1
|
Huang Y, Chen SR, Pan HL. α2δ-1-Linked NMDA and AMPA Receptors in Neuropathic Pain and Gabapentinoid Action. J Neurochem 2025; 169:e70064. [PMID: 40191897 PMCID: PMC11995887 DOI: 10.1111/jnc.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
Chronic neuropathic pain is a debilitating condition that presents a significant therapeutic challenge. Unlike nociceptive pain, neuropathic pain is predominantly driven by glutamate NMDA receptors (NMDARs) and/or Ca2+-permeable AMPA receptors (CP-AMPARs) at synapses between primary afferent nerves and excitatory neurons in the spinal dorsal horn. The α2δ-1 protein, encoded by Cacna2d1 and historically recognized as a subunit of voltage-activated Ca2+ channels, is the primary target of gabapentinoids, such as gabapentin and pregabalin, which are widely prescribed for neuropathic pain and epilepsy. However, gabapentinoids have minimal effects on Ca2+ channel activity. Recent studies reveal that α2δ-1 plays a pivotal role in amplifying nociceptive input to the spinal cord in neuropathic pain. This action is mediated through its dynamic physical interactions with phosphorylated NMDARs and GluA1/GluA2 subunits via its intrinsically disordered C-terminal region. α2δ-1 not only promotes synaptic trafficking of NMDARs but also disrupts heteromeric assembly of GluA1/GluA2 subunits in the spinal dorsal horn. The central function of α2δ-1 is to elevate intracellular Ca2+ concentrations at both presynaptic and postsynaptic sites, augmenting nociceptive transmission. Consequently, α2δ-1 serves as a dual regulator coordinating synaptic expression of NMDARs and GluA1 homomeric CP-AMPARs, a function that underlies the therapeutic actions of gabapentinoids. By inhibiting α2δ-1, gabapentinoids reduce the hyperactivity of synaptic α2δ-1-bound NMDARs and CP-AMPARs, thereby dampening the excessive excitatory synaptic transmission characteristic of neuropathic pain. These newly identified roles of α2δ-1 in orchestrating glutamatergic synaptic plasticity suggest that gabapentinoids could be repurposed for treating other neurological disorders involving dysregulated synaptic NMDARs and CP-AMPARs.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Lu Y, Wang J, Li L, Zhang X. The role of voltage-gated calcium channel α2δ-1 in the occurrence and development in myofascial orofacial pain. BMC Oral Health 2024; 24:552. [PMID: 38735923 PMCID: PMC11089774 DOI: 10.1186/s12903-024-04338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
Patients who suffer from myofascial orofacial pain could affect their quality of life deeply. The pathogenesis of pain is still unclear. Our objective was to assess Whether Voltage-gated calcium channel α2δ-1(Cavα2δ-1) is related to myofascial orofacial pain. Rats were divided into the masseter tendon ligation group and the sham group. Compared with the sham group, the mechanical pain threshold of the masseter tendon ligation group was reduced on the 4th, 7th, 10th and 14th day after operation(P < 0.05). On the 14th day after operation, Cavα2δ-1 mRNA expression levels in trigeminal ganglion (TG) and the trigeminal spinal subnucleus caudalis and C1-C2 spinal cervical dorsal horn (Vc/C2) of the masseter tendon ligation group were increased (PTG=0.021, PVc/C2=0.012). Rats were divided into three groups. On the 4th day after ligating the superficial tendon of the left masseter muscle of the rats, 10 ul Cavα2δ-1 antisense oligonucleotide, 10 ul Cavα2δ-1 mismatched oligonucleotides and 10 ul normal saline was separately injected into the left masseter muscle of rats in Cavα2δ-1 antisense oligonucleotide group, Cavα2δ-1 mismatched oligonucleotides group and normal saline control group twice a day for 4 days. The mechanical pain threshold of the Cavα2δ-1 antisense oligonucleotides group was higher than Cavα2δ-1 mismatched oligonucleotides group on the 7th and 10th day after operation (P < 0.01). After PC12 cells were treated with lipopolysaccharide, Cavα2δ-1 mRNA expression level increased (P < 0.001). Cavα2δ-1 may be involved in the occurrence and development in myofascial orofacial pain.
Collapse
Affiliation(s)
- Yang Lu
- Department of Stomatology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jingfu Wang
- Department of Stomatology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Li Li
- Department of Stomatology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xiaodong Zhang
- Department of Stomatology, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
4
|
Kricek F, Ruf C, Meghani P, Souza IA, Gandini MA, Zamponi GW, Skouteris G. A next generation peripherally restricted Cavα2δ-1 ligand with inhibitory action on Cav2.2 channels and utility in neuropathic pain. Biomed Pharmacother 2024; 174:116472. [PMID: 38531121 DOI: 10.1016/j.biopha.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The Voltage-Gated Calcium Channel (VGCC) auxiliary subunit Cavα2δ-1 (CACNA2D1) is the target/receptor of gabapentinoids which are known therapeutics in epilepsy and neuropathic pain. Following damage to the peripheral sensory nervous system, Cavα2δ-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of chronic neuropathic pain. Gabapentinoids, such as gabapentin and pregabalin, engage with Cavα2δ-1 via binding an arginine residue (R241) within an RRR motif located at the N-terminus of human Cavα2δ-1. A novel, next generation gabapentinoid, engineered not to penetrate the brain, was able to generate a strong analgesic response in Chronic Constriction Injury animal model of chronic neuropathic pain and showed binding specificity for Cavα2δ-1 versus the Cavα2δ-2 subunit. This novel non-brain penetrant gabapentinoid, binds to R241 and a novel binding site on Cavα2δ-1, which is located within the VGCC_α2 domain, identified as a lysine residue within an IKAK amino acid motif (K634). The overall whole cell current amplitudes were diminished by the compound, with these inhibitory effects being diminished in R241A mutant Cavα2δ-1 subunits. The functional effects occurred at lower concentrations than those needed for inhibition by gabapentin or pregabalin, which apparently bound the Cavα2δ-1 subunit only on the R241 and not on the K634 residue. Our work sets the stage for the identification and characterisation of novel compounds with therapeutic properties in neuropathic pain and possibly in other disorders and conditions which require engagement of the Cavα2δ-1 target.
Collapse
Affiliation(s)
- Franz Kricek
- Department of Experimental Neurosciences, Novassay SA, Biopôle, Epalinges 1066, Switzerland; NBS-C BioScience GmbH, Vienna 1230, Austria
| | | | - Premji Meghani
- Department of Experimental Neurosciences, Novassay SA, Biopôle, Epalinges 1066, Switzerland
| | - Ivana A Souza
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, T2N 4N1, Canada
| | - Maria A Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, T2N 4N1, Canada
| | - George Skouteris
- Department of Experimental Neurosciences, Novassay SA, Biopôle, Epalinges 1066, Switzerland; 3A Laboratories, Stevenage Bioscience Catalyst (SBC), Stevenage SG1 2FX, United Kingdom.
| |
Collapse
|
5
|
Wu T, Chen SR, Pan HL, Luo Y. The α2δ-1-NMDA receptor complex and its potential as a therapeutic target for ischemic stroke. Front Neurol 2023; 14:1148697. [PMID: 37153659 PMCID: PMC10157046 DOI: 10.3389/fneur.2023.1148697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a critical role in excitotoxicity caused by ischemic stroke, but NMDAR antagonists have failed to be translated into clinical practice for treating stroke patients. Recent studies suggest that targeting the specific protein-protein interactions that regulate NMDARs may be an effective strategy to reduce excitotoxicity associated with brain ischemia. α2δ-1 (encoded by the Cacna2d1 gene), previously known as a subunit of voltage-gated calcium channels, is a binding protein of gabapentinoids used clinically for treating chronic neuropathic pain and epilepsy. Recent studies indicate that α2δ-1 is an interacting protein of NMDARs and can promote synaptic trafficking and hyperactivity of NMDARs in neuropathic pain conditions. In this review, we highlight the newly identified roles of α2δ-1-mediated NMDAR activity in the gabapentinoid effects and NMDAR excitotoxicity during brain ischemia as well as targeting α2δ-1-bound NMDARs as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Hui-Lin Pan
| | - Yi Luo
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yi Luo
| |
Collapse
|
6
|
Pregabalin for chemotherapy-induced neuropathy: background and rationale for further study. Support Care Cancer 2022; 30:8845-8853. [PMID: 35953729 DOI: 10.1007/s00520-022-07317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
Chemotherapy-induced neuropathy is difficult to manage, and the pain associated with neuropathy is poorly responsive to gabapentin in a randomized trial. Duloxetine is the only drug that has been found to be effective in reducing pain from chemotherapy neuropathy. In this qualitative review, the use of pregabalin for chemotherapy-induced neuropathy is discussed including the rationale and pharmacological reasons why pregabalin should be considered in a large, randomized placebo-controlled trial.
Collapse
|
7
|
Abstract
Voltage-gated Ca2+ (Cav) channels play pivotal roles in regulating gene transcription, neuronal excitability, and neurotransmitter release. To meet the spatial and temporal demands of visual signaling, Cav channels exhibit unusual properties in the retina compared to their counterparts in other areas of the nervous system. In this article, we review current concepts regarding the specific subtypes of Cav channels expressed in the retina, their intrinsic properties and forms of modulation, and how their dysregulation could lead to retinal disease.
Collapse
Affiliation(s)
- Brittany Williams
- Department of Cell Biology & Physiology, Carolina Institute for Developmental Disabilities, and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J Wesley Maddox
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| | - Amy Lee
- Department of Neuroscience, University of Texas, Austin, Texas, USA;
| |
Collapse
|
8
|
Mogensen EH, Poulsen ET, Thøgersen IB, Yamamoto K, Brüel A, Enghild JJ. The low-density lipoprotein receptor-related protein 1 (LRP1) interactome in the human cornea. Exp Eye Res 2022; 219:109081. [PMID: 35461874 DOI: 10.1016/j.exer.2022.109081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Accepted: 04/17/2022] [Indexed: 12/25/2022]
Abstract
The human cornea is responsible for approximately 70% of the eye's optical power and, together with the lens, constitutes the only transparent tissue in the human body. Low-density lipoprotein receptor-related protein 1 (LRP1), a large, multitalented endocytic receptor, is expressed throughout the human cornea, yet its role in the cornea remains unknown. More than 30 years ago, LRP1 was purified by exploiting its affinity for the activated form of the protease inhibitor alpha-2-macroblulin (A2M), and the original purification protocol is generally referred to in studies involving full-length LRP1. Here, we provide a novel and simplified LRP1 purification protocol based on LRP1's affinity for receptor-related protein (RAP) that produces significantly higher yields of authentic LRP1. Purified LRP1 was used to map its unknown interactome in the human cornea. Corneal proteins extracted under physiologically relevant conditions were subjected to LRP1 affinity pull-down, and LRP1 ligand candidates were identified by LC-MS/MS. A total of 28 LRP1 ligand candidates were found, including 22 novel ligands. The LRP1 corneal interactome suggests a novel role for LRP1 as a regulator of the corneal immune response, structure, and ultimately corneal transparency.
Collapse
Affiliation(s)
- Emilie Hage Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Shinu P, Morsy MA, Nair AB, Mouslem AKA, Venugopala KN, Goyal M, Bansal M, Jacob S, Deb PK. Novel Therapies for the Treatment of Neuropathic Pain: Potential and Pitfalls. J Clin Med 2022; 11:3002. [PMID: 35683390 PMCID: PMC9181614 DOI: 10.3390/jcm11113002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain affects more than one million people across the globe. The quality of life of people suffering from neuropathic pain has been considerably declining due to the unavailability of appropriate therapeutics. Currently, available treatment options can only treat patients symptomatically, but they are associated with severe adverse side effects and the development of tolerance over prolonged use. In the past decade, researchers were able to gain a better understanding of the mechanisms involved in neuropathic pain; thus, continuous efforts are evident, aiming to develop novel interventions with better efficacy instead of symptomatic treatment. The current review discusses the latest interventional strategies used in the treatment and management of neuropathic pain. This review also provides insights into the present scenario of pain research, particularly various interventional techniques such as spinal cord stimulation, steroid injection, neural blockade, transcranial/epidural stimulation, deep brain stimulation, percutaneous electrical nerve stimulation, neuroablative procedures, opto/chemogenetics, gene therapy, etc. In a nutshell, most of the above techniques are at preclinical stage and facing difficulty in translation to clinical studies due to the non-availability of appropriate methodologies. Therefore, continuing research on these interventional strategies may help in the development of promising novel therapies that can improve the quality of life of patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (A.B.N.); (A.K.A.M.); (K.N.V.)
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Monika Bansal
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| |
Collapse
|
10
|
Cui W, Wu H, Yu X, Song T, Xu X, Xu F. The Calcium Channel α2δ1 Subunit: Interactional Targets in Primary Sensory Neurons and Role in Neuropathic Pain. Front Cell Neurosci 2021; 15:699731. [PMID: 34658790 PMCID: PMC8514986 DOI: 10.3389/fncel.2021.699731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is mainly triggered after nerve injury and associated with plasticity of the nociceptive pathway in primary sensory neurons. Currently, the treatment remains a challenge. In order to identify specific therapeutic targets, it is necessary to clarify the underlying mechanisms of neuropathic pain. It is well established that primary sensory neuron sensitization (peripheral sensitization) is one of the main components of neuropathic pain. Calcium channels act as key mediators in peripheral sensitization. As the target of gabapentin, the calcium channel subunit α2δ1 (Cavα2δ1) is a potential entry point in neuropathic pain research. Numerous studies have demonstrated that the upstream and downstream targets of Cavα2δ1 of the peripheral primary neurons, including thrombospondins, N-methyl-D-aspartate receptors, transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid family 1 (TRPV1), and protein kinase C (PKC), are involved in neuropathic pain. Thus, we reviewed and discussed the role of Cavα2δ1 and the associated signaling axis in neuropathic pain conditions.
Collapse
Affiliation(s)
- Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaowen Yu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqing Xu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Meyer JO, Dolphin AC. Rab11-dependent recycling of calcium channels is mediated by auxiliary subunit α 2δ-1 but not α 2δ-3. Sci Rep 2021; 11:10256. [PMID: 33986433 PMCID: PMC8119971 DOI: 10.1038/s41598-021-89820-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
N-type voltage-gated calcium channels (CaV2.2) are predominantly expressed at presynaptic terminals, and their function is regulated by auxiliary α2δ and β subunits. All four mammalian α2δ subunits enhance calcium currents through CaV1 and CaV2 channels, and this increase is attributed, in part, to increased CaV expression at the plasma membrane. In the present study we provide evidence that α2δ-1, like α2δ-2, is recycled to the plasma membrane through a Rab11a-dependent endosomal recycling pathway. Using a dominant-negative Rab11a mutant, Rab11a(S25N), we show that α2δ-1 increases plasma membrane CaV2.2 expression by increasing the rate and extent of net forward CaV2.2 trafficking in a Rab11a-dependent manner. Dominant-negative Rab11a also reduces the ability of α2δ-1 to increase CaV2.2 expression on the cell-surface of hippocampal neurites. In contrast, α2δ-3 does not enhance rapid forward CaV2.2 trafficking, regardless of whether Rab11a(S25N) is present. In addition, whole-cell CaV2.2 currents are reduced by co-expression of Rab11a(S25N) in the presence of α2δ-1, but not α2δ-3. Taken together these data suggest that α2δ subtypes participate in distinct trafficking pathways which in turn influence the localisation and function of CaV2.2.
Collapse
Affiliation(s)
- James O Meyer
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
12
|
Kjell J, Fischer-Sternjak J, Thompson AJ, Friess C, Sticco MJ, Salinas F, Cox J, Martinelli DC, Ninkovic J, Franze K, Schiller HB, Götz M. Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell 2021; 26:277-293.e8. [PMID: 32032526 PMCID: PMC7005820 DOI: 10.1016/j.stem.2020.01.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/24/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Abstract
The mammalian brain contains few niches for neural stem cells (NSCs) capable of generating new neurons, whereas other regions are primarily gliogenic. Here we leverage the spatial separation of the sub-ependymal zone NSC niche and the olfactory bulb, the region to which newly generated neurons from the sub-ependymal zone migrate and integrate, and present a comprehensive proteomic characterization of these regions in comparison to the cerebral cortex, which is not conducive to neurogenesis and integration of new neurons. We find differing compositions of regulatory extracellular matrix (ECM) components in the neurogenic niche. We further show that quiescent NSCs are the main source of their local ECM, including the multi-functional enzyme transglutaminase 2, which we show is crucial for neurogenesis. Atomic force microscopy corroborated indications from the proteomic analyses that neurogenic niches are significantly stiffer than non-neurogenic parenchyma. Together these findings provide a powerful resource for unraveling unique compositions of neurogenic niches.
Collapse
Affiliation(s)
- Jacob Kjell
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany
| | - Judith Fischer-Sternjak
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany
| | - Amelia J Thompson
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Christian Friess
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany
| | - Matthew J Sticco
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Favio Salinas
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - David C Martinelli
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Jovica Ninkovic
- Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany; Division of Cell Biology and Anatomy, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; SYNERGY, Excellence Cluster Systems Neurology, Ludwig-Maximilians-Universitaet, Muenchen, Germany
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Herbert B Schiller
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany; Institute of Lung Biology and Disease, Member of the German Center for Lung Research, Helmholtz Zentrum Muenchen, Germany
| | - Magdalena Götz
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universitaet, Muenchen, Germany; Institute for Stem Cell Research, Helmholtz Zentrum Muenchen, Germany; SYNERGY, Excellence Cluster Systems Neurology, Ludwig-Maximilians-Universitaet, Muenchen, Germany.
| |
Collapse
|
13
|
Taylor CP, Harris EW. Analgesia with Gabapentin and Pregabalin May Involve N-Methyl-d-Aspartate Receptors, Neurexins, and Thrombospondins. J Pharmacol Exp Ther 2020; 374:161-174. [PMID: 32321743 DOI: 10.1124/jpet.120.266056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/17/2020] [Indexed: 03/08/2025] Open
Abstract
The gabapentinoid drugs gabapentin and pregabalin (Neurontin and Lyrica) are mainstay treatments for neuropathic pain and preventing focal seizures. Both drugs have similar effects to each other in animal models and clinically. Studies have shown that a protein first identified as an auxiliary subunit of voltage-gated calcium channels (the α 2 δ-subunit type 1 [α 2 δ-1], or Ca V a2d1) is the high-affinity binding site for gabapentin and pregabalin and is required for the efficacy of these drugs. The α 2 δ-1 protein is required for the ability of gabapentin and pregabalin to reduce neurotransmitter release in neuronal tissue, consistent with a therapeutic mechanism of action via voltage-gated calcium channels. However, recent studies have revealed that α 2 δ-1 interacts with several proteins in addition to voltage-gated calcium channels, and these additional proteins could be involved in gabapentinoid pharmacology. Furthermore, gabapentin and pregabalin have been shown to modify the action of a subset of N-methyl-d-aspartate-sensitive glutamate receptors, neurexin-1α, and thrombospondin proteins by binding to α 2 δ-1. Thus, these effects may contribute substantially to gabapentinoid therapeutic mechanism of action. SIGNIFICANCE STATEMENT: It is widely believed that gabapentin and pregabalin act by modestly reducing the membrane localization and activation of voltage-gated calcium channels at synaptic endings in spinal cord and neocortex via binding to the α 2 δ-1 protein. However, recent findings show that the α 2 δ-1 protein also interacts with N-methyl-d-aspartate-sensitive glutamate receptors, neurexin-1α, thrombospondins (adhesion molecules), and other presynaptic proteins. These newly discovered interactions, in addition to actions at calcium channels, may be important mediators of gabapentin and pregabalin therapeutic effects.
Collapse
Affiliation(s)
- Charles P Taylor
- CP Taylor Consulting, Chelsea, Michigan (C.P.T.) and Cambrium Group, Raleigh, North Carolina (E.W.H.)
| | - Eric W Harris
- CP Taylor Consulting, Chelsea, Michigan (C.P.T.) and Cambrium Group, Raleigh, North Carolina (E.W.H.)
| |
Collapse
|
14
|
Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci 2020; 21:213-229. [PMID: 32161339 PMCID: PMC7873717 DOI: 10.1038/s41583-020-0278-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 11/09/2022]
Abstract
Chemical synapses are heterogeneous junctions formed between neurons that are specialized for the conversion of electrical impulses into the exocytotic release of neurotransmitters. Voltage-gated Ca2+ channels play a pivotal role in this process as they are the major conduits for the Ca2+ ions that trigger the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. Alterations in the intrinsic function of these channels and their positioning within the active zone can profoundly alter the timing and strength of synaptic output. Advances in optical and electron microscopic imaging, structural biology and molecular techniques have facilitated recent breakthroughs in our understanding of the properties of voltage-gated Ca2+ channels that support their presynaptic functions. Here we examine the nature of these channels, how they are trafficked to and anchored within presynaptic boutons, and the mechanisms that allow them to function optimally in shaping the flow of information through neural circuits.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
El-Awaad E, Pryymachuk G, Fried C, Matthes J, Isensee J, Hucho T, Neiss WF, Paulsson M, Herzig S, Zaucke F, Pietsch M. Direct, gabapentin-insensitive interaction of a soluble form of the calcium channel subunit α 2δ-1 with thrombospondin-4. Sci Rep 2019; 9:16272. [PMID: 31700036 PMCID: PMC6838084 DOI: 10.1038/s41598-019-52655-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
The α2δ‐1 subunit of voltage-gated calcium channels binds to gabapentin and pregabalin, mediating the analgesic action of these drugs against neuropathic pain. Extracellular matrix proteins from the thrombospondin (TSP) family have been identified as ligands of α2δ‐1 in the CNS. This interaction was found to be crucial for excitatory synaptogenesis and neuronal sensitisation which in turn can be inhibited by gabapentin, suggesting a potential role in the pathogenesis of neuropathic pain. Here, we provide information on the biochemical properties of the direct TSP/α2δ-1 interaction using an ELISA-style ligand binding assay. Our data reveal that full-length pentameric TSP-4, but neither TSP-5/COMP of the pentamer-forming subgroup B nor TSP-2 of the trimer-forming subgroup A directly interact with a soluble variant of α2δ-1 (α2δ-1S). Interestingly, this interaction is not inhibited by gabapentin on a molecular level and is not detectable on the surface of HEK293-EBNA cells over-expressing α2δ‐1 protein. These results provide biochemical evidence that supports a specific role of TSP-4 among the TSPs in mediating the binding to neuronal α2δ‐1 and suggest that gabapentin does not directly target TSP/α2δ-1 interaction to alleviate neuropathic pain.
Collapse
Affiliation(s)
- Ehab El-Awaad
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Galyna Pryymachuk
- Department of Anatomy I, Medical Faculty, University of Cologne, Kerpener Str. 62, D-50937, Cologne, Germany
| | - Cora Fried
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Jan Matthes
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany
| | - Jörg Isensee
- Experimental Anaesthesiology and Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University of Cologne, Robert-Koch-Str. 10, D-50931, Cologne, Germany
| | - Tim Hucho
- Experimental Anaesthesiology and Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University of Cologne, Robert-Koch-Str. 10, D-50931, Cologne, Germany
| | - Wolfram F Neiss
- Department of Anatomy I, Medical Faculty, University of Cologne, Kerpener Str. 62, D-50937, Cologne, Germany
| | - Mats Paulsson
- Institute for Biochemistry II, Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931, Cologne, Germany.,Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, D-50931, Cologne, Germany
| | - Stefan Herzig
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany.,President of TH Köln, TH Köln (University of Applied Sciences), Claudiusstr. 1, D-50678, Cologne, Germany
| | - Frank Zaucke
- Institute for Biochemistry II, Centre for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931, Cologne, Germany.,Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, Marienburgstr. 2, D-60528, Frankfurt/Main, Germany
| | - Markus Pietsch
- Institute II for Pharmacology, Centre of Pharmacology, Medical Faculty, University of Cologne, Gleueler Str. 24, D-50931, Cologne, Germany.
| |
Collapse
|
16
|
Chen J, Li L, Chen SR, Chen H, Xie JD, Sirrieh RE, MacLean DM, Zhang Y, Zhou MH, Jayaraman V, Pan HL. The α2δ-1-NMDA Receptor Complex Is Critically Involved in Neuropathic Pain Development and Gabapentin Therapeutic Actions. Cell Rep 2019; 22:2307-2321. [PMID: 29490268 PMCID: PMC5873963 DOI: 10.1016/j.celrep.2018.02.021] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/20/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
α2δ-1, commonly known as a voltage-activated Ca2+ channel subunit, is a binding site of gabapentinoids used to treat neuropathic pain and epilepsy. However, it is unclear how α2δ-1 contributes to neuropathic pain and gabapentinoid actions. Here, we show that Cacna2d1 overexpression potentiates presynaptic and postsynaptic NMDAR activity of spinal dorsal horn neurons to cause pain hypersensitivity. Conversely, Cacna2d1 knockdown or ablation normalizes synaptic NMDAR activity increased by nerve injury. α2δ-1 forms a heteromeric complex with NMDARs in rodent and human spinal cords. The α2δ-1-NMDAR interaction predominantly occurs through the C terminus of α2δ-1 and promotes surface trafficking and synaptic targeting of NMDARs. Gabapentin or an α2δ-1 C terminus-interfering peptide normalizes NMDAR synaptic targeting and activity increased by nerve injury. Thus, α2δ-1 is an NMDAR-interacting protein that increases NMDAR synaptic delivery in neuropathic pain. Gabapentinoids reduce neuropathic pain by inhibiting forward trafficking of α2δ-1-NMDAR complexes.
Collapse
Affiliation(s)
- Jinjun Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lingyong Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing-Dun Xie
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Rita E Sirrieh
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - David M MacLean
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yuhao Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proc Natl Acad Sci U S A 2019; 116:12524-12533. [PMID: 31160442 DOI: 10.1073/pnas.1902672116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aging drives a progressive decline in cognition and decreases synapse numbers and synaptic function in the brain, thereby increasing the risk for neurodegenerative disease. Pioneering studies showed that introduction of blood from young mice into aged mice reversed age-associated cognitive impairments and increased synaptic connectivity in brain, suggesting that young blood contains specific factors that remediate age-associated decreases in brain function. However, whether such factors in blood from young animals act directly on neurons to enhance synaptic connectivity, or whether they act by an indirect mechanism remains unknown. Moreover, which factors in young blood mediate cognitive improvements in old mice is incompletely understood. Here, we show that serum extracted from the blood of young but not old mice, when applied to neurons transdifferentiated from human embryonic stem cells, directly increased dendritic arborization, augmented synapse numbers, doubled dendritic spine-like structures, and elevated synaptic N-methyl-d-aspartate (NMDA) receptors, thereby increasing synaptic connectivity. Mass spectrometry revealed that thrombospondin-4 (THBS4) and SPARC-like protein 1 (SPARCL1) were enriched in serum from young mice. Strikingly, recombinant THBS4 and SPARCL1 both increased dendritic arborization and doubled synapse numbers in cultured neurons. In addition, SPARCL1 but not THBS4 tripled NMDA receptor-mediated synaptic responses. Thus, at least two proteins enriched in young blood, THBS4 and SPARCL1, directly act on neurons as synaptogenic factors. These proteins may represent rejuvenation factors that enhance synaptic connectivity by increasing dendritic arborization, synapse formation, and synaptic transmission.
Collapse
|
18
|
Chen Y, Chen SR, Chen H, Zhang J, Pan HL. Increased α2δ-1-NMDA receptor coupling potentiates glutamatergic input to spinal dorsal horn neurons in chemotherapy-induced neuropathic pain. J Neurochem 2018; 148:252-274. [PMID: 30431158 DOI: 10.1111/jnc.14627] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Painful peripheral neuropathy is a severe and difficult-to-treat neurological complication associated with cancer chemotherapy. Although chemotherapeutic drugs such as paclitaxel are known to cause tonic activation of presynaptic NMDA receptors (NMDARs) to potentiate nociceptive input, the molecular mechanism involved in this effect is unclear. α2δ-1, commonly known as a voltage-activated calcium channel subunit, is a newly discovered NMDAR-interacting protein and plays a critical role in NMDAR-mediated synaptic plasticity. Here we show that paclitaxel treatment in rats increases the α2δ-1 expression level in the dorsal root ganglion and spinal cord and the mRNA levels of GluN1, GluN2A, and GluN2B in the spinal cord. Paclitaxel treatment also potentiates the α2δ-1-NMDAR interaction and synaptic trafficking in the spinal cord. Strikingly, inhibiting α2δ-1 trafficking with pregabalin, disrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus-interfering peptide, or α2δ-1 genetic ablation fully reverses paclitaxel treatment-induced presynaptic NMDAR-mediated glutamate release from primary afferent terminals to spinal dorsal horn neurons. In addition, intrathecal injection of pregabalin or α2δ-1 C-terminus-interfering peptide and α2δ-1 knockout in mice markedly attenuate paclitaxel-induced pain hypersensitivity. Our findings indicate that α2δ-1 is required for paclitaxel-induced tonic activation of presynaptic NMDARs at the spinal cord level. Targeting α2δ-1-bound NMDARs, not the physiological α2δ-1-free NMDARs, may be a new strategy for treating chemotherapy-induced neuropathic pain. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Youfang Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jixiang Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Ablation of α 2δ-1 inhibits cell-surface trafficking of endogenous N-type calcium channels in the pain pathway in vivo. Proc Natl Acad Sci U S A 2018; 115:E12043-E12052. [PMID: 30487217 PMCID: PMC6305000 DOI: 10.1073/pnas.1811212115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neuronal N-type (CaV2.2) voltage-gated calcium channels are important at the first synapse in the pain pathway. In this study, we have characterized a knockin mouse containing CaV2.2 with an extracellular HA tag to determine the localization of CaV2.2 in primary afferent pain pathways. These endogenous channels have been visualized at the plasma membrane and rigorously quantified in vivo. We examined the effect of ablation of the calcium channel auxiliary subunit α2δ-1 (the target of gabapentinoids) on CaV2.2 distribution. We found preferential cell-surface localization of CaV2.2 in DRG nociceptor neuron cell bodies was lost, accompanied by a dramatic reduction at dorsal horn terminals, but no effect on distribution of other spinal cord synaptic markers. The auxiliary α2δ calcium channel subunits play key roles in voltage-gated calcium channel function. Independent of this, α2δ-1 has also been suggested to be important for synaptogenesis. Using an epitope-tagged knockin mouse strategy, we examined the effect of α2δ-1 on CaV2.2 localization in the pain pathway in vivo, where CaV2.2 is important for nociceptive transmission and α2δ-1 plays a critical role in neuropathic pain. We find CaV2.2 is preferentially expressed on the plasma membrane of calcitonin gene-related peptide-positive small nociceptors. This is paralleled by strong presynaptic expression of CaV2.2 in the superficial spinal cord dorsal horn. EM-immunogold localization shows CaV2.2 predominantly in active zones of glomerular primary afferent terminals. Genetic ablation of α2δ-1 abolishes CaV2.2 cell-surface expression in dorsal root ganglion neurons and dramatically reduces dorsal horn expression. There was no effect of α2δ-1 knockout on other dorsal horn pre- and postsynaptic markers, indicating the primary afferent pathways are not otherwise affected by α2δ-1 ablation.
Collapse
|
20
|
Abstract
Voltage-gated calcium (CaV) channels are associated with β and α2δ auxiliary subunits. This review will concentrate on the function of the α2δ protein family, which has four members. The canonical role for α2δ subunits is to convey a variety of properties on the CaV1 and CaV2 channels, increasing the density of these channels in the plasma membrane and also enhancing their function. More recently, a diverse spectrum of non-canonical interactions for α2δ proteins has been proposed, some of which involve competition with calcium channels for α2δ or increase α2δ trafficking and others which mediate roles completely unrelated to their calcium channel function. The novel roles for α2δ proteins which will be discussed here include association with low-density lipoprotein receptor-related protein 1 (LRP1), thrombospondins, α-neurexins, prion proteins, large conductance (big) potassium (BK) channels, and N-methyl-d-aspartate (NMDA) receptors.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
21
|
Zhou JJ, Li DP, Chen SR, Luo Y, Pan HL. The α2δ-1-NMDA receptor coupling is essential for corticostriatal long-term potentiation and is involved in learning and memory. J Biol Chem 2018; 293:19354-19364. [PMID: 30355732 DOI: 10.1074/jbc.ra118.003977] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/18/2018] [Indexed: 11/06/2022] Open
Abstract
The striatum receives extensive cortical input and plays a prominent role in motor learning and habit formation. Glutamate N-methyl-d-aspartate (NMDA) receptor (NMDAR)-mediated long-term potentiation (LTP) is a major synaptic plasticity involved in learning and memory. However, the molecular mechanism underlying NMDAR plasticity in corticostriatal LTP is unclear. Here, we show that theta-burst stimulation (TBS) consistently induced corticostriatal LTP and increased the coincident presynaptic and postsynaptic NMDAR activity of medium spiny neurons. We also found that α2δ-1 (previously known as a subunit of voltage-gated calcium channels; encoded by the Cacna2d1 gene) physically interacted with NMDARs in the striatum of mice and humans, indicating that this cross-talk is conserved across species. Strikingly, inhibiting α2δ-1 trafficking with gabapentin or disrupting the α2δ-1-NMDAR interaction with an α2δ-1 C terminus-interfering peptide abolished TBS-induced LTP. In Cacna2d1-knockout mice, TBS failed to induce corticostriatal LTP and the associated increases in presynaptic and postsynaptic NMDAR activities. Moreover, systemic gabapentin treatment, microinjection of α2δ-1 C terminus-interfering peptide into the dorsomedial striatum, or Cacna2d1 ablation impaired the alternation T-maze task and rotarod performance in mice. Our findings indicate that the interaction between α2δ-1 and NMDARs is of high physiological relevance and that a TBS-induced switch from α2δ-1-free to α2δ-1-bound NMDARs is critically involved in corticostriatal LTP and LTP-associated learning and memory. Gabapentinoids at high doses may adversely affect cognitive function by targeting α2δ-1-NMDAR complexes.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - De-Pei Li
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Yi Luo
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and.,the Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| |
Collapse
|
22
|
Park JF, Yu YP, Gong N, Trinh VN, Luo ZD. The EGF-LIKE domain of thrombospondin-4 is a key determinant in the development of pain states due to increased excitatory synaptogenesis. J Biol Chem 2018; 293:16453-16463. [PMID: 30194282 DOI: 10.1074/jbc.ra118.003591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/05/2018] [Indexed: 02/04/2023] Open
Abstract
Up-regulation of thrombospondin-4 (TSP4) or voltage-gated calcium channel subunit α2δ1 (Cavα2δ1) proteins in the spinal cord contributes to neuropathic pain development through an unidentified mechanism. We have previously shown that TSP4 interacts with Cavα2δ1 to promote excitatory synaptogenesis and the development of chronic pain states. However, the TSP4 determinants responsible for these changes are not known. Here, we tested the hypothesis that the Cavα2δ1-binding domains of TSP4 are synaptogenic and pronociceptive. We mapped the major Cavα2δ1-binding domains of TSP4 within the coiled-coil and epidermal growth factor (EGF)-like domains in vitro Intrathecal injection of TSP4 fragment proteins containing the EGF-like domain (EGF-LIKE) into naïve rodents was sufficient for inducing behavioral hypersensitivity similar to that produced by an equal molar dose of full-length TSP4. Gabapentin, a drug that binds to Cavα2δ1, blocked EGF-LIKE-induced behavioral hypersensitivity in a dose-dependent manner, supporting the notion that EGF-LIKE interacts with Cavα2δ1 and thereby mediates behavioral hypersensitivity. This notion was further supported by our findings that a peptide within EGF-LIKE (EGFD355-369) could block TSP4- or Cavα2δ1-induced behavioral hypersensitivity after intrathecal injections. Furthermore, only TSP4 proteins that contained EGF-LIKE could promote excitatory synaptogenesis between sensory and spinal cord neurons, which could be blocked by peptide EGFD355-369. Together, these findings indicate that EGF-LIKE is the molecular determinant that mediates aberrant excitatory synaptogenesis and chronic pain development. Blocking interactions between EGF-LIKE and Cavα2δ1 could be an alternative approach in designing target-specific pain medications.
Collapse
Affiliation(s)
| | | | - Nian Gong
- Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Van Nancy Trinh
- Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Z David Luo
- From the Departments of Pharmacology and .,Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| |
Collapse
|
23
|
CACHD1 is an α2δ-Like Protein That Modulates Ca V3 Voltage-Gated Calcium Channel Activity. J Neurosci 2018; 38:9186-9201. [PMID: 30181139 DOI: 10.1523/jneurosci.3572-15.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 06/03/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022] Open
Abstract
The putative cache (Ca2+ channel and chemotaxis receptor) domain containing 1 (CACHD1) protein has predicted structural similarities to members of the α2δ voltage-gated Ca2+ channel auxiliary subunit family. CACHD1 mRNA and protein were highly expressed in the male mammalian CNS, in particular in the thalamus, hippocampus, and cerebellum, with a broadly similar tissue distribution to CaV3 subunits, in particular CaV3.1. In expression studies, CACHD1 increased cell-surface localization of CaV3.1, and these proteins were in close proximity at the cell surface, consistent with the formation of CACHD1-CaV3.1 complexes. In functional electrophysiological studies, coexpression of human CACHD1 with CaV3.1, CaV3.2, and CaV3.3 caused a significant increase in peak current density and corresponding increases in maximal conductance. By contrast, α2δ-1 had no effect on peak current density or maximal conductance in CaV3.1, CaV3.2, or CaV3.3. A comparison of CACHD1-mediated increases in CaV3.1 current density and gating currents revealed an increase in channel open probability. In hippocampal neurons from male and female embryonic day 19 rats, CACHD1 overexpression increased CaV3-mediated action potential firing frequency and neuronal excitability. These data suggest that CACHD1 is structurally an α2δ-like protein that functionally modulates CaV3 voltage-gated calcium channel activity.SIGNIFICANCE STATEMENT This is the first study to characterize the Ca2+ channel and chemotaxis receptor domain containing 1 (CACHD1) protein. CACHD1 is widely expressed in the CNS, in particular in the thalamus, hippocampus, and cerebellum. CACHD1 distribution is similar to that of low voltage-activated (CaV3, T-type) calcium channels, in particular to CaV3.1, a protein that regulates neuronal excitability and is a potential therapeutic target in conditions such as epilepsy and pain. CACHD1 is structurally an α2δ-like protein that functionally increases CaV3 calcium current. CACHD1 increases the presence of CaV3.1 at the cell surface, forms complexes with CaV3.1 at the cell surface, and causes an increase in channel open probability. In hippocampal neurons, CACHD1 causes increases in neuronal firing. Thus, CACHD1 represents a novel protein that modulates CaV3 activity.
Collapse
|
24
|
Ferron L, Kadurin I, Dolphin AC. Proteolytic maturation of α 2δ controls the probability of synaptic vesicular release. eLife 2018; 7:e37507. [PMID: 29916807 PMCID: PMC6029843 DOI: 10.7554/elife.37507] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023] Open
Abstract
Auxiliary α2δ subunits are important proteins for trafficking of voltage-gated calcium channels (CaV) at the active zones of synapses. We have previously shown that the post-translational proteolytic cleavage of α2δ is essential for their modulatory effects on the trafficking of N-type (CaV2.2) calcium channels (Kadurin et al., 2016). We extend these results here by showing that the probability of presynaptic vesicular release is reduced when an uncleaved α2δ is expressed in rat neurons and that this inhibitory effect is reversed when cleavage of α2δ is restored. We also show that asynchronous release is influenced by the maturation of α2δ-1, highlighting the role of CaV channels in this component of vesicular release. We present additional evidence that CaV2.2 co-immunoprecipitates preferentially with cleaved wild-type α2δ. Our data indicate that the proteolytic maturation increases the association of α2δ-1 with CaV channel complex and is essential for its function on synaptic release.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Ivan Kadurin
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
25
|
Yu YP, Gong N, Kweon TD, Vo B, Luo ZD. Gabapentin prevents synaptogenesis between sensory and spinal cord neurons induced by thrombospondin-4 acting on pre-synaptic Ca v α 2 δ 1 subunits and involving T-type Ca 2+ channels. Br J Pharmacol 2018; 175:2348-2361. [PMID: 29338087 PMCID: PMC5980510 DOI: 10.1111/bph.14149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Nerve injury induces concurrent up-regulation of the voltage-gated calcium channel subunit Cav α2 δ1 and the extracellular matrix protein thrombospondin-4 (TSP4) in dorsal root ganglia and dorsal spinal cord, leading to the development of a neuropathic pain state. Interactions of these proteins promote aberrant excitatory synaptogenesis that contributes to neuropathic pain state development through unknown mechanisms. We investigated the contributions of Cav α2 δ1 subunits and TSP4 to synaptogenesis, and the pathways involved in vitro, and whether treatment with gabapentin could block this process and pain development in vivo. EXPERIMENTAL APPROACH A co-culture system of sensory and spinal cord neurons was used to study the contribution from each protein to synaptogenesis and the pathway(s) involved. Anti-synaptogenic actions of gabapentin were studied in TSP4-injected mice. KEY RESULTS Only presynaptic, but not postsynaptic, Cav α2 δ1 subunits interacted with TSP4 to initiate excitatory synaptogenesis through a pathway modulated by T-type calcium channels. Cav α2 δ1 /TSP4 interactions were not required for maintenance of already formed synapses. In vivo, early, but not delayed, treatment with low-dose gabapentin blocked this pathway and the development of the pain state. CONCLUSIONS AND IMPLICATIONS Cav α2 δ1 /TSP4 interactions were critical for the initiation, but not for the maintenance, of abnormal synapse formation between sensory and spinal cord neurons. This process was blocked by early, but was not reversed by delayed, treatment with gabapentin. Early intervention with gabapentin may prevent the development of injury-induced chronic pain, resulting from Cav α2 δ1 /TSP4-initiated abnormal synapse formation. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Yanhui Peter Yu
- Department of PharmacologyUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Nian Gong
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Tae Dong Kweon
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Benjamin Vo
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| | - Z David Luo
- Department of PharmacologyUniversity of California, Irvine School of MedicineIrvineCAUSA
- Department of Anesthesiology & Perioperative CareUniversity of California, Irvine School of MedicineIrvineCAUSA
| |
Collapse
|
26
|
Gong N, Park J, Luo ZD. Injury-induced maladaptation and dysregulation of calcium channel α 2 δ subunit proteins and its contribution to neuropathic pain development. Br J Pharmacol 2018; 175:2231-2243. [PMID: 28646556 PMCID: PMC5980513 DOI: 10.1111/bph.13930] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 01/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) play important roles in physiological functions including the modulation of neurotransmitter release, neuronal network activities, intracellular signalling pathways and gene expression. Some pathological conditions, including nerve injuries, can cause the dysregulation of VGCCs and their subunits. This in turn can lead to a functional maladaptation of VGCCs and their subunits, which can contribute to the development of disorders such as pain sensations. This review has summarized recent findings related to maladaptive changes in the dysregulated VGCC α2 δ1 subunit (Cav α2 δ1 ) with a focus on exploring the mechanisms underlying the contribution of Cav α2 δ1 to pain signal transduction. At least under neuropathic pain conditions, the dysregulated Cav α2 δ1 can modulate VGCC functions as well as other plasticity changes. The latter includes abnormal excitatory synaptogenesis resulting from its interactions with injury-induced extracellular matrix glycoprotein molecule thrombospondins, which is independent of the VGCC functions. Blocking Cav α2 δ1 with gabapentinoids can reverse neuropathic pain significantly with relatively mild side effects, but only in a small population of neuropathic pain patients due to reasons yet to be explored. There are emerging data suggesting that early preventive treatment with gabapentinoids can prevent aberrant excitatory synapse formation and the development of chronic pain. If these findings are confirmed clinically, this could be an attractive approach for neuropathic pain management. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Nian Gong
- Department of Anesthesiology & Perioperative CareSchool of Medicine, University of California IrvineIrvineCAUSA
| | - John Park
- Department of Pharmacology, School of MedicineUniversity of California IrvineIrvineCAUSA
| | - Z David Luo
- Department of Anesthesiology & Perioperative CareSchool of Medicine, University of California IrvineIrvineCAUSA
- Department of Pharmacology, School of MedicineUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
27
|
Abstract
Injury to or disease of the nervous system can invoke chronic and sometimes intractable neuropathic pain. Many parallel, interdependent, and time-dependent processes, including neuroimmune interactions at the peripheral, supraspinal, and spinal levels, contribute to the etiology of this "disease of pain." Recent work emphasizes the roles of colony-stimulating factor 1, ATP, and brain-derived neurotrophic factor. Excitatory processes are enhanced, and inhibitory processes are attenuated in the spinal dorsal horn and throughout the somatosensory system. This leads to central sensitization and aberrant processing such that tactile and innocuous thermal information is perceived as pain (allodynia). Processes involved in the onset of neuropathic pain differ from those involved in its long-term maintenance. Opioids display limited effectiveness, and less than 35% of patients derive meaningful benefit from other therapeutic approaches. We thus review promising therapeutic targets that have emerged over the last 20 years, including Na+, K+, Ca2+, hyperpolarization-activated cyclic nucleotide-gated channels, transient receptor potential channel type V1 channels, and adenosine A3 receptors. Despite this progress, the gabapentinoids retain their status as first-line treatments, yet their mechanism of action is poorly understood. We outline recent progress in understanding the etiology of neuropathic pain and show how this has provided insights into the cellular actions of pregabalin and gabapentin. Interactions of gabapentinoids with the α2δ-1 subunit of voltage-gated Ca2+ channels produce multiple and neuron type-specific actions in spinal cord and higher centers. We suggest that drugs that affect multiple processes, rather than a single specific target, show the greatest promise for future therapeutic development.
Collapse
Affiliation(s)
- Sascha R A Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| | - Peter A Smith
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| |
Collapse
|
28
|
Hou X, Li T, Ren Z, Liu Y. Novel BRCA2-Interacting Protein, LIMD1, Is Essential for the Centrosome Localization of BRCA2 in Esophageal Cancer Cell. Oncol Res 2017; 24:247-53. [PMID: 27656835 PMCID: PMC7838625 DOI: 10.3727/096504016x14652175055765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutation of breast cancer 2, early onset (BRCA2) has been identified as a vital risk factor for esophageal cancer (EC). To date, several proteins have been reported as BRCA2-interacting proteins and are associated with multiple biological processes. This study’s aim was to identify a novel interactive protein of BRCA2 and to explore its functional roles in EC. A yeast two-hybrid screening was performed to identify a novel BRCA2-interacting protein. Glutathione-S-transferase (GST) pull-down analysis was performed to find out how the binding domain of BRCA2 interacts with LIM domains containing 1 (LIMD1). The interaction between LIMD1 and BRCA2 at the endogenous level was confirmed by using coimmunoprecipitation and immunobloting. Furthermore, two different sequences of short hairpin RNAs (shRNAs) against LIMD1 were transfected into the human EC cell line ECA109. Afterward, the effects of LIMD1 suppression on the centrosome localization of BRCA2 and cell division were analyzed using an immunofluorescence microscope. Results showed that LIMD1 was a novel BRCA2-interacting protein, and LIMD1 interacted with the conserved region of BRCA2 (amino acids 2,750–3,094) in vitro. Importantly, after interfering with the protein expression of LIMD1 in ECA109 cells, the centrosome localization of BRCA2 was significantly abolished and abnormal cell division was significantly increased. These results suggested that LIMD1 is a novel BRCA2-interacting protein and is involved in the centrosome localization of BRCA2 and suppression of LIMD1, causing abnormal cell division in EC cells.
Collapse
Affiliation(s)
- Xiaobin Hou
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
29
|
LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary α 2δ-1 subunit. Sci Rep 2017; 7:43802. [PMID: 28256585 PMCID: PMC5335561 DOI: 10.1038/srep43802] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 01/18/2023] Open
Abstract
Voltage-gated Ca2+ (CaV) channels consist of a pore-forming α1 subunit, which determines the main functional and pharmacological attributes of the channel. The CaV1 and CaV2 channels are associated with auxiliary β- and α2δ-subunits. The molecular mechanisms involved in α2δ subunit trafficking, and the effect of α2δ subunits on trafficking calcium channel complexes remain poorly understood. Here we show that α2δ-1 is a ligand for the Low Density Lipoprotein (LDL) Receptor-related Protein-1 (LRP1), a multifunctional receptor which mediates trafficking of cargoes. This interaction with LRP1 is direct, and is modulated by the LRP chaperone, Receptor-Associated Protein (RAP). LRP1 regulates α2δ binding to gabapentin, and influences calcium channel trafficking and function. Whereas LRP1 alone reduces α2δ-1 trafficking to the cell-surface, the LRP1/RAP combination enhances mature glycosylation, proteolytic processing and cell-surface expression of α2δ-1, and also increase plasma-membrane expression and function of CaV2.2 when co-expressed with α2δ-1. Furthermore RAP alone produced a small increase in cell-surface expression of CaV2.2, α2δ-1 and the associated calcium currents. It is likely to be interacting with an endogenous member of the LDL receptor family to have these effects. Our findings now provide a key insight and new tools to investigate the trafficking of calcium channel α2δ subunits.
Collapse
|
30
|
Guo Y, Zhang Z, Wu HE, Luo ZD, Hogan QH, Pan B. Increased thrombospondin-4 after nerve injury mediates disruption of intracellular calcium signaling in primary sensory neurons. Neuropharmacology 2017; 117:292-304. [PMID: 28232180 DOI: 10.1016/j.neuropharm.2017.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/31/2017] [Accepted: 02/18/2017] [Indexed: 12/14/2022]
Abstract
Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage-activated Ca2+ channels and increases ICa through low-voltage-activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Zhiyong Zhang
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, University of California Irvine, Irvine, CA 92697, United States; Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
31
|
Acute anti-allodynic action of gabapentin in dorsal horn and primary somatosensory cortex: Correlation of behavioural and physiological data. Neuropharmacology 2017; 113:576-590. [DOI: 10.1016/j.neuropharm.2016.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/12/2016] [Indexed: 01/01/2023]
|
32
|
Voigt A, Freund R, Heck J, Missler M, Obermair GJ, Thomas U, Heine M. Dynamic association of calcium channel subunits at the cellular membrane. NEUROPHOTONICS 2016; 3:041809. [PMID: 27872869 PMCID: PMC5093230 DOI: 10.1117/1.nph.3.4.041809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/10/2016] [Indexed: 05/25/2023]
Abstract
High voltage gated calcium channels (VGCCs) are composed of at least three subunits, one pore forming [Formula: see text]-subunit, an intracellular [Formula: see text]-variant, and a mostly extracellular [Formula: see text]-variant. Interactions between these subunits determine the kinetic properties of VGCCs. It is unclear whether these interactions are stable over time or rather transient. Here, we used single-molecule tracking to investigate the surface diffusion of [Formula: see text]- and [Formula: see text]-subunits at the cell surface. We found that [Formula: see text]-subunits show higher surface mobility than [Formula: see text]-subunits, and that they are only transiently confined together, suggesting a weak association between [Formula: see text]- and [Formula: see text]-subunits. Moreover, we observed that different [Formula: see text]-subunits engage in different degrees of association with the [Formula: see text]-subunit, revealing the tighter interaction of [Formula: see text] with [Formula: see text]. These data indicate a distinct regulation of the [Formula: see text] interaction in VGCC subtypes. We modeled their membrane dynamics in a Monte Carlo simulation using experimentally determined diffusion constants. Our modeling predicts that the ratio of associated [Formula: see text]- and [Formula: see text]-subunits mainly depends on their expression density and confinement in the membrane. Based on the different motilities of particular [Formula: see text]-subunit combinations, we propose that their dynamic assembly and disassembly represent an important mechanism to regulate the signaling properties of VGCC.
Collapse
Affiliation(s)
- Andreas Voigt
- Otto-von-Guericke-University of Magdeburg, Lehrstuhl Systemverfahrenstechnik, Universitätsplatz 2, Magdeburg D-39106, Germany
| | - Romy Freund
- Leibniz-Institute of Neurobiology, Research Group Molecular Physiology, Brenneckestrasse 6, Magdeburg D-39118, Germany
| | - Jennifer Heck
- Leibniz-Institute of Neurobiology, Research Group Molecular Physiology, Brenneckestrasse 6, Magdeburg D-39118, Germany
| | - Markus Missler
- Westfälische Wilhelms-University, Institute of Anatomy and Molecular Neurobiology, Vesaliusweg 2, Münster 48149, Germany
| | - Gerald J. Obermair
- Medical University Innsbruck, Division of Physiology, Department of Physiology and Medical Physics, Schöpfstrasse 41, Innsbruck 6020, Austria
| | - Ulrich Thomas
- Leibniz-Institute of Neurobiology, Department Neurochemistry, Brenneckestrasse 6, Magdeburg D-39118, Germany
| | - Martin Heine
- Leibniz-Institute of Neurobiology, Research Group Molecular Physiology, Brenneckestrasse 6, Magdeburg D-39118, Germany
- Otto-von-Guericke-University Magdeburg, Center for Behavioral Brain Sciences (CBBS), Universitätsplatz 2, Magdeburg D-39106, Germany
| |
Collapse
|
33
|
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 2016; 594:5369-90. [PMID: 27273705 PMCID: PMC5043047 DOI: 10.1113/jp272262] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Voltage‐gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore‐forming α1 subunit, the CaV1, CaV2 and CaV3 channels. For all the subtypes of voltage‐gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV1 and CaV2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage‐gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.
![]()
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|