efficiencies of the blended hydrogels. However, few studies have focused on improving the electrical conductivity and drug delivery of the hydrogels. We developed a conductive blended hydrogel by mixing alginate with gelatin methacrylate (GelMA) and silver nanowire (AgNW). We demonstrated that and the tensile strength of blended hydrogels were increased by a factor of 1.8 by blending GelMA and the electrical conductivity was enhanced by a factor of 18 by the addition of AgNW. Furthermore, the GelMA-alginate-AgNW (Gel-Alg-AgNW) blended hydrogel patch enabled on-off controllable drug release, indicating 57% doxorubicin release in response to electrical stimulation (ES) application. Therefore, this electro-responsive blended hydrogel patch could be useful for smart drug delivery applications.
Collapse
Affiliation(s)
- Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Hyun Lim
- Research Center, Sogang University, Seoul 04107, Republic of Korea
| | - Jong Min Lee
- Division of Chemical Industry, Yeungnam University College, Daegu 42415, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea
- Institute of Smart Biosensor, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
9
|
Popescu I, Constantin M, Bercea M, Coșman BP, Suflet DM, Fundueanu G. Poloxamer/Carboxymethyl Pullulan Aqueous Systems-Miscibility and Thermogelation Studies Using Viscometry, Rheology and Dynamic Light Scattering. Polymers (Basel) 2023; 15:polym15081909. [PMID: 37112056 PMCID: PMC10143542 DOI: 10.3390/polym15081909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Thermally-induced gelling systems based on Poloxamer 407 (PL) and polysaccharides are known for their biomedical applications; however, phase separation frequently occurs in mixtures of poloxamer and neutral polysaccharides. In the present paper, the carboxymethyl pullulan (CMP) (here synthesized) was proposed for compatibilization with poloxamer (PL). The miscibility between PL and CMP in dilute aqueous solution was studied by capillary viscometry. CMP with substitution degrees higher than 0.5 proved to be compatible with PL. The thermogelation of concentrated PL solutions (17%) in the presence of CMP was monitored by the tube inversion method, texture analysis and rheology. The micellization and gelation of PL in the absence or in the presence of CMP were also studied by dynamic light scattering. The critical micelle temperature and sol-gel transition temperature decrease with the addition of CMP, but the concentration of CMP has a peculiar influence on the rheological parameters of the gels. In fact, low concentrations of CMP decrease the gel strength. With a further increase in polyelectrolyte concentration, the gel strength increases until 1% CMP, then the rheological parameters are lowered again. At 37 °C, the gels are able to recover the initial network structure after high deformations, showing a reversible healing process.
Collapse
Affiliation(s)
- Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Bogdan-Paul Coșman
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Gheorghe Fundueanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
10
|
White JM, Garza A, Griebler JJ, Bates FS, Calabrese MA. Engineering the Structure and Rheological Properties of P407 Hydrogels via Reverse Poloxamer Addition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5084-5094. [PMID: 36971824 PMCID: PMC10593112 DOI: 10.1021/acs.langmuir.3c00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aqueous solutions of poloxamer 407 (P407), a commercially available and nontoxic ABA triblock polymer (PEO-PPO-PEO), undergo a solution-to-gel transition with increasing temperature and are promising candidates for injectable therapeutics. The gel transition temperature, modulus, and structure are all dictated by polymer concentration, preventing independent tuning of these properties. Here, we show that addition of BAB reverse poloxamers (RPs) to P407-based solutions dramatically alters the gelation temperature, modulus, and morphology. Gelation temperature and RP localization within the hydrogel are dictated by RP solubility. Highly soluble RPs increase gelation temperature and incorporate primarily into the micelle corona regions. Alternatively, RPs with low aqueous solubility decrease gelation temperature and associate within the micelle core and core-corona interface. These differences in RP localization have significant implications for the hydrogel modulus and microstructure. The ability to tune gelation temperature, modulus, and structure through RP addition allows for the design of thermoresponsive materials with specific properties that are unobtainable with neat P407-based hydrogels.
Collapse
Affiliation(s)
- Joanna M White
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Ally Garza
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley 1201 W University Drive, Edinburg, Texas 78539, United States
| | - James J Griebler
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Leong MY, Kong YL, Burgess K, Wong WF, Sethi G, Looi CY. Recent Development of Nanomaterials for Transdermal Drug Delivery. Biomedicines 2023; 11:biomedicines11041124. [PMID: 37189742 DOI: 10.3390/biomedicines11041124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Nano-engineered medical products first appeared in the last decade. The current research in this area focuses on developing safe drugs with minimal adverse effects associated with the pharmacologically active cargo. Transdermal drug delivery, an alternative to oral administration, offers patient convenience, avoids first-pass hepatic metabolism, provides local targeting, and reduces effective drug toxicities. Nanomaterials provide alternatives to conventional transdermal drug delivery including patches, gels, sprays, and lotions, but it is crucial to understand the transport mechanisms involved. This article reviews the recent research trends in transdermal drug delivery and emphasizes the mechanisms and nano-formulations currently in vogue.
Collapse
Affiliation(s)
- Moong Yan Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Science, America Degree Program, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
12
|
Chen IC, Su CY, Chen PY, Hoang TC, Tsou YS, Fang HW. Investigation and Characterization of Factors Affecting Rheological Properties of Poloxamer-Based Thermo-Sensitive Hydrogel. Polymers (Basel) 2022; 14:polym14245353. [PMID: 36559720 PMCID: PMC9781578 DOI: 10.3390/polym14245353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Poloxamers are negatively temperature-sensitive hydrogels and their hydrophilic groups interact with water molecules at lower temperatures (liquid phase) while their hydrophobic groups interact more strongly with increases in temperature causing gelation. To investigate the factors affecting the rheological properties of poloxamers, various parameters including different poloxamer P407 concentrations, poloxamers P407/P188 blending ratios and additives were examined. The results presented a clear trend of decreasing gelling temperature/time when P407 was at higher concentrations. Moreover, the addition of P188 enhanced the gelling temperature regardless of poloxamer concentration. Polysaccharides and their derivatives have been widely used as components of hydrogel and we found that alginic acid (AA) or carboxymethyl cellulose (CMC) reduced the gelling temperature of poloxamers. In addition, AA-containing poloxamer promoted cell proliferation and both AA -and CMC-containing poloxamer hydrogels reduced cell migration. This study investigated the intriguing characteristics of poloxamer-based hydrogel, providing useful information to compounding an ideal and desired thermo-sensitive hydrogel for further potential clinical applications such as development of sprayable anti-adhesive barrier, wound-healing dressings or injectable drug-delivery system for cartilage repair.
Collapse
Affiliation(s)
- I-Cheng Chen
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Chen-Ying Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Pei-Yu Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - The Chien Hoang
- Biotegy Vietnam Company Limited, No. 23, Alley 48, Tho Lao Street, Dong Mac Ward, Hai Ba Trung District, Hanoi City 11609, Vietnam
| | - Yi-Syue Tsou
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110301, Taiwan
| | - Hsu-Wei Fang
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
- Correspondence: ; Tel.: +886-2-2771-2171 (ext. 2521)
| |
Collapse
|
13
|
Eltaher HM, Blokpoel Ferreras LA, Jalal AR, Dixon JE. Direct contact-mediated non-viral gene therapy using thermo-sensitive hydrogel-coated dressings. BIOMATERIALS ADVANCES 2022; 143:213177. [PMID: 36371970 DOI: 10.1016/j.bioadv.2022.213177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnologies are being increasingly applied as systems for peptide and nucleic acid macromolecule drug delivery. However systemic targeting of these, or efficient topical and localized delivery remains an issue. A controlled release system that can be patterned and locally administered such as topically to accessible tissue (skin, eye, intestine) would therefore be transformative in realizing the potential of such strategies. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly, using GAG-binding peptides to mediate cell targeting, and cell penetrating peptides (CPPs) to promote uptake. Herein we demonstrate that the GET transfection system can be used with the moisturizing thermo-reversible hydrogel Pluronic-F127 (PF127) and methyl cellulose (MC) to mediate site specific and effective intracellular transduction and gene delivery through GET nanoparticles (NPs). We investigated hydrogel formulation and the temperature dependence of delivery, optimizing the delivery system. GET-NPs retain their activity to enhance gene transfer within our formulations, with uptake transferred to cells in direct contact with the therapy-laden hydrogel. By using Azowipe™ material in a bandage approach, we were able to show for the first-time localized gene transfer in vitro on cell monolayers. The ability to simply control localization of gene delivery on millimetre scales using contact-mediated transfer from moisture-providing thermo-reversible hydrogels will facilitate new drug delivery methods. Importantly our technology to site-specifically deliver the activity of novel nanotechnologies and gene therapeutics could be transformative for future regenerative medicine.
Collapse
Affiliation(s)
- Hoda M Eltaher
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt, 21521
| | - Lia A Blokpoel Ferreras
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK
| | - Aveen R Jalal
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK
| | - James E Dixon
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom, NG7 2RD, UK.
| |
Collapse
|
14
|
Alvarez-Figueroa MJ, Alarcón DA, González-Aramúndiz JV. Effect of zeta potential of innovative lipid nanocapsules on triamcinolone transdermal delivery. Drug Deliv Transl Res 2022; 12:2740-2750. [PMID: 35284985 DOI: 10.1007/s13346-022-01134-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Two pegylated lipid nanocapsules for triamcinolone transdermal delivery were designed. Both present a size close to 50 nm and a single monomodal distribution in particle size (PI < 0.2), with a zeta potential of - 20 ± 2 and + 18 ± 1, respectively. The triamcinolone encapsulation efficacy varied between 68 and 80%. They proved to be stable under storage conditions (4 °C) for at least 6 months and at a physiological temperature, using different media, for 48 h. Also, they were shown not to affect cell viability at the concentrations used. For ex vivo transdermal experiments, newborn pig skin was used. With respect to the triamcinolone transdermal penetration, the nanocapsules were demonstrated to have an absorption promoting effect, both when the drug nanocapsules were in solution or loaded into the hydrogel, quantifying between 2 and 15 times more absorbed drug than the control. In addition, regarding the triamcinolone retained in the skin, it is observed that lipid nanocapsules act as triamcinolone promoters when the nanosystems were in solution and when they were included in the hydrogel. This vehicle showed a greater triamcinolone reservoir effect in comparison to the nanocapsules, proving to be a good vehicle to formulate triamcinolone transdermal delivery.
Collapse
Affiliation(s)
- María Javiera Alvarez-Figueroa
- Departamento de Farmacia, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, 7820436, Macul, Santiago, CP, Chile.
| | - Diego A Alarcón
- Departamento de Farmacia, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, 7820436, Macul, Santiago, CP, Chile
| | - José Vicente González-Aramúndiz
- Departamento de Farmacia, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, 7820436, Macul, Santiago, CP, Chile. .,Centro de Investigación en Nanotecnología Y Materiales Avanzados "CIEN-UC", Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
15
|
A Poly (Caprolactone)-Cellulose Nanocomposite Hydrogel for Transdermal Delivery of Hydrocortisone in Treating Psoriasis Vulgaris. Polymers (Basel) 2022; 14:polym14132633. [PMID: 35808678 PMCID: PMC9269097 DOI: 10.3390/polym14132633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis vulgaris (PV) is a common chronic disease, affecting much of the population. Hydrocortisone (HCT) is currently utilized as a PV treatment; however, it is associated with undesirable side effects. The aim of this research was to create a thermo-responsive nano-hydrogel delivery system. HCT-loaded sorbitan monostearate (SMS)-polycaprolactone (PCL) nanoparticles, encapsulated with thermo-responsive hydrogel carboxymethyl cellulose (CMC), were synthesized by applying the interfacial polymer-deposition method following solvent displacement. The nanoparticles’ properties were evaluated employing Differential Scanning Colorimetry, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Zeta sizer, Ultraviolet/Visual spectroscopy, and cytotoxicity testing. The nanoparticle sizes were 110.5 nm, with polydispersity index of 0.15 and zeta potential of −58.7 mV. A drug-entrapment efficacy of 76% was attained by the HCT-loaded SMS-PCL nanoparticles and in vitro drug-release profiles showed continuous drug release over a period of 24 hrs. Keratinocyte skin cells were treated with HCT-loaded SMS-PCL nanoparticles encapsulated with CMC; the results indicated that the synthesized drug-delivery system was less toxic to the keratinocyte cells compared to HCT. The combined trials and results from the formulation of HCT-loaded SMS-PCL nanoparticles encapsulated with CMC showed evidence that this hydrogel can be utilized as a potentially invaluable formulation for transdermal drug delivery of HCT, with improved efficacy and patient conformity.
Collapse
|
16
|
Zhang H, Zhang M, Zhang X, Gao Y, Ma Y, Chen H, Wan J, Li C, Wang F, Sun X. Enhanced postoperative cancer therapy by iron-based hydrogels. Biomater Res 2022; 26:19. [PMID: 35606838 PMCID: PMC9125885 DOI: 10.1186/s40824-022-00268-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractSurgical resection is a widely used method for the treatment of solid tumor cancers. However, the inhibition of tumor recurrence and metastasis are the main challenges of postoperative tumor therapy. Traditional intravenous or oral administration have poor chemotherapeutics bioavailability and undesirable systemic toxicity. Polymeric hydrogels with a three-dimensional network structure enable on-site delivery and controlled release of therapeutic drugs with reduced systemic toxicity and have been widely developed for postoperative adjuvant tumor therapy. Among them, because of the simple synthesis, good biocompatibility, biodegradability, injectability, and multifunctionality, iron-based hydrogels have received extensive attention. This review has summarized the general synthesis methods and construction principles of iron-based hydrogels, highlighted the latest progress of iron-based hydrogels in postoperative tumor therapy, including chemotherapy, photothermal therapy, photodynamic therapy, chemo-dynamic therapy, and magnetothermal-chemical combined therapy, etc. In addition, the challenges towards clinical application of iron-based hydrogels have also been discussed. This review is expected to show researchers broad perspectives of novel postoperative tumor therapy strategy and provide new ideas in the design and application of novel iron-based hydrogels to advance this sub field in cancer nanomedicine.
Collapse
|
17
|
Qiao N, Zhang Y, Fang Y, Deng H, Zhang D, Lin H, Chen Y, Yong KT, Xiong J. Silk Fabric Decorated with Thermo-Sensitive Hydrogel for Sustained Release of Paracetamol. Macromol Biosci 2022; 22:e2200029. [PMID: 35598095 DOI: 10.1002/mabi.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Indexed: 01/09/2023]
Abstract
Paracetamol is a safe and widely used antipyretic and analgesic drug, however, with the drawbacks of gastrointestinal first-pass effect and short intervals of administration. Transdermal drug delivery system can effectively avoid the liver metabolism caused by excess oral ingestion of Paracetamol. Herein, we propose a silk fabric-based medical dressing decorated by a thermo-responsive hydrogel for sustained release of paracetamol. Genipin as a bio-safe cross-linker was applied to assist gelation of a thermo-responsive hydrogel system coupled of chitosan and glycerol-phosphate disodium salt (GP) around body temperature (37 °C), as well as densify the microporous gel to improve mechanical strength. The in-situ sol-gel transition enabled hydrogel well penetrate and coat the silk fabric, forming a hierarchical hydrogel structure capable of prolonging sustained release of drug to 12 h, twice as long as a blank fabric. The silk fabric with a thin gel coating maintains good water vapor transmission rate (WVTR), compatible for skin contact application. The drug release properties can be tuned by regulating the genipin content and fabric braiding structure. The silk fabric dressing exhibits temperature-dependent instant release behavior within the first two hours. The sustained release mechanism of paracetamol well matches with the Korsmeyer-Peppas model in a non-Fickian diffusion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Na Qiao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yufan Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ying Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Heli Deng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
| | - Hong Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yuyue Chen
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ken Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
18
|
Uddin S, Islam MR, Md Moshikur R, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M. Transdermal Delivery of Antigenic Protein Using Ionic Liquid-Based Nanocarriers for Tumor Immunotherapy. ACS APPLIED BIO MATERIALS 2022; 5:2586-2597. [PMID: 35472266 DOI: 10.1021/acsabm.2c00061] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transdermal drug delivery systems (TDDSs) may be useful for preventing various diseases including cancer. However, the stratum corneum (SC) inhibits the permeation of foreign particles into the skin. To obtain an effective TDDS, we developed a protein-containing nanocarrier (PCNC) comprising an antigenic protein (ovalbumin/OVA) stabilized by a combination of surfactants, i.e., a lipid-based surface-active ionic liquid and Tween-80. The PCNC was lyophilized to remove water and cyclohexane and then dispersed in isopropyl myristate. It is biocompatible both in vitro and in vivo, and is suitable for use in a therapeutic TDDS. The skin permeability of the PCNC was significantly (p < 0.0001) enhanced, and the transdermal distribution and transdermal flux of the OVA delivery system were 25 and 28 times greater, respectively, than those of its aqueous formulation. The PCNC disrupted the order of lipid orientation in the skin's SC and increased intercellular protein delivery. It demonstrated effective antitumor activity, drastically (p < 0.001) suppressed tumor growth, increased mouse survival rates, and significantly (p < 0.001) stimulated the OVA-specific tumor immune response. The PCNC also increased the number of cytotoxic T cells expressing CD8 antibodies on their surfaces (CD8 + T-cells) in the tumor microenvironment. These findings suggest that PCNCs may be promising biocompatible carriers for transdermal antigenic protein delivery in tumor immunotherapy.
Collapse
Affiliation(s)
- Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Rafiqul Islam
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
White JM, Calabrese MA. Impact of small molecule and reverse poloxamer addition on the micellization and gelation mechanisms of poloxamer hydrogels. Colloids Surf A Physicochem Eng Asp 2022; 638. [PMID: 35221534 PMCID: PMC8880963 DOI: 10.1016/j.colsurfa.2021.128246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poloxamer 407 (P407) is widely used for targeted drug-delivery because it exhibits thermoresponsive gelation behavior near body temperature, stemming from a disorder-to-order transition. Hydrophobic small molecules can be encapsulated within P407; however, these additives often negatively impact the rheological properties and lower the gelation temperatures of the hydrogels, limiting their clinical utility. Here we investigate the impact of adding two BAB reverse poloxamers (RPs), 25R4 and 31R1, on the thermal transitions, rheological properties, and assembled structures of P407 both with and without incorporated small molecules. By employing a combination of differential scanning calorimetry (DSC), rheology, and small-angle x-ray scattering (SAXS), we determine distinct mechanisms for RP incorporation. While 25R4 addition promotes inter-micelle bridge formation, the highly hydrophobic 31R1 co-micellizes with P407. Small molecule addition lowers thermal transition temperatures and increases the micelle size, while RP addition mitigates the decreases in modulus traditionally associated with small molecule incorporation. This fundamental understanding yields new strategies for tuning the mechanical and structural properties of the hydrogels, enabling design of drug-loaded formulations with ideal thermal transitions for a range of clinical applications.
Collapse
Affiliation(s)
- Joanna M White
- University of Minnesota, 421 Washington Ave SE, Minneapolis, 55455, MN, USA
| | | |
Collapse
|
20
|
Hydrogels in Burn Wound Management-A Review. Gels 2022; 8:gels8020122. [PMID: 35200503 PMCID: PMC8872485 DOI: 10.3390/gels8020122] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Inert hydrogels are of a great importance in burn first aid. Hydrogel dressings may be an alternative to cooling burn wounds with streaming water, especially in cases of mass casualty events, lack of clean water, hypothermia, or large extent of burns. Hydrogels that contain mostly water evacuate the heat cumulating in the skin by evaporation. They not only cool the burn wound, but also reduce pain and protect the wound area from contamination and further injuries. Hydrogels are ideally used during the first hours after injury, but as they do not have antimicrobial properties per se, they might not prevent wound infection. The hydrogel matrix enables incorporating active substances into the dressing. The active forms may contain ammonium salts, nanocrystal silver, zinc, growth factor, cytokines, or cells, as well as natural agents, such as honey or herbs. Active dressings may have antimicrobial activity or stimulate wound healing. Numerous experiments on animal models proved their safety and efficiency. Hydrogels are a new dressing type that are still in development.
Collapse
|
21
|
García-Couce J, Tomás M, Fuentes G, Que I, Almirall A, Cruz LJ. Chitosan/Pluronic F127 Thermosensitive Hydrogel as an Injectable Dexamethasone Delivery Carrier. Gels 2022; 8:44. [PMID: 35049579 PMCID: PMC8774693 DOI: 10.3390/gels8010044] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Intra-articular administration of anti-inflammatory drugs is a strategy that allows localized action on damaged articular cartilage and reduces the side effects associated with systemic drug administration. The objective of this work is to prepare injectable thermosensitive hydrogels for the long-term application of dexamethasone. The hydrogels were prepared by mixing chitosan (CS) and Pluronic-F127 (PF) physically. In addition, tripolyphosphate (TPP) was used as a crosslinking agent. Chitosan added to the mix increased the gel time compared to the pluronic gel alone. The incorporation of TPP into the material modified the morphology of the hydrogels formed. Subsequently, MTS and Live/Dead® experiments were performed to investigate the toxicity of hydrogels against human chondrocytes. The in vitro releases of dexamethasone (DMT) from CS-PF and CS-PF-TPP gels had an initial burst and took more time than that from the PF hydrogel. In vivo studies showed that hydrogels retained the fluorescent compound longer in the joint than when administered in PBS alone. These results suggest that the CS-PF and CS-PF-TPP hydrogels loaded with DMT could be a promising drug delivery platform for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jomarien García-Couce
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Miriela Tomás
- Unidad de I + D, Empresa Laboratorios AICA, La Habana 11300, Cuba;
| | - Gastón Fuentes
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Ivo Que
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Amisel Almirall
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
22
|
Yangming-Fan, Jianjun-Ge. Pentoxifylline Prevents Restenosis by Inhibiting Cell Proliferation via p38MAPK Pathway in Rat Vein Graft Model. Cell Transplant 2022; 31:9636897221122999. [PMID: 36066039 PMCID: PMC9459444 DOI: 10.1177/09636897221122999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Coronary artery bypass grafting remains the gold standard in the therapy
of advanced-stage patients. But the vein grafts are prone to
restenosis or failure. Pentoxifylline (PTX) is a methylxanthine
derivative with a function of inhibiting cell proliferation. We thus
applied PTX locally to the vein grafts to study its effect on the
inhibition of graft restenosis using a rat vein graft model.
Morphometric results showed a significant decrease in the thickness of
vein grafts intimal and medial at day 28 after the bypass operation.
Results from Western blot and immunohistochemistry showed that PTX
also significantly reduced the proliferating cell nuclear antigen
(PCNA), alpha-smooth muscle actin (α-SMA) expression, and
phosphorylation of p38 in vein grafts. These results firstly
discovered the positive role of PTX in preventing the vein grafts
restenosis and the mechanism may be inhibition of vascular smooth
muscle cells (VSMCs) proliferation via the p38MAPK pathway.
Collapse
Affiliation(s)
- Yangming-Fan
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianjun-Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Batista JVDC, Matos APS, Oliveria AP, Ricci Júnior E, Freitas ZM, Oliveira CA, Toma HK, Capella MAM, Rocha LM, Weissenstein U, Baumgartner S, Holandino C. Thermoresponsive Hydrogel Containing Viscum album Extract for Topic and Transdermal Use: Development, Stability and Cytotoxicity Activity. Pharmaceutics 2021; 14:pharmaceutics14010037. [PMID: 35056932 PMCID: PMC8780802 DOI: 10.3390/pharmaceutics14010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Viscum album L. (Santalaceae), also known as European mistletoe, is a semi-parasitic plant that grows on different host trees. Our group recently demonstrated the antitumoral activity of ethanolic V. album extracts in vitro, depending on the dose and the host tree, V. album ssp abietis from Abies alba being the most active extract. The goal of this work focused on the development of a new topical formulation containing V. album extracts, evaluation of in vitro toxicity and ex vivo skin permeation assays. The Poloxamer 407 hydrogel containing 5% of dry (VA_DEH) or aqueous (VA_AEH) extract presented dermal compatible pH and microbiological stability for 180 days. The hydrogels flow curve presented a non-linear relation, characteristic of non-Newtonian fluids, and the mean viscosity for the VA_DEH and VA_AEH was 372.5 ± 7.78 and 331.0 ± 2.83 Pa.s, respectively, being statistically different (Welch’s t test; p < 0.01). Additionally, WST-1 in vitro assays revealed a dose-dependent toxicity for both formulations and VA_DEH presented a higher activity than the VA_AEH. The promising cytotoxic potential of VA_DEH lead to the ex vivo skin permeation assay with 2.73 ± 0.19 µg/cm2 of chlorogenic acid, which permeated at 8 h, showing a transdermal potential. These in vitro results support the idea that VA_DEH is a novel promising candidate for mistletoe therapy. Therefore, further in vivo and pre-clinical experiments should be performed to evaluate the safety and efficacy of this new dermic delivery system.
Collapse
Affiliation(s)
- João V. D. C. Batista
- Laboratório Multidisciplinar em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.D.C.B.); (A.P.O.)
- Hiscia Institute, Society for Cancer Research, 4144 Arlesheim, Switzerland;
| | - Ana Paula S. Matos
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.P.S.M.); (E.R.J.); (Z.M.F.)
| | - Adriana P. Oliveria
- Laboratório Multidisciplinar em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.D.C.B.); (A.P.O.)
| | - Eduardo Ricci Júnior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.P.S.M.); (E.R.J.); (Z.M.F.)
| | - Zaida M. Freitas
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.P.S.M.); (E.R.J.); (Z.M.F.)
| | - Catarina A. Oliveira
- Laboratório de Alimentos, Instituto Federal de Educacão, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro 20270-021, RJ, Brazil;
| | - Helena K. Toma
- Laboratório de Diagnóstico Molecular e Hematologia, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Marcia A. M. Capella
- LaRBio Carlos Chagas Filho, Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Leandro M. Rocha
- Laboratório de Tecnologia de Produtos Naturais, Departamento de Tecnologia Farmacêutica, Universidade Federal Fluminense, Niteroi 24241-000, RJ, Brazil;
| | | | - Stephan Baumgartner
- Hiscia Institute, Society for Cancer Research, 4144 Arlesheim, Switzerland;
- Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland
- Institute for Integrative Medicine, University of Witten/Herdecke, 58455 Herdecke, Germany
- Correspondence: (S.B.); (C.H.)
| | - Carla Holandino
- Laboratório Multidisciplinar em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.D.C.B.); (A.P.O.)
- Hiscia Institute, Society for Cancer Research, 4144 Arlesheim, Switzerland;
- Correspondence: (S.B.); (C.H.)
| |
Collapse
|
24
|
Effect of Ca 2+ cross-linking on the properties and structure of lutein-loaded sodium alginate hydrogels. Int J Biol Macromol 2021; 193:53-63. [PMID: 34688674 DOI: 10.1016/j.ijbiomac.2021.10.114] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/21/2022]
Abstract
In order to construct nano-lutein hydrogels with sustained release properties, the basic properties and structure of nano-lutein hydrogels cross-linked with different concentrations of Ca2+ were investigated. The results showed that the highest loading capacity for lutein reached 770.88 μg/g, while the encapsulation efficiency was as high as 99.39%. When Ca2+ concentration was lower than 7.5 mM, the filling of lutein nanoparticles reduced the hardness and gumminess of the hydrogel. The resilience and cohesiveness of the hydrogel decreased as the concentration of Ca2+ increased. Filling with lutein nanoparticles and increasing Ca2+ concentration both increased the G' and G″. The hydrogel loaded with lutein showed different swelling properties in different pH environments, the filling of lutein nanoparticles inhibited the swelling of the hydrogel. When Ca2+ concentration was greater than 7.5 mM, the cut-off amount of lutein on the surface of the Ca2+ cross-linked hydrogel was larger. The digestive enzymes quickly degraded the hydrogel structure, resulting in a high initial release of lutein. DSC and FTIR results showed that lutein nanoparticles were mainly physically trapped in the hydrogel network structure. Lutein nanoparticles and excessive Ca2+ affected the stability of cross-linked ionic bonds in the hydrogel, thereby reducing its thermodynamic stability.
Collapse
|
25
|
Thapa RK, Winther-Larsen HC, Ovchinnikov K, Carlsen H, Diep DB, Tønnesen HH. Hybrid hydrogels for bacteriocin delivery to infected wounds. Eur J Pharm Sci 2021; 166:105990. [PMID: 34481880 DOI: 10.1016/j.ejps.2021.105990] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 01/30/2023]
Abstract
Superficial infections in chronic wounds can prevent the wound healing process by the development of persistent infections and drug-resistant biofilms. Topically applied antimicrobial formulations with stabilized and controlled release offer significant benefits for the effective treatment of wound infections. Bacteriocins are the antimicrobial peptides (AMPs) produced by bacteria that are viable alternatives to antibiotics owing to their natural origin and low propensity for resistance development. Herein, we developed a hybrid hydrogel composed of Pluronic F127 (PF127), ethylenediaminetetraacetic acid (EDTA) loaded liposomes, glutathione (GSH), and the bacteriocin Garvicin KS (GarKS) referred to as "GarKS gel". The GarKS gel exhibited suitable viscosity and rheological properties along with controlled release behavior (up to 9 days) for effective peptide delivery following topical application. Potent in vitro antibacterial and anti-biofilm effects of GarKS gel were evident against the Gram-positive bacterium Staphylococcus aureus. The in vivo treatment of methicillin resistant S. aureus (MRSA) infected mouse wounds suggested potent antibacterial effects of the GarKS gel following multiple applications of once-a-day application for three consecutive days. Altogether, these results provide proof-of-concept for the successful development of AMP loaded topical formulation for effective treatment of wound infections.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316 Oslo, Norway.
| | - Hanne Cecilie Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, NO-0371 Oslo, Norway
| | - Kirill Ovchinnikov
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
26
|
Wu XX, Siu WS, Wat CL, Chan CL, Koon CM, Li X, Cheng W, Ma H, Tsang MSM, Lam CWK, Leung PC, Lau CBS, Wong CK. Effects of topical application of a tri-herb formula on inflammatory dry-skin condition in mice with oxazolone-induced atopic dermatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153691. [PMID: 34425472 DOI: 10.1016/j.phymed.2021.153691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic relapsing inflammatory and pruritic skin disease, affecting 10-20% of the population worldwide. Paeonia suffruticosa Andrews (Paeoniaceae) (Cortex Moutan) and Mentha haplocalyx Briq. (Labiatae) (Herba Menthae) have shown beneficial effects on AD. Calendula officinalis L. (Asteraceae) is commonly used for treating skin rashes and wounds. PURPOSE In the present study, a three-herbs formula including Cortex Moutan and Herba Menthae, together with C. officinalis at 1:1:1 weight ratio was used as a topical agent and its therapeutic effects on AD was investigated. METHODS In vitro effects of individual herbs and three-herbs formula (0.125-1 mg/ml) were examined using cytokine release assay on human mast HMC-1 cells, inflammation test on murine macrophage RAW cells and human keratinocyte (HaCaT) cells, and migration scratch assay on human umbilical vein endothelial cells (HUVEC). The contributing functional pathway of three-herbs formula in AD was explored using Western Blot assay in HMC-1 cells. Oxazolone-induced AD-like mice model was also used to investigate the in vivo therapeutic effect of the topical application of the three-herbs formula. RESULTS Herba Menthae, Cortex Moutan, and three-herbs formula significantly reduced the production of IL-6 and tumor necrosis factor (TNF)-α in HMC-1 cells, inhibited the expression of IL-6, IL-8 and CCL2 in TNF-α/IFN-γ stimulated HaCaT cells, and suppressed the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells. Moreover, Herba Menthae and three-herbs formula significantly suppressed CCL2 and TNF-α production in LPS-induced RAW 264.7 cells. C. officinalis and three-herbs formula promoted wound healing in HUVEC. For intracellular mechanisms, three-herbs formula inhibited the expressions of molecules in STAT1 and STAT3-dependent pathways. In vivo model showed that topical application of three-herbs formula on challenged ear reduced ear swelling and mice scratching frequencies. H&E and toluidine blue staining of the challenged ear tissue demonstrated that three-herbs formula reduced the epidermal thickness and mast cell infiltration, respectively. CONCLUSION The three-herbs formula of Cortex Moutan, Herba Menthae and C. officinalis at 1:1:1 (w/w) exhibited anti-inflammatory effect and promotion of cell migration in vitro. It also alleviated ear redness, swelling, epidermal thickness and inflammation of the OXA-induced AD mice. These findings suggest a potential beneficial role of the topical application of the three-herbs formula for treatment of AD.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Ling Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Chung Lap Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Li
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin Man Tsang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China; Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher Wai-Kei Lam
- Faculty of Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Hong Kong, China; Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Gao H, Zhou Y, Wang J, Xu H. Weakening of the Transdermal Effect of p-Phenylenediamine Pigments by the Temperature-Sensitive Poloxamer Sodium Alginate Gel. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A temperature-sensitive hair dye was prepared with a poloxamer-sodium alginate mixture. When the hair dye was applied to the hair (< 32 °C), it retained its flow dynamics. The hair dye was able to undergo a phase change and formed a solid as soon as it touched the scalp (32°C), which reduced the transdermal amount of p-phenylenediamine (PPD) and also adverse effects and toxicity. Compared to a conventional hair dye, the temperature-sensitive hair dye achieved a reduction of the transdermal amount of p-phenylenediamine by almost 65% at different concentrations. At the same time, the colouring effect was not significantly reduced. The poloxamer alginate hydrogel can be used as a novel colouring material to reduce the harm of the dye intermediate to the human body when colouring hair.
Collapse
|
28
|
Al-Rajabi MM, Teow YH. Green Synthesis of Thermo-Responsive Hydrogel from Oil Palm Empty Fruit Bunches Cellulose for Sustained Drug Delivery. Polymers (Basel) 2021; 13:2153. [PMID: 34210003 PMCID: PMC8271751 DOI: 10.3390/polym13132153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Drug delivery is a difficult task in the field of dermal therapeutics, particularly in the treatment of burns, wounds, and skin diseases. Conventional drug delivery mediums have some limitations, including poor retention on skin/wound, inconvenience in administration, and uncontrolled drug release profile. Hydrogels able to absorb large amount of water and give a spontaneous response to stimuli imposed on them are an attractive solution to overcome the limitations of conventional drug delivery media. The objective of this study is to explore a green synthesis method for the development of thermo-responsive cellulose hydrogel using cellulose extracted from oil palm empty fruit bunches (OPEFB). A cold method was employed to prepare thermo-responsive cellulose hydrogels by incorporating OPEFB-extracted cellulose and Pluronic F127 (PF127) polymer. The performance of the synthesized thermo-responsive cellulose hydrogels were evaluated in terms of their swelling ratio, percentage of degradation, and in-vitro silver sulfadiazine (SSD) drug release. H8 thermo-responsive cellulose hydrogel with 20 w/v% PF127 and 3 w/v% OPEFB extracted cellulose content was the best formulation, given its high storage modulus and complex viscosity (81 kPa and 9.6 kPa.s, respectively), high swelling ratio (4.22 ± 0.70), and low degradation rate (31.3 ± 5.9%), in addition to high t50% value of 24 h in SSD in-vitro drug release to accomplish sustained drug release. The exploration of thermo-responsive cellulose hydrogel from OPEFB would promote cost-effective and sustainable drug delivery system with using abundantly available agricultural biomass.
Collapse
Affiliation(s)
- Maha Mohammad Al-Rajabi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia;
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers (Basel) 2021; 13:polym13132086. [PMID: 34202828 PMCID: PMC8272167 DOI: 10.3390/polym13132086] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023] Open
Abstract
Some of thermo-responsive polysaccharides, namely, cellulose, xyloglucan, and chitosan, and protein-like gelatin or elastin-like polypeptides can exhibit temperature dependent sol–gel transitions. Due to their biodegradability, biocompatibility, and non-toxicity, such biomaterials are becoming popular for drug delivery and tissue engineering applications. This paper aims to review the properties of sol–gel transition, mechanical strength, drug release (bioavailability of drugs), and cytotoxicity of stimuli-responsive hydrogel made of thermo-responsive biopolymers in drug delivery systems. One of the major applications of such thermos-responsive biopolymers is on textile-based transdermal therapy where the formulation, mechanical, and drug release properties and the cytotoxicity of thermo-responsive hydrogel in drug delivery systems of traditional Chinese medicine have been fully reviewed. Textile-based transdermal therapy, a non-invasive method to treat skin-related disease, can overcome the poor bioavailability of drugs from conventional non-invasive administration. This study also discusses the future prospects of stimuli-responsive hydrogels made of thermo-responsive biopolymers for non-invasive treatment of skin-related disease via textile-based transdermal therapy.
Collapse
|
30
|
Barbosa AI, Torres T, Lima SAC, Reis S. Hydrogels: A Promising Vehicle for the Topical Management of Atopic Dermatitis. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana Isabel Barbosa
- LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 Porto 4050‐313 Portugal
| | - Tiago Torres
- Serviço de Dermatologia do Centro Hospitalar e Universitário do Porto Instituto de Ciências Biomédicas de Abel Salazar Universidade do Porto Rua D. Manuel II, s/n Porto 4099‐001 Portugal
| | - Sofia A. Costa Lima
- LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 Porto 4050‐313 Portugal
| | - Salette Reis
- LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 Porto 4050‐313 Portugal
| |
Collapse
|
31
|
Van Gheluwe L, Chourpa I, Gaigne C, Munnier E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers (Basel) 2021; 13:1285. [PMID: 33920816 PMCID: PMC8071137 DOI: 10.3390/polym13081285] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.
Collapse
Affiliation(s)
| | | | | | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (I.C.); (C.G.)
| |
Collapse
|
32
|
Karoyo AH, Wilson LD. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1095. [PMID: 33652859 PMCID: PMC7956345 DOI: 10.3390/ma14051095] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
Abstract
Hydrogels are hydrophilic 3D networks that are able to ingest large amounts of water or biological fluids, and are potential candidates for biosensors, drug delivery vectors, energy harvester devices, and carriers or matrices for cells in tissue engineering. Natural polymers, e.g., cellulose, chitosan and starch, have excellent properties that afford fabrication of advanced hydrogel materials for biomedical applications: biodegradability, biocompatibility, non-toxicity, hydrophilicity, thermal and chemical stability, and the high capacity for swelling induced by facile synthetic modification, among other physicochemical properties. Hydrogels require variable time to reach an equilibrium swelling due to the variable diffusion rates of water sorption, capillary action, and other modalities. In this study, the nature, transport kinetics, and the role of water in the formation and structural stability of various types of hydrogels comprised of natural polymers are reviewed. Since water is an integral part of hydrogels that constitute a substantive portion of its composition, there is a need to obtain an improved understanding of the role of hydration in the structure, degree of swelling and the mechanical stability of such biomaterial hydrogels. The capacity of the polymer chains to swell in an aqueous solvent can be expressed by the rubber elasticity theory and other thermodynamic contributions; whereas the rate of water diffusion can be driven either by concentration gradient or chemical potential. An overview of fabrication strategies for various types of hydrogels is presented as well as their responsiveness to external stimuli, along with their potential utility in diverse and novel applications. This review aims to shed light on the role of hydration to the structure and function of hydrogels. In turn, this review will further contribute to the development of advanced materials, such as "injectable hydrogels" and super-adsorbents for applications in the field of environmental science and biomedicine.
Collapse
Affiliation(s)
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|
33
|
Atanasova D, Staneva D, Grabchev I. Textile Materials Modified with Stimuli-Responsive Drug Carrier for Skin Topical and Transdermal Delivery. MATERIALS 2021; 14:ma14040930. [PMID: 33669245 PMCID: PMC7919809 DOI: 10.3390/ma14040930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Textile materials, as a suitable matrix for different active substances facilitating their gradual release, can have an important role in skin topical or transdermal therapy. Characterized by compositional and structural variety, those materials readily meet the requirements for applications in specific therapies. Aromatherapy, antimicrobial substances and painkillers, hormone therapy, psoriasis treatment, atopic dermatitis, melanoma, etc., are some of the areas where textiles can be used as carriers. There are versatile optional methods for loading the biologically active substances onto textile materials. The oldest ones are by exhaustion, spraying, and a pad-dry-cure method. Another widespread method is the microencapsulation. The modification of textile materials with stimuli-responsive polymers is a perspective route to obtaining new textiles of improved multifunctional properties and intelligent response. In recent years, research has focused on new structures such as dendrimers, polymer micelles, liposomes, polymer nanoparticles, and hydrogels. Numerous functional groups and the ability to encapsulate different substances define dendrimer molecules as promising carriers for drug delivery. Hydrogels are also high molecular hydrophilic structures that can be used to modify textile material. They absorb a large amount of water or biological fluids and can support the delivery of medicines. These characteristics correspond to one of the current trends in the development of materials used in transdermal therapy, namely production of intelligent materials, i.e., such that allow controlled concentration and time delivery of the active substance and simultaneous visualization of the process, which can only be achieved with appropriate and purposeful modification of the textile material.
Collapse
Affiliation(s)
- Daniela Atanasova
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Desislava Staneva
- Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
- Correspondence: ; Tel.: +359-2-8163266
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria;
| |
Collapse
|
34
|
Yu Y, Cheng Y, Tong J, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B 2021; 9:2979-2992. [DOI: 10.1039/d0tb02877k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-sensitive hydrogels based on different polymers have been broadly used in the pharmaceutical fields. In this review, the state-of-the-art thermo-sensitive hydrogels for drug delivery are elaborated
Collapse
Affiliation(s)
- Yibin Yu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yi Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junye Tong
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Lei Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University
- Beijing 100084
- China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou
- Zhejiang, 310009
- China
| |
Collapse
|
35
|
Influence of pH-responsive compounds synthesized from chitosan and hyaluronic acid on dual-responsive (pH/temperature) hydrogel drug delivery systems of Cortex Moutan. Int J Biol Macromol 2020; 168:163-174. [PMID: 33309656 DOI: 10.1016/j.ijbiomac.2020.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 12/27/2022]
Abstract
The polysaccharide-based pH-responsive compounds, namely, N,N,N-trimethyl chitosan (TMC), polyethylene glycolated hyaluronic acid (PEG-HA), and polysaccharide-based nano-conjugate of hyaluronic acid, chitosan oligosaccharide and alanine [HA-Ala-Chito(oligo)] were chemically synthesized using biopolymers chitosan and hyaluronic acid, and applied here to observe the changes in morphology, pH-stability, mechanical and drug-release behavior, and cytotoxicity of thermo-responsive polymer: Poloxamer 407 (PF127)-based drug delivery systems for traditional Chinese medicine Cortex Moutan (CM). The thermo-responsive hydrogel of PF127 loaded with CM (GelC) was used as control. The dual-responsive (pH/temperature) hydrogels: PF127/TMC/PEG-HA (Gel1) and PF127/HA-Ala-Chito(oligo) (Gel2) showed improved mechanical behavior as obtained by rheology and mechanical agitation study, and pH-stability under various external pH conditions, and those improvements occurred due to the addition of polysaccharide-based pH-responsive compounds in the systems. Both, Gel1 and Gel2 showed better morphology than GelC as obtained by SEM or TEM suggesting that interaction of polysaccharide-based pH-responsive compounds with PF127 in either gel or sol state gave better porous network structure in the hydrogels or more dispersed micellar arrangements in sol-state, respectively. Gel1 showed the highest cumulative drug release (86.5%) after 5 days under mild acidic condition (pH 6.4) suggesting that release behavior of a hydrogel drug carrier was dependent on morphology, mechanical behavior, and pH-stability. The transdermal release (ex-vivo) results indicated that gallic acid, the active marker of CM passed through porcine ear skin and all the formulations showed more or less similar transdermal release properties. The hydrogels loaded with CM showed no cytotoxicity (cell viability >90.0%) on human HaCaT keratinocytes within concentration range of 0.0-20.0 μg/ml as obtained by MTT assay, and cell viability was more than 100% at a concentration of 20.0 μg/ml for Gel2. The formulations without loaded drug namely, Gel1-CM and Gel2-CM exhibited strong anti-bacterial action against gram positive bacteria Staphylococcus aureus.
Collapse
|
36
|
Meng F, Hasan A, Mahdi Nejadi Babadaei M, Hashemi Kani P, Jouya Talaei A, Sharifi M, Cai T, Falahati M, Cai Y. Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems. J Adv Res 2020; 26:137-147. [PMID: 33133689 PMCID: PMC7584683 DOI: 10.1016/j.jare.2020.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Microscopic patches as quite promising platforms in transdermal drug delivery suffer from conventional injections. In other hand, a wide range of pharmacokinetics, ranging from fast oral administration to sustained drug delivery, can be implemented with the help of microneedle arrays (MNAs). AIM OF REVIEW Hence, in this paper, we overviewed different kinds of MNAs such as solid/coated, hollow, porous, hydrogel/swellable, and merged-tip geometry followed by introducing different types of material (silicon, glass, ceramics, dissolving and biodegradable polymers, and hydrogel) used for fabrication of MNAs. Afterwards, some conventional and brand-new simple and customizable MN mold fabrication techniques were surveyed. Polymeric MNAs have received a great deal of attention due to their potential biocompatibility and biodegradability in comparison to other materials. Therefore, we also covered different kinds of polymers such as hydrogel/swellable, dissolving and biodegradable analogues used for the development of MNAs as potential candidates in drug delivery systems (DDSs). Finally, we discussed different challenges and future perspectives in the aspect of MNAs-based drug delivery platforms. KEY SCIENTIFIC CONCEPTS OF REVIEW This review may provide guidelines for the rational design of polymeric MNAs-based DDSs for promising programmable drug release and enhanced therapeutic effect.
Collapse
Affiliation(s)
- Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of TCM, Zhongshan, Guangdong 528400, China
| | - Anwarul Hasan
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Hashemi Kani
- Department of Biotechnology, Faculty of Basic Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Jouya Talaei
- Department of Biotechnology, Faculty of Basic Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, Liaoning 110036, China
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Cancer Institute of Jinan University, Guangzhou, Guangdong 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
37
|
Khan S, Akhtar N, Minhas MU, Shah H, Khan KU, Thakur RRS. A difunctional Pluronic ®127-based in situ formed injectable thermogels as prolonged and controlled curcumin depot, fabrication, in vitro characterization and in vivo safety evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:281-319. [PMID: 32976729 DOI: 10.1080/09205063.2020.1829324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Curcumin has been reported to be used widely against many types of pathological conditions in clinics. However, due to its limitations such as poor solubility, poor oral absorption and low stability have limited its applications. In the current study, a series of novel chemically cross-linkable depot gel formulations were developed based on thermoresponsive micellar polymer (Pluronic®127) with polyelectrolyte hydrophilic monomer, that is, 2-acrylamido-2-methylpropane sulfonic acid by cold and in situ grafting polymerization method. The formulations were aimed to deliver curcumin at controlled rate from in situ formed depot after administration through subcutaneous route in vivo. The sol-gel phase transitions of formulations were observed by rheological analysis, tube titling and optical transmittance measurements. Maximum swelling of gel formulations was observed at pH 7.4 and below CGT, that is, 25 °C. The in vitro release profile exhibits maximum drug release at pH 7.4 and 25 °C owing to relaxed gel state. In vitro degradation profile of gel formulations showed controlled degradation rate. Cell growth inhibition study confirmed the biocompatibility and safe nature of bare gel formulations against L929 cell lines. In vitro cytotoxic study showed that curcumin loaded in gel formulation has controlled pharmacological activity against HeLa and MCF-7 cancer cells as compared to free drug solution. The IC50 values calculated for pure curcumin solution (30 ± 0.77 µg/ml for HeLa and 27 ± 0.39 µg/ml for MCF-7) were found higher in comparison to curcumin-loaded thermogels against HeLa (19 ± 0.28 µg/ml and 23 ± 0.81 µg/ml) and MCF-7 (22 ± 0.54 µg/ml and 21 ± 0.49 µg/ml). Histopathological and hematological analysis showed the biocompatible nature of hydrogels. Structural confirmation was done by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy (1H NMR). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed the thermal stability of the gel formulation. The porous structure of gel formulations was assessed by scanning electron microscopic (SEM) analysis. Results concluded that newly developed gel formulations have thermoresponsive behavior with phase transition at body temperature and can be used as in situ controlled drug depot.
Collapse
Affiliation(s)
- Samiullah Khan
- Department of Pharmacy, The University of Lahore, Gujrat Campus, Gujrat, Pakistan
| | - Naveed Akhtar
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Hassan Shah
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kifayat Ullah Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|
38
|
Abstract
Hydrogels, swellable hydrophilic polymer networks fabricated through chemical cross-linking or physical entanglement are increasingly utilized in various biomedical applications over the past few decades. Hydrogel-based microparticles, dressings and microneedle patches have been explored to achieve safe, sustained and on-demand therapeutic purposes toward numerous skin pathologies, through incorporation of stimuli-responsive moieties and therapeutic agents. More recently, these platforms are expanded to fulfill the diagnostic and monitoring role. Herein, the development of hydrogel technology to achieve diagnosis and monitoring of pathological skin conditions are highlighted, with proteins, nucleic acids, metabolites, and reactive species employed as target biomarkers, among others. The scope of this review includes the characteristics of hydrogel materials, its fabrication procedures, examples of diagnostic studies, as well as discussion pertaining clinical translation of hydrogel systems.
Collapse
|
39
|
Ramos Campos EV, Proença PLDF, Doretto-Silva L, Andrade-Oliveira V, Fraceto LF, de Araujo DR. Trends in nanoformulations for atopic dermatitis treatment. Expert Opin Drug Deliv 2020; 17:1615-1630. [PMID: 32816566 DOI: 10.1080/17425247.2020.1813107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immunological skin dysfunctions trigger the synthesis and release of inflammatory cytokines, which induce recurrent skin inflammation associated with chronic itching, inefficient barrier behavior, and reduced skin hydration. These features characterize a multifactorial chronic inflammatory disease atopic dermatitis (AD). AD therapy includes anti-inflammatory drugs and immunosuppressors as well as non-pharmacological alternatives such as emollients, moisturizers, and lipids (ceramides, phospholipids) for modulating the skin hydration and the barrier repair. However, these treatments are inconvenient with low drug skin penetration and insufficient maintenance on the application site. AREAS COVERED Nanotechnology-based therapies can be a great strategy to overcome these limitations. Considering the particular skin morphological organization, SC lipid matrix composition, and immunological functions/features related to nanocarriers, this review focuses on recent developments of nanoparticulate systems (polymeric, lipid-based, inorganic) as parent or hybrid systems including their chemical composition, physico-chemical and biopharmaceutical properties, and differential characteristics that evaluate them as new effective drug-delivery systems for AD treatment. EXPERT OPINION Despite the several innovative formulations, research in nanotechnology-based carriers should address specific aspects such as the use of moisturizers associated to pharmacological therapies, toxicity studies, scale-up production processes and the nanocarrier influence on immunological response. These approaches will help researchers choose the most appropriate nanocarrier system and widen nanomedicine applications and commercialization.
Collapse
Affiliation(s)
| | - Patrícia Luiza De Freitas Proença
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | - Lorena Doretto-Silva
- Human and Natural Sciences Center, Federal University of ABC , Santo André, SP, Brazil
| | | | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | | |
Collapse
|
40
|
Dutta K, Das R, Ling J, Monibas RM, Carballo-Jane E, Kekec A, Feng DD, Lin S, Mu J, Saklatvala R, Thayumanavan S, Liang Y. In Situ Forming Injectable Thermoresponsive Hydrogels for Controlled Delivery of Biomacromolecules. ACS OMEGA 2020; 5:17531-17542. [PMID: 32715238 PMCID: PMC7379096 DOI: 10.1021/acsomega.0c02009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/25/2020] [Indexed: 05/23/2023]
Abstract
Due to their relatively large molecular sizes and delicate nature, biologic drugs such as peptides, proteins, and antibodies often require high and repeated dosing, which can cause undesired side effects and physical discomfort in patients and render many therapies inordinately expensive. To enhance the efficacy of biologic drugs, they could be encapsulated into polymeric hydrogel formulations to preserve their stability and help tune their release in the body to their most favorable profile of action for a given therapy. In this study, a series of injectable, thermoresponsive hydrogel formulations were evaluated as controlled delivery systems for various peptides and proteins, including insulin, Merck proprietary peptides (glucagon-like peptide analogue and modified insulin analogue), bovine serum albumin, and immunoglobulin G. These hydrogels were prepared using concentrated solutions of poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA), which can undergo temperature-induced sol-gel transitions and spontaneously solidify into hydrogels near the body temperature, serving as an in situ depot for sustained drug release. The thermoresponsiveness and gelation properties of these triblock copolymers were characterized by dynamic light scattering (DLS) and oscillatory rheology, respectively. The impact of different hydrogel-forming polymers on release kinetics was systematically investigated based on their hydrophobicity (LA/GA ratios), polymer concentrations (20, 25, and 30%), and phase stability. These hydrogels were able to release active peptides and proteins in a controlled manner from 4 to 35 days, depending on the polymer concentration, solubility nature, and molecular sizes of the cargoes. Biophysical studies via size exclusion chromatography (SEC) and circular dichroism (CD) indicated that the encapsulation and release did not adversely affect the protein conformation and stability. Finally, a selected PLGA-PEG-PLGA hydrogel system was further investigated by the encapsulation of a therapeutic glucagon-like peptide analogue and a modified insulin peptide analogue in diabetic mouse and minipig models for studies of glucose-lowering efficacy and pharmacokinetics, where superior sustained peptide release profiles and long-lasting glucose-lowering effects were observed in vivo without any significant tolerability issues compared to peptide solution controls. These results suggest the promise of developing injectable thermoresponsive hydrogel formulations for the tunable release of protein therapeutics to improve patient's comfort, convenience, and compliance.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jing Ling
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., South San Francisco, California 94080, United States
| | - Rafael Mayoral Monibas
- Discovery
Biology, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Ester Carballo-Jane
- External
In Vivo Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ahmet Kekec
- Chemistry
Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Danqing Dennis Feng
- Chemistry
Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Songnian Lin
- Chemistry
Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - James Mu
- Discovery
Biology, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Robert Saklatvala
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., Boston, Massachusetts 02115, United States
| | - S. Thayumanavan
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yingkai Liang
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
41
|
Salatin S, Jelvehgari M. Desirability function approach for development of a thermosensitive and bioadhesive nanotransfersome-hydrogel hybrid system for enhanced skin bioavailability and antibacterial activity of cephalexin. Drug Dev Ind Pharm 2020; 46:1318-1333. [PMID: 32598186 DOI: 10.1080/03639045.2020.1788068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellulitis is a common bacterial infection of the skin and soft tissues immediately beneath the skin. Despite the successful use of antibiotics in the treatment of infectious diseases, bacterial infections continue to impose significant global health challenges because of the rapid emergence of antibiotic resistance. The aim of this work was to develop an in situ hydrogel forming system containing highly permeable cephalexin-loaded nanotransfersomes (NTs), suitable for antibacterial drug delivery. Response surface design was applied for the optimization of NTs. Cephalexin NTs were prepared using thin-film hydration method and then embedded into a 3D hydrogel network. The in vitro antibacterial activity of the optimized NTs was assayed against indicator bacteria of Staphylococcus aureus (S. aureus). The drug permeation was evaluated using an ex vivo rat skin model. The in vivo efficacy of the cephalexin NT hydrogel was also determined against rat skin infection. The resulting data verified the formation of NTs, the size of which was approximately 192 nm. The cephalexin NTs exhibited higher antibacterial activity against S. aureus as compared to the untreated drug. The NT hydrogel improved drug penetration through the skin after 8 h. When applied on the rat skin for 10 days, the cephalexin NT hydrogel exhibited superior antibacterial activity with normal hair growth and skin appearance as compared with the plain drug hydrogel. These findings suggest that the cephalexin NT-hydrogel system can serve as a valuable drug delivery platform against bacterial infections.
Collapse
Affiliation(s)
- Sara Salatin
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Jelvehgari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Wani TU, Mohi-Ud-Din R, Majeed A, Kawoosa S, Pottoo FH. Skin Permeation of Nanoparticles: Mechanisms Involved and Critical Factors Governing Topical Drug Delivery. Curr Pharm Des 2020; 26:4601-4614. [PMID: 32611291 DOI: 10.2174/1381612826666200701204010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Transdermal route has been an ever sought-after means of drug administration, regarded as being the most convenient and patient compliant. However, skin poses a great barrier to the entry of the external particles including bacteria, viruses, allergens, and drugs as well (mostly hydrophilic or high molecular weight drugs), consequent to its complex structure and composition. Among the various means of enhancing drug permeation through the skin, e.g. chemical permeation enhancers, electroporation, thermophoresis, etc. drug delivery through nanoparticles has been of great interest. Current literature reports a vast number of nanoparticles that have been implicated for drug delivery through the skin. However, a precise account of critical factors involved in drug delivery and mechanisms concerning the permeation of nanoparticles through the skin is necessary. The purpose of this review is to enumerate the factors crucial in governing the prospect of drug delivery through skin and classify the skin permeation mechanisms of nanoparticles. Among the various mechanisms discussed are the ones governed by principles of kinetics, osmotic gradient, adhesion, hydration, diffusion, occlusion, electrostatic interaction, thermodynamics, etc. Among the most common factors affecting skin permeation of nanoparticles that are discussed include size, shape, surface charge density, composition of nanoparticles, mechanical stress, pH, etc.
Collapse
Affiliation(s)
- Taha Umair Wani
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Pharmacogosy and Phytochemistry Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Asmat Majeed
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Shabnam Kawoosa
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, P.O. BOX 1982, Dammam, Saudi Arabia
| |
Collapse
|
43
|
Abdeltawab H, Svirskis D, Sharma M. Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert Opin Drug Deliv 2020; 17:495-509. [PMID: 32067500 DOI: 10.1080/17425247.2020.1731469] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Poloxamer based in situ gelling systems offer numerous advantages in drug delivery; however, their application as prolonged-release delivery platforms is limited mainly due to their weak mechanical properties and the interconnected aqueous network causing fast gel erosion and drug diffusion.Area covered: The focus of this review is to provide an insightful discussion on the formulation strategies that can be employed to sustain/prolong the drug release from poloxamer based in situ gelling systems. The review also outlines the formulation factors, influencing drug release from these systems.Expert opinion: The nature, composition, and concentration of poloxamers are the most critical factors in defining the rate of drug release from an in situ gelling matrix. Hydrophobic gel matrices have compact micellar arrangements resulting in slow diffusion and erosion. Depending on the intended clinical application, gel characteristics can be modulated, either by physical blending or by chemical crosslinking with additive materials, to slow release and improve residence time at the administration site. Incorporating drug-loaded particles into poloxamer gels sustains drug release by creating multiple rate-limiting release barriers. Chemical modification of poloxamers appears to be a promising strategy to obtain prolonged sustained release for parenteral application without compromising the rheological properties of the formulation.
Collapse
Affiliation(s)
- Hani Abdeltawab
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Chyzy A, Tomczykowa M, Plonska-Brzezinska ME. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E188. [PMID: 31906527 PMCID: PMC6981598 DOI: 10.3390/ma13010188] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
This review is an extensive evaluation and essential analysis of the design and formation of hydrogels (HGs) for drug delivery. We review the fundamental principles of HGs (their chemical structures, physicochemical properties, synthesis routes, different types, etc.) that influence their biological properties and medical and pharmaceutical applications. Strategies for fabricating HGs with different diameters (macro, micro, and nano) are also presented. The size of biocompatible HG materials determines their potential uses in medicine as drug carriers. Additionally, novel drug delivery methods for enhancing treatment are discussed. A critical review is performed based on the latest literature reports.
Collapse
Affiliation(s)
| | | | - Marta E. Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland; (A.C.); (M.T.)
| |
Collapse
|
45
|
Müller WEG, Schepler H, Tolba E, Wang S, Ackermann M, Muñoz-Espí R, Xiao S, Tan R, She Z, Neufurth M, Schröder HC, Wang X. A physiologically active interpenetrating collagen network that supports growth and migration of epidermal keratinocytes: zinc-polyP nanoparticles integrated into compressed collagen. J Mater Chem B 2020; 8:5892-5902. [DOI: 10.1039/d0tb01240h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is demonstrated that polyphosphate, as a component in wound healing mats together with Zn2+, is essential for growth and migration of skin keratinocytes.
Collapse
|
46
|
Rabiei M, Kashanian S, Samavati SS, Jamasb S, McInnes SJP. Nanomaterial and advanced technologies in transdermal drug delivery. J Drug Target 2019; 28:356-367. [DOI: 10.1080/1061186x.2019.1693579] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Morteza Rabiei
- Department of Nanobiotechnology, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Science, Kermanshah, Iran
| | | | - Shahriar Jamasb
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Steven J. P. McInnes
- School of Engineering, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia
| |
Collapse
|
47
|
Manickam B, Sreedharan R, Chidambaram K. Drug/Vehicle Impacts and Formulation Centered Stratagems for Enhanced Transdermal Drug Permeation, Controlled Release and Safety: Unparalleled Past and Recent Innovations-An Overview. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885514666190212113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:Transdermal drug delivery systems (TDDS) are one of the fascinating unconventional drug delivery systems offering plentiful advantages of which patient compliance is of paramount importance. However, as a matter of fact, the transdermal delivery of drug molecules is absolutely a tedious job which is precisely influenced by a number of factors including penetration barrier properties of the skin, drug characteristics formulation allied issues, etc. Over the years, innumerable tremendous efforts have been made in transporting the drugs through the skin into the systemic circulation by noteworthy tactics. This paper discusses such revolutionary formulation based techniques that have been endeavored in achieving the enhanced skin permeation of drugs, controlled release, and safety.
Collapse
Affiliation(s)
- Balamurugan Manickam
- School of Pharmacy, College of Pharmacy and Nursing, University of Nizwa, Initial Campus, Birkat Al Mouz, Nizwa, P.O. Box 33, PC 616, Oman
| | - Rajesh Sreedharan
- Faculty of Pharmaceutical Sciences, UCSI University, No-1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | | |
Collapse
|
48
|
Chatterjee S, Hui PCL, Kan CW, Wang W. Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy. Sci Rep 2019; 9:11658. [PMID: 31406233 PMCID: PMC6690975 DOI: 10.1038/s41598-019-48254-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/01/2019] [Indexed: 01/19/2023] Open
Abstract
A dual-responsive hydrogel (pH/temperature) was developed from a thermos-responsive polymer, pluronic F-127 (PF127), and pH-responsive polymers, N,N,N-trimethyl chitosan (TMC) and polyethylene glycolated hyaluronic acid (PEG-HA). Gallic acid, the principal component of the traditional Chinese drug Cortex Moutan was loaded into the hydrogel (PF127/TMC/PEG-HA) for possible application in textile-based transdermal therapy as Cortex Moutan has been proven to be an effective drug for the treatment of atopic dermatitis (AD). TMC and PEG-HA were synthesized, characterized (1H-NMR and FTIR), and added to the formulations to enhance drug release from the hydrogels, and increase the drug targeting of the carriers. The thermo-responsive properties of the hydrogel were assessed by dynamic viscosity analysis and the tube inversion method, and the pH-responsiveness of the formulation was determined by changing the pH of the external media. Rheology study of the hydrogels showed that complex viscosity and storage/loss moduli for PF127/TMC/PEG-HA hydrogel formulation are higher than PF127 hydrogel. The microstructure analysis by reflection SAXS indicated similar type of frozen inhomogeneity of hydrogel formulations. Various characterizations such as FTIR, SEM, TEM, zeta potential, and degradation of the hydrogel formulation indicated that the PF127/TMC/PEG-HA hydrogel showed better physico-chemical properties and morphology than did the PF127 hydrogel, and drug release was also higher for the PF127/TMC/PEG-HA hydrogel than for PF127. The drug release from hydrogels followed more closely first-order rate model than other rate models.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wenyi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
49
|
Wu X, Liu R, Lao TT. Therapeutic compression materials and wound dressings for chronic venous insufficiency: A comprehensive review. J Biomed Mater Res B Appl Biomater 2019; 108:892-909. [PMID: 31339655 DOI: 10.1002/jbm.b.34443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/06/2019] [Accepted: 06/28/2019] [Indexed: 01/15/2023]
Abstract
Chronic venous insufficiency (CVI) is a common disorder worldwide. Related pathophysiological mechanisms reportedly involve venous pooling and reduced venous return, leading to heaviness, aching, itchiness, tiredness, varicosities, pigmentation, and even lower limb ulceration. Approaches adopted to manage CVI at various stages of clinical-etiology-anatomy-pathophysiology include compression therapy, pharmacological treatment, ultrasound treatment, surgery, electrical or wireless microcurrent stimulation, and pulsed electromagnetic treatment. Among these, polymer-based therapeutic compression materials and wound dressings play increasingly key roles in treating all stages of CVI because of their unique physical, mechanical, chemical, and biological functions. However, the characteristics, working mechanisms, and effectiveness of these CVI treatment materials are not comprehensively understood. The present systematic review examines the structures, properties, types, and applications of various polymer-based compression materials and wound dressings used in prophylaxis and treatment of CVI. Existing problems, limitations, and future trends of CVI treatment materials are also discussed. This review could contribute to the design and application of new functional polymer materials and dressings to enhance the efficiency of CVI treatments, thereby facilitating patients' self-care ability and long-term health improvement.
Collapse
Affiliation(s)
- Xinbo Wu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rong Liu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Terence T Lao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
50
|
Chatterjee S, Chi-Leung Hui P. Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules 2019; 24:E2547. [PMID: 31336916 PMCID: PMC6681499 DOI: 10.3390/molecules24142547] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
This review describes some commercially available stimuli-responsive polymers of natural and synthetic origin, and their applications in drug delivery and textiles. The polymers of natural origin such as chitosan, cellulose, albumin, and gelatin are found to show both thermo-responsive and pH-responsive properties and these features of the biopolymers impart sensitivity to act differently under different temperatures and pH conditions. The stimuli-responsive characters of these natural polymers have been discussed in the review, and their respective applications in drug delivery and textile especially for textile-based transdermal therapy have been emphasized. Some practically important thermo-responsive polymers such as pluronic F127 (PF127) and poly(N-isopropylacrylamide) (pNIPAAm) of synthetic origin have been discussed in the review and they are of great importance commercially because of their in situ gel formation capacity. Some pH-responsive synthetic polymers have been discussed depending on their surface charge, and their drug delivery and textile applications have been discussed in this review. The selected stimuli-responsive polymers of synthetic origin are commercially available. Above all, the applications of bio-based or synthetic stimuli-responsive polymers in textile-based transdermal therapy are given special regard apart from their general drug delivery applications. A special insight has been given for stimuli-responsive hydrogel drug delivery systems for textile-based transdermal therapy, which is critical for the treatment of skin disease atopic dermatitis.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|