1
|
Czyz CM, Kunth PW, Gruber F, Kremslehner C, Hammers CM, Hundt JE. Requisite instruments for the establishment of three-dimensional epidermal human skin equivalents-A methods review. Exp Dermatol 2023; 32:1870-1883. [PMID: 37605856 DOI: 10.1111/exd.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.
Collapse
Affiliation(s)
- Christianna Marie Czyz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Paul Werner Kunth
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christoph Matthias Hammers
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | | |
Collapse
|
2
|
A preclinical model of cutaneous melanoma based on reconstructed human epidermis. Sci Rep 2022; 12:16269. [PMID: 36175453 PMCID: PMC9522649 DOI: 10.1038/s41598-022-19307-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Malignant melanoma is among the tumor entities with the highest increase of incidence worldwide. To elucidate melanoma progression and develop new effective therapies, rodent models are commonly used. While these do not adequately reflect human physiology, two-dimensional cell cultures lack crucial elements of the tumor microenvironment. To address this shortcoming, we have developed a melanoma skin equivalent based on an open-source epidermal model. Melanoma cell lines with different driver mutations were incorporated into these models forming distinguishable tumor aggregates within a stratified epidermis. Although barrier properties of the skin equivalents were not affected by incorporation of melanoma cells, their presence resulted in a higher metabolic activity indicated by an increased glucose consumption. Furthermore, we re-isolated single cells from the models to characterize the proliferation state within the respective model. The applicability of our model for tumor therapeutics was demonstrated by treatment with a commonly used v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitor vemurafenib. This selective BRAF inhibitor successfully reduced tumor growth in the models harboring BRAF-mutated melanoma cells. Hence, our model is a promising tool to investigate melanoma development and as a preclinical model for drug discovery.
Collapse
|
3
|
Serial Passaging of RAW 264.7 Cells Modulates Intracellular AGE Formation and Downregulates RANKL-Induced In Vitro Osteoclastogenesis. Int J Mol Sci 2022; 23:ijms23042371. [PMID: 35216486 PMCID: PMC8877082 DOI: 10.3390/ijms23042371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
The passage number of cells refers to the number of subculturing processes that the cells have undergone. The effect of passage number on morphological and phenotypical characteristics of cells is of great importance. Advanced glycation end products have also been associated with cell functionality and characteristics. Murine monocyte RAW 264.7 cells differentiate into osteoclasts upon receptor activation caused by nuclear factor-kappa-Β ligand (RANKL) treatment. This study aims to identify the role of passage number on intracellular advanced glycation end products (AGEs) formation and osteoclastogenic differentiation of RAW 264.7 cells. Western blotting was performed to check intracellular AGE formation along with fluorometric analysis using a microplate reader. Tartrate-resistant acid phosphatase (TRAP) staining was performed to check osteoclastogenic differentiation, and qPCR was realized to check the responsible mRNA expression. Immunofluorescence was used to check the morphological changes. Intracellular AGE formation was increased with passaging, and the higher passage number inhibited multinucleated osteoclastogenic differentiation. Osteoclastogenic gene expression also showed a reducing trend in higher passages, along with a significant reduction in F-actin ring size and number. Lower passages should be used to avoid the effects of cell subculturing in in vitro osteoclastogenesis study using RAW 264.7 cells.
Collapse
|
4
|
Elastic Bioresorbable Polymeric Capsules for Osmosis-Driven Delayed Burst Delivery of Vaccines. Pharmaceutics 2021; 13:pharmaceutics13030434. [PMID: 33807062 PMCID: PMC8004877 DOI: 10.3390/pharmaceutics13030434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Single-administration vaccine delivery systems are intended to improve the efficiency and efficacy of immunisation programs in both human and veterinary medicine. In this work, an osmotically triggered delayed delivery device was developed that was able to release a payload after a delay of approximately 21 days, in a consistent and reproducible manner. The device was constructed out of a flexible poly(ε-caprolactone) photo-cured network fabricated into a hollow tubular shape, which expelled approximately 10% of its total payload within 2 days after bursting. Characterisation of the factors that control the delay of release demonstrated that it was advantageous to adjust material permeability and device wall thickness over manipulation of the osmogent concentration in order to maintain reproducibility in burst delay times. The photo-cured poly(ε-caprolactone) network was shown to be fully degradable in vitro, and there was no evidence of cytotoxicity after 11 days of direct contact with primary dermal fibroblasts. This study provides strong evidence to support further development of flexible biomaterials with the aim of continuing improvement of the device burst characteristics in order to provide the greatest chance of the devices succeeding with in vivo vaccine booster delivery.
Collapse
|
5
|
Park JR, Bolle ECL, Santos Cavalcanti AD, Podevyn A, Van Guyse JFR, Forget A, Hoogenboom R, Dargaville TR. Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne-azide cycloaddition. Biointerphases 2021; 16:011001. [PMID: 33401918 DOI: 10.1116/6.0000630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Poly(2-alkyl-2-oxazoline) (PAOx) hydrogels are tailorable synthetic materials with demonstrated biomedical applications, thanks to their excellent biocompatibility and tunable properties. However, their use as injectable hydrogels is challenging as it requires invasive surgical procedures to insert the formed hydrogel into the body due to their nonsoluble 3D network structures. Herein, we introduce cyclooctyne and azide functional side chains to poly(2-oxazoline) copolymers to induce in situ gelation using strain promoted alkyne-azide cycloaddition. The gelation occurs rapidly, within 5 min, under physiological conditions when two polymer solutions are simply mixed. The influence of several parameters, such as temperature and different aqueous solutions, and stoichiometric ratios between the two polymers on the structural properties of the resultant hydrogels have been investigated. The gel formation within tissue samples was verified by subcutaneous injection of the polymer solution into an ex vivo model. The degradation study of the hydrogels in vitro showed that the degradation rate was highly dependent on the type of media, ranging from days to a month. This result opens up the potential uses of PAOx hydrogels in attempts to achieve optimal, injectable drug delivery systems and tissue engineering.
Collapse
Affiliation(s)
- Jong-Ryul Park
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Eleonore C L Bolle
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Amanda Dos Santos Cavalcanti
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Aurelien Forget
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-St. 31, Freiburg, 79104, Germany
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Tim R Dargaville
- Institute of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
6
|
Bolle ECL, Verderosa AD, Dhouib R, Parker TJ, Fraser JF, Dargaville TR, Totsika M. An in vitro Reconstructed Human Skin Equivalent Model to Study the Role of Skin Integration Around Percutaneous Devices Against Bacterial Infection. Front Microbiol 2020; 11:670. [PMID: 32477277 PMCID: PMC7240036 DOI: 10.3389/fmicb.2020.00670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
Percutaneous devices are a key technology in clinical practice, used to connect internal organs to external medical devices. Examples include prosthesis, catheters and electrical drivelines. Percutaneous devices breach the skin's natural barrier and create an entry point for pathogens, making device infections a widespread problem. Modification of the percutaneous implant surface to increase skin integration with the aim to reduce subsequent infection is attracting a great deal of attention. While novel surfaces have been tested in various in vitro models used to study skin integration around percutaneous devices, no skin model has been reported, for the study of bacterial infection around percutaneous devices. Here, we report the establishment of an in vitro human skin equivalent model for driveline infections caused by Staphylococcus aureus, the most common cause of driveline-related infections. Three types of mock drivelines manufactured using melt electrowriting (smooth or porous un-seeded and porous pre-seeded with human fibroblasts) were implanted in human skin constructs and challenged with S. aureus. Our results show a high and stable load of S. aureus in association with the skin surface and no signs of S. aureus-induced tissue damage. Furthermore, our results demonstrate that bacterial migration along the driveline surface occurs in micro-gaps caused by insufficient skin integration between the driveline and the surrounding skin consistent with clinical reports from explanted patient drivelines. Thus, the human skin-driveline infection model presented here provides a clinically-relevant and versatile experimental platform for testing novel device surfaces and infection therapeutics.
Collapse
Affiliation(s)
- Eleonore C. L. Bolle
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- The Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Anthony D. Verderosa
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rabeb Dhouib
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tony J. Parker
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - John F. Fraser
- The Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Tim R. Dargaville
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Makrina Totsika
- Infection and Immunity Research Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Park JR, Sarwat M, Bolle ECL, de Laat MA, Van Guyse JFR, Podevyn A, Hoogenboom R, Dargaville TR. Drug–polymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers. Polym Chem 2020. [DOI: 10.1039/d0py00602e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A shift in cloud point temperatures of poly(2-oxazoline)/ACE inhibitor polymer drug conjugates occurs on release of the drug.
Collapse
Affiliation(s)
- Jong-Ryul Park
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Mariah Sarwat
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Eleonore C. L. Bolle
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Melody A. de Laat
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Joachim F. R. Van Guyse
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Annelore Podevyn
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Tim R. Dargaville
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| |
Collapse
|
8
|
Haridas P, Browning AP, McGovern JA, Sean McElwain DL, Simpson MJ. Three-dimensional experiments and individual based simulations show that cell proliferation drives melanoma nest formation in human skin tissue. BMC SYSTEMS BIOLOGY 2018; 12:34. [PMID: 29587750 PMCID: PMC5872522 DOI: 10.1186/s12918-018-0559-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
Background Melanoma can be diagnosed by identifying nests of cells on the skin surface. Understanding the processes that drive nest formation is important as these processes could be potential targets for new cancer drugs. Cell proliferation and cell migration are two potential mechanisms that could conceivably drive melanoma nest formation. However, it is unclear which one of these two putative mechanisms plays a dominant role in driving nest formation. Results We use a suite of three-dimensional (3D) experiments in human skin tissue and a parallel series of 3D individual-based simulations to explore whether cell migration or cell proliferation plays a dominant role in nest formation. In the experiments we measure nest formation in populations of irradiated (non-proliferative) and non-irradiated (proliferative) melanoma cells, cultured together with primary keratinocyte and fibroblast cells on a 3D experimental human skin model. Results show that nest size depends on initial cell number and is driven primarily by cell proliferation rather than cell migration. Conclusions Nest size depends on cell number, and is driven primarily by cell proliferation rather than cell migration. All experimental results are consistent with simulation data from a 3D individual based model (IBM) of cell migration and cell proliferation. Electronic supplementary material The online version of this article (10.1186/s12918-018-0559-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Parvathi Haridas
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, 4059, Australia.,School of Mathematical Sciences, QUT, Brisbane, 4001, Australia
| | | | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, 4059, Australia
| | - D L Sean McElwain
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, 4059, Australia.,School of Mathematical Sciences, QUT, Brisbane, 4001, Australia
| | - Matthew J Simpson
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, 4059, Australia. .,School of Mathematical Sciences, QUT, Brisbane, 4001, Australia.
| |
Collapse
|
9
|
Haridas P, McGovern JA, McElwain SD, Simpson MJ. Quantitative comparison of the spreading and invasion of radial growth phase and metastatic melanoma cells in a three-dimensional human skin equivalent model. PeerJ 2017; 5:e3754. [PMID: 28890854 PMCID: PMC5590551 DOI: 10.7717/peerj.3754] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Standard two-dimensional (2D) cell migration assays do not provide information about vertical invasion processes, which are critical for melanoma progression. We provide information about three-dimensional (3D) melanoma cell migration, proliferation and invasion in a 3D melanoma skin equivalent (MSE) model. In particular, we pay careful attention to compare the structure of the tissues in the MSE with similarly-prepared 3D human skin equivalent (HSE) models. The HSE model is identically prepared to the MSE model except that melanoma cells are omitted. Using the MSE model, we examine melanoma migration, proliferation and invasion from two different human melanoma cell lines. One cell line, WM35, is associated with the early phase of the disease where spreading is thought to be confined to the epidermis. The other cell line, SK-MEL-28, is associated with the later phase of the disease where spreading into the dermis is expected. METHODS 3D MSE and HSE models are constructed using human de-epidermised dermis (DED) prepared from skin tissue. Primary fibroblasts and primary keratinocytes are used in the MSE and HSE models to ensure the formation of a stratified epidermis, with a well-defined basement membrane. Radial spreading of cells across the surface of the HSE and MSE models is observed. Vertical invasion of melanoma cells downward through the skin is observed and measured using immunohistochemistry. All measurements of invasion are made at day 0, 9, 15 and 20, providing detailed time course data. RESULTS Both HSE and MSE models are similar to native skin in vivo, with a well-defined stratification of the epidermis that is separated from the dermis by a basement membrane. In the HSE and MSE we find fibroblast cells confined to the dermis, and differentiated keratinocytes in the epidermis. In the MSE, melanoma cells form colonies in the epidermis during the early part of the experiment. In the later stage of the experiment, the melanoma cells in the MSE invade deeper into the tissues. Interestingly, both the WM35 and SK-MEL-28 melanoma cells lead to a breakdown of the basement membrane and eventually enter the dermis. However, these two cell lines invade at different rates, with the SK-MEL-28 melanoma cells invading faster than the WM35 cells. DISCUSSION The MSE and HSE models are a reliable platform for studying melanoma invasion in a 3D tissue that is similar to native human skin. Interestingly, we find that the WM35 cell line, that is thought to be associated with radial spreading only, is able to invade into the dermis. The vertical invasion of melanoma cells into the dermal region appears to be associated with a localised disruption of the basement membrane. Presenting our results in terms of time course data, along with images and quantitative measurements of the depth of invasion extends previous 3D work that has often been reported without these details.
Collapse
Affiliation(s)
- Parvathi Haridas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jacqui A. McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sean D.L. McElwain
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew J. Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Jin W, Penington CJ, McCue SW, Simpson MJ. A computational modelling framework to quantify the effects of passaging cell lines. PLoS One 2017; 12:e0181941. [PMID: 28750084 PMCID: PMC5531485 DOI: 10.1371/journal.pone.0181941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/10/2017] [Indexed: 11/28/2022] Open
Abstract
In vitro cell culture is routinely used to grow and supply a sufficiently large number of cells for various types of cell biology experiments. Previous experimental studies report that cell characteristics evolve as the passage number increases, and various cell lines can behave differently at high passage numbers. To provide insight into the putative mechanisms that might give rise to these differences, we perform in silico experiments using a random walk model to mimic the in vitro cell culture process. Our results show that it is possible for the average proliferation rate to either increase or decrease as the passaging process takes place, and this is due to a competition between the initial heterogeneity and the degree to which passaging damages the cells. We also simulate a suite of scratch assays with cells from near–homogeneous and heterogeneous cell lines, at both high and low passage numbers. Although it is common in the literature to report experimental results without disclosing the passage number, our results show that we obtain significantly different closure rates when performing in silico scratch assays using cells with different passage numbers. Therefore, we suggest that the passage number should always be reported to ensure that the experiment is as reproducible as possible. Furthermore, our modelling also suggests some avenues for further experimental examination that could be used to validate or refine our simulation results.
Collapse
Affiliation(s)
- Wang Jin
- School of Mathematical Sciences, Queensland University of Technology (QUT) Brisbane, Queensland 4000, Australia
| | - Catherine J. Penington
- School of Mathematical Sciences, Queensland University of Technology (QUT) Brisbane, Queensland 4000, Australia
| | - Scott W. McCue
- School of Mathematical Sciences, Queensland University of Technology (QUT) Brisbane, Queensland 4000, Australia
| | - Matthew J. Simpson
- School of Mathematical Sciences, Queensland University of Technology (QUT) Brisbane, Queensland 4000, Australia
- * E-mail:
| |
Collapse
|
11
|
Haridas P, Penington CJ, McGovern JA, McElwain DLS, Simpson MJ. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion. J Theor Biol 2017; 423:13-25. [PMID: 28433392 DOI: 10.1016/j.jtbi.2017.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects.
Collapse
Affiliation(s)
- Parvathi Haridas
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove 4059, Australia; School of Mathematical Sciences, QUT, PO Box 2434, Brisbane 4001, Australia
| | | | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove 4059, Australia
| | - D L Sean McElwain
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove 4059, Australia; School of Mathematical Sciences, QUT, PO Box 2434, Brisbane 4001, Australia
| | - Matthew J Simpson
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove 4059, Australia; School of Mathematical Sciences, QUT, PO Box 2434, Brisbane 4001, Australia.
| |
Collapse
|