1
|
Suzuki S, Suzuki S, Sato-Nagaoka Y, Ito C, Takahashi S. Identification of triciribine as a novel myeloid cell differentiation inducer. PLoS One 2024; 19:e0303428. [PMID: 38743735 PMCID: PMC11093380 DOI: 10.1371/journal.pone.0303428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Differentiation therapy using all-trans retinoic acid (ATRA) for acute promyelocytic leukemia (APL) is well established. However, because the narrow application and tolerance development of ATRA need to be improved, we searched for another efficient myeloid differentiation inducer. Kinase activation is involved in leukemia biology and differentiation block. To identify novel myeloid differentiation inducers, we used a Kinase Inhibitor Screening Library. Using a nitroblue tetrazolium dye reduction assay and real-time quantitative PCR using NB4 APL cells, we revealed that, PD169316, SB203580, SB202190 (p38 MAPK inhibitor), and triciribine (TCN) (Akt inhibitor) potently increased the expression of CD11b. We focused on TCN because it was reported to be well tolerated by patients with advanced hematological malignancies. Nuclear/cytoplasmic (N/C) ratio was significantly decreased, and myelomonocytic markers (CD11b and CD11c) were potently induced by TCN in both NB4 and acute myeloid leukemia (AML) M2 derived HL-60 cells. Western blot analysis using NB4 cells demonstrated that TCN promoted ERK1/2 phosphorylation, whereas p38 MAPK phosphorylation was not affected, suggesting that activation of the ERK pathway is involved in TCN-induced differentiation. We further examined that whether ATRA may affect phosphorylation of ERK and p38, and found that there was no obvious effect, suggesting that ATRA induced differentiation is different from TCN effect. To reveal the molecular mechanisms involved in TCN-induced differentiation, we performed microarray analysis. Pathway analysis using DAVID software indicated that "hematopoietic cell lineage" and "cytokine-cytokine receptor interaction" pathways were enriched with high significance. Real-time PCR analysis demonstrated that components of these pathways including IL1β, CD3D, IL5RA, ITGA6, CD44, ITGA2B, CD37, CD9, CSF2RA, and IL3RA, were upregulated by TCN-induced differentiation. Collectively, we identified TCN as a novel myeloid cell differentiation inducer, and trials of TCN for APL and non-APL leukemia are worthy of exploration in the future.
Collapse
MESH Headings
- Humans
- Cell Differentiation/drug effects
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Myeloid Cells/drug effects
- Myeloid Cells/metabolism
- CD11b Antigen/metabolism
- CD11b Antigen/genetics
- Cell Line, Tumor
- HL-60 Cells
- p38 Mitogen-Activated Protein Kinases/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Imidazoles/pharmacology
- Tretinoin/pharmacology
- Pyridines/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Souma Suzuki
- Faculty of Medicine, Division of Laboratory Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Susumu Suzuki
- Faculty of Medicine, Division of Laboratory Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, Japan
| | - Yuri Sato-Nagaoka
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, Japan
| | - Chisaki Ito
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, Japan
| | - Shinichiro Takahashi
- Faculty of Medicine, Division of Laboratory Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Bi L, Jia S, Hu W, Su X, Chen X, Tang H. Systematic analysis of prognostic significance, functional enrichment and immune implication of STK10 in acute myeloid leukemia. BMC Med Genomics 2022; 15:101. [PMID: 35501867 PMCID: PMC9063138 DOI: 10.1186/s12920-022-01251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Background Despite deeper understanding of the genetic landscape of acute myeloid leukemia (AML), the improvement of survival is still a great challenge. STK10 is overexpressed in several cancers with functions varying according to cancer types. But the functions of STK10 in AML has never been reported. Methods We analyzed the expression, prognosis and potential functions of STK10 utilizing public web servers. Metascape and the String database were used for functional and protein–protein interaction analyses. Results We found STK10 was enriched in blood & immune cells and overexpressed in AML. High STK10 expression was associated with poor overall survival, which was also identified in the subgroups of patients ≤ 60 years old and patients with non-high-risk cytogenetics. We demonstrated genes associated with STK10 were enriched in blood, spleen and bone marrow, influencing the immune function and biological process of AML. ITGB2 and ITGAM might directly interact with STK10 and were associated with poor prognosis. Besides, STK10 was associated with the infiltration of immune cells and immune checkpoints, like HLA-E, CD274 and GAL-9. Conclusions The present study was the original description of STK10 in AML and set the stage for developing STK10 as a new prognostic marker or therapeutic target for AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01251-7.
Collapse
Affiliation(s)
- Lei Bi
- Department of Hematology, Xijing Hospital, Air Force Military Medical University, Xian, 710032, Shaanxi, People's Republic of China
| | - Shuangshuang Jia
- Department of Hematology, Xijing Hospital, Air Force Military Medical University, Xian, 710032, Shaanxi, People's Republic of China
| | - Wuyue Hu
- Department of Hematology, Xijing Hospital, Air Force Military Medical University, Xian, 710032, Shaanxi, People's Republic of China
| | - Xiaoli Su
- Department of Hematology, Xijing Hospital, Air Force Military Medical University, Xian, 710032, Shaanxi, People's Republic of China
| | - Xiequn Chen
- Department of Hematology, Xijing Hospital, Air Force Military Medical University, Xian, 710032, Shaanxi, People's Republic of China. .,Institute of Hematology, Northwest University, Xian, 710069, Shaanxi, People's Republic of China. .,Department of Hematology, Affiliated Hospital, Northwest University, Xian, 710082, Shaanxi, People's Republic of China.
| | - Hailong Tang
- Department of Hematology, Xijing Hospital, Air Force Military Medical University, Xian, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
3
|
Takahashi S. Kinase Inhibitors and Interferons as Other Myeloid Differentiation Inducers in Leukemia Therapy. Acta Haematol 2021; 145:113-121. [PMID: 34673646 DOI: 10.1159/000519769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Differentiation therapy using all-trans retinoic acid (ATRA) is well established for the treatment of acute promyelocytic leukemia (APL). Several attempts have been made to treat non-APL acute myeloid leukemia (AML) patients by employing differentiation inducers, such as hypomethylating agents and low-dose cytarabine, with encouraging results. In the present review, I focus on other possible differentiation inducers: kinase inhibitors and interferons (IFNs). A number of kinase inhibitors have been reported to induce differentiation, including CDK inhibitors, GSK3 inhibitors, Akt inhibitors, p38 MAPK inhibitors, Src family kinase inhibitors, Syk inhibitors, mTOR inhibitors, and HSP90 inhibitors. Other powerful inducers are IFNs, which were reported to enhance differentiation with ATRA. Although clinical trials for these kinase modulators remain scarce, their mechanisms of action have been, at least partly, clarified. The Raf/MEK/ERK MAPK pathway and the RARα downstream are affected by many of the kinase inhibitors and IFNs and seem to play a pivotal role for the induction of myeloid differentiation. Further clarification of the mechanisms, as well as the establishment of efficient combination therapies with the kinase inhibitors or IFNs, may lead to the development of effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
4
|
Li S, Deng G, Su J, Wang K, Wang C, Li L, Song S, Peng X, Chen F. A novel all-trans retinoic acid derivative regulates cell cycle and differentiation of myelodysplastic syndrome cells by USO1. Eur J Pharmacol 2021; 906:174199. [PMID: 34058203 DOI: 10.1016/j.ejphar.2021.174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
4-Amino-2-Trifluoromethyl-Phenyl Retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative, has been demonstrated that it had a variety of anti-tumor effects by exerting regulation on cellular proliferation, apoptosis and differentiation. Here, we found that ATPR is critical for alleviating myelodysplastic syndrome (MDS) and acute myelogenous leukemia. USO1, vesicle transport factor, belongs to tether protein family and involved in endoplasmic reticulum to Golgi trafficking of protein which is important to tumorigenesis. How USO1 contribute to MDS remain elusive. USO1 is aberrantly activated in MDS and AML in vivo and vitro, aberration of which might be a dominant mechanism for MDS cell survival. During the ATPR-induced remission of MDS, in vitro, USO1 presents a time and concentration-dependent decrease. Silencing of USO1 promotes myeloid differentiation of MDS cells and inhibits MDS cellular proliferation while USO1 over-expression has the opposite effect, suggesting that reduction of USO1 enhances the sensitivity of SKM-1 cells to ATPR treatment. Mechanistically, USO1 exerts its oncogenic role by inactivating Raf/ERK signaling, while ATPR is access to revise it. Notably, the activity of Raf/ERK pathway is required for the development and maintenance of MDS cell proliferation. Collectively, our results demonstrate the USO1- Raf/ERK signaling axis in MDS and highlight the negative role of USO1 in ATPR-regulated remission of MDS.
Collapse
Affiliation(s)
- Shufang Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Ge Deng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Jingwen Su
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Ke Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Cong Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Lanlan Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Sujing Song
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Xiaoqing Peng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China
| | - Feihu Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, China.
| |
Collapse
|
5
|
Retinoids in hematology: a timely revival? Blood 2021; 137:2429-2437. [PMID: 33651885 DOI: 10.1182/blood.2020010100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
The retinoic acid receptors (RARA, RARB, and RARG) are ligand-regulated nuclear receptors that act as transcriptional switches. These master genes drew significant interest in the 1990s because of their key roles in embryogenesis and involvement in a rare malignancy, acute promyelocytic leukemia (APL), in which the RARA (and very rarely, RARG or RARB) genes are rearranged, underscoring the central role of deregulated retinoid signaling in leukemogenesis. Several recent provocative observations have revived interest in the roles of retinoids in non-APL acute myeloid leukemia (AML), as well as in normal hematopoietic differentiation. We review the role of retinoids in hematopoiesis, as well as in the treatment of non-APL AMLs. From this perspective, broader uses of retinoids in the management of hematopoietic tumors are discussed.
Collapse
|
6
|
Abstract
AbstractA five-step, practical, and concise total synthesis of mubritinib is described. The synthesis utilized Friedel–Crafts acylation, click reaction, reduction, and demethylation for the construction of the triazole ring system as key steps. Another important feature of this synthesis is the Bredereck oxazole synthesis. The main advantages of this process are the improved yield and decreased number of reaction steps, which paves the way for the industrial-scale synthesis of mubritinib.
Collapse
Affiliation(s)
- Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University
| | - Rong Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University
| | - Menghan Cui
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University
| |
Collapse
|
7
|
CDK2 suppression synergizes with all-trans-retinoic acid to overcome the myeloid differentiation blockade of AML cells. Pharmacol Res 2020; 151:104545. [DOI: 10.1016/j.phrs.2019.104545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
|
8
|
Wang L, Cheng J, Lin F, Liu S, Pan H, Li M, Li S, Li N, Li W. Ortho-Topolin Riboside Induced Differentiation through Inhibition of STAT3 Signaling in Acute Myeloid Leukemia HL-60 Cells. Turk J Haematol 2019; 36:162-168. [PMID: 31117333 PMCID: PMC6682775 DOI: 10.4274/tjh.galenos.2019.2019.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: We previously demonstrated that ortho-topolin riboside (oTR) as a naturally occurring cytokinin secreted from Populus × robusta has great potential anticancer effects via the mitochondrial apoptotic pathway and endoplasmic reticulum stress pathway. In the present study, we reveal that oTR induced the differentiation of acute myeloid leukemia (AML) HL-60 cells, which represent the M2 subtype of AML. Materials and Methods: After the incubation of HL-60 cells with oTR, its effect was analyzed with cell viability assay, Wright-Giemsa staining, CD11b protein expression analysis, western blot analysis, and polymerase chain reaction. Results: We found that oTR arrested the cell cycle at the S phase, upregulated the expression of myeloid surface marker CD11b, reduced the nuclear cytoplasmic ratio, and altered the horseshoe shape of nuclei, as evidenced by Wright-Giemsa staining. Furthermore, we found that the protein level of phosphorylated STAT3 was decreased when cells were treated with oTR, while phosphorylated STAT1 was activated. Moreover, the protein level of phosphorylated STAT3 and its upstream kinase, Janus kinase 2, were also inhibited when cells were treated with oTR after increased time. Additionally, the levels of phosphorylated SHP-1 were increased while phosphorylated SHP-2 was decreased. Conclusion: Collectively, our data indicate a differentiation-induced mechanism underlying the inhibition of STAT3 signaling upon treatment with oTR. Therefore, oTR may constitute a novel differentiation-induced therapeutic for use in clinical treatment of AML.
Collapse
Affiliation(s)
- Li Wang
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - Jiao Cheng
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - FanLin Lin
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - ShengXian Liu
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - Hui Pan
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - MingDa Li
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - ShanShan Li
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - Na Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - WeiPing Li
- The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Li G, Wang K, Li Y, Ruan J, Wang C, Qian Y, Zu S, Dai B, Meng Y, Zhou R, Ge J, Chen F. Role of eIF3a in 4-amino-2-trifluoromethyl-phenyl retinate-induced cell differentiation in human chronic myeloid leukemia K562 cells. Gene 2018; 683:195-209. [PMID: 30340049 DOI: 10.1016/j.gene.2018.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
4-amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been demonstrated its anti-tumor effect through inducing differentiation and inhibiting proliferation. Eukaryotic initiation factor 3a (eIF3a) plays a critical role in affecting tumor cell proliferation and differentiation. However, whether eIF3a is implicated in chronic myeloid leukemia cells differentiation remains unclear. Our results demonstrated that eIF3a could be suppressed by ATPR in K562 cells. The results also confirmed that ATPR could arrest cell cycle in G0/G1 phase and induced differentiation. Moreover, over-expression of eIF3a promoted not only protein expression of c-myc and cyclin D1, but also prevented the expression of p-Raf-1, p-ERK and the myeloid differentiation markers CD11b and CD14 and had an influence on inducing the morphologic mature. However, silencing eIF3a expression by small interfering RNA could have an adverse effect on K562 cells. In addition, PD98059 (a MEK inhibitor) could block cell differentiation of CML cells and contributed to the expression of c-myc and cyclin D1. In conclusion, these results indicated that eIF3a played an important role in ATPR-induced cell differentiation in K562 cells, its mechanism might be related to its ability in regulating the activation of ERK1/2 signaling pathway in vitro.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Cycle Checkpoints
- Cell Differentiation/drug effects
- Down-Regulation
- Eukaryotic Initiation Factor-3/genetics
- Eukaryotic Initiation Factor-3/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Silencing
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Signaling System/drug effects
- Retinoids/pharmacology
Collapse
Affiliation(s)
- Ge Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ke Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yue Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jinging Ruan
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cong Wang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yuejiao Qian
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Shengqin Zu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Beibei Dai
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yao Meng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Renpeng Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jingfang Ge
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Feihu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
10
|
Ni X, Hu G, Cai X. The success and the challenge of all-trans retinoic acid in the treatment of cancer. Crit Rev Food Sci Nutr 2018; 59:S71-S80. [PMID: 30277803 DOI: 10.1080/10408398.2018.1509201] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
All-trans retinoic acid (ATRA), an active metabolite of vitamin A, plays important roles in cell proliferation, cell differentiation, apoptosis, and embryonic development. The effects of ATRA are mediated by nuclear retinoid receptors as well as non-genomic signal pathway, such as MAPK and PKA. The great success of differentiation therapy with ATRA in acute promyelocytic leukemia (APL) not only improved the prognosis of APL but also spurred the studies of ATRA in the treatment of other tumors. Since the genetic and physiopathological simplicity of APL is not common in human malignancies, the combination of ATRA with other agents (chemotherapy, epigenetic modifiers, and arsenic trioxide, etc) had been extensively investigated in a variety of tumors. In this review, we will discuss in details about ATRA and its role in cancer treatment.
Collapse
Affiliation(s)
- Xiaoling Ni
- a Department of General Surgery , Zhongshan Hospital, Shanghai Medical College, Fudan University , Shanghai , China
| | - Guohua Hu
- a Department of General Surgery , Zhongshan Hospital, Shanghai Medical College, Fudan University , Shanghai , China
| | - Xun Cai
- b Shanghai Institute of Hematology and State Key Laboratory of Medical Genomics , Rui-jin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
11
|
Heo SK, Noh EK, Kim JY, Jegal S, Jeong Y, Cheon J, Koh S, Baek JH, Min YJ, Choi Y, Jo JC. Rhein augments ATRA-induced differentiation of acute promyelocytic leukemia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 49:66-74. [PMID: 30217263 DOI: 10.1016/j.phymed.2018.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/14/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Rhein (4, 5-dihydroxyanthraquinone-2-carboxylic acid), a natural anthraquinone derivative, is a traditional Chinese herb that has been used as a medication in many Asian countries. It has been used as a laxative and stomach drug for a long time in both China and Korea. It is well-known to have many pharmacological activities, such as anti-cancer, anti-bacterial, anti-fungal, anti-oxidant, anti-atherogenic, anti-angiogenic, anti-fibrosis, anti-inflammatory, hepatoprotective, and nephroprotective properties. However, little is known about how rhein may affect the differentiation activities in acute promyelocytic leukemia (APL) cells. PURPOSE The present study was designed to examine the anti-leukemic effects of rhein against APL cells and to explore the underlying mechanism. METHODS Cell viability was investigated by MTS assay. To examine the differentiation activities in APL cells, the cell surface molecules (CD11b, CD14, CCR1 and CCR2), phagocytosis, reactive oxygen species (ROS) were determined by flow cytometry. Also, induction of caspase-3 activity and reduction of mitochondrial membrane potential (MMP) were determined by flow cytometry. RNA and protein expressions were determined by qRT-PCR and western blotting, respectively. RESULTS In this study we assessed the role of rhein in treating APL. Interestingly, rhein potentiated all-trans retinoic acid (ATRA)-induced macrophage differentiation in NB4 cells by inducing changes in morphology, expression of the differentiation markers CD11b and CD14, ROS production, phagocytic activity, and expression of CCR1 and CCR2. Signaling through CD11b was found to be dependent on ERK activation. Additionally, rhein induced APL cell death by activating apoptosis and suppressing the mTOR pathway. CONCLUSION Therefore, we suggest that a combination of rhein and ATRA carries strong therapeutic potential through the beneficial differentiation of APL cells. Moreover, rhein causes cell death via the activation of apoptosis and suppression of survival signals in APL cells. In combination with the ability of rhein to promote functional macrophage differentiation in APL, these properties suggest that a combined treatment of rhein and ATRA has great potential as an anti-leukemic therapy for APL.
Collapse
Affiliation(s)
- Sook-Kyoung Heo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - Eui-Kyu Noh
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - Jeong Yi Kim
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - SungHoo Jegal
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - Yookyung Jeong
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - Jaekyung Cheon
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - SuJin Koh
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - Jin Ho Baek
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - Young Joo Min
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - Yunsuk Choi
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea; Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea
| | - Jae-Cheol Jo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea; Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea.
| |
Collapse
|
12
|
Kang C, Kim CY, Kim HS, Park SP, Chung HM. The Bromodomain Inhibitor JQ1 Enhances the Responses to All- trans Retinoic Acid in HL-60 and MV4-11 Leukemia Cells. Int J Stem Cells 2018; 11:131-140. [PMID: 29699387 PMCID: PMC5984067 DOI: 10.15283/ijsc18021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022] Open
Abstract
All-trans retinoic acid (ATRA) is a highly effective treatment for acute promyelocytic leukemia (APL), a cytogenetically distinct subtype of acute myeloid leukemia (AML). However, ATRA-based treatment is not effective in other subtypes of AML. In non-APL AML, ATRA signaling pathway is impaired or downmodulated, and consequently fails to respond to pharmacological doses of ATRA. Therefore, complementary treatment strategies are needed to improve ATRA responsiveness in non-APL AML. In this study, we investigated the combined effect of ATRA and bromodomain inhibitor JQ1, proven to have potent anti-cancer activity mainly through inhibition of c-Myc. We showed that the combination of ATRA with JQ1 synergistically inhibited proliferation of AML cells. The synergistic growth inhibition was resulted from differentiation or apoptosis depending on the kind of AML cells. Concomitantly, the combined treatment of ATRA and JQ1 caused greater depletion of c-Myc and hTERT expression than each agent alone in AML cells. Taken together, these findings support the rationale for the use of the combination of ATRA and JQ1 as a therapeutic strategy for the treatment of AML.
Collapse
Affiliation(s)
- Changhee Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Hyuk Soon Kim
- Department of Immunology and Physiology, School of Medicine, Konkuk University, Seoul, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
13
|
Guo H, Lin SY, Ren WX, Lei Q, Chen ZC, Zhang L, Li QB. Enhanced Response of Acute Monocytic Leukemia Cells to Low-dose Cytarabine by 1,25-dihydroxyvitamin D3. Curr Med Sci 2018; 38:35-42. [PMID: 30074149 DOI: 10.1007/s11596-018-1838-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/30/2017] [Indexed: 12/27/2022]
Abstract
Low-dose cytarabine combined with differentiating or DNA hypomethylating agents, such as vitamin D compounds, is a potential regimen to treat acute myeloid leukemia (AML) patients who are unfit for high-intensity chemotherapy. The present study aimed to determine which subset of AML would be most responsive to low-dose cytarabine with the differentiating agent 1,25-dihydroxyvitamin D3 (1,25-D3). Here, firstly, cBioPortal database was used and we found out that vitamin D receptor (VDR) was highly expressed in acute monocytic leukemia (M5) and high VDR expression was associated with a poor survival of AML patients. Then, we confirmed that 1,25-D3 at clinical available concentration could induce more significant differentiation in acute monocytic leukemia cell lines (U937, MOLM-13, THP-1) and blasts from M5 patients than in non-monocytic cell lines (KGla and K562) and blasts from M2 patient. Finally, it was shown that the combination of 1,25-D3 and low-dose cytarabine further increased the differentiating rate, growth inhibition and G0/G1 arrest, while mild changes were found in the apoptosis in acute monocytic leukemia cell lines. Our study demonstrates that the enhanced response of acute monocytic leukemia cells to low-dose cytarabine by 1,25-D3 might indicate a novel therapeutic direction for patients with acute monocytic leukemia, especially for elderly and frail ones.
Collapse
Affiliation(s)
- Hao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng-Yan Lin
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Xiang Ren
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Lei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi-Chao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiu-Bai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Abstract
The concept of differentiation therapy emerged from the fact that hormones or cytokines may promote differentiation ex vivo, thereby irreversibly changing the phenotype of cancer cells. Its hallmark success has been the treatment of acute promyelocytic leukaemia (APL), a condition that is now highly curable by the combination of retinoic acid (RA) and arsenic. Recently, drugs that trigger differentiation in a variety of primary tumour cells have been identified, suggesting that they are clinically useful. This Opinion article analyses the basis for the clinical successes of RA or arsenic in APL by assessing the respective roles of terminal maturation and loss of self-renewal. By reviewing other successful examples of drug-induced tumour cell differentiation, novel approaches to transform differentiating drugs into more efficient therapies are proposed.
Collapse
Affiliation(s)
- Hugues de Thé
- Collège de France, PSL Research University, 75005 Paris; Université Paris Diderot, Sorbonne Paris Cité (INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer; CNRS UMR 7212), Institut Universitaire d'Hématologie, 75010 Paris; and Assistance Publique/Hôpitaux de Paris, Oncologie Moléculaire, Hôpital St Louis, 75010 Paris, France
| |
Collapse
|
15
|
Synergistic effect of a novel autophagy inhibitor and Quizartinib enhances cancer cell death. Cell Death Dis 2018; 9:138. [PMID: 29374185 PMCID: PMC5833862 DOI: 10.1038/s41419-017-0170-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Drug combinations have been increasingly applied in chemotherapy as a strategy to enhance the efficacy of anti-cancer treatment. The appropriate drug combinations may achieve synergistic effects beyond monotherapies alone. AC220 (Quizartinib), an FLT3 receptor tyrosine kinase inhibitor, developed for the treatment of AML, has been tested in phase II human clinical trials. However, AC220 as a monotherapy is not efficacious enough. In this study, we performed a small-molecule screening of 12 640 compounds in order to find a compound that increase the AC220 efficacy in chemotherapy. We identified that TAK-165, a HER2 inhibitor, even when used at low nanomolar doses in combination with AC220, was able to induce cell death in different cancer cells, but not in non-cancer cell lines. We showed that TAK-165 and AC220 act synergistically to downregulate key signaling pathways and potently induce cancer cell death. Furthermore, we demonstrated that TAK-165 inhibited autophagy in a HER2-independent manner. Finally, we showed that the combination of TAK-165 and AC220 induced cell death in cancer cells through the activation of chaperone-mediated autophagy. Overall, these findings support the strategy for using AC220 and an autophagy inhibitor such as TAK-165 in a combinatorial treatment to enhance the efficacy of cancer therapies.
Collapse
|
16
|
Wang Y, Mo H, Gu J, Chen K, Han Z, Liu Y. Cordycepin induces apoptosis of human acute monocytic leukemia cells via downregulation of the ERK/Akt signaling pathway. Exp Ther Med 2017; 14:3067-3073. [PMID: 28912858 PMCID: PMC5585717 DOI: 10.3892/etm.2017.4855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/19/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to examine the apoptotic effect of cordycepin (COR) on human THP-1 acute monocytic leukemia cells. THP-1 cells were exposed to different concentrations of COR for 24, 48, 72 or 96 h. The cell viability and apoptotic rate were analyzed. The gene expression of Akt1, Akt2, Akt3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were assessed by reverse-transcription quantitative PCR. Western blot analysis was used to detect the protein levels of phosphorylated (p)-Akt, p-extracellular signal-regulated kinase (ERK) and cleaved caspase-3. It was found that the viability of THP-1 cells was inhibited by COR in a dose- and time-dependent manner. After treatment with 200 µM COR for 24 h, the percentage of apoptotic cells was significantly increased. COR also downregulated the levels of Bcl-2, Akt1, Akt2 and Akt3, and elevated the expression of Bax. The protein levels of p-Akt and p-ERK were suppressed and cleaved caspase-3 was increased after treatment of COR. In conclusion, COR was found to induce apoptosis of THP-1 acute monocytic leukemia cells through downregulation of ERK/Akt signaling.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Huimin Mo
- Institute of Hematology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun Gu
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Kan Chen
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Zhihua Han
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Yi Liu
- Department of Ultrasound, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai 200127, P.R. China
| |
Collapse
|
17
|
Gao J, Fan M, Xiang G, Wang J, Zhang X, Guo W, Wu X, Sun Y, Gu Y, Ge H, Tan R, Qiu H, Shen Y, Xu Q. Diptoindonesin G promotes ERK-mediated nuclear translocation of p-STAT1 (Ser727) and cell differentiation in AML cells. Cell Death Dis 2017; 8:e2765. [PMID: 28471454 PMCID: PMC5520695 DOI: 10.1038/cddis.2017.159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/26/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
Abstract
Exploration of a new differentiation therapy that extends the range of differentiation for treating acute myeloid leukemia (AML) is attractive to researchers and clinicians. Here we report that diptoindonesin G (Dip G), a natural resveratrol aneuploid, exerts antiproliferative activity by inducing G2/M phase arrest and cell differentiation in AML cell lines and primary AML cells. Gene-profiling experiments showed that treating human leukemia HL-60 cells with Dip G was associated with a remarkable upregulation of STAT1 target gene expression, including IFIT3 and CXCL10. Mechanistically, Dip G activated ERK, which caused phosphorylation of STAT1 at Ser727 and selectively enhanced the interaction of p-STAT1 (Ser727) and p-ERK, further promoting their nuclear translocation. The nuclear translocation of p-STAT1 and p-ERK enhanced the transactivation of STAT1-targeted genes in AML cells. Furthermore, in vivo treatment of HL-60 xenografts demonstrated that Dip G significantly inhibited tumor growth and reduced tumor weight by inducing cell differentiation. Taken together, these results shed light on an essential role for ERK-mediated nuclear translocation of p-STAT1 (Ser727) and its full transcriptional activity in Dip G-induced differentiation of AML cells. Furthermore, these results demonstrate that Dip G could be used as a differentiation-inducing agent for AML therapy, particularly for non-acute promyelocytic leukemia therapy.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Minmin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Gang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jujuan Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yanhong Gu
- Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Hongxia Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.,Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
18
|
Cañete A, Cano E, Muñoz-Chápuli R, Carmona R. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis. Nutrients 2017; 9:E159. [PMID: 28230720 PMCID: PMC5331590 DOI: 10.3390/nu9020159] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/05/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.
Collapse
Affiliation(s)
- Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Elena Cano
- Max-Delbruck Center for Molecular Medicine, Robert Roessle-Strasse 10, 13125 Berlin, Germany.
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| |
Collapse
|
19
|
Omenn GS, Lane L, Lundberg EK, Beavis RC, Overall CM, Deutsch EW. Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications. J Proteome Res 2016; 15:3951-3960. [PMID: 27487407 PMCID: PMC5129622 DOI: 10.1021/acs.jproteome.6b00511] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The HUPO Human Proteome Project (HPP) has two overall goals: (1) stepwise completion of the protein parts list-the draft human proteome including confidently identifying and characterizing at least one protein product from each protein-coding gene, with increasing emphasis on sequence variants, post-translational modifications (PTMs), and splice isoforms of those proteins; and (2) making proteomics an integrated counterpart to genomics throughout the biomedical and life sciences community. PeptideAtlas and GPMDB reanalyze all major human mass spectrometry data sets available through ProteomeXchange with standardized protocols and stringent quality filters; neXtProt curates and integrates mass spectrometry and other findings to present the most up to date authorative compendium of the human proteome. The HPP Guidelines for Mass Spectrometry Data Interpretation version 2.1 were applied to manuscripts submitted for this 2016 C-HPP-led special issue [ www.thehpp.org/guidelines ]. The Human Proteome presented as neXtProt version 2016-02 has 16,518 confident protein identifications (Protein Existence [PE] Level 1), up from 13,664 at 2012-12, 15,646 at 2013-09, and 16,491 at 2014-10. There are 485 proteins that would have been PE1 under the Guidelines v1.0 from 2012 but now have insufficient evidence due to the agreed-upon more stringent Guidelines v2.0 to reduce false positives. neXtProt and PeptideAtlas now both require two non-nested, uniquely mapping (proteotypic) peptides of at least 9 aa in length. There are 2,949 missing proteins (PE2+3+4) as the baseline for submissions for this fourth annual C-HPP special issue of Journal of Proteome Research. PeptideAtlas has 14,629 canonical (plus 1187 uncertain and 1755 redundant) entries. GPMDB has 16,190 EC4 entries, and the Human Protein Atlas has 10,475 entries with supportive evidence. neXtProt, PeptideAtlas, and GPMDB are rich resources of information about post-translational modifications (PTMs), single amino acid variants (SAAVSs), and splice isoforms. Meanwhile, the Biology- and Disease-driven (B/D)-HPP has created comprehensive SRM resources, generated popular protein lists to guide targeted proteomics assays for specific diseases, and launched an Early Career Researchers initiative.
Collapse
Affiliation(s)
- Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Human Protein Science, University of Geneva, CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Emma K. Lundberg
- SciLifeLab Stockholm and School of Biotechnology, KTH, Karolinska Institutet Science Park, Tomtebodavägen 23, SE-171 65 Solna, Sweden
| | - Ronald C. Beavis
- Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Christopher M. Overall
- Biochemistry and Molecular Biology, and Oral Biological and Medical Sciences University of British Columbia, 2350 Health Sciences Mall, Room 4.401, Vancouver, BC V6T 1Z3, Canada
| | - Eric W. Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| |
Collapse
|