1
|
Cho N, Al-Shawwa A, Jacobs WB, Evaniew N, Bouchard J, Casha S, duPlessis S, Lewkonia P, Nicholls F, Soroceanu A, Swamy G, Thomas KC, Yang MMH, Cohen-Adad J, Cadotte DW. Spinal Cord Tract Integrity in Degenerative Cervical Myelopathy. Neurosurgery 2025:00006123-990000000-01557. [PMID: 40179008 DOI: 10.1227/neu.0000000000003428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/03/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Degenerative cervical myelopathy (DCM) is the most common cause of spinal dysfunction globally. Despite surgical intervention, motor dysfunction may persist in many patients. The purpose of this study was to comprehensively examine specific spinal cord tract changes in patients with DCM, to better understand potential substrates for compensatory recovery of function. METHODS Cervical spinal cord MRI scans with diffusion tensor imaging were performed in patients with DCM and in healthy volunteers. Spinal Cord Toolbox was used to register the PAM50 template, which includes a probabilistic atlas of the white matter tracts of the spinal cord, to the imaging data. Fractional anisotropy (FA) was extracted for each tract at C3 above the level of maximal compression and compared between patients with DCM and healthy volunteers and between patients with mild vs moderate to severe DCM. RESULTS We included 25 patients with DCM (13 mild and 12 moderate to severe) and 6 healthy volunteers. FA was significantly reduced in DCM subjects relative to healthy volunteers for the lateral corticospinal tract (mild DCM vs healthy ∆ = -0.13, P = .018; moderate to severe DCM vs healthy ∆ = -0.11, P = .047), fasciculus gracilis (mild DCM vs healthy ∆ = -0.16, P = .010; moderate to severe DCM vs healthy ∆ = -0.13, P = .039), and fasciculus cuneatus (mild DCM vs healthy ∆ = -0.16, P = .007; moderate to severe DCM vs healthy ∆ = -0.15, P = .012). There were no differences in FA for all tracts between mild and moderate-to-severe DCM subjects. CONCLUSION Patients with DCM had altered diffusion tensor imaging signal in their lateral corticospinal tract, fasciculus gracilis, and fasciculus cuneatus in comparison with healthy volunteers. These findings indicate that DCM is characterized by injury to these structures, which suggests that other tracts within the cord could potentially act as substrates for compensatory motor recovery.
Collapse
Affiliation(s)
- Newton Cho
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
| | - Abdul Al-Shawwa
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - W Bradley Jacobs
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nathan Evaniew
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Jacques Bouchard
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Steve Casha
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephan duPlessis
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter Lewkonia
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Fred Nicholls
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Alex Soroceanu
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Ganesh Swamy
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Kenneth C Thomas
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Section of Orthopaedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Michael M H Yang
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Quebec, Canada
- Mila - Quebec AI Institute, Montréal, Quebec, Canada
| | - David W Cadotte
- Combined Orthopedic and Neurosurgery Spine Program, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Section of Neurosurgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Solanky BS, Prados F, Tur C, Grussu F, Al-Ahmad S, Yang X, Bianchi A, Kanber B, Russo A, Russo V, Choi D, Panicker JN, Wheeler-Kingshott CAMG. Evaluation of magnetic resonance spectroscopy total sodium concentration measures, and associations with microstructure and physical impairment in cervical myelopathy. Sci Rep 2025; 15:7014. [PMID: 40016502 PMCID: PMC11868613 DOI: 10.1038/s41598-025-91658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Spinal cord injury causes a cascade of physiological responses, which may trigger a subsequent neurotoxic increase in intracellular sodium. This can lead to neurodegeneration, both at and beyond the site of injury, causing clinical symptoms and loss of function. However, in vivo measurements of tissue sodium remain challenging. Here we utilise sodium magnetic resonance spectroscopy (23Na-MRS) at 3T to measure tissue sodium concentration (TSC) and its association with microstructural measures and macromolecular MRI metrics in the cervical spinal cord, distal to the site of injury. Twenty people with cervical myelopathy and twenty healthy controls, were studied. Associations with motor and sensory impairments were explored using ASIA and jOAMEQ scores. No significant difference in TSC in the cervical myelopathy group (39 ± 10 mM) relative to healthy controls (35 ± 13 mM) was found. However, patients had a significantly lower cord-cross-sectional area than controls (70 ± 9 mm2 vs. 82 ± 9 mm2, p < 0.001). Lower-extremity function positively correlated with intracellular volume fraction (p = 0.031). In conclusion, using 23Na-MRS, TSC in cervical myelopathy patients was successfully measured. Differences in TSC relative to healthy controls did not reach significance, despite a significant reduction in cord-cross-sectional area. However, lower intracellular volume fraction, indicating reduced neurite density distal to the site of injury, was associated with physical impairment.
Collapse
Affiliation(s)
- Bhavana S Solanky
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Ferran Prados
- Hawkes Institute, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Queen Square, London, WC1N 3BG, UK
- Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Francesco Grussu
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Queen Square, London, WC1N 3BG, UK
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Selma Al-Ahmad
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Xixi Yang
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Queen Square, London, WC1N 3BG, UK
| | - Alessia Bianchi
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Queen Square, London, WC1N 3BG, UK
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Baris Kanber
- Hawkes Institute, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Antonino Russo
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Vittorio Russo
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - David Choi
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Jalesh N Panicker
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, Queen Square, London, WC1N 3BG, UK
- Digital Neuroscience Centre, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Doi T, Inoue T, Sugaya J, Horii C, Tozawa K, Nakarai H, Sasaki K, Yoshida Y, Ito Y, Ohtomo N, Sakamoto R, Nakajima K, Nagata K, Okamoto N, Nakamoto H, Kato S, Taniguchi Y, Matsubayashi Y, Tanaka S, Okazaki K, Oshima Y. Noninvasive Skin Autofluorescence of Advanced Glycation End Products in Patients with Degenerative Cervical Myelopathy. World Neurosurg 2025; 194:123556. [PMID: 39653077 DOI: 10.1016/j.wneu.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024]
Abstract
OBJECTIVE To clarify the association between skin autofluorescence of advanced glycation end products (AGEs) and clinical outcomes and pain in patients with degenerative cervical myelopathy (DCM). METHODS Consecutive patients with DCM were prospectively enrolled. AGEs assessed by skin autofluorescence (the AGE score) were examined at the middle fingertip in eligible patients. Patients were divided into lower AGE score (AGE-L) and higher AGE score (AGE-H) groups based on a cutoff AGE score of 0.54. Demographic data, laboratory data, maximum spinal cord compression, clinical outcomes, such as European Quality of Life-5 Dimensions, Neck Disability Index, and Japanese Orthopaedic Association score, and Numerical Rating Scale (NRS) score for neck, arm, hand, leg, and foot pain were compared between the two groups. Multiple linear regression analysis was performed to assess the association between the AGE score and the NRS score for pain in the lower limbs. RESULTS Of the 263 patients, 93 were included in this study (41 with the AGE-L group and 52 with the AGE-H group). Demographic data, laboratory data, maximum spinal cord compression, and clinical outcomes were comparable between the two groups. The AGE-H group had significantly higher NRS scores for leg and foot pain than the AGE-L group. Multiple linear regression analysis revealed that higher AGE scores were significantly associated with more severe pain in the lower limbs in patients with DCM. CONCLUSIONS Noninvasive skin autofluorescence of AGEs may be a useful biomarker for pain symptoms in the lower limbs in patients with DCM.
Collapse
Affiliation(s)
- Toru Doi
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan; Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan.
| | - Tomohisa Inoue
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Jun Sugaya
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Chiaki Horii
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Keiichiro Tozawa
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nakarai
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Katsuyuki Sasaki
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Yuichi Yoshida
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Yusuke Ito
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Nozomu Ohtomo
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Ryuji Sakamoto
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Koji Nakajima
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Kosei Nagata
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Naoki Okamoto
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Hideki Nakamoto
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - So Kato
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Yuki Taniguchi
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | | | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Zheng J, Zhang Y, Zhao B, Wang N, Gao T, Zhang L. Metabolic changes of thalamus assessed by 1H-MRS spectroscopy in patients of cervical spondylotic myelopathy following decompression surgery. Front Neurol 2025; 15:1513896. [PMID: 39845933 PMCID: PMC11750645 DOI: 10.3389/fneur.2024.1513896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Objective To assess the changes of thalamic metabolites before and after surgery in patients with Cervical Spondylotic Myelopathy (CSM) using Hydrogen Proton Magnetic Resonance Spectroscopy (1H-MRS) and to investigate its association with improvement in neurological function. Methods Forty-eight CSM patients who underwent cervical decompression surgery from December 2022 to June 2023 were included, and 33 healthy volunteers were recruited. All subjects underwent bilateral thalamic 1H-MRS scans before the surgical procedure, and subsequently again 6 months later. Neurological function was assessed pre-operatively and post-operatively (6 months) in all patients with CSM using the modified Japanese Orthopedic Association (mJOA). The changes of mJOA (ΔmJOA = postoperative mJOA-preoperative mJOA) were employed as an indicator of neurological improvement. The pre- and postoperative metabolic ratio of N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho/Cr), myo-inositol/creatine (mI/Cr), glutamate and glutamine complex/creatine (Glx/Cr) were statistically compared in CSM patients and healthy controls (HCs). A correlation analysis was conducted to determine the relationship between alterations in pre- and postoperative metabolite ratios (ΔNAA/Cr, ΔCho/Cr, ΔmI/Cr, ΔGlx/Cr) and ΔmJOA. Results Compared to the HCs, patients with CSM showed significantly lower pre- and post-operative NAA/Cr (Z = -4.235, p < 0.001; Z = -3.184, p = 0.001), Cho/Cr (Z = -5.050, p < 0.001; (Z = -2.624, p = 0.007) and mI/Cr (Z = -3.739, p = 0.001; Z = -2.014, p = 0.044). There was no difference in Glx/Cr between patients in patients with CSM, either preoperatively or postoperatively, compared to HCs. Post-operative NAA/Cr (Z = -2.285, p = 0.041) and mI/Cr (Z = -2.925, p = 0.021) were increased in CSM patients compared to pre-operative NAA/Cr and mI/Cr. In CSM patients, ΔmI/Cr correlated significantly with ΔmJOA (r = 0.507, p < 0.001). Conclusion The preliminary findings indicate that metabolites in the thalamus of CSM patients exhibit changes following surgery. Additionally, it has been demonstrated that elevated postoperative mI correlates with improvements in neurological function.
Collapse
Affiliation(s)
- Jiangqin Zheng
- Department of Radiology, Hainan Maternal and Child Health Centre, Haikou, China
| | - Yujin Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baogen Zhao
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ning Wang
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ting Gao
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Freund P, Boller V, Emmenegger TM, Akbar M, Hupp M, Pfender N, Wheeler‐Kingshott CAMG, Cohen‐Adad J, Fehlings MG, Curt A, Seif M. Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative magnetic resonance imaging. Eur J Neurol 2024; 31:e16297. [PMID: 38713645 PMCID: PMC11235710 DOI: 10.1111/ene.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND AND PURPOSE Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of clinical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study. METHODS We applied voxelwise analysis with a probabilistic brain/spinal cord template embedded in statistical parametric mappin (SPM-BSC) to process multi parametric mapping (MPM) including effective transverse relaxation rate (R2*), longitudinal relaxation rate (R1), and magnetization transfer (MT), which are indirectly sensitive to iron and myelin content. Regression analysis was conducted to establish associations between neurodegeneration and clinical impairment. Thirty-eight DCM patients (mean age ± SD = 58.45 ± 11.47 years) and 38 healthy controls (mean age ± SD = 41.18 ± 12.75 years) were recruited at University Hospital Balgrist, Switzerland and Toronto Western Hospital, Canada. RESULTS Remote atrophy was observed in the cervical cord (p = 0.002) and in the left thalamus (0.026) of the DCM group. R1 was decreased in the periaqueductal grey matter (p = 0.014), thalamus (p = 0.001), corpus callosum (p = 0.0001), and cranial corticospinal tract (p = 0.03). R2* was increased in the primary somatosensory cortices (p = 0.008). Sensory impairments were associated with increased iron-sensitive R2* in the thalamus and periaqueductal grey matter in DCM. CONCLUSIONS Simultaneous assessment of the spinal cord and brain revealed DCM-induced demyelination, iron deposition, and atrophy. The extent of remote neurodegeneration was associated with sensory impairment, highlighting the intricate and expansive nature of microstructural neurodegeneration in DCM, reaching beyond the stenosis level.
Collapse
Affiliation(s)
- Patrick Freund
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Viveka Boller
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Tim M. Emmenegger
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Muhammad Akbar
- Spine Program Division of NeurosurgeryUniversity of Toronto and Toronto Western HospitalTorontoOntarioCanada
| | - Markus Hupp
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Nikolai Pfender
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Claudia Angela Michela Gandini Wheeler‐Kingshott
- NMR Research Unit, Queen Square MS CentreUniversity College London (UCL) Queen Square Institute of Neurology, Faculty of Brain SciencesLondonUK
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Digital Neuroscience Research UnitIRCCS Mondino FoundationPaviaItaly
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique MontrealMontrealQuebecCanada
- Functional Neuroimaging Unit, CRIUGMUniversity of MontrealMontrealQuebecCanada
| | - Michael G. Fehlings
- Spine Program Division of NeurosurgeryUniversity of Toronto and Toronto Western HospitalTorontoOntarioCanada
| | - Armin Curt
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Maryam Seif
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
6
|
Horak T, Horakova M, Kerkovsky M, Dostal M, Hlustik P, Valosek J, Svatkova A, Bednarik P, Vlckova E, Bednarik J. Evidence-based commentary on the diagnosis, management, and further research of degenerative cervical spinal cord compression in the absence of clinical symptoms of myelopathy. Front Neurol 2024; 15:1341371. [PMID: 38798708 PMCID: PMC11116587 DOI: 10.3389/fneur.2024.1341371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Degenerative cervical myelopathy (DCM) represents the final consequence of a series of degenerative changes in the cervical spine, resulting in cervical spinal canal stenosis and mechanical stress on the cervical spinal cord. This process leads to subsequent pathophysiological processes in the spinal cord tissues. The primary mechanism of injury is degenerative compression of the cervical spinal cord, detectable by magnetic resonance imaging (MRI), serving as a hallmark for diagnosing DCM. However, the relative resilience of the cervical spinal cord to mechanical compression leads to clinical-radiological discordance, i.e., some individuals may exhibit MRI findings of DCC without the clinical signs and symptoms of myelopathy. This degenerative compression of the cervical spinal cord without clinical signs of myelopathy, potentially serving as a precursor to the development of DCM, remains a somewhat controversial topic. In this review article, we elaborate on and provide commentary on the terminology, epidemiology, natural course, diagnosis, predictive value, risks, and practical management of this condition-all of which are subjects of ongoing debate.
Collapse
Affiliation(s)
- Tomas Horak
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Magda Horakova
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Milos Kerkovsky
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Brno, Czechia
| | - Marek Dostal
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Brno, Czechia
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Hlustik
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Neurology, University Hospital Olomouc, Olomouc, Czechia
| | - Jan Valosek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila—Quebec AI Institute, Montreal, QC, Canada
| | - Alena Svatkova
- Danish Research Center for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Radiology, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Petr Bednarik
- Danish Research Center for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Radiology, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Eva Vlckova
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Josef Bednarik
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurology, University Hospital Brno, Brno, Czechia
| |
Collapse
|
7
|
Kuang C, Zha Y. Neurodegeneration within the rostral spinal cord is associated with brain gray matter volume atrophy in the early stage of cervical spondylotic myelopathy. Spinal Cord 2024; 62:214-220. [PMID: 38454066 DOI: 10.1038/s41393-024-00971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
STUDY DESIGN Case-control study. OBJECTIVES Investigating the association between neurodegeneration within rostral spinal cord and brain gray matter volume (GMV) and assessing the relationship between remote neurodegenerative changes and clinical outcomes at the early phase of Cervical Spondylotic Myelopathy (CSM). SETTING University/hospital. METHODS Using Spinal Cord Toolbox, spinal cord morphometrics (cross-sectional area [CSA], gray matter area [GMA], white matter area [WMA]) of 40 patients with CSM and 28 healthy controls (HCs) were computed and compared using two-sample t test. Brain GMV of the two groups was analyzed using voxel-based morphometry approach. Pearson's correlation between spinal cord morphometrics and altered brain GMV and Spearman's relationship between remote neurodegenerations and clinical outcomes were conducted in CSM group. RESULTS Compared to HCs, CSA and WMA at C2/3 and GMV in right postcentral gyrus (PoCG.R) and left supplementary motor area (SMA.L) were significantly decreased in patients with CSM. CSA and WMA at C2/3 were associated with GMV in SMA.L and MCG.R in patients with CSM. CSA at C2/3 and GMV in PoCG.R were related to modified Japanese Orthopedic Association score in patients with CSM. CONCLUSIONS The associations between CSA and WMA at C2/3 and GMV in SMA.L and MCG.R suggest a concordant change pattern and adaptive mechanisms for neuronal plasticity underlying remote neurodegeneration in early CSM. The atrophy of CSA at C2/3 and GMV loss in PoCG.R can serve as potential neuroimaging biomarkers of early structural changes within spinal cord and brain preceding marked clinical disabilities in patients with CSM.
Collapse
Affiliation(s)
- Cuili Kuang
- Department of Radiological, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunfei Zha
- Department of Radiological, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Forodighasemabadi A. Editorial for "Predictive Value of the Diffusion Magnetic Resonance Imaging Technique for the Postoperative Outcome of Cervical Spondylotic Myelopathy". J Magn Reson Imaging 2024; 59:611-612. [PMID: 37204111 DOI: 10.1002/jmri.28786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
|
9
|
Lebret A, Lévy S, Pfender N, Farshad M, Altorfer FCS, Callot V, Curt A, Freund P, Seif M. Investigation of perfusion impairment in degenerative cervical myelopathy beyond the site of cord compression. Sci Rep 2023; 13:22660. [PMID: 38114733 PMCID: PMC10730822 DOI: 10.1038/s41598-023-49896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
The aim of this study was to determine tissue-specific blood perfusion impairment of the cervical cord above the compression site in patients with degenerative cervical myelopathy (DCM) using intravoxel incoherent motion (IVIM) imaging. A quantitative MRI protocol, including structural and IVIM imaging, was conducted in healthy controls and patients. In patients, T2-weighted scans were acquired to quantify intramedullary signal changes, the maximal canal compromise, and the maximal cord compression. T2*-weighted MRI and IVIM were applied in all participants in the cervical cord (covering C1-C3 levels) to determine white matter (WM) and grey matter (GM) cross-sectional areas (as a marker of atrophy), and tissue-specific perfusion indices, respectively. IVIM imaging resulted in microvascular volume fraction ([Formula: see text]), blood velocity ([Formula: see text]), and blood flow ([Formula: see text]) indices. DCM patients additionally underwent a standard neurological clinical assessment. Regression analysis assessed associations between perfusion parameters, clinical outcome measures, and remote spinal cord atrophy. Twenty-nine DCM patients and 30 healthy controls were enrolled in the study. At the level of stenosis, 11 patients showed focal radiological evidence of cervical myelopathy. Above the stenosis level, cord atrophy was observed in the WM (- 9.3%; p = 0.005) and GM (- 6.3%; p = 0.008) in patients compared to healthy controls. Blood velocity (BV) and blood flow (BF) indices were decreased in the ventral horns of the GM (BV: - 20.1%, p = 0.0009; BF: - 28.2%, p = 0.0008), in the ventral funiculi (BV: - 18.2%, p = 0.01; BF: - 21.5%, p = 0.04) and lateral funiculi (BV: - 8.5%, p = 0.03; BF: - 16.5%, p = 0.03) of the WM, across C1-C3 levels. A decrease in microvascular volume fraction was associated with GM atrophy (R = 0.46, p = 0.02). This study demonstrates tissue-specific cervical perfusion impairment rostral to the compression site in DCM patients. IVIM indices are sensitive to remote perfusion changes in the cervical cord in DCM and may serve as neuroimaging biomarkers of hemodynamic impairment in future studies. The association between perfusion impairment and cervical cord atrophy indicates that changes in hemodynamics caused by compression may contribute to the neurodegenerative processes in DCM.
Collapse
Affiliation(s)
- Anna Lebret
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Simon Lévy
- CNRS, CRMBM, Aix-Marseille University, Marseille, France
- APHM, CEMEREM, Hôpital Universitaire Timone, Marseille, France
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Mazda Farshad
- Department of Orthopedic Surgery, Balgrist University Hospital, Zürich, Switzerland
| | | | - Virginie Callot
- CNRS, CRMBM, Aix-Marseille University, Marseille, France
- APHM, CEMEREM, Hôpital Universitaire Timone, Marseille, France
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
- Department of Brain Repair and Rehabilitation, Wellcome Trust Center for Neuroimaging, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland.
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
10
|
Khan AF, Haynes G, Mohammadi E, Muhammad F, Hameed S, Smith ZA. Utility of MRI in Quantifying Tissue Injury in Cervical Spondylotic Myelopathy. J Clin Med 2023; 12:jcm12093337. [PMID: 37176777 PMCID: PMC10179707 DOI: 10.3390/jcm12093337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cervical spondylotic myelopathy (CSM) is a progressive disease that worsens over time if untreated. However, the rate of progression can vary among individuals and may be influenced by various factors, such as the age of the patients, underlying conditions, and the severity and location of the spinal cord compression. Early diagnosis and prompt treatment can help slow the progression of CSM and improve symptoms. There has been an increased use of magnetic resonance imaging (MRI) methods in diagnosing and managing CSM. MRI methods provide detailed images and quantitative structural and functional data of the cervical spinal cord and brain, allowing for an accurate evaluation of the extent and location of tissue injury. This review aims to provide an understanding of the use of MRI methods in interrogating functional and structural changes in the central nervous system in CSM. Further, we identified several challenges hindering the clinical utility of these neuroimaging methods.
Collapse
Affiliation(s)
- Ali Fahim Khan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Grace Haynes
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Esmaeil Mohammadi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanaa Hameed
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zachary A Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Hejrati N, Pedro K, Alvi MA, Quddusi A, Fehlings MG. Degenerative cervical myelopathy: Where have we been? Where are we now? Where are we going? Acta Neurochir (Wien) 2023; 165:1105-1119. [PMID: 37004568 DOI: 10.1007/s00701-023-05558-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Degenerative cervical myelopathy (DCM), a recently coined term, encompasses a group of age-related and genetically associated pathologies that affect the cervical spine, including cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament (OPLL). Given the significant contribution of DCM to global disease and disability, there are worldwide efforts to promote research and innovation in this area. An AO Spine effort termed 'RECODE-DCM' was initiated to create an international multistakeholder consensus group, involving patients, caregivers, physicians and researchers, to focus on launching actionable discourse on DCM. In order to improve the management, treatment and results for DCM, the RECODE-DCM consensus group recently identified ten priority areas for translational research. The current article summarizes recent advancements in the field of DCM. We first discuss the comprehensive definition recently refined by the RECODE-DCM group, including steps taken to arrive at this definition and the supporting rationale. We then provide an overview of the recent advancements in our understanding of the pathophysiology of DCM and modalities to clinically assess and diagnose DCM. A focus will be set on advanced imaging techniques that may offer the opportunity to improve characterization and diagnosis of DCM. A summary of treatment modalities, including surgical and nonoperative options, is then provided along with future neuroprotective and neuroregenerative strategies. This review concludes with final remarks pertaining to the genetics involved in DCM and the opportunity to leverage this knowledge toward a personalized medicine approach.
Collapse
Affiliation(s)
- Nader Hejrati
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Suite 4WW-449, Toronto, ON, M5T 2S8, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ayesha Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Suite 4WW-449, Toronto, ON, M5T 2S8, Canada.
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Wu X, Wang Y, Chang J, Zhu K, Zhang S, Li Y, Zuo J, Chen S, Jin W, Yan T, Yang K, Xu P, Song P, Wu Y, Qian Y, Shen C, Yu Y, Dong F. Remodeling of the brain correlates with gait instability in cervical spondylotic myelopathy. Front Neurosci 2023; 17:1087945. [PMID: 36816111 PMCID: PMC9932596 DOI: 10.3389/fnins.2023.1087945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Cervical spondylotic myelopathy (CSM) is a common form of non-traumatic spinal cord injury (SCI) and usually leads to remodeling of the brain and spinal cord. In CSM with gait instability, the remodeling of the brain and cervical spinal cord is unclear. We attempted to explore the remodeling of these patients' brains and spinal cords, as well as the relationship between the remodeling of the brain and spinal cord and gait instability. Methods According to the CSM patients' gait, we divided patients into two groups: normal gait patients (nPT) and abnormal gait patients (aPT). Voxel-wise z-score transformation amplitude of low-frequency fluctuations (zALFF) and resting-state functional connectivity (rs-FC) were performed for estimating brain changes. Cross-sectional area (CSA) and fractional anisotropy (FA) of the spinal cord were computed by Spinal cord toolbox. Correlations of these measures and the modified Japanese Orthopedic Association (mJOA) score were analyzed. Results We found that the zALFF of caudate nucleus in aPT was higher than that in healthy controls (HC) and lower than that in nPT. The zALFF of the right postcentral gyrus and paracentral lobule in HC was higher than those of aPT and nPT. Compared with the nPT, the aPT showed increased functional connectivity between the caudate nucleus and left angular gyrus, bilateral precuneus and bilateral posterior cingulate cortex (PCC), which constitute a vital section of the default mode network (DMN). No significantly different FA values or CSA of spinal tracts at the C2 level were observed between the HC, nPT and aPT groups. In CSM, the right paracentral lobule's zALFF was negatively correlated with the FA value of fasciculus gracilis (FCG), and the right caudate zALFF was positively correlated with the FA value of the fasciculus cuneatus (FCC). The results showed that the functional connectivity between the right caudate nucleus and DMN was negatively correlated with the CSA of the lateral corticospinal tract (CST). Discussion The activation of the caudate nucleus and the strengthening functional connectivity between the caudate nucleus and DMN were associated with gait instability in CSM patients. Correlations between spinal cord and brain function might be related to the clinical symptoms in CSM.
Collapse
Affiliation(s)
- Xianyong Wu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianchao Chang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siya Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junxun Zuo
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Senlin Chen
- Department of Orthopedics, Dongcheng Branch of The First Affiliated Hospital of Anhui Medical University (Feidong People’s Hospital), Hefei, China
| | - Weiming Jin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingfei Yan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Yang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peng Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Song
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Wu
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Yuanyuan Wu,
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fulong Dong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,*Correspondence: Fulong Dong,
| |
Collapse
|
13
|
He B, Sheldrick K, Das A, Diwan A. Clinical and Research MRI Techniques for Assessing Spinal Cord Integrity in Degenerative Cervical Myelopathy-A Scoping Review. Biomedicines 2022; 10:2621. [PMID: 36289883 PMCID: PMC9599413 DOI: 10.3390/biomedicines10102621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) manifests as the primary cause of spinal cord dysfunction and is non-traumatic, chronic and progressive in nature. Decompressive surgery is typically utilised to halt further disability and neurological dysfunction. The limitations of current diagnostic options surrounding assessment and prognostic potential render DCM still largely a clinical diagnosis. AIMS To outline the limitations of current diagnostic techniques, present evidence behind novel quantitative MRI (qMRI) techniques for assessing spinal cord integrity in DCM and suggest future directions. METHOD Articles published up to November 2021 were retrieved from Medline, EMBASE and EBM using key search terms: spinal cord, spine, neck, MRI, magnetic resonance imaging, qMRI, T1, T2, T2*, R2*, DTI, diffusion tensor imaging, MT, magnetisation transfer, SWI, susceptibility weighted imaging, BOLD, blood oxygen level dependent, fMRI, functional magnetic resonance imaging, functional MRI, MRS, magnetic resonance spectroscopy. RESULTS A total of 2057 articles were retrieved with 68 articles included for analysis. The search yielded 2 articles on Quantitative T1 mapping which suggested higher T1 values in spinal cord of moderate-severe DCM; 43 articles on DTI which indicated a strong correlation of fractional anisotropy and modified Japanese Orthopaedic Association scores; 15 articles on fMRI (BOLD) which demonstrated positive correlation of functional connectivity and volume of activation of various connections in the brain with post-surgical recovery; 6 articles on MRS which suggested that Choline/N-acetylaspartate (Cho/NAA) ratio presents the best correlation with DCM severity; and 4 articles on MT which revealed a preliminary negative correlation of magnetisation transfer ratio with DCM severity. Notably, most studies were of low sample size with short timeframes within 6 months. CONCLUSIONS Further longitudinal studies with higher sample sizes and longer time horizons are necessary to determine the full prognostic capacity of qMRI in DCM.
Collapse
Affiliation(s)
- Brandon He
- Spine Labs, St. George & Sutherland Clinical School, UNSW Faculty of Medicine, Kogarah, NSW 2217, Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Kyle Sheldrick
- Spine Labs, St. George & Sutherland Clinical School, UNSW Faculty of Medicine, Kogarah, NSW 2217, Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, UNSW Faculty of Medicine, Kogarah, NSW 2217, Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Ashish Diwan
- Spine Labs, St. George & Sutherland Clinical School, UNSW Faculty of Medicine, Kogarah, NSW 2217, Australia
- Spine Service, Department of Orthopaedic Surgery, St. George Hospital Campus, Kogarah, NSW 2217, Australia
| |
Collapse
|
14
|
Optimized multi-echo gradient-echo magnetic resonance imaging for gray and white matter segmentation in the lumbosacral cord at 3 T. Sci Rep 2022; 12:16498. [PMID: 36192560 PMCID: PMC9530158 DOI: 10.1038/s41598-022-20395-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Atrophy in the spinal cord (SC), gray (GM) and white matter (WM) is typically measured in-vivo by image segmentation on multi-echo gradient-echo magnetic resonance images. The aim of this study was to establish an acquisition and analysis protocol for optimal SC and GM segmentation in the lumbosacral cord at 3 T. Ten healthy volunteers underwent imaging of the lumbosacral cord using a 3D spoiled multi-echo gradient-echo sequence (Siemens FLASH, with 5 echoes and 8 repetitions) on a Siemens Prisma 3 T scanner. Optimal numbers of successive echoes and signal averages were investigated comparing signal-to-noise (SNR) and contrast-to-noise ratio (CNR) values as well as qualitative ratings for segmentability by experts. The combination of 5 successive echoes yielded the highest CNR between WM and cerebrospinal fluid and the highest rating for SC segmentability. The combination of 3 and 4 successive echoes yielded the highest CNR between GM and WM and the highest rating for GM segmentability in the lumbosacral enlargement and conus medullaris, respectively. For segmenting the SC and GM in the same image, we suggest combining 3 successive echoes. For SC or GM segmentation only, we recommend combining 5 or 3 successive echoes, respectively. Six signal averages yielded good contrast for reliable SC and GM segmentation in all subjects. Clinical applications could benefit from these recommendations as they allow for accurate SC and GM segmentation in the lumbosacral cord.
Collapse
|
15
|
Zhou Y, Shi J. Brain Structural and Functional Dissociated Patterns in Degenerative Cervical Myelopathy: A Case-Controlled Retrospective Resting-State fMRI Study. Front Neurol 2022; 13:895348. [PMID: 35785340 PMCID: PMC9240811 DOI: 10.3389/fneur.2022.895348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies have shown the whole-brain global functional connectivity density (gFCD) and gray matter volume (GMV) alterations in patients with degenerative cervical myelopathy (DCM). However, no study aimed to investigate the associations between the spatial patterns of GMV and gFCD alterations in patients with DCM. Methods Structural data and resting-state functional MRI data of 35 DCM patients and 35 matched healthy controls were collected to assess their gFCD and GMV and investigate gFCD and GMV alterations in patients with DCM and their spatial pattern associations. Results In our current study, significant gFCD and GMV differences were observed in some regions of the visual system, sensorimotor cortices, and cerebellum between patients with DCM and healthy controls. In our findings, decreased gFCD was found in areas primarily located at the sensorimotor cortices, while increased gFCD was observed primarily within areas located at the visual system and cerebellum. Decreased GMV was seen in the left thalamus, bilateral supplementary motor area (SMA), and left inferior occipital cortices in patients with DCM, while increased GMV was observed in the cerebellum. Conclusion Our findings suggest that structural and functional alterations independently contributed to the neuropathology of DCM. However, longitudinal studies are still needed to further illustrate the associations between structural deficits and functional alterations underlying the onset of brain abnormalities as DCM develops.
Collapse
|
16
|
Valošek J, Bednařík P, Keřkovský M, Hluštík P, Bednařík J, Svatkova A. Quantitative MR Markers in Non-Myelopathic Spinal Cord Compression: A Narrative Review. J Clin Med 2022; 11:2301. [PMID: 35566426 PMCID: PMC9105390 DOI: 10.3390/jcm11092301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Degenerative spinal cord compression is a frequent pathological condition with increasing prevalence throughout aging. Initial non-myelopathic cervical spinal cord compression (NMDC) might progress over time into potentially irreversible degenerative cervical myelopathy (DCM). While quantitative MRI (qMRI) techniques demonstrated the ability to depict intrinsic tissue properties, longitudinal in-vivo biomarkers to identify NMDC patients who will eventually develop DCM are still missing. Thus, we aim to review the ability of qMRI techniques (such as diffusion MRI, diffusion tensor imaging (DTI), magnetization transfer (MT) imaging, and magnetic resonance spectroscopy (1H-MRS)) to serve as prognostic markers in NMDC. While DTI in NMDC patients consistently detected lower fractional anisotropy and higher mean diffusivity at compressed levels, caused by demyelination and axonal injury, MT and 1H-MRS, along with advanced and tract-specific diffusion MRI, recently revealed microstructural alterations, also rostrally pointing to Wallerian degeneration. Recent studies also disclosed a significant relationship between microstructural damage and functional deficits, as assessed by qMRI and electrophysiology, respectively. Thus, tract-specific qMRI, in combination with electrophysiology, critically extends our understanding of the underlying pathophysiology of degenerative spinal cord compression and may provide predictive markers of DCM development for accurate patient management. However, the prognostic value must be validated in longitudinal studies.
Collapse
Affiliation(s)
- Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.V.); (P.H.)
- Department of Radiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic
- Department of Biomedical Engineering, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Petr Bednařík
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark;
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Miloš Keřkovský
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (J.B.)
- Department of Radiology and Nuclear Medicine, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.V.); (P.H.)
- Department of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Bednařík
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (J.B.)
- Department of Neurology, University Hospital Brno, 625 00 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Alena Svatkova
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark;
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Boerger TF, McGinn L, Wang MC, Schmit BD, Hyngstrom AS. Degenerative cervical myelopathy delays responses to lateral balance perturbations regardless of predictability. J Neurophysiol 2022; 127:673-688. [PMID: 35080466 PMCID: PMC8897012 DOI: 10.1152/jn.00159.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to quantify balance impairments in standing in people with degenerative cervical myelopathy (PwDCM) in response to external perturbations. PwDCM have damage to their spinal cord due to degeneration of the cervical vertebral column, but little is known about balance. Balance was quantified by capturing kinetics, kinematic, and electromyographic data during standing in response to lateral waist pulls. Participants received pulls during predictable and unpredictable contexts in three stance widths at two magnitudes. In response to lateral waist pulls, PwDCM had larger center of mass excursion (P < 0.001) and delayed gluteus medius electromyography onset (P < 0.001) and peak (P < 0.001) timing. These main effects of history of myelopathy were consistent across predictability, stance width, and magnitude. A multilinear regression determined that gluteus medius peak timing + tibialis anterior peak timing most strongly predicted center of mass excursion (R2 = 0.50, P < 0.001). These data suggest that PwDCM have delays in generating voluntary and reactive motor commands, contributing to balance impairments. Future rehabilitation strategies should focus on generating rapid muscular contractions. Additionally, frontal plane postural control is regulated by the gluteus medius and the tibialis anterior, whereas other muscles (e.g. gluteus minimus, ankle invertors/evertors) not studied here may also contribute.NEW & NOTEWORTHY Frontal plane reactive postural control is impaired in persons with degenerative cervical myelopathy because of delayed muscle responses. Additionally, postural control varies across stance width, predictability, and perturbation magnitude.
Collapse
Affiliation(s)
- T F Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - L McGinn
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - M C Wang
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - A S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
18
|
Martin AR, Tetreault L, Nouri A, Curt A, Freund P, Rahimi-Movaghar V, Wilson JR, Fehlings MG, Kwon BK, Harrop JS, Davies BM, Kotter MRN, Guest JD, Aarabi B, Kurpad SN. Imaging and Electrophysiology for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 9]. Global Spine J 2022; 12:130S-146S. [PMID: 34797993 PMCID: PMC8859711 DOI: 10.1177/21925682211057484] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVE The current review aimed to describe the role of existing techniques and emerging methods of imaging and electrophysiology for the management of degenerative cervical myelopathy (DCM), a common and often progressive condition that causes spinal cord dysfunction and significant morbidity globally. METHODS A narrative review was conducted to summarize the existing literature and highlight future directions. RESULTS Anatomical magnetic resonance imaging (MRI) is well established in the literature as the key imaging tool to identify spinal cord compression, disc herniation/bulging, and inbuckling of the ligamentum flavum, thus facilitating surgical planning, while radiographs and computed tomography (CT) provide complimentary information. Electrophysiology techniques are primarily used to rule out competing diagnoses. However, signal change and measures of cord compression on conventional MRI have limited utility to characterize the degree of tissue injury, which may be helpful for diagnosis, prognostication, and repeated assessments to identify deterioration. Early translational studies of quantitative imaging and electrophysiology techniques show potential of these methods to more accurately reflect changes in spinal cord microstructure and function. CONCLUSION Currently, clinical management of DCM relies heavily on anatomical MRI, with additional contributions from radiographs, CT, and electrophysiology. Novel quantitative assessments of microstructure, perfusion, and function have the potential to transform clinical practice, but require robust validation, automation, and standardization prior to uptake.
Collapse
Affiliation(s)
- Allan R Martin
- Department of Neurological Surgery, 8789University of California Davis, Davis, CA, USA
| | - Lindsay Tetreault
- Department of Neurology, 5894New York University, Langone Health, Graduate Medical Education, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Geneva, Switzerland
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6529Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, 1479University of Maryland, Baltimore, MD, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| |
Collapse
|
19
|
Davies BM, Mowforth O, Gharooni AA, Tetreault L, Nouri A, Dhillon RS, Bednarik J, Martin AR, Young A, Takahashi H, Boerger TF, Newcombe VF, Zipser CM, Freund P, Koljonen PA, Rodrigues-Pinto R, Rahimi-Movaghar V, Wilson JR, Kurpad SN, Fehlings MG, Kwon BK, Harrop JS, Guest JD, Curt A, Kotter MRN. A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time. Global Spine J 2022; 12:78S-96S. [PMID: 35174728 PMCID: PMC8859710 DOI: 10.1177/21925682211057546] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Literature Review (Narrative). OBJECTIVE To propose a new framework, to support the investigation and understanding of the pathobiology of DCM, AO Spine RECODE-DCM research priority number 5. METHODS Degenerative cervical myelopathy is a common and disabling spinal cord disorder. In this perspective, we review key knowledge gaps between the clinical phenotype and our biological models. We then propose a reappraisal of the key driving forces behind DCM and an individual's susceptibility, including the proposal of a new framework. RESULTS Present pathobiological and mechanistic knowledge does not adequately explain the disease phenotype; why only a subset of patients with visualized cord compression show clinical myelopathy, and the amount of cord compression only weakly correlates with disability. We propose that DCM is better represented as a function of several interacting mechanical forces, such as shear, tension and compression, alongside an individual's vulnerability to spinal cord injury, influenced by factors such as age, genetics, their cardiovascular, gastrointestinal and nervous system status, and time. CONCLUSION Understanding the disease pathobiology is a fundamental research priority. We believe a framework of mechanical stress, vulnerability, and time may better represent the disease as a whole. Whilst this remains theoretical, we hope that at the very least it will inspire new avenues of research that better encapsulate the full spectrum of disease.
Collapse
Affiliation(s)
- Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Oliver Mowforth
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Aref-Ali Gharooni
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Lindsay Tetreault
- New York University, Langone Health, Graduate Medical Education, 5894Department of Neurology, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Genève, Switzerland
| | - Rana S Dhillon
- Department of Neurosurgery, 60078St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Josef Bednarik
- Department of Neurology, University Hospital Brno and Faculty of Medicine, 37748Masaryk University, Brno, Czech Republic
| | - Allan R Martin
- Department of Neurosurgery, 8789University of California Davis, Sacramento, CA, USA
| | - Adam Young
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, 12978Niigata University, Niigata, Japan
| | - Timothy F Boerger
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Virginia Fj Newcombe
- Division of Anaesthesia, Department of Medicine, 2152University of Cambridge, Cambridge, UK
| | - Carl Moritz Zipser
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, 25809The University of Hong Kong, Hong Kong, China
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, 112085Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- 89239Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6559Thomas Jefferson University, Philadelphia, PA, USA
| | - James D Guest
- Department of Neurosurgery and the Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
David G, Vallotton K, Hupp M, Curt A, Freund P, Seif M. Extent of cord pathology in the lumbosacral enlargement in non-traumatic versus traumatic spinal cord injury. J Neurotrauma 2022; 39:639-650. [PMID: 35018824 DOI: 10.1089/neu.2021.0389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study compares remote neurodegenerative changes caudal to a cervical injury in degenerative cervical myelopathy (DCM) (i.e., non-traumatic) and incomplete traumatic spinal cord injury (tSCI) patients, using MRI-based tissue area measurements and diffusion tensor imaging (DTI). Eighteen mild to moderate DCM patients with sensory impairments (mJOA score: 16.2±1.9), 14 incomplete tetraplegic tSCI patients (AIS C&D), and 20 healthy controls were recruited. All participants received DTI and T2*-weighted scans in the lumbosacral enlargement (caudal to injury) and at C2/C3 (rostral to injury). MRI readouts included DTI metrics in the white matter (WM) columns and cross-sectional WM and gray matter area. One-way ANOVA with Tukey's post-hoc comparison (p<0.05) was used to assess group differences. In the lumbosacral enlargement, compared to DCM, tSCI patients exhibited decreased fractional anisotropy in the lateral (tSCI vs. DCM, -11.9%, p=0.007) and ventral WM column (-8.0%, p=0.021), and showed trend toward lower values in the dorsal column (-8.9%, p=0.068). At C2/C3, compared to controls, fractional anisotropy was lower in both groups in the dorsal (DCM vs. controls, -7.9%, p=0.024; tSCI vs. controls, -10.0%, p=0.007) and in the lateral column (DCM: -6.2%, p=0.039; tSCI: -13.3%, p<0.001), while tSCI patients had lower fractional anisotropy than DCM patients in the lateral column (-7.6%, p=0.029). WM areas were not different between patient groups but were lower compared to controls in the lumbosacral enlargement (DCM: -16.9%, p<0.001; tSCI, -10.5%, p=0.043) and at C2/C3 (DCM: -16.0%, p<0.001; tSCI: -18.1%, p<0.001). In conclusion, mild to moderate DCM and incomplete tSCI lead to similar degree of degeneration of the dorsal and lateral columns at C2/C3, but tSCI results in more widespread white matter damage in the lumbosacral enlargement. These remote changes are likely to contribute to the patients' impairment and recovery. DTI is a sensitive tool to assess remote pathological changes in DCM and tSCI patients.
Collapse
Affiliation(s)
- Gergely David
- University of Zurich, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,University Medical Center Hamburg-Eppendorf, 37734, Department of Systems Neuroscience, Hamburg, Germany;
| | - Kevin Vallotton
- University of Zurich, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Markus Hupp
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Armin Curt
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland;
| | - Patrick Freund
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,UCL Institute of Neurology, 61554, Department of Brain Repair and Rehabilitation, London, United Kingdom of Great Britain and Northern Ireland.,UCL Institute of Neurology, 61554, Wellcome Trust Centre for Neuroimaging, London, United Kingdom of Great Britain and Northern Ireland.,Max Planck Institute for Human Cognitive and Brain Sciences, 27184, Department of Neurophysics, Leipzig, Germany;
| | - Maryam Seif
- University of Zurich, 27217, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.,Max Planck Institute for Human Cognitive and Brain Sciences, 27184, Leipzig, Department of Neurophysics, Germany;
| |
Collapse
|
21
|
Horak T, Horakova M, Svatkova A, Kadanka Z, Kudlicka P, Valosek J, Rohan T, Kerkovsky M, Vlckova E, Kadanka Z, Deelchand DK, Henry PG, Bednarik J, Bednarik P. In vivo Molecular Signatures of Cervical Spinal Cord Pathology in Degenerative Compression. J Neurotrauma 2021; 38:2999-3010. [PMID: 34428934 PMCID: PMC8917902 DOI: 10.1089/neu.2021.0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Degenerative cervical myelopathy (DCM) is a severe consequence of degenerative cervical spinal cord (CSC) compression. The non-myelopathic stage of compression (NMDC) is highly prevalent and often progresses to disabling DCM. This study aims to disclose markers of progressive neurochemical alterations in NMDC and DCM by utilizing an approach based on state-of-the-art proton magnetic resonance spectroscopy (1H-MRS). Proton-MRS data were prospectively acquired from 73 participants with CSC compression and 47 healthy controls (HCs). The MRS voxel was centered at the C2 level. Compression-affected participants were clinically categorized as NMDC and DCM, radiologically as mild (MC) or severe (SC) compression. CSC volumes and neurochemical concentrations were compared between cohorts (HC vs. NMDC vs. DCM and HC vs. MC vs. SC) with general linear models adjusted for age and height (pFWE < 0.05) and correlated to stenosis severity, electrophysiology, and myelopathy symptoms (p < 0.05). Whereas the ratio of total creatine (tCr) to total N-acetylaspartate (tNAA) increased in NMDC (+11%) and in DCM (+26%) and SC (+21%), myo-inositol/tNAA, glutamate + glutamine/tNAA, and volumes changed only in DCM (+20%, +73%, and −14%) and SC (+12%, +46%, and −8%, respectively) relative to HCs. Both tCr/tNAA and myo-inositol/tNAA correlated with compression severity and volume (−0.376 < r < −0.259). Myo-inositol/tNAA correlated with myelopathy symptoms (r = −0.670), whereas CSC volume did not. Short-echo 1H-MRS provided neurochemical signatures of CSC impairment that reflected compression severity and clinical significance. Whereas volumetry only reflected clinically manifest myelopathy (DCM), MRS detected neurochemical changes already before the onset of myelopathy symptoms.
Collapse
Affiliation(s)
- Tomas Horak
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Magda Horakova
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Alena Svatkova
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Faculty of Medicine, University of Ostrava, Czechia
| | - Zdenek Kadanka
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Petr Kudlicka
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Jan Valosek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia.,Department of Biomedical Engineering, University Hospital, Olomouc, Czechia
| | - Tomas Rohan
- Department of Radiology, University Hospital Brno, Brno, Czechia
| | - Milos Kerkovsky
- Department of Radiology, University Hospital Brno, Brno, Czechia
| | - Eva Vlckova
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Zdenek Kadanka
- Department of Neurology, University Hospital Brno, Brno, Czechia
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pierre-Gilles Henry
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Josef Bednarik
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia
| | - Petr Bednarik
- Multimodal and Functional Imaging Laboratory, Central European Institute of Technology, Brno, Czechia.,Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Vallotton K, David G, Hupp M, Pfender N, Cohen-Adad J, Fehlings MG, Samson RS, Wheeler-Kingshott CAMG, Curt A, Freund P, Seif M. Tracking White and Gray Matter Degeneration along the Spinal Cord Axis in Degenerative Cervical Myelopathy. J Neurotrauma 2021; 38:2978-2987. [PMID: 34238034 DOI: 10.1089/neu.2021.0148] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aims to determine tissue-specific neurodegeneration across the spinal cord in patients with mild-moderate degenerative cervical myelopathy (DCM). Twenty-four mild-moderate DCM and 24 healthy subjects were recruited. In patients, a T2-weighted scan was acquired at the compression site, whereas in all participants a T2*-weighted and diffusion-weighted scan was acquired at the cervical level (C2-C3) and in the lumbar enlargement (i.e., rostral and caudal to the site of compression). We quantified intramedullary signal changes, maximal canal and cord compression, white (WM) and gray matter (GM) atrophy, and microstructural indices from diffusion-weighted scans. All patients underwent clinical (modified Japanese Orthopaedic Association; mJOA) and electrophysiological assessments. Regression analysis assessed associations between magnetic resonance imaging (MRI) readouts and electrophysiological and clinical outcomes. Twenty patients were classified with mild and 4 with moderate DCM using the mJOA scale. The most frequent site of compression was at the C5-C6 level, with maximum cord compression of 38.73% ± 11.57%. Ten patients showed imaging evidence of cervical myelopathy. In the cervical cord, WM and GM atrophy and WM microstructural changes were evident, whereas in the lumbar cord only WM showed atrophy and microstructural changes. Remote cervical cord WM microstructural changes were pronounced in patients with radiological myelopathy and associated with impaired electrophysiology. Lumbar cord WM atrophy was associated with lower limb sensory impairments. In conclusion, tissue-specific neurodegeneration revealed by quantitative MRI is already apparent across the spinal cord in mild-moderate DCM before the onset of severe clinical impairments. WM microstructural changes are particularly sensitive to remote pathologically and clinically eloquent changes in DCM.
Collapse
Affiliation(s)
- Kevin Vallotton
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
| | - Gergely David
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
| | - Markus Hupp
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
| | - Nikolai Pfender
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada.,Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada.,Mila-Quebec AI Institute, Montreal, Quebec, Canada
| | - Michael G Fehlings
- Department of Surgery and Spine Program, University of Toronto and Toronto Western Hospital, Toronto, Ontario, Canada
| | - Rebecca S Samson
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, London, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, London, United Kingdom.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Armin Curt
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom.,Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Maryam Seif
- Spinal Cord Injury Center Balgrist, University of Zurich, Zurich, Switzerland.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
23
|
Valošek J, Labounek R, Horák T, Horáková M, Bednařík P, Keřkovský M, Kočica J, Rohan T, Lenglet C, Cohen-Adad J, Hluštík P, Vlčková E, Kadaňka Z, Bednařík J, Svatkova A. Diffusion magnetic resonance imaging reveals tract-specific microstructural correlates of electrophysiological impairments in non-myelopathic and myelopathic spinal cord compression. Eur J Neurol 2021; 28:3784-3797. [PMID: 34288268 PMCID: PMC8530898 DOI: 10.1111/ene.15027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Non-myelopathic degenerative cervical spinal cord compression (NMDC) frequently occurs throughout aging and may progress to potentially irreversible degenerative cervical myelopathy (DCM). Whereas standard clinical magnetic resonance imaging (MRI) and electrophysiological measures assess compression severity and neurological dysfunction, respectively, underlying microstructural deficits still have to be established in NMDC and DCM patients. The study aims to establish tract-specific diffusion MRI markers of electrophysiological deficits to predict the progression of asymptomatic NMDC to symptomatic DCM. METHODS High-resolution 3 T diffusion MRI was acquired for 103 NMDC and 21 DCM patients compared to 60 healthy controls to reveal diffusion alterations and relationships between tract-specific diffusion metrics and corresponding electrophysiological measures and compression severity. Relationship between the degree of DCM disability, assessed by the modified Japanese Orthopaedic Association scale, and tract-specific microstructural changes in DCM patients was also explored. RESULTS The study identified diffusion-derived abnormalities in the gray matter, dorsal and lateral tracts congruent with trans-synaptic degeneration and demyelination in chronic degenerative spinal cord compression with more profound alterations in DCM than NMDC. Diffusion metrics were affected in the C3-6 area as well as above the compression level at C3 with more profound rostral deficits in DCM than NMDC. Alterations in lateral motor and dorsal sensory tracts correlated with motor and sensory evoked potentials, respectively, whereas electromyography outcomes corresponded with gray matter microstructure. DCM disability corresponded with microstructure alteration in lateral columns. CONCLUSIONS Outcomes imply the necessity of high-resolution tract-specific diffusion MRI for monitoring degenerative spinal pathology in longitudinal studies.
Collapse
Affiliation(s)
- Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia.,Department of Biomedical Engineering, University Hospital, Olomouc, Czechia
| | - René Labounek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia.,Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tomáš Horák
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Magda Horáková
- Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petr Bednařík
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Miloš Keřkovský
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Radiology and Nuclear Medicine, University Hospital Brno, Brno, Czechia
| | - Jan Kočica
- Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomáš Rohan
- Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Radiology and Nuclear Medicine, University Hospital Brno, Brno, Czechia
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada.,Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada.,Mila - Quebec AI Institute, Montreal, Quebec, Canada
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia
| | - Eva Vlčková
- Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Zdeněk Kadaňka
- Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Josef Bednařík
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Neurology, University Hospital Brno, Brno, Czechia.,Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alena Svatkova
- Central European Institute of Technology, Masaryk University, Brno, Czechia.,Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Asiri A, Dimpudus F, Atcheson N, Al‐Najjar A, McMahon K, Kurniawan ND. Comparison between 2D and 3D MEDIC for human cervical spinal cord MRI at 3T. J Med Radiat Sci 2021; 68:4-12. [PMID: 32931647 PMCID: PMC7890925 DOI: 10.1002/jmrs.433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/06/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION High-resolution magnetic resonance imaging (MRI) of the cervical spinal cord is important to provide accurate diagnosis and pathological assessment of injuries. MEDIC (Multiple Echo Data Image Combination) sequences have been used in clinical MRI; however, a comparison of the performance of 2D and 3D MEDIC for cervical spinal cord imaging has not been reported. The aim of this study is to compare axial 2D and 3D MEDIC for the visualisation of the grey matter (GM) and white matter (WM) of the human cervical spinal cord. METHODS Eight healthy participants were scanned using Siemens Prismafit 3T MRI. T2*-weighted gradient spoiled 2D and 3D MEDIC sequences were acquired at 0.4 × 0.4 × 3.0 and 0.3 × 0.3 × 3.0 mm resolutions, with the acquisition times of 6 and 7 min, respectively. Quantitative analyses of the images were made based on the image signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and non-uniformity (NU). Two independent radiologists (CS and FN), each provided Likert scoring assessments of anatomical visibility of the GM and WM structures and image clarity for all samples. RESULTS Quantitative evaluation showed that 3D MEDIC provided higher SNR, higher CNR and lower NU than 2D MEDIC. However, 2D MEDIC provided better anatomical visibility for the GM, WM and CSF, and higher image clarity (lower artefacts) compared to 3D MEDIC. CONCLUSIONS 2D MEDIC provides better information for depicting the internal structures of the cervical spinal cord compared to 3D MEDIC.
Collapse
Affiliation(s)
- Abdullah Asiri
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Radiological Sciences DepartmentCollege of Applied Medical SciencesNajran UniversityNajranSaudi Arabia
| | - Franky Dimpudus
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Rumah Sakit Premier Surabaya ‐ Ramsay Sime Darby HealthcareSurabayaIndonesia
| | - Nicole Atcheson
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Aiman Al‐Najjar
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Katie McMahon
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Herston Imaging Research FacilitySchool of Clinical SciencesInstitute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
| | | |
Collapse
|
25
|
Hupp M, Pfender N, Vallotton K, Rosner J, Friedl S, Zipser CM, Sutter R, Klarhöfer M, Spirig JM, Betz M, Schubert M, Freund P, Farshad M, Curt A. The Restless Spinal Cord in Degenerative Cervical Myelopathy. AJNR Am J Neuroradiol 2021; 42:597-609. [PMID: 33541903 DOI: 10.3174/ajnr.a6958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The spinal cord is subject to a periodic, cardiac-related movement, which is increased at the level of a cervical stenosis. Increased oscillations may exert mechanical stress on spinal cord tissue causing intramedullary damage. Motion analysis thus holds promise as a biomarker related to disease progression in degenerative cervical myelopathy. Our aim was characterization of the cervical spinal cord motion in patients with degenerative cervical myelopathy. MATERIALS AND METHODS Phase-contrast MR imaging data were analyzed in 55 patients (37 men; mean age, 56.2 [SD,12.0] years; 36 multisegmental stenoses) and 18 controls (9 men, P = .368; mean age, 62.2 [SD, 6.5] years; P = .024). Parameters of interest included the displacement and motion pattern. Motion data were pooled on the segmental level for comparison between groups. RESULTS In patients, mean craniocaudal oscillations were increased manifold at any level of a cervical stenosis (eg, C5 displacement: controls [n = 18], 0.54 [SD, 0.16] mm; patients [n = 29], monosegmental stenosis [n = 10], 1.86 [SD, 0.92] mm; P < .001) and even in segments remote from the level of the stenosis (eg, C2 displacement: controls [n = 18], 0.36 [SD, 0.09] mm; patients [n = 52]; stenosis: C3, n = 21; C4, n = 11; C5, n = 18; C6, n = 2; 0.85 [SD, 0.46] mm; P < .001). Motion at C2 differed with the distance to the next stenotic segment and the number of stenotic segments. The motion pattern in most patients showed continuous spinal cord motion throughout the cardiac cycle. CONCLUSIONS Patients with degenerative cervical myelopathy show altered spinal cord motion with increased and ongoing oscillations at and also beyond the focal level of stenosis. Phase-contrast MR imaging has promise as a biomarker to reveal mechanical stress to the cord and may be applicable to predict disease progression and the impact of surgical interventions.
Collapse
Affiliation(s)
- M Hupp
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - N Pfender
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - K Vallotton
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - J Rosner
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - S Friedl
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - C M Zipser
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | | | - M Klarhöfer
- Siemens Healthcare AG (M.K.), Zurich, Switzerland
| | - J M Spirig
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Betz
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Schubert
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - P Freund
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - M Farshad
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - A Curt
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Dostál M, Keřkovský M, Staffa E, Bednařík J, Šprláková-Puková A, Mechl M. Voxelwise analysis of diffusion MRI of cervical spinal cord using tract-based spatial statistics. Magn Reson Imaging 2020; 73:23-30. [PMID: 32688050 DOI: 10.1016/j.mri.2020.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022]
Abstract
Robust voxelwise analysis using tract-based spatial statistics (TBSS) together with permutation statistical method is standardly used in analyzing diffusion tensor imaging (DTI) of brain. A similar analytical method could be useful when studying DTI of cervical spinal cord. Based on anatomical data of sixty-four healthy volunteers, white (WM) and gray matter (GM) masks were created and subsequently registered into DTI space. Using TBSS, two skeleton types were created (single line and dilated for WM as well as GM). From anatomical data, percentage rates of overlap were calculated for all skeletons in relation to WM and GM masks. Voxelwise analysis of fractional anisotropy values depending on age and sex was conducted. Correlation of fraction anisotropy values with age of subjects was also evaluated. The two WM skeleton types showed a high overlap rate with WM masks (~94%); GM skeletons showed lower rates (56% and 42%, respectively, for single line and dilated). WM and GM areas where fraction anisotropy values differ between sexes were identified (p < .05). Furthermore, using voxelwise analysis such WM voxels were identified where fraction anisotropy values differ depending on age (p < .05) and in these voxels linear dependence of fraction anisotropy and age (r = -0.57, p < .001) was confirmed by regression analysis. This dependence was not proven when using WM anatomical masks (r = -0.21, p = .10). The analytical approach presented shown to be useful for group analysis of DTI data for cervical spinal cord.
Collapse
Affiliation(s)
- Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic; Faculty of Medicine, Department of Biophysics, Masaryk University, Brno, Czech Republic
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic.
| | - Erik Staffa
- Faculty of Medicine, Department of Biophysics, Masaryk University, Brno, Czech Republic
| | - Josef Bednařík
- Department of Neurology, University Hospital Brno and Masaryk University, Czech Republic
| | - Andrea Šprláková-Puková
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
| | - Marek Mechl
- Department of Radiology and Nuclear Medicine, University Hospital Brno and Masaryk University, Czech Republic
| |
Collapse
|
27
|
Progression Prediction of Mild Cervical Spondylotic Myelopathy by Somatosensory-evoked Potentials. Spine (Phila Pa 1976) 2020; 45:E560-E567. [PMID: 31770314 DOI: 10.1097/brs.0000000000003348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective study to correlate classification of somatosensory-evoked potentials (SEPs) with symptomatic progress of patients with mild cervical spondylotic myelopathy (CSM). OBJECTIVE The aim of this study was to evaluate the usefulness of SEPs for predicting symptomatic progress of mild CSM. SUMMARY OF BACKGROUND DATA SEPs have been used for clinical diagnosis and intraoperative neuromonitoring in patients with CSM. However, the prognostic value of SEPs in predicting the progression of CSM remains unclear. METHODS A total of 200 patients with a clinical diagnosis of mild CSM were enrolled between September 2014 and February 2018. All patients received clinical assessment with the modified Japanese Orthopedic Association scale (mJOA), magnetic resonance imaging, and SEP tests in the first clinical visit and at 1-year follow-up. A classification of upper and lower limbs SEP was developed. At 1-year follow-up, patients with symptom decline >2 points in mJOA were considered progressive myelopathy cases. The relationship of progressive myelopathy and classifications of SEP was investigated. RESULTS Fifty-four of 200 cases presented with progressive myelopathy. The incidence of progressive myelopathy was 2.6%, 27.7%, 23.8%, 86.7%, and 100% in Class I, II, III, IV, and V of upper SEPs, respectively, and 18.8%, 39.4%, 42.3%, and 62.5% in Class I, II, III, and IV of lower SEPs, respectively. For the combination classification of upper and lower SEPs, the incidence of progressive myelopathy was 0%, 13.7%, 24.3%, 91.1%, and 100% in Class I, II, III, IV, and V, respectively. There was a significant correlation of the incidence of progressive myelopathy with SEP classification for the upper SEPs (r = 0.94, P < 0.01) and the combination SEPs (r = 0.95, P < 0.01). CONCLUSION The incidence of progressive degenerative myelopathy increased with the upper and combination SEP classifications. Thus, classification of SEPs could predict the clinical decline in mJOA in CSM, reflecting the probability of worsening of myelopathy. LEVEL OF EVIDENCE 4.
Collapse
|
28
|
Degenerative cervical myelopathy - update and future directions. Nat Rev Neurol 2020; 16:108-124. [PMID: 31974455 DOI: 10.1038/s41582-019-0303-0] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 11/09/2022]
Abstract
Degenerative cervical myelopathy (DCM) is the leading cause of spinal cord dysfunction in adults worldwide. DCM encompasses various acquired (age-related) and congenital pathologies related to degeneration of the cervical spinal column, including hypertrophy and/or calcification of the ligaments, intervertebral discs and osseous tissues. These pathologies narrow the spinal canal, leading to chronic spinal cord compression and disability. Owing to the ageing population, rates of DCM are increasing. Expeditious diagnosis and treatment of DCM are needed to avoid permanent disability. Over the past 10 years, advances in basic science and in translational and clinical research have improved our understanding of the pathophysiology of DCM and helped delineate evidence-based practices for diagnosis and treatment. Surgical decompression is recommended for moderate and severe DCM; the best strategy for mild myelopathy remains unclear. Next-generation quantitative microstructural MRI and neurophysiological recordings promise to enable quantification of spinal cord tissue damage and help predict clinical outcomes. Here, we provide a comprehensive, evidence-based review of DCM, including its definition, epidemiology, pathophysiology, clinical presentation, diagnosis and differential diagnosis, and non-operative and operative management. With this Review, we aim to equip physicians across broad disciplines with the knowledge necessary to make a timely diagnosis of DCM, recognize the clinical features that influence management and identify when urgent surgical intervention is warranted.
Collapse
|
29
|
Smith ZA, Weber KA, Paliwal M, Hopkins BS, Barry AJ, Cantrell D, Ganju A, Koski TR, Parrish TB, Dhaher Y. Magnetic Resonance Imaging Atlas-Based Volumetric Mapping of the Cervical Cord Gray Matter in Cervical Canal Stenosis. World Neurosurg 2019; 134:e497-e504. [PMID: 31669690 DOI: 10.1016/j.wneu.2019.10.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND White matter volume loss may be an anatomic driver in the development of clinical symptoms in cervical spondylotic myelopathy (CSM). Considerably less attention has been devoted to gray matter (GM) injury. Newly developed atlas-based mapping techniques may allow evaluation of GM cord volume alterations in CSM. METHODS There were 29 subjects evaluated: 15 patients with CSM (61.1 ± 8.7 years old) and 14 age-matched control subjects (56.1 ± 5.3 years old). All subjects underwent 3T magnetic resonance imaging of the cervical spine. Post-processing with the Spinal Cord Toolbox (v3.0) provided GM volumetric analysis. Clinical scores collected included modified Japanese Orthopaedic Association, neck and arm numeric rating scales, Nurick Scale, and Neck Disability Index. All volumes were normalized to account for anatomic variability. RESULTS Normalized mean ventral GM volume in the compression region was significantly lower in patients compared with control subjects (1.103 ± 0.21 vs. 1.35 ± 0.32, P = 0.027). Normalized mean dorsal volume in the compression region was decreased in patients compared with control subjects (0.90 ± 0.17 vs. 1.04 ± 0.15, P = 0.049). GM volumes were associated with clinical scores, including Neck Disability Index, arm numeric rating scale, modified Japanese Orthopaedic Association, and Nurick Scale scores (P = 0.022, P = 0.004, P = 0.027, and P = 0.016). CONCLUSIONS GM volume loss may be evaluated through atlas-based post-processing techniques and may correlate with clinical symptoms in CSM.
Collapse
Affiliation(s)
- Zachary A Smith
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Kenneth A Weber
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Monica Paliwal
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Benjamin S Hopkins
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Donald Cantrell
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aruna Ganju
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tyler R Koski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Todd B Parrish
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yasin Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
30
|
Seif M, David G, Huber E, Vallotton K, Curt A, Freund P. Cervical Cord Neurodegeneration in Traumatic and Non-Traumatic Spinal Cord Injury. J Neurotrauma 2019; 37:860-867. [PMID: 31544628 PMCID: PMC7071087 DOI: 10.1089/neu.2019.6694] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study aimed to compare macrostructural and microstructural neurodegenerative changes remote from a cervical spinal cord injury in traumatic spinal cord injury (tSCI) and degenerative cervical myelopathy (DCM) patients using quantitative magnetic resonance imaging (MRI). Twenty-nine tSCI patients, 20 mild/moderate DCM patients, and 22 healthy controls underwent a high-resolution MRI protocol at the cervical cord (C2/C3). High-resolution T2*-weighted and diffusion-weighted scans provided data to calculate tissue-specific cross-sectional areas of the spinal cord and tract-specific diffusion indices of cord white matter, respectively. Regression analysis determined associations between neurodegeneration and clinical impairment. tSCI patients showed more impairment in upper limb strength and manual dexterity when compared with DCM patients. While macrostructural MRI measures revealed a similar extent of remote cord atrophy at cervical level, microstructural measures (diffusion indices) were able to distinguish more pronounced tract-specific neurodegeneration in tSCI patients when compared with DCM patients. Tract-specific neurodegeneration was associated with upper limb impairment. Despite clinical differences between severely impaired tSCI compared with mildly affected DCM patient, extensive cord atrophy is present remotely from the focal spinal cord injury. Diffusion indices revealed greater tract-specific alterations in tSCI patients. Therefore, diffusion indices are more sensitive than macrostructural MRI measures as these are able to distinguish between traumatic and non-traumatic spinal cord injury. Neuroimaging biomarkers of cervical cord integrity hold potential as predictors of recovery and might be suitable biomarkers for interventional trials both in traumatic and non-traumatic SCI.
Collapse
Affiliation(s)
- Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gergely David
- Spinal Cord Injury Center, Balgrist University Hospital, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eveline Huber
- Spinal Cord Injury Center, Balgrist University Hospital, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kevin Vallotton
- Spinal Cord Injury Center, Balgrist University Hospital, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, United Kingdom.,Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, Freund P. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 2019; 15:718-731. [PMID: 31673093 DOI: 10.1038/s41582-019-0270-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Pathophysiological changes in the spinal cord white and grey matter resulting from injury can be observed with MRI techniques. These techniques provide sensitive markers of macrostructural and microstructural tissue integrity, which correlate with histological findings. Spinal cord MRI findings in traumatic spinal cord injury (tSCI) and nontraumatic spinal cord injury - the most common form of which is degenerative cervical myelopathy (DCM) - have provided important insights into the pathophysiological processes taking place not just at the focal injury site but also rostral and caudal to the spinal injury. Although tSCI and DCM have different aetiologies, they show similar degrees of spinal cord pathology remote from the injury site, suggesting the involvement of similar secondary degenerative mechanisms. Advanced quantitative MRI protocols that are sensitive to spinal cord pathology have the potential to improve diagnosis and, more importantly, predict outcomes in patients with tSCI or nontraumatic spinal cord injury. This Review describes the insights into tSCI and DCM that have been revealed by neuroimaging and outlines current activities and future directions for the field.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK. .,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK. .,Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Cadotte DW, Akbar MA, Fehlings MG, Stroman PW, Cohen-Adad J. What Has Been Learned from Magnetic Resonance Imaging Examination of the Injured Human Spinal Cord: A Canadian Perspective. J Neurotrauma 2019; 35:1942-1957. [PMID: 30074873 DOI: 10.1089/neu.2018.5903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) has transformed the way surgeons and researchers study and treat spinal cord injury. In this narrative review, we explore the historical context of imaging the human spinal cord and describe how MRI has evolved from providing the first visualization of the human spinal cord in the 1980s to a remarkable set of imaging tools today. The article focuses in particular on the role of Canadian researchers to this field. We begin by outlining the clinical context of traumatic injury to the human spinal cord and describe why current MRI standards fall short when it comes to treating this disabling condition. Parts 2 and 3 of this work explore an exciting and dramatic shift in the use of MRI technology to aid in our understanding and treatment of traumatic injury to the spinal cord. We explore the use of functional imaging (part 2) and structural imaging (part 3) and explore how these techniques have evolved, how they are used, and the challenges that we face for continued refinement and application to patients who live with the neurological and functional deficits caused by injury to the delicate spinal cord.
Collapse
Affiliation(s)
- David W Cadotte
- 1 University of Calgary Spine Program, Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary , Foothills Medical Centre, Calgary, Alberta, Canada
| | - M Ali Akbar
- 2 Department of Surgery, Division of Neurosurgery and Spinal Program, Toronto Western Hospital, University of Toronto , Toronto, Ontario, Canada
| | - Michael G Fehlings
- 2 Department of Surgery, Division of Neurosurgery and Spinal Program, Toronto Western Hospital, University of Toronto , Toronto, Ontario, Canada
| | - Patrick W Stroman
- 3 Centre for Neuroscience Studies, Queens University , Kingston, Ontario, Canada
| | - Julien Cohen-Adad
- 4 NeuroPoly Lab, Institute of Biomedical Engineering , Polytechnique Montreal, Montreal, Quebéc, Canada .,5 Functional Neuroimaging Unit, CRIUGM, Université de Montréal , Montreal, Quebéc, Canada
| |
Collapse
|
33
|
Freund P, Thompson A, Curt A, Hupp M, Weiskopf N, Grabher P, Altmann D, Friston K, Ashburner J, Ziegler G. Author response: Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. Neurology 2019; 91:985. [PMID: 30455260 DOI: 10.1212/wnl.0000000000006540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
34
|
Reynolds BB, By S, Weinberg QR, Witt AA, Newton AT, Feiler HR, Ramkorun B, Clayton DB, Couture P, Martus JE, Adams M, Wellons JC, Smith SA, Bhatia A. Quantification of DTI in the Pediatric Spinal Cord: Application to Clinical Evaluation in a Healthy Patient Population. AJNR Am J Neuroradiol 2019; 40:1236-1241. [PMID: 31196859 PMCID: PMC7048550 DOI: 10.3174/ajnr.a6104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of the study is to characterize diffusion tensor imaging indices in the developing spinal cord, evaluating differences based on age and cord region. Describing the progression of DTI indices in the pediatric cord increases our understanding of spinal cord development. MATERIALS AND METHODS A retrospective analysis was performed on DTI acquired in 121 pediatric patients (mean, 8.6 years; range, 0.3-18.0 years) at Monroe Carell Jr. Children's Hospital at Vanderbilt from 2017 to 2018. Diffusion-weighted images (15 directions; b = 750 s/mm2; slice thickness, 5 mm; in-plane resolution, 1.0 × 1.0 mm2) were acquired on a 3T scanner in the cervicothoracic and/or thoracolumbar cord. Manual whole-cord segmentation was performed. Images were masked and further segmented into cervical, upper thoracic, thoracolumbar, and conus regions. Analyses of covariance were performed for each DTI-derived index to investigate how age affects diffusion across cord regions, and 95% confidence intervals were calculated across age for each derived index and region. Post hoc testing was performed to analyze regional differences. RESULTS Analyses of covariance revealed significant correlations of age with axial diffusivity, mean diffusivity, and fractional anisotropy (all, P < .001). There were also significant differences among cord regions for axial diffusivity, radial diffusivity, mean diffusivity, and fractional anisotropy (all, P < .001). CONCLUSIONS This research demonstrates that diffusion evolves in the pediatric spinal cord during development, dependent on both cord region and the diffusion index of interest. Future research could investigate how diffusion may be affected by common pediatric spinal pathologies.
Collapse
Affiliation(s)
- B B Reynolds
- Institute of Imaging Science (B.B.R., S.B., Q.R.W., A.A.W., A.T.N., H.R.F., B.R., S.A.S., A.B.), Vanderbilt University, Nashville, Tennessee
| | - S By
- Institute of Imaging Science (B.B.R., S.B., Q.R.W., A.A.W., A.T.N., H.R.F., B.R., S.A.S., A.B.), Vanderbilt University, Nashville, Tennessee
| | - Q R Weinberg
- Institute of Imaging Science (B.B.R., S.B., Q.R.W., A.A.W., A.T.N., H.R.F., B.R., S.A.S., A.B.), Vanderbilt University, Nashville, Tennessee
| | - A A Witt
- Institute of Imaging Science (B.B.R., S.B., Q.R.W., A.A.W., A.T.N., H.R.F., B.R., S.A.S., A.B.), Vanderbilt University, Nashville, Tennessee
| | - A T Newton
- From the Department of Radiology and Radiological Sciences (A.T.N., P.C., S.A.S., A.B.).,Pediatrics (A.T.N.).,Institute of Imaging Science (B.B.R., S.B., Q.R.W., A.A.W., A.T.N., H.R.F., B.R., S.A.S., A.B.), Vanderbilt University, Nashville, Tennessee
| | - H R Feiler
- Institute of Imaging Science (B.B.R., S.B., Q.R.W., A.A.W., A.T.N., H.R.F., B.R., S.A.S., A.B.), Vanderbilt University, Nashville, Tennessee
| | - B Ramkorun
- Institute of Imaging Science (B.B.R., S.B., Q.R.W., A.A.W., A.T.N., H.R.F., B.R., S.A.S., A.B.), Vanderbilt University, Nashville, Tennessee
| | | | - P Couture
- From the Department of Radiology and Radiological Sciences (A.T.N., P.C., S.A.S., A.B.)
| | - J E Martus
- Division of Pediatric Orthopaedics (J.E.M.), Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | | | - J C Wellons
- From the Department of Radiology and Radiological Sciences (A.T.N., P.C., S.A.S., A.B.).,Department of Ophthalmology (S.A.S., J.C.W. III), Vanderbilt University Medical Center, Nashville, Tennessee
| | - S A Smith
- From the Department of Radiology and Radiological Sciences (A.T.N., P.C., S.A.S., A.B.).,Department of Biomedical Engineering (S.A.S.).,Institute of Imaging Science (B.B.R., S.B., Q.R.W., A.A.W., A.T.N., H.R.F., B.R., S.A.S., A.B.), Vanderbilt University, Nashville, Tennessee.,Department of Ophthalmology (S.A.S., J.C.W. III), Vanderbilt University Medical Center, Nashville, Tennessee
| | - A Bhatia
- From the Department of Radiology and Radiological Sciences (A.T.N., P.C., S.A.S., A.B.) .,Institute of Imaging Science (B.B.R., S.B., Q.R.W., A.A.W., A.T.N., H.R.F., B.R., S.A.S., A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
35
|
Abstract
STUDY DESIGN Case-control. OBJECTIVE The aim of this study was to understand the role of high-resolution magnetic resonance (MR) in identifying regional cord volume loss in cervical spondylotic myelopathy (CSM). SUMMARY OF BACKGROUND DATA Preliminary studies suggest that compression of the ventral region of the cord may contribute disproportionately to CSM symptomology; however, tract-specific data are lacking in the CSM population. The current study is the first to use 3T MR imaging (MRI) images of CSM patients to determine specific volume loss at the level of detail of individual descending white matter tracts. METHODS Twelve patients with CSM and 14 age-matched were enrolled prospectively and underwent 3-Tesla MRI of the cervical spine. Using the high-resolution images of the spinal cord, straightening and alignment with a template was performed and specific spinal cord tract volumes were measured using Spinal Cord Tool-box version 3.0.7. Modified Japanese orthopedic association (mJOA) and Nurick disability scores were collected in a prospective manner and were analyzed in relation to descending spinal tract volumes. RESULTS Having CSM was predicted by anterior/posterior diameter, eccentricity of the cord [odds ratio (OR) 0.000000621, P = 0.004], ventral reticulospinal tract volume (OR 1.167, P = 0.063), lateral corticospinal tract volume (OR 1.034, P = 0.046), rubrospinal tract volume (OR 1.072, P = 0.011), and ventrolateral reticulospinal tract volume (OR 1.474, P = 0.005) on single variable logistic regression. Single variable linear regression showed decreases in anterior/posterior spinal cord diameter (P = 0.022), ventral reticulospinal tract volumes (P = 0.007), and ventrolateral reticulospinal tract volumes (P = 0.017) to significantly predict worsening mJOA scores. Similarly, decreases in ventral reticulospinal tract volumes significantly predicted increasing Nurick scores (P = 0.039). CONCLUSION High-resolution 3T MRI can detect tract-specific volume loss in descending spinal cord tracts in CSM patients. Anterior/posterior spinal cord diameter, ventral reticulospinal tract, ventrolateral reticulospinal tract, lateral corticospinal tract, and rubrospinal tract volume loss are associated with CSM symptoms. LEVEL OF EVIDENCE 2.
Collapse
|
36
|
Huber E, David G, Thompson AJ, Weiskopf N, Mohammadi S, Freund P. Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury. Neurology 2018; 90:e1510-e1522. [PMID: 29592888 PMCID: PMC5921039 DOI: 10.1212/wnl.0000000000005361] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/24/2018] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To investigate whether gray matter pathology above the level of injury, alongside white matter changes, also contributes to sensorimotor impairments after spinal cord injury. METHODS A 3T MRI protocol was acquired in 17 tetraplegic patients and 21 controls. A sagittal T2-weighted sequence was used to characterize lesion severity. At the C2-3 level, a high-resolution T2*-weighted sequence was used to assess cross-sectional areas of gray and white matter, including their subcompartments; a diffusion-weighted sequence was used to compute voxel-based diffusion indices. Regression models determined associations between lesion severity and tissue-specific neurodegeneration and associations between the latter with neurophysiologic and clinical outcome. RESULTS Neurodegeneration was evident within the dorsal and ventral horns and white matter above the level of injury. Tract-specific neurodegeneration was associated with prolonged conduction of appropriate electrophysiologic recordings. Dorsal horn atrophy was associated with sensory outcome, while ventral horn atrophy was associated with motor outcome. White matter integrity of dorsal columns and corticospinal tracts was associated with daily-life independence. CONCLUSION Our results suggest that, next to anterograde and retrograde degeneration of white matter tracts, neuronal circuits within the spinal cord far above the level of injury undergo transsynaptic neurodegeneration, resulting in specific gray matter changes. Such improved understanding of tissue-specific cord pathology offers potential biomarkers with more efficient targeting and monitoring of neuroregenerative (i.e., white matter) and neuroprotective (i.e., gray matter) agents.
Collapse
Affiliation(s)
- Eveline Huber
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Gergely David
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Alan J Thompson
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Nikolaus Weiskopf
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Siawoosh Mohammadi
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Freund
- From the Spinal Cord Injury Center (E.H., G.D., P.F.), Balgrist University Hospital, Zurich, Switzerland; Department of Brain Repair and Rehabilitation (A.J.T., P.F.) and Wellcome Trust Centre for Neuroimaging (N.W., S.M., P.F.), UCL Institute of Neurology, University College London, UK; Department of Neurophysics (N.W., P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Systems Neuroscience (S.M.), University Medical Center Hamburg-Eppendorf, Germany.
| |
Collapse
|
37
|
Martin AR, De Leener B, Cohen-Adad J, Kalsi-Ryan S, Cadotte DW, Wilson JR, Tetreault L, Nouri A, Crawley A, Mikulis DJ, Ginsberg H, Massicotte EM, Fehlings MG. Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS One 2018; 13:e0195733. [PMID: 29664964 PMCID: PMC5903654 DOI: 10.1371/journal.pone.0195733] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 03/28/2018] [Indexed: 12/04/2022] Open
Abstract
Background Patients with mild degenerative cervical myelopathy (DCM) are often managed non-operatively, and surgery is recommended if neurological progression occurs. However, detection of progression is often subjective. Quantitative MRI (qMRI) directly measures spinal cord (SC) tissue changes, detecting axonal injury, demyelination, and atrophy. This longitudinal study compared multiparametric qMRI with clinical measures of progression in non-operative DCM patients. Methods 26 DCM patients were followed. Clinical data included modified Japanese Orthopedic Association (mJOA) and additional assessments. 3T qMRI data included cross sectional area, diffusion fractional anisotropy, magnetization transfer ratio, and T2*-weighted white/grey matter signal ratio, extracted from the compressed SC and above/below. Progression was defined as 1) patients’ subjective impression, 2) 2-point mJOA decrease, 3) ≥3 clinical measures worsening ≥5%, 4) increased compression on MRI, or 5) ≥1 of 10 qMRI measures or composite score worsening (p < 0.004, corrected). Results Follow-up (13.5 ± 4.9 months) included mJOA in all 26 patients, MRI in 25, and clinical/qMRI in 22. 42.3% reported subjective worsening, compared with mJOA (11.5%), MRI (20%), comprehensive assessments (54.6%), and qMRI (68.2%). Relative to subjective worsening, qMRI showed 100% sensitivity and 53.3% specificity compared with comprehensive assessments (75%, 60%), mJOA (27.3%, 100%), and MRI (18.2%, 81.3%). A decision-making algorithm incorporating qMRI identified progression and recommended surgery for 11 subjects (42.3%). Conclusions Quantitative MRI shows high sensitivity to detect myelopathic progression. Our results suggest that neuroplasticity and behavioural adaptation may mask progressive SC tissue injury. qMRI appears to be a useful method to confirm subtle myelopathic progression in individual patients, representing an advance toward clinical translation of qMRI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aria Nouri
- University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Hori M, Hagiwara A, Fukunaga I, Ueda R, Kamiya K, Suzuki Y, Liu W, Murata K, Takamura T, Hamasaki N, Irie R, Kamagata K, Kumamaru KK, Suzuki M, Aoki S. Application of Quantitative Microstructural MR Imaging with Atlas-based Analysis for the Spinal Cord in Cervical Spondylotic Myelopathy. Sci Rep 2018; 8:5213. [PMID: 29581458 PMCID: PMC5979956 DOI: 10.1038/s41598-018-23527-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
Mapping of MR fiber g-ratio, which is the ratio of the diameter of the axon to the diameter of the neuronal fiber, is introduced in this article. We investigated the MR fiber g-ratio, the axon volume fraction (AVF) and the myelin volume fraction (MVF) to evaluate microstructural changes in the spinal cord in patients with cervical spondylotic myelopathy (CSM) in vivo, using atlas-based analysis. We used diffusion MRI data acquired with a new simultaneous multi-slice accelerated readout-segmented echo planar imaging sequence for diffusion analysis for AVF calculation and magnetization transfer saturation imaging for MVF calculation. The AVFs of fasciculus gracilis in the affected side spinal cord, fasciculus cuneatus and lateral corticospinal tracts (LSCT) in the affected and unaffected side spinal cord were significantly lower (P = 0.019, 0.001, 0019, 0.000, and 0.002, respectively) than those of normal controls. No difference was found in the MVFs. The fiber g-ratio of LSCT was significantly lower (P = 0.040) in the affected side spinal cords than in the normal controls. The pathological microstructural changes in the spinal cord in patients with CSM, presumably partial axonal degenerations with preserved myelin. This technique has the potential to be a clinical biomarker in patients with CSM in vivo.
Collapse
Affiliation(s)
- Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Health Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kouhei Kamiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | | | - Tomohiro Takamura
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nozomi Hamasaki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryusuke Irie
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Michimasa Suzuki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
PAM50: Unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage 2018; 165:170-179. [DOI: 10.1016/j.neuroimage.2017.10.041] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 11/17/2022] Open
|
40
|
Martin AR, Tadokoro N, Tetreault L, Arocho-Quinones EV, Budde MD, Kurpad SN, Fehlings MG. Imaging Evaluation of Degenerative Cervical Myelopathy. Neurosurg Clin N Am 2018; 29:33-45. [DOI: 10.1016/j.nec.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
David G, Freund P, Mohammadi S. The efficiency of retrospective artifact correction methods in improving the statistical power of between-group differences in spinal cord DTI. Neuroimage 2017; 158:296-307. [PMID: 28669912 PMCID: PMC6168644 DOI: 10.1016/j.neuroimage.2017.06.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 11/10/2022] Open
Abstract
Diffusion tensor imaging (DTI) is a promising approach for investigating the white matter microstructure of the spinal cord. However, it suffers from severe susceptibility, physiological, and instrumental artifacts present in the cord. Retrospective correction techniques are popular approaches to reduce these artifacts, because they are widely applicable and do not increase scan time. In this paper, we present a novel outlier rejection approach (reliability masking) which is designed to supplement existing correction approaches by excluding irreversibly corrupted and thus unreliable data points from the DTI index maps. Then, we investigate how chains of retrospective correction techniques including (i) registration, (ii) registration and robust fitting, and (iii) registration, robust fitting, and reliability masking affect the statistical power of a previously reported finding of lower fractional anisotropy values in the posterior column and lateral corticospinal tracts in cervical spondylotic myelopathy (CSM) patients. While established post-processing steps had small effect on the statistical power of the clinical finding (slice-wise registration: −0.5%, robust fitting: +0.6%), adding reliability masking to the post-processing chain increased it by 4.7%. Interestingly, reliability masking and registration affected the t-score metric differently: while the gain in statistical power due to reliability masking was mainly driven by decreased variability in both groups, registration slightly increased variability. In conclusion, reliability masking is particularly attractive for neuroscience and clinical research studies, as it increases statistical power by reducing group variability and thus provides a cost-efficient alternative to increasing the group size. A novel outlier rejection technique (reliability masking) is introduced. Standard artifact correction has little effect on the statistical power of between-group differences. Reliability masking improves the statistical power of between-group differences. This improvement is driven by decreased group-level variability.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center Balgrist, Balgrist University Hospital, Zurich, Switzerland; Department of Systems Neuroscience, Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, Balgrist University Hospital, Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom; Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, London, United Kingdom; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, Medical Center Hamburg-Eppendorf, Hamburg, Germany; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
42
|
Grabher P, Mohammadi S, David G, Freund P. Neurodegeneration in the Spinal Ventral Horn Prior to Motor Impairment in Cervical Spondylotic Myelopathy. J Neurotrauma 2017; 34:2329-2334. [PMID: 28462691 DOI: 10.1089/neu.2017.4980] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Remote gray matter pathology has been suggested rostral to the compression site in cervical spondylotic myelopathy (CSM). We therefore assessed neurodegeneration in the gray matter ventral and dorsal horns. Twenty patients with CSM and 18 healthy subjects underwent a high-resolution structural and diffusion magnetic resonance imaging protocol at vertebra C2/C3. Patients received comprehensive clinical assessments. T2*-weighted data provided cross-sectional area measurements of gray matter ventral and dorsal horns to identify atrophy. At the identical location, mean diffusivity (MD) and fractional anisotropy (FA) determined the microstructural integrity. Finally, the relationships between neurodegeneration occurring in the gray and white matter and clinical impairment were investigated. Patients suffered from mild-to-moderate CSM with mainly sensory impairment. In the ventral horns, cross-sectional area was not reduced (p = 0.863) but MD was increased (p = 0.045). The magnitude of MD changes within the ventral horn was associated with white matter diffusivity changes (MD: p = 0.013; FA: p = 0.028) within the lateral corticospinal tract. In contrast, dorsal horn cross-sectional area was reduced by 16.0% (p < 0.001) without alterations in diffusivity indices, compared with controls. No associations between the magnitude of ventral and dorsal horn neurodegeneration and clinical impairment were evident. Focal cord gray matter pathology is evident remote to the compression site in vivo in CSM patients. Microstructural changes in the ventral horns (i.e., motoneurons) related to corticospinal tract integrity in the absence of atrophy and marked motor impairment. Dorsal horn atrophy corresponded to main clinical representation of sensory impairment. Thus, neuroimaging biomarkers of cord gray matter integrity reveal focal neurodegeneration prior to marked clinical impairment and thus could serve as predictors of ensuing impairment in CSM patients.
Collapse
Affiliation(s)
- Patrick Grabher
- 1 Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich , Zurich, Switzerland
| | - Siawoosh Mohammadi
- 2 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,3 Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London , London, United Kingdom .,4 Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig, Germany
| | - Gergely David
- 1 Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich , Zurich, Switzerland
| | - Patrick Freund
- 1 Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich , Zurich, Switzerland .,3 Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London , London, United Kingdom .,4 Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig, Germany .,5 Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London , London, United Kingdom
| |
Collapse
|
43
|
Jutzeler CR, Ulrich A, Huber B, Rosner J, Kramer JL, Curt A. Improved Diagnosis of Cervical Spondylotic Myelopathy with Contact Heat Evoked Potentials. J Neurotrauma 2017; 34:2045-2053. [DOI: 10.1089/neu.2016.4891] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Anett Ulrich
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Barbara Huber
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - John L.K. Kramer
- ICORD, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| |
Collapse
|
44
|
Martin AR, De Leener B, Cohen-Adad J, Cadotte DW, Kalsi-Ryan S, Lange SF, Tetreault L, Nouri A, Crawley A, Mikulis DJ, Ginsberg H, Fehlings MG. Clinically Feasible Microstructural MRI to Quantify Cervical Spinal Cord Tissue Injury Using DTI, MT, and T2*-Weighted Imaging: Assessment of Normative Data and Reliability. AJNR Am J Neuroradiol 2017; 38:1257-1265. [PMID: 28428213 DOI: 10.3174/ajnr.a5163] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/28/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE DTI, magnetization transfer, T2*-weighted imaging, and cross-sectional area can quantify aspects of spinal cord microstructure. However, clinical adoption remains elusive due to complex acquisitions, cumbersome analysis, limited reliability, and wide ranges of normal values. We propose a simple multiparametric protocol with automated analysis and report normative data, analysis of confounding variables, and reliability. MATERIALS AND METHODS Forty healthy subjects underwent T2WI, DTI, magnetization transfer, and T2*WI at 3T in <35 minutes using standard hardware and pulse sequences. Cross-sectional area, fractional anisotropy, magnetization transfer ratio, and T2*WI WM/GM signal intensity ratio were calculated. Relationships between MR imaging metrics and age, sex, height, weight, cervical cord length, and rostrocaudal level were analyzed. Test-retest coefficient of variation measured reliability in 24 DTI, 17 magnetization transfer, and 16 T2*WI datasets. DTI with and without cardiac triggering was compared in 10 subjects. RESULTS T2*WI WM/GM showed lower intersubject coefficient of variation (3.5%) compared with magnetization transfer ratio (5.8%), fractional anisotropy (6.0%), and cross-sectional area (12.2%). Linear correction of cross-sectional area with cervical cord length, fractional anisotropy with age, and magnetization transfer ratio with age and height led to decreased coefficients of variation (4.8%, 5.4%, and 10.2%, respectively). Acceptable reliability was achieved for all metrics/levels (test-retest coefficient of variation < 5%), with T2*WI WM/GM comparing favorably with fractional anisotropy and magnetization transfer ratio. DTI with and without cardiac triggering showed no significant differences for fractional anisotropy and test-retest coefficient of variation. CONCLUSIONS Reliable multiparametric assessment of spinal cord microstructure is possible by using clinically suitable methods. These results establish normalization procedures and pave the way for clinical studies, with the potential for improving diagnostics, objectively monitoring disease progression, and predicting outcomes in spinal pathologies.
Collapse
Affiliation(s)
- A R Martin
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - B De Leener
- Polytechnique Montreal (B.D.L., J.C.-A.), Montréal, Quebec, Canada
| | - J Cohen-Adad
- Polytechnique Montreal (B.D.L., J.C.-A.), Montréal, Quebec, Canada
- Functional Neuroimaging Unit (J.C.-A.), Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - D W Cadotte
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - S Kalsi-Ryan
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - S F Lange
- University of Groningen (S.F.L.), Groningen, the Netherlands
| | - L Tetreault
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - A Nouri
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - A Crawley
- Department of Medical Imaging (A.C., D.J.M.), University of Toronto and the University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - D J Mikulis
- Department of Medical Imaging (A.C., D.J.M.), University of Toronto and the University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - H Ginsberg
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - M G Fehlings
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| |
Collapse
|
45
|
Martin AR, De Leener B, Cohen-Adad J, Cadotte DW, Kalsi-Ryan S, Lange SF, Tetreault L, Nouri A, Crawley A, Mikulis DJ, Ginsberg H, Fehlings MG. A Novel MRI Biomarker of Spinal Cord White Matter Injury: T2*-Weighted White Matter to Gray Matter Signal Intensity Ratio. AJNR Am J Neuroradiol 2017; 38:1266-1273. [PMID: 28428212 DOI: 10.3174/ajnr.a5162] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/29/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE T2*-weighted imaging provides sharp contrast between spinal cord GM and WM, allowing their segmentation and cross-sectional area measurement. Injured WM demonstrates T2*WI hyperintensity but requires normalization for quantitative use. We introduce T2*WI WM/GM signal-intensity ratio and compare it against cross-sectional area, the DTI metric fractional anisotropy, and magnetization transfer ratio in degenerative cervical myelopathy. MATERIALS AND METHODS Fifty-eight patients with degenerative cervical myelopathy and 40 healthy subjects underwent 3T MR imaging, covering C1-C7. Metrics were automatically extracted at maximally compressed and uncompressed rostral/caudal levels. Normalized metrics were compared with t tests, area under the curve, and logistic regression. Relationships with clinical measures were analyzed by using Pearson correlation and multiple linear regression. RESULTS The maximally compressed level cross-sectional area demonstrated superior differences (P = 1 × 10-13), diagnostic accuracy (area under the curve = 0.890), and univariate correlation with the modified Japanese Orthopedic Association score (0.66). T2*WI WM/GM showed strong differences (rostral: P = 8 × 10-7; maximally compressed level: P = 1 × 10-11; caudal: P = 1 × 10-4), correlations (modified Japanese Orthopedic Association score; rostral: -0.52; maximally compressed level: -0.59; caudal: -0.36), and diagnostic accuracy (rostral: 0.775; maximally compressed level: 0.860; caudal: 0.721), outperforming fractional anisotropy and magnetization transfer ratio in most comparisons and cross-sectional area at rostral/caudal levels. Rostral T2*WI WM/GM showed the strongest correlations with focal motor (-0.45) and sensory (-0.49) deficits and was the strongest independent predictor of the modified Japanese Orthopedic Association score (P = .01) and diagnosis (P = .02) in multivariate models (R2 = 0.59, P = 8 × 10-13; area under the curve = 0.954, respectively). CONCLUSIONS T2*WI WM/GM shows promise as a novel biomarker of WM injury. It detects damage in compressed and uncompressed regions and contributes substantially to multivariate models for diagnosis and correlation with impairment. Our multiparametric approach overcomes limitations of individual measures, having the potential to improve diagnostics, monitor progression, and predict outcomes.
Collapse
Affiliation(s)
- A R Martin
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - B De Leener
- Polytechnique Montreal (B.D.L., J.C.-A.), Montreal, Quebec, Canada
| | - J Cohen-Adad
- Polytechnique Montreal (B.D.L., J.C.-A.), Montreal, Quebec, Canada.,Functional Neuroimaging Unit (J.C.-A.), Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | - D W Cadotte
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - S Kalsi-Ryan
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - S F Lange
- University of Groningen (S.F.L.), Groningen, the Netherlands
| | - L Tetreault
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - A Nouri
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - A Crawley
- Department of Medical Imaging (A.C., D.J.M.), University of Toronto and the University Health Network, Toronto, Ontario, Canada
| | - D J Mikulis
- Department of Medical Imaging (A.C., D.J.M.), University of Toronto and the University Health Network, Toronto, Ontario, Canada
| | - H Ginsberg
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| | - M G Fehlings
- From the Division of Neurosurgery, Department of Surgery (A.R.M., D.W.C., S.K.-R., L.T., A.N., H.G., M.G.F.)
| |
Collapse
|
46
|
De Leener B, Mangeat G, Dupont S, Martin AR, Callot V, Stikov N, Fehlings MG, Cohen-Adad J. Topologically preserving straightening of spinal cord MRI. J Magn Reson Imaging 2017; 46:1209-1219. [PMID: 28130805 DOI: 10.1002/jmri.25622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/18/2016] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To propose a robust and accurate method for straightening magnetic resonance (MR) images of the spinal cord, based on spinal cord segmentation, that preserves spinal cord topology and that works for any MRI contrast, in a context of spinal cord template-based analysis. MATERIALS AND METHODS The spinal cord curvature was computed using an iterative Non-Uniform Rational B-Spline (NURBS) approximation. Forward and inverse deformation fields for straightening were computed by solving analytically the straightening equations for each image voxel. Computational speed-up was accomplished by solving all voxel equation systems as one single system. Straightening accuracy (mean and maximum distance from straight line), computational time, and robustness to spinal cord length was evaluated using the proposed and the standard straightening method (label-based spline deformation) on 3T T2 - and T1 -weighted images from 57 healthy subjects and 33 patients with spinal cord compression due to degenerative cervical myelopathy (DCM). RESULTS The proposed algorithm was more accurate, more robust, and faster than the standard method (mean distance = 0.80 vs. 0.83 mm, maximum distance = 1.49 vs. 1.78 mm, time = 71 vs. 174 sec for the healthy population and mean distance = 0.65 vs. 0.68 mm, maximum distance = 1.28 vs. 1.55 mm, time = 32 vs. 60 sec for the DCM population). CONCLUSION A novel image straightening method that enables template-based analysis of quantitative spinal cord MRI data is introduced. This algorithm works for any MRI contrast and was validated on healthy and patient populations. The presented method is implemented in the Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1209-1219.
Collapse
Affiliation(s)
- Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Gabriel Mangeat
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Sara Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France.,AP-HM, Hopital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
47
|
De Leener B, Lévy S, Dupont SM, Fonov VS, Stikov N, Louis Collins D, Callot V, Cohen-Adad J. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 2016; 145:24-43. [PMID: 27720818 DOI: 10.1016/j.neuroimage.2016.10.009] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/17/2022] Open
Abstract
For the past 25 years, the field of neuroimaging has witnessed the development of several software packages for processing multi-parametric magnetic resonance imaging (mpMRI) to study the brain. These software packages are now routinely used by researchers and clinicians, and have contributed to important breakthroughs for the understanding of brain anatomy and function. However, no software package exists to process mpMRI data of the spinal cord. Despite the numerous clinical needs for such advanced mpMRI protocols (multiple sclerosis, spinal cord injury, cervical spondylotic myelopathy, etc.), researchers have been developing specific tools that, while necessary, do not provide an integrative framework that is compatible with most usages and that is capable of reaching the community at large. This hinders cross-validation and the possibility to perform multi-center studies. In this study we introduce the Spinal Cord Toolbox (SCT), a comprehensive software dedicated to the processing of spinal cord MRI data. SCT builds on previously-validated methods and includes state-of-the-art MRI templates and atlases of the spinal cord, algorithms to segment and register new data to the templates, and motion correction methods for diffusion and functional time series. SCT is tailored towards standardization and automation of the processing pipeline, versatility, modularity, and it follows guidelines of software development and distribution. Preliminary applications of SCT cover a variety of studies, from cross-sectional area measures in large databases of patients, to the precise quantification of mpMRI metrics in specific spinal pathways. We anticipate that SCT will bring together the spinal cord neuroimaging community by establishing standard templates and analysis procedures.
Collapse
Affiliation(s)
- Benjamin De Leener
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Simon Lévy
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
| | - Sara M Dupont
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Vladimir S Fonov
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Virginie Callot
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France; AP-HM, Hopital de la Timone, Pôle d'imagerie médicale, CEMEREM, Marseille, France
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|