1
|
Watson A, Syme H, Brown M. Somatic GNAQ, CTNNB1, and CACNA1C Mutations in Cat Aldosterone-Secreting Tumors. Hypertension 2024; 81:2489-2500. [PMID: 39429164 DOI: 10.1161/hypertensionaha.124.23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Primary aldosteronism (PA) is a common cause of human hypertension. Somatic mutations in KCNJ5, CACNA1D, ATP1A1, and ATP2B3 are found in at least 80% of aldosterone-producing adenomas, which cause unilateral PA in humans. Somatic mutations have been identified infrequently in 7 other genes; few of these were known to play a role in aldosterone secretion before the discovery of their mutations. Interrogating somatic mutations in the domestic cat, in which spontaneous PA is also known to occur, might improve the understanding of normal adrenal gland physiology and the pathophysiology of PA. METHODS DNA and RNA extracted from tissue from 13 cats with unilateral aldosterone-secreting tumors, including 8 carcinomas and 5 adenomas, underwent whole genome sequencing, targeted Sanger sequencing, and RNA sequencing. Single-nucleotide substitution variants were filtered to select those with a predicted deleterious effect on protein function and a suspected role in aldosterone secretion. RESULTS Probable functional somatic single-nucleotide polymorphisms (n=8) were found in 3 adenomas and 2 carcinomas. Mutations with predicted significant effects were identified in 2 genes also mutated in human PA; GNAQ and CTNNB1, and in a residue of CACNA1C analogous to a common CACNA1D mutation. In contrast to humans, CACNA1C expression was much greater than CACNA1D in both feline tumor and nontumor adrenal tissue. No mutations were identified in KCNJ5, CACNA1D, ATP1A1, or ATP2B3. CONCLUSIONS Similar mutations were identified in cats to those found in humans. It is, therefore, likely that both species have shared underlying selection pressures for mutations that increase aldosterone secretion.
Collapse
Affiliation(s)
- Alice Watson
- Clinical Science and Services, Royal Veterinary College, London, United Kingdom (A.W., H.S.)
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, United Kingdom (A.W., M.B.)
| | - Harriet Syme
- Clinical Science and Services, Royal Veterinary College, London, United Kingdom (A.W., H.S.)
| | - Morris Brown
- Clinical Pharmacology and Precision Medicine, Queen Mary University of London, United Kingdom (A.W., M.B.)
| |
Collapse
|
2
|
van Rooyen D, Bandulik S, Coon G, Laukemper M, Kumar-Sinha C, Udager AM, Lee C, Wachtel H, Cohen DL, Luther JM, Giordano T, Turcu A, Warth R, Rainey WE, Rege J. Somatic Mutations in MCOLN3 in Aldosterone-Producing Adenomas cause Primary Aldosteronism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619295. [PMID: 39484451 PMCID: PMC11526969 DOI: 10.1101/2024.10.20.619295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Primary aldosteronism is characterized by renin-independent hyperaldosteronism that originates from aldosterone-producing lesions in the adrenal glands. Under physiological conditions, aldosterone synthase ( CYP11B2 ) expression is confined to the adrenal zona glomerulosa where it catalyzes the final reaction yielding aldosterone. The regulation of CYP11B2 transcription depends on the control of cellular membrane potential and cytosolic calcium activity. In primary aldosteronism, aldosterone-producing adenomas (APAs) are characterized by disrupted regulation of CYP11B2 expression resulting in autonomous biosynthesis of aldosterone. These lesions often harbor aldosterone-driver somatic mutations in genes encoding ion transporters/channels/pumps that increase cytosolic calcium activity causing increased CYP11B2 expression and aldosterone biosynthesis. We investigated APAs devoid of known somatic mutations and detected a missense mutation and a deletion-insertion variant in MCOLN3 which encodes for mucolipin-3 (TRPML3) - a highly conserved inwardly-rectifying, cation-permeable channel. These MCOLN3 mutations were identified in three APAs derived from male patients with primary aldosteronism: p. Y391D and p.N411_V412delinsI. Both mutations are located near the ion pore and selectivity filter of TRPML3. This is the first report of disease-causing MCOLN3 mutations in humans. Functional studies suggest MCOLN3 Y391D might directly or indirectly via membrane depolarization alter calcium influx of transfected adrenocortical cells, resulting in increased CYP11B2 transcription and aldosterone production. This study implicates mutated MCOLN3 as a driver of aldosterone excess in primary aldosteronism. Significance Statement Primary aldosteronism is a common but under-diagnosed endocrine disease that contributes to global hypertension burden and cardiovascular mortality and morbidity. Hyperaldosteronism in primary aldosteronism is mainly caused by adrenal lesions harboring somatic mutations that disrupt intracellular calcium levels and consequently aldosterone synthase expression and aldosterone production. Majority of these mutations have been identified in genes encoding ion transporters/channels/pumps. Herein, we report the first disease-causing somatic mutations in human MCOLN3 in aldosterone-producing adenomas (APAs) devoid of known mutations. In vitro investigations showed the MCOLN3 variant (p.Y391D) caused an influx of cytosolic calcium in adrenocortical cells and the subsequent increase in aldosterone synthase and aldosterone biosynthesis.
Collapse
|
3
|
Xu F, Cai W, Liu B, Qiu Z, Zhang X. Natural L-type calcium channels antagonists from Chinese medicine. Chin Med 2024; 19:72. [PMID: 38773596 PMCID: PMC11107034 DOI: 10.1186/s13020-024-00944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
L-type calcium channels (LTCCs), the largest subfamily of voltage-gated calcium channels (VGCCs), are the main channels for Ca2+ influx during extracellular excitation. LTCCs are widely present in excitable cells, especially cardiac and cardiovascular smooth muscle cells, and participate in various Ca2+-dependent processes. LTCCs have been considered as worthy drug target for cardiovascular, neurological and psychological diseases for decades. Natural products from Traditional Chinese medicine (TCM) have shown the potential as new drugs for the treatment of LTCCs related diseases. In this review, the basic structure, function of LTCCs, and the related human diseases caused by structural or functional abnormalities of LTCCs, and the natural LTCCs antagonist and their potential usages were summarized.
Collapse
Affiliation(s)
- Fangfang Xu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Wanna Cai
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Bo Liu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhenwen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Xiaoqi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
4
|
Dinh HA, Volkert M, Secener AK, Scholl UI, Stölting G. T- and L-Type Calcium Channels Maintain Calcium Oscillations in the Murine Zona Glomerulosa. Hypertension 2024; 81:811-822. [PMID: 38507511 PMCID: PMC10956685 DOI: 10.1161/hypertensionaha.123.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The zona glomerulosa of the adrenal gland is responsible for the synthesis and release of the mineralocorticoid aldosterone. This steroid hormone regulates salt reabsorption in the kidney and blood pressure. The most important stimuli of aldosterone synthesis are the serum concentrations of angiotensin II and potassium. In response to these stimuli, voltage and intracellular calcium levels in the zona glomerulosa oscillate, providing the signal for aldosterone synthesis. It was proposed that the voltage-gated T-type calcium channel CaV3.2 is necessary for the generation of these oscillations. However, Cacna1h knock-out mice have normal plasma aldosterone levels, suggesting additional calcium entry pathways. METHODS We used a combination of calcium imaging, patch clamp, and RNA sequencing to investigate calcium influx pathways in the murine zona glomerulosa. RESULTS Cacna1h-/- glomerulosa cells still showed calcium oscillations with similar concentrations as wild-type mice. No calcium channels or transporters were upregulated to compensate for the loss of CaV3.2. The calcium oscillations observed were instead dependent on L-type voltage-gated calcium channels. Furthermore, we found that L-type channels can also partially compensate for an acute inhibition of CaV3.2 in wild-type mice. Only inhibition of both T- and L-type calcium channels abolished the increase of intracellular calcium caused by angiotensin II in wild-type. CONCLUSIONS Our study demonstrates that T-type calcium channels are not strictly required to maintain glomerulosa calcium oscillations and aldosterone production. Pharmacological inhibition of T-type channels alone will likely not significantly impact aldosterone production in the long term.
Collapse
Affiliation(s)
- Hoang An Dinh
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
- Charité – Universitätsmedizin Berlin, Department of Translational Physiology, Germany (H.A.D.)
| | - Marina Volkert
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
| | - Ali Kerim Secener
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (A.K.S.)
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany (A.K.S.)
| | - Ute I. Scholl
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany (U.I.S.)
| | - Gabriel Stölting
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Functional Genomics, Germany (H.A.D., M.V., A.K.S., U.I.S., G.S.)
| |
Collapse
|
5
|
Azizan EAB, Drake WM, Brown MJ. Primary aldosteronism: molecular medicine meets public health. Nat Rev Nephrol 2023; 19:788-806. [PMID: 37612380 PMCID: PMC7615304 DOI: 10.1038/s41581-023-00753-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Primary aldosteronism is the most common single cause of hypertension and is potentially curable when only one adrenal gland is the culprit. The importance of primary aldosteronism to public health derives from its high prevalence but huge under-diagnosis (estimated to be <1% of all affected individuals), despite the consequences of poor blood pressure control by conventional therapy and enhanced cardiovascular risk. This state of affairs is attributable to the fact that the tools used for diagnosis or treatment are still those that originated in the 1970-1990s. Conversely, molecular discoveries have transformed our understanding of adrenal physiology and pathology. Many molecules and processes associated with constant adrenocortical renewal and interzonal metamorphosis also feature in aldosterone-producing adenomas and aldosterone-producing micronodules. The adrenal gland has one of the most significant rates of non-silent somatic mutations, with frequent selection of those driving autonomous aldosterone production, and distinct clinical presentations and outcomes for most genotypes. The disappearance of aldosterone synthesis and cells from most of the adult human zona glomerulosa is the likely driver of the mutational success that causes aldosterone-producing adenomas, but insights into the pathways that lead to constitutive aldosterone production and cell survival may open up opportunities for novel therapies.
Collapse
Affiliation(s)
- Elena A B Azizan
- Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM), Kuala Lumpur, Malaysia
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - William M Drake
- St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Morris J Brown
- Endocrine Hypertension, Department of Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
6
|
Stölting G, Dinh HA, Volkert M, Hellmig N, Schewe J, Hennicke L, Seidel E, Oberacher H, Zhang J, Lifton RP, Urban I, Long M, Rivalan M, Nottoli T, Scholl UI. Isradipine therapy in Cacna1dIle772Met/+ mice ameliorates primary aldosteronism and neurologic abnormalities. JCI Insight 2023; 8:e162468. [PMID: 37698934 PMCID: PMC10619505 DOI: 10.1172/jci.insight.162468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Somatic gain-of-function mutations in the L-type calcium channel CaV1.3 (CACNA1D gene) cause adrenal aldosterone-producing adenomas and micronodules. De novo germline mutations are found in a syndrome of primary aldosteronism, seizures, and neurologic abnormalities (PASNA) as well as in autism spectrum disorder. Using CRISPR/Cas9, we here generated mice with a Cacna1d gain-of-function mutation found in both adenomas and PASNA syndrome (Cacna1dIle772Met/+). These mice show reduced body weight and increased mortality from weaning to approximately 100 days of age. Male mice do not breed, likely due to neuromotor impairment, and the offspring of female mice die perinatally, likely due to lack of maternal care. Mice generated by in vitro fertilization showed elevated intracellular calcium in the aldosterone-producing zona glomerulosa, an elevated aldosterone/renin ratio, and persistently elevated serum aldosterone on a high-salt diet as signs of primary aldosteronism. Anesthesia with ketamine and xylazine induced tonic-clonic seizures. Neurologic abnormalities included hyperlocomotion, impaired performance in the rotarod test, impaired nest building, and slight changes in social behavior. Intracellular calcium in the zona glomerulosa, aldosterone levels, and rotarod performance responded to treatment with the calcium channel blocker isradipine, with implications for the therapy of patients with aldosterone-producing lesions and with PASNA syndrome.
Collapse
Affiliation(s)
- Gabriel Stölting
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hoang An Dinh
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marina Volkert
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nicole Hellmig
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Schewe
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Luise Hennicke
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Eric Seidel
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Junhui Zhang
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard P. Lifton
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York, USA
| | | | - Melissa Long
- Animal Behavior Phenotyping Facility (ABPF), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marion Rivalan
- Animal Behavior Phenotyping Facility (ABPF), Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Timothy Nottoli
- Section of Comparative Medicine, Yale Genome Editing Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ute I. Scholl
- Center of Functional Genomics, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Filippini L, Ortner NJ, Kaserer T, Striessnig J. Ca v 1.3-selective inhibitors of voltage-gated L-type Ca 2+ channels: Fact or (still) fiction? Br J Pharmacol 2023; 180:1289-1303. [PMID: 36788128 PMCID: PMC10953394 DOI: 10.1111/bph.16060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/17/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Voltage-gated L-type Ca2+ -channels (LTCCs) are the target of Ca2+ -channel blockers (CCBs), which are in clinical use for the evidence-based treatment of hypertension and angina. Their cardiovascular effects are largely mediated by the Cav 1.2-subtype. However, based on our current understanding of their physiological and pathophysiological roles, Cav 1.3 LTCCs also appear as attractive drug targets for the therapy of various diseases, including treatment-resistant hypertension, spasticity after spinal cord injury and neuroprotection in Parkinson's disease. Since CCBs inhibit both Cav 1.2 and Cav 1.3, Cav 1.3-selective inhibitors would be valuable tools to validate the therapeutic potential of Cav 1.3 channel inhibition in preclinical models. Despite a number of publications reporting the discovery of Cav 1.3-selective blockers, their selectivity remains controversial. We conclude that at present no pharmacological tools exist that are suitable to confirm or refute a role of Cav 1.3 channels in cellular responses. We also suggest essential criteria for a small molecule to be considered Cav 1.3-selective.
Collapse
Affiliation(s)
- Ludovica Filippini
- Department of Pharmacology and Toxicology and Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
- Department of Pharmaceutical Chemistry, Institute of PharmacyUniversity of InnsbruckInnsbruckAustria
| | - Nadine J. Ortner
- Department of Pharmacology and Toxicology and Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of PharmacyUniversity of InnsbruckInnsbruckAustria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology and Center of Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
8
|
Abstract
Tightly controlled Ca2+ influx through voltage-gated Ca2+ channels (Cavs) is indispensable for proper physiological function. Thus, it is not surprising that Cav loss and/or gain of function have been implicated in human pathology. Deficiency of Cav1.3 L-type Ca2+ channels (LTCCs) causes deafness and bradycardia, whereas several genetic variants of CACNA1D, the gene encoding the pore-forming α1 subunit of Cav1.3, have been linked to various disease phenotypes, such as hypertension, congenital hypoglycemia, or autism. These variants include not only common polymorphisms associated with an increased disease risk, but also rare de novo missense variants conferring high risk. This review provides a concise summary of disease-associated CACNA1D variants, whereas the main focus lies on de novo germline variants found in individuals with a neurodevelopmental disorder of variable severity. Electrophysiological recordings revealed activity-enhancing gating changes induced by these de novo variants, and tools to predict their pathogenicity and to study the resulting pathophysiological consequences will be discussed. Despite the low number of affected patients, potential phenotype-genotype correlations and factors that could impact the severity of symptoms will be covered. Since increased channel activity is assumed as the disease-underlying mechanism, pharmacological inhibition could be a treatment option. In the absence of Cav1.3-selective blockers, dihydropyridine LTCC inhibitors clinically approved for the treatment of hypertension may be used for personalized off-label trials. Findings from in vitro studies and treatment attempts in some of the patients seem promising as outlined. Taken together, due to advances in diagnostic sequencing techniques the number of reported CACNA1D variants in human diseases is constantly rising. Evidence from in silico, in vitro, and in vivo disease models can help to predict the pathogenic potential of such variants and to guide diagnosis and treatment in the clinical practice when confronted with patients harboring CACNA1D variants.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Clinical Translationality of KCNJ5 Mutation in Aldosterone Producing Adenoma. Int J Mol Sci 2022; 23:ijms23169042. [PMID: 36012306 PMCID: PMC9409469 DOI: 10.3390/ijms23169042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Hypertension due to primary aldosteronism poses a risk of severe cardiovascular complications compared to essential hypertension. The discovery of the KCNJ5 somatic mutation in aldosteroene producing adenoma (APA) in 2011 and the development of specific CYP11B2 antibodies in 2012 have greatly advanced our understanding of the pathophysiology of primary aldosteronism. In particular, the presence of CYP11B2-positive aldosterone-producing micronodules (APMs) in the adrenal glands of normotensive individuals and the presence of renin-independent aldosterone excess in normotensive subjects demonstrated the continuum of the pathogenesis of PA. Furthermore, among the aldosterone driver mutations which incur excessive aldosterone secretion, KCNJ5 was a major somatic mutation in APA, while CACNA1D is a leading somatic mutation in APMs and idiopathic hyperaldosteronism (IHA), suggesting a distinctive pathogenesis between APA and IHA. Although the functional detail of APMs has not been still uncovered, its impact on the pathogenesis of PA is gradually being revealed. In this review, we summarize the integrated findings regarding APA, APM or diffuse hyperplasia defined by novel CYP11B2, and aldosterone driver mutations. Following this, we discuss the clinical implications of KCNJ5 mutations to support better cardiovascular outcomes of primary aldosteronism.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Renin-independent aldosterone production from one or both affected adrenal(s), a condition known as primary aldosteronism (PA), is a common cause of secondary hypertension. In this review, we aimed to summarize recent findings regarding pathophysiology of bilateral forms of PA, including sporadic bilateral hyperaldosteronism (BHA) and rare familial hyperaldosteronism. RECENT FINDINGS The presence of subcapsular aldosterone synthase (CYP11B2)-expressing aldosterone-producing micronodules, also called aldosterone-producing cell clusters, appears to be a common histologic feature of adrenals with sporadic BHA. Aldosterone-producing micronodules frequently harbor aldosterone-driver somatic mutations. Other potential factors leading to sporadic BHA include rare disease-predisposing germline variants, circulating angiotensin II type 1 receptor autoantibodies, and paracrine activation of aldosterone production by adrenal mast cells. The application of whole exome sequencing has also identified new genes that cause inherited familial forms of PA. SUMMARY Research over the past 10 years has significantly improved our understanding of the molecular pathogenesis of bilateral PA. Based on the improved understanding of BHA, future studies should have the ability to develop more personalized treatment options and advanced diagnostic tools for patients with PA.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Motomura N, Yamazaki Y, Gao X, Tezuka Y, Omata K, Ono Y, Morimoto R, Satoh F, Nakamura Y, Shim J, Choi MH, Ito A, Sasano H. Visualization of calcium channel blockers in human adrenal tissues and their possible effects on steroidogenesis in the patients with primary aldosteronism (PA). J Steroid Biochem Mol Biol 2022; 218:106062. [PMID: 35031428 DOI: 10.1016/j.jsbmb.2022.106062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/28/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022]
Abstract
Voltage-gated L-type calcium channel (CaV) isoforms are well known to play pivotal tissue-specific roles not only in vasoconstriction but also in adrenocortical steroidogenesis including aldosterone biosynthesis. Alpha-1C subunit calcium channel (CC) (CaV1.2) is the specific target of anti-hypertensive CC blockers (CCBs) and its Alpha-1D subunit (CaV1.3) regulates depolarization of cell membrane in aldosterone-producing cells. Direct effects of CCBs on aldosterone biosynthesis were previously postulated but their intra-adrenal distribution and effects on steroid production in primary aldosteronism (PA) patients have remained virtually unknown. In this study, frozen tissue specimens constituting tumor, adjacent adrenal gland and peri-adrenal adipose tissues of nine aldosterone-producing adenoma (APA) cases were examined for visualization of amlodipine and aldosterone themselves using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Liquid chromatography-mass spectrometry (LC-MS) analysis was also performed to quantify amlodipine and 17 adrenal steroids in those cases above and compared the findings with immunohistochemical analysis of steroidogenic enzymes and calcium channels (CaV1.2 and CaV1.3). Effects of amlodipine on mRNA level of aldosterone biosynthetic enzymes were also explored using human adrenocortical carcinoma cell line (H295R). Amlodipine-specific peak (m/z 407.1 > 318.1) was detected only in amlodipine treated cases. Accumulation of amlodipine was marked in adrenal cortex compared to peri-adrenal adipose tissues but not significantly different between APA tumors and adjacent adrenal glands, which was subsequently confirmed by LC-MS quantification. Intra-adrenal distribution of amlodipine was generally consistent with that of CCs. In addition, quantitative steroid profiles using LC-MS and in vitro study demonstrated the lower HSD3B activities in amlodipine treated cases. Immunoreactivity of CaV1.2 and HSD3B2 were also correlated. We report the first demonstration of specific visualization of amlodipine in human adrenal tissues by MALDI-MSI. Marked amlodipine accumulation in the adrenal glands suggested its direct effects on steroidogenesis in PA patients, possibly targeting on CaV1.2 and suppressing HSD3B activity.
Collapse
Affiliation(s)
- Naoki Motomura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jaeyoon Shim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Akihiro Ito
- Department of Urology, Tohoku University School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Jiang MC, Birch DV, Heckman CJ, Tysseling VM. The Involvement of Ca V1.3 Channels in Prolonged Root Reflexes and Its Potential as a Therapeutic Target in Spinal Cord Injury. Front Neural Circuits 2021; 15:642111. [PMID: 33867945 PMCID: PMC8044857 DOI: 10.3389/fncir.2021.642111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) results in not only the loss of voluntary muscle control, but also in the presence of involuntary movement or spasms. These spasms post-SCI involve hyperexcitability in the spinal motor system. Hyperactive motor commands post SCI result from enhanced excitatory postsynaptic potentials (EPSPs) and persistent inward currents in voltage-gated L-type calcium channels (LTCCs), which are reflected in evoked root reflexes with different timings. To further understand the contributions of these cellular mechanisms and to explore the involvement of LTCC subtypes in SCI-induced hyperexcitability, we measured root reflexes with ventral root recordings and motoneuron activities with intracellular recordings in an in vitro preparation using a mouse model of chronic SCI (cSCI). Specifically, we explored the effects of 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione (CPT), a selective negative allosteric modulator of CaV1.3 LTCCs. Our results suggest a hyperexcitability in the spinal motor system in these SCI mice. Bath application of CPT displayed slow onset but dose-dependent inhibition of the root reflexes with the strongest effect on LLRs. However, the inhibitory effect of CPT is less potent in cSCI mice than in acute SCI (aSCI) mice, suggesting changes either in composition of CaV1.3 or other cellular mechanisms in cSCI mice. For intracellular recordings, the intrinsic plateau potentials, was observed in more motoneurons in cSCI mice than in aSCI mice. CPT inhibited the plateau potentials and reduced motoneuron firings evoked by intracellular current injection. These results suggest that the LLR is an important target and that CPT has potential in the therapy of SCI-induced muscle spasms.
Collapse
Affiliation(s)
- Mingchen C Jiang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Derin V Birch
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Vicki M Tysseling
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension. The hallmark of PA is adrenal production of aldosterone under suppressed renin conditions. PA subtypes include adrenal unilateral and bilateral hyperaldosteronism. Considerable progress has been made in defining the role for somatic gene mutations in aldosterone-producing adenomas (APA) as the primary cause of unilateral PA. This includes the use of next-generation sequencing (NGS) to define recurrent somatic mutations in APA that disrupt calcium signaling, increase aldosterone synthase (CYP11B2) expression, and aldosterone production. The use of CYP11B2 immunohistochemistry on adrenal glands from normal subjects, patients with unilateral and bilateral PA has allowed the identification of CYP11B2-positive cell foci, termed aldosterone-producing cell clusters (APCC). APCC lie beneath the adrenal capsule and like APA, many APCC harbor somatic gene mutations known to increase aldosterone production. These findings suggest that APCC may play a role in pathologic progression of PA. Herein, we provide an update on recent research directed at characterizing APCC and also discuss the unanswered questions related to the role of APCC in PA.
Collapse
Affiliation(s)
- Jung Soo Lim
- Department of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju 26426, South Korea
| | - William E Rainey
- Department of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Wang F, Ma X, Tong A, Zhang Y, Wen J, Li Y. The Effects of Different Calcium Channel Blockers on Aldosterone-Producing Adenoma Cells. Front Endocrinol (Lausanne) 2020; 11:260. [PMID: 32411097 PMCID: PMC7198795 DOI: 10.3389/fendo.2020.00260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aim of this study is to examine the effects of different kinds of calcium channel blockers (CCBs) on primary aldosterone-producing adenoma (APA) mainly with KCNJ5 mutations. Primary cultured APA cells were treated with different calcium channel blockers (L/T type CCB benidipine, T-type CCB mibefradil and L-type CCB nifedipine), and aldosterone secretagogues with or without nifedipine. Aldosterone level, aldosterone synthase (CYP11B2) mRNA expression and cell proliferation were detected. The results showed that all three CCBs significantly inhibit aldosterone secretion and CYP11B2 mRNA expression. Benidipine was relatively more effective than mibefradil or nifedipine. In addition, only mibefradil marginally inhibited cell proliferation. Adrenocorticotropin (ACTH) had a much stronger effect in stimulating aldosterone secretion and promoting cell proliferation from APA's than angiotensin II (ATII). Different from ACTH and ATII, potassium had no effect. Nifedipine inhibited the basal and ACTH-, ATII-elicited aldosterone secretion. Twenty three of 24 APAs had somatic KCNJ5 mutation. In conclusion, benidipine, mibefradil and nifedipine significantly inhibit aldosterone secretion in primary cultured APA cells.
Collapse
Affiliation(s)
- Fen Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosen Ma
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Tong
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Anli Tong
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Wen
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission of the People's Republic of China, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Tevosian SG, Fox SC, Ghayee HK. Molecular Mechanisms of Primary Aldosteronism. Endocrinol Metab (Seoul) 2019; 34:355-366. [PMID: 31884735 PMCID: PMC6935778 DOI: 10.3803/enm.2019.34.4.355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
Primary aldosteronism (PA) results from excess production of mineralocorticoid hormone aldosterone by the adrenal cortex. It is normally caused either by unilateral aldosterone-producing adenoma (APA) or by bilateral aldosterone excess as a result of bilateral adrenal hyperplasia. PA is the most common cause of secondary hypertension and associated morbidity and mortality. While most cases of PA are sporadic, an important insight into this debilitating disease has been derived through investigating the familial forms of the disease that affect only a minor fraction of PA patients. The advent of gene expression profiling has shed light on the genes and intracellular signaling pathways that may play a role in the pathogenesis of these tumors. The genetic basis for several forms of familial PA has been uncovered in recent years although the list is likely to expand. Recently, the work from several laboratories provided evidence for the involvement of mammalian target of rapamycin pathway and inflammatory cytokines in APAs; however, their mechanism of action in tumor development and pathophysiology remains to be understood.
Collapse
Affiliation(s)
- Sergei G Tevosian
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Shawna C Fox
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hans K Ghayee
- Division of Endocrinology, Department of Medicine, Malcom Randall VA Medical Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Nanba K, Omata K, Gomez-Sanchez CE, Stratakis CA, Demidowich AP, Suzuki M, Thompson LDR, Cohen DL, Luther JM, Gellert L, Vaidya A, Barletta JA, Else T, Giordano TJ, Tomlins SA, Rainey WE. Genetic Characteristics of Aldosterone-Producing Adenomas in Blacks. Hypertension 2019; 73:885-892. [PMID: 30739536 DOI: 10.1161/hypertensionaha.118.12070] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Somatic mutations have been identified in aldosterone-producing adenomas (APAs) in genes that include KCNJ5, ATP1A1, ATP2B3, and CACNA1D. Based on independent studies, there appears to be racial differences in the prevalence of somatic KCNJ5 mutations, particularly between East Asians and Europeans. Despite the high cardiovascular disease mortality of blacks, there have been no studies focusing on somatic mutations in APAs in this population. In the present study, we investigated genetic characteristics of APAs in blacks using a CYP11B2 (aldosterone synthase) immunohistochemistry-guided next-generation sequencing approach. The adrenal glands with adrenocortical adenomas from 79 black patients with primary aldosteronism were studied. Seventy-three tumors from 69 adrenal glands were confirmed to be APAs by CYP11B2 immunohistochemistry. Sixty-five of 73 APAs (89%) had somatic mutations in aldosterone-driver genes. Somatic CACNA1D mutations were the most prevalent genetic alteration (42%), followed by KCNJ5 (34%), ATP1A1 (8%), and ATP2B3 mutations (4%). CACNA1D mutations were more often observed in APAs from males than those from females (55% versus 29%, P=0.033), whereas KCNJ5 mutations were more prevalent in APAs from females compared with those from males (57% versus 13%, P<0.001). No somatic mutations in aldosterone-driver genes were identified in tumors without CYP11B2 expression. In conclusion, 89% of APAs in blacks harbor aldosterone-driving mutations, and unlike Europeans and East Asians, the most frequently mutated aldosterone-driver gene was CACNA1D. Determination of racial differences in the prevalence of aldosterone-driver gene mutations may facilitate the development of personalized medicines for patients with primary aldosteronism.
Collapse
Affiliation(s)
- Kazutaka Nanba
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), University of Michigan, Ann Arbor
| | - Kei Omata
- Department of Pathology (K.O., T.J.G., S.A.T.), University of Michigan, Ann Arbor
| | - Celso E Gomez-Sanchez
- Endocrine and Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS (C.E.G.-S.).,Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Constantine A Stratakis
- Section of Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (C.A.S., A.P.D., M.S.)
| | - Andrew P Demidowich
- Section of Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (C.A.S., A.P.D., M.S.)
| | - Mari Suzuki
- Section of Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (C.A.S., A.P.D., M.S.)
| | - Lester D R Thompson
- Department of Pathology, Woodland Hills Medical Center, Southern California Permanente Medical Group (L.D.R.T.)
| | - Debbie L Cohen
- Renal, Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.L.C.)
| | - James M Luther
- Division of Clinical Pharmacology (J.M.L.), Vanderbilt University Medical Center, Nashville, TN
| | - Lan Gellert
- Department of Pathology, Microbiology and Immunology (L.G.), Vanderbilt University Medical Center, Nashville, TN
| | - Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Justine A Barletta
- Department of Pathology (J.A.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tobias Else
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine (T.E., T.J.G., W.E.R.), University of Michigan, Ann Arbor
| | - Thomas J Giordano
- Department of Pathology (K.O., T.J.G., S.A.T.), University of Michigan, Ann Arbor.,Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine (T.E., T.J.G., W.E.R.), University of Michigan, Ann Arbor.,Rogel Cancer Center (T.J.G., S.A.T.), University of Michigan, Ann Arbor
| | - Scott A Tomlins
- Department of Pathology (K.O., T.J.G., S.A.T.), University of Michigan, Ann Arbor.,Rogel Cancer Center (T.J.G., S.A.T.), University of Michigan, Ann Arbor.,Department of Urology (S.A.T.), University of Michigan, Ann Arbor.,Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor
| | - William E Rainey
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), University of Michigan, Ann Arbor.,Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine (T.E., T.J.G., W.E.R.), University of Michigan, Ann Arbor
| |
Collapse
|
17
|
Maniero C, Scudieri P, Haris Shaikh L, Zhao W, Gurnell M, Galietta LJ, Brown MJ. ANO4 (Anoctamin 4) Is a Novel Marker of Zona Glomerulosa That Regulates Stimulated Aldosterone Secretion. Hypertension 2019; 74:1152-1159. [PMID: 31564164 PMCID: PMC6791498 DOI: 10.1161/hypertensionaha.119.13287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/14/2019] [Accepted: 08/25/2019] [Indexed: 11/16/2022]
Abstract
Microarray comparison of the transcriptomes of human adrenal zona glomerulosa (ZG) and zona fasciculata found several ZG-specific genes that negatively regulate aldosterone secretion. The third and most significantly upregulated ZG-gene (19.9-fold compared with zona fasciculata, P=6.58×10-24) was ANO4, a putative Ca2+-activated chloride channel. We have investigated the role of ANO4 in human adrenal, and whether it functions like the prototype anoctamin, ANO1. We evaluated ANO4 mRNA and protein expression in human adrenal by qPCR and immunohistochemistry, compared the effects of ANO4 and ANO1 overexpression on baseline and stimulated aldosterone secretion and cell proliferation in H295R cells, and analyzed ANO4 activity as a Ca2+-activated chloride channel in comparison with other anoctamins by a fluorescence-based functional assay. The expression of ANO4 in ZG was confirmed by qPCR as 23.21-fold upregulated compared with zona fasciculata (n=18; P=4.93×10-7). Immunohistochemistry found cytoplasmic, ZG-selective expression of ANO4 (anoctamin 4) protein. ANO4 overexpression in H295R cells attenuated calcium-mediated aldosterone secretion and cell proliferation in comparison to controls. The latter effects were in a different direction to those of ANO1. The functional assay showed that, in contrast to ANO1, ANO4 expression results in low levels of calcium-dependent anion transport. In conclusion, ANO4 is one of the most highly expressed genes in ZG. It attenuates stimulated aldosterone secretion and cell proliferation. Although belonging to a family of Ca2+-activated chloride channels, it does not generate significant plasma membrane chloride channel activity.
Collapse
Affiliation(s)
- Carmela Maniero
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom Clinical Pharmacology Unit (C.M., L.H.S., M.J.B.)
| | - Paolo Scudieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy (P.S., L.J.V.G.)
| | - Lalarukh Haris Shaikh
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom Clinical Pharmacology Unit (C.M., L.H.S., M.J.B.)
| | - Wanfeng Zhao
- Human Research Tissue Bank, Cambridge University, Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, United Kingdom (W.Z.)
| | - Mark Gurnell
- Metabolic Research Laboratories-Wellcome Trust-MRC Institute of Metabolic Science (M.G.)
| | - Luis J.V. Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy (P.S., L.J.V.G.)
| | - Morris J. Brown
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom Clinical Pharmacology Unit (C.M., L.H.S., M.J.B.)
| |
Collapse
|
18
|
Omata K, Satoh F, Morimoto R, Ito S, Yamazaki Y, Nakamura Y, Anand SK, Guo Z, Stowasser M, Sasano H, Tomlins SA, Rainey WE. Cellular and Genetic Causes of Idiopathic Hyperaldosteronism. Hypertension 2019; 72:874-880. [PMID: 30354720 DOI: 10.1161/hypertensionaha.118.11086] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Primary aldosteronism affects ≈5% to 10% of hypertensive patients and has unilateral and bilateral forms. Most unilateral primary aldosteronism is caused by computed tomography-detectable aldosterone-producing adenomas, which express CYP11B2 (aldosterone synthase) and frequently harbor somatic mutations in aldosterone-regulating genes. The cause of the most common bilateral form of primary aldosteronism, idiopathic hyperaldosteronism (IHA), is believed to be diffuse hyperplasia of aldosterone-producing cells within the adrenal cortex. Herein, a multi-institution cohort of 15 IHA adrenals was examined with CYP11B2 immunohistochemistry and next-generation sequencing. CYP11B2 immunoreactivity in adrenal glomerulosa harboring non-nodular hyperplasia was only observed in 4/15 IHA adrenals suggesting that hyperplasia of CYP11B2-expressing cells may not be the major cause of IHA. However, the adrenal cortex of all IHA adrenals harbored at least 1 CYP11B2-positive aldosterone-producing cell cluster (APCC) or micro-aldosterone-producing adenomas. The number of APCCs per case (and individual APCC area) in IHA adrenals was significantly larger than in normotensive controls. Next-generation sequencing of DNA from 99 IHA APCCs demonstrated somatic mutations in genes encoding the L-type calcium voltage-gated channel subunit α 1-D ( CACNA1D, n=57; 58%) and potassium voltage-gated channel subfamily J-5 ( KCNJ5, n=1; 1%). These data suggest that IHA may result from not only hyperplasia but also the accumulation or enlargement of computed tomography-undetectable APCC harboring somatic aldosterone-driver gene mutations. The high prevalence of mutations in the CACNA1D L-type calcium channel provides a potential actionable therapeutic target that could complement mineralocorticoid blockade and inhibit aldosterone overproduction in some IHA patients.
Collapse
Affiliation(s)
- Kei Omata
- From the Department of Pathology (K.O., S.K.A., S.A.T.), University of Michigan, Ann Arbor.,Division of Nephrology, Endocrinology and Vascular Medicine (K.O., F.S., R.M., S.I.), Tohoku University, Miyagi, Japan.,Division of Clinical Hypertension, Endocrinology and Metabolism (K.O., F.S.), Tohoku University, Miyagi, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine (K.O., F.S., R.M., S.I.), Tohoku University, Miyagi, Japan.,Division of Clinical Hypertension, Endocrinology and Metabolism (K.O., F.S.), Tohoku University, Miyagi, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine (K.O., F.S., R.M., S.I.), Tohoku University, Miyagi, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine (K.O., F.S., R.M., S.I.), Tohoku University, Miyagi, Japan
| | - Yuto Yamazaki
- Department of Pathology (Y.Y., Y.N., H.S.), Tohoku University, Miyagi, Japan
| | - Yasuhiro Nakamura
- Department of Pathology (Y.Y., Y.N., H.S.), Tohoku University, Miyagi, Japan.,Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Miyagi, Japan (Y.N.)
| | - Sharath K Anand
- From the Department of Pathology (K.O., S.K.A., S.A.T.), University of Michigan, Ann Arbor
| | - Zeng Guo
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia (Z.G., M.S.)
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia (Z.G., M.S.)
| | - Hironobu Sasano
- Department of Pathology (Y.Y., Y.N., H.S.), Tohoku University, Miyagi, Japan
| | - Scott A Tomlins
- From the Department of Pathology (K.O., S.K.A., S.A.T.), University of Michigan, Ann Arbor.,Michigan Center for Translational Pathology (S.A.T.), Department of Urology (S.A.T.), Comprehensive Cancer Center (S.A.T.), University of Michigan, Ann Arbor
| | - William E Rainey
- Department of Molecular and Integrative Physiology (W.E.R.), and Department of Medicine (W.E.R.), University of Michigan, Ann Arbor
| |
Collapse
|
19
|
Nussinovitch I. Ca2+ Channels in Anterior Pituitary Somatotrophs: A Therapeutic Perspective. Endocrinology 2018; 159:4043-4055. [PMID: 30395240 DOI: 10.1210/en.2018-00743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/26/2018] [Indexed: 01/18/2023]
Abstract
Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) plays a key role in GH secretion. In this review, we summarize the current state of knowledge regarding the physiology and molecular machinery of VGCCs in pituitary somatotrophs. We next discuss the possible involvement of Ca2+ channelopathies in pituitary disease and the potential use of Ca2+ channel blockers to treat pituitary disease. Various types of VGCCs exist in pituitary cells. However, because L-type Ca2+ channels (LTCCs) contribute the major component to Ca2+ influx in somatotrophs, lactotrophs, and corticotrophs, we focused on these channels. An increasing number of studies in recent years have linked genetic missense mutations in LTCCs to diseases of the human cardiovascular, nervous, and endocrine systems. These disease-associated genetic mutations occur at homologous functional positions (activation gates) in LTCCs. Thus, it is plausible that similar homologous missense mutations in pituitary LTCCs can cause abnormal hormone secretion and underlying pituitary disorders. The existence of LTCCs in pituitary cells opens questions about their sensitivity to dihydropyridines, a group of selective LTCC blockers. The dihydropyridine sensitivity of pituitary cells, as with any other excitable cell, depends primarily on two parameters: the pattern of their electrical activity and the dihydropyridine sensitivity of their LTCC isoforms. These two parameters are discussed in detail in relation to somatotrophs. These discussions are also relevant to lactotrophs and corticotrophs. High dihydropyridine sensitivity may facilitate their use as drugs to treat pituitary oversecretion disorders such as acromegaly, hyperprolactinemia, and Cushing disease.
Collapse
Affiliation(s)
- Itzhak Nussinovitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
20
|
Vaidya A, Mulatero P, Baudrand R, Adler GK. The Expanding Spectrum of Primary Aldosteronism: Implications for Diagnosis, Pathogenesis, and Treatment. Endocr Rev 2018; 39:1057-1088. [PMID: 30124805 PMCID: PMC6260247 DOI: 10.1210/er.2018-00139] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Primary aldosteronism is characterized by aldosterone secretion that is independent of renin and angiotensin II and sodium status. The deleterious effects of primary aldosteronism are mediated by excessive activation of the mineralocorticoid receptor that results in the well-known consequences of volume expansion, hypertension, hypokalemia, and metabolic alkalosis, but it also increases the risk for cardiovascular and kidney disease, as well as death. For decades, the approaches to defining, diagnosing, and treating primary aldosteronism have been relatively constant and generally focused on detecting and treating the more severe presentations of the disease. However, emerging evidence suggests that the prevalence of primary aldosteronism is much greater than previously recognized, and that milder and nonclassical forms of renin-independent aldosterone secretion that impart heightened cardiovascular risk may be common. Public health efforts to prevent aldosterone-mediated end-organ disease will require improved capabilities to diagnose all forms of primary aldosteronism while optimizing the treatment approaches such that the excess risk for cardiovascular and kidney disease is adequately mitigated. In this review, we present a physiologic approach to considering the diagnosis, pathogenesis, and treatment of primary aldosteronism. We review evidence suggesting that primary aldosteronism manifests across a wide spectrum of severity, ranging from mild to overt, that correlates with cardiovascular risk. Furthermore, we review emerging evidence from genetic studies that begin to provide a theoretical explanation for the pathogenesis of primary aldosteronism and a link to its phenotypic severity spectrum and prevalence. Finally, we review human studies that provide insights into the optimal approach toward the treatment of primary aldosteronism.
Collapse
Affiliation(s)
- Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Rene Baudrand
- Program for Adrenal Disorders and Hypertension, Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gail K Adler
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Funder JW. Idiopathic Hyperaldosteronism. Hypertension 2018; 72:839-840. [PMID: 30354730 DOI: 10.1161/hypertensionaha.118.11174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- John W Funder
- From the Hudson Institute of Medical Research and Monash University, Victoria, Australia
| |
Collapse
|
22
|
Nanba K, Omata K, Else T, Beck PCC, Nanba AT, Turcu AF, Miller BS, Giordano TJ, Tomlins SA, Rainey WE. Targeted Molecular Characterization of Aldosterone-Producing Adenomas in White Americans. J Clin Endocrinol Metab 2018; 103:3869-3876. [PMID: 30085035 PMCID: PMC6179168 DOI: 10.1210/jc.2018-01004] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023]
Abstract
CONTEXT Somatic mutations have been identified in more than half of aldosterone-producing adenomas (APAs) through mutation hotspot sequencing. The underlying pathogenesis of inappropriate aldosterone synthesis in the remaining population is still unknown. OBJECTIVE To investigate the prevalence and spectrum of somatic mutations in APAs using an aldosterone synthase (CYP11B2) immunohistochemistry (IHC)‒guided next-generation sequencing (NGS) approach. METHODS Formalin-fixed paraffin-embedded adrenal tissue from white American patients with primary aldosteronism who underwent adrenalectomy at the University of Michigan was used. Genomic DNA was isolated from 75 APAs (identified by CYP11B2 IHC). NGS was performed to identify somatic mutations by sequencing the entire coding region of a panel of genes mutated in APAs. RESULTS Somatic mutations were identified in 66 of 75 APAs (88%). Of the APAs with somatic mutations, six were smaller than coexisting CYP11B2-negative adrenocortical adenomas. The most frequently mutated gene was KCNJ5 (43%), followed by CACNA1D (21%), ATP1A1 (17%), ATP2B3 (4%), and CTNNB1 (3%). In addition to identification of previously reported mutations, we identified five previously unreported mutations (two in KCNJ5, one in ATP1A1, one in ATP2B3, and one in CACNA1D genes). KCNJ5 mutations were more frequent in women (70% vs 24% in men). CONCLUSION Comprehensive NGS of CYP11B2-expressing adrenal tumors identified somatic mutations in aldosterone-driving genes in 88% of APAs, a higher rate than in previous studies using conventional approaches.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kei Omata
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Peter C C Beck
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Aya T Nanba
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Adina F Turcu
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Barbra S Miller
- Division of Endocrine Surgery, Section of General Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Thomas J Giordano
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Correspondence and Reprint Requests: William E. Rainey, PhD, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
23
|
Affiliation(s)
- Kazutaka Nanba
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), and Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor; and Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V.).
| | - Anand Vaidya
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), and Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor; and Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V.)
| | - William E Rainey
- From the Department of Molecular and Integrative Physiology (K.N., W.E.R.), and Department of Internal Medicine (W.E.R.), University of Michigan, Ann Arbor; and Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V.)
| |
Collapse
|
24
|
Abstract
Primary aldosteronism (PA) significantly increases the risk of cardiovascular complications, and early diagnosis and targeted treatment based on its pathophysiology is warranted. Next-generation sequencing (NGS) has revealed recurrent somatic mutations in aldosterone-driving genes in aldosterone-producing adenoma (APA). By applying CYP11B2 (aldosterone synthase) immunohistochemistry and NGS to adrenal glands from normal subjects and PA patients, we and others have shown that CYP11B2-positive cells make small clusters, termed aldosterone-producing cell clusters (APCC), beneath the adrenal capsule, and that APCC harbor somatic mutations in genes mutated in APA. We have shown that APCC are increased in CT-negative PA adrenals, while others showed potential progression from APCC to micro APA through mutations. These results suggest that APCC are a key factor for understanding the origin of PA, and further investigation on the relation between APCC and PA is highly needed.
Collapse
Affiliation(s)
- Kei Omata
- Department of Pathology, University of Michigan, 1500 E Medical Center Drive, 48109 Ann Arbor, MI, USA
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, 980-0872 Sendai, Miyagi, Japan
- Division of Clinical Hypertension, Endocrinology & Metabolism, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, 980-0872 Sendai, Miyagi, Japan
| | - Scott A. Tomlins
- Department of Pathology, University of Michigan, 1500 E Medical Center Drive, 48109 Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, 1500 E Medical Center Drive, 48109 Ann Arbor, MI, USA
- Department of Urology, University of Michigan, 1500 E Medical Center Drive, 48109 Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan, 1500 E Medical Center Drive, 48109 Ann Arbor, MI, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, 1500 E Medical Center Drive, 48109 Ann Arbor, MI, USA
- Department of Medicine, University of Michigan, 1500 E Medical Center Drive, 48109 Ann Arbor, MI, USA
| |
Collapse
|
25
|
Prada ETA, Burrello J, Reincke M, Williams TA. Old and New Concepts in the Molecular Pathogenesis of Primary Aldosteronism. Hypertension 2017; 70:875-881. [PMID: 28974569 DOI: 10.1161/hypertensionaha.117.10111] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elke Tatjana Aristizabal Prada
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany (E.T.A.P., M.R., T.A.W.); and Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| | - Jacopo Burrello
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany (E.T.A.P., M.R., T.A.W.); and Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| | - Martin Reincke
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany (E.T.A.P., M.R., T.A.W.); and Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.)
| | - Tracy Ann Williams
- From the Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany (E.T.A.P., M.R., T.A.W.); and Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy (J.B., T.A.W.).
| |
Collapse
|
26
|
Seidel E, Scholl UI. Genetic mechanisms of human hypertension and their implications for blood pressure physiology. Physiol Genomics 2017; 49:630-652. [PMID: 28887369 DOI: 10.1152/physiolgenomics.00032.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hypertension, or elevated blood pressure, constitutes a major public health burden that affects more than 1 billion people worldwide and contributes to ~9 million deaths annually. Hereditary factors are thought to contribute to up to 50% of interindividual blood pressure variability. Blood pressure in the general population approximately shows a normal distribution and is thought to be a polygenic trait. In rare cases, early-onset hypertension or hypotension are inherited as Mendelian traits. The identification of the underlying Mendelian genes and variants has contributed to our understanding of the physiology of blood pressure regulation, emphasizing renal salt handling and the renin angiotensin aldosterone system as players in the determination of blood pressure. Genome-wide association studies (GWAS) have revealed more than 100 variants that are associated with blood pressure, typically with small effect sizes, which cumulatively explain ~3.5% of blood pressure trait variability. Several GWAS associations point to a role of the vasculature in the pathogenesis of hypertension. Despite these advances, the majority of the genetic contributors to blood pressure regulation are currently unknown; whether large-scale exome or genome sequencing studies will unravel these factors remains to be determined.
Collapse
Affiliation(s)
- Eric Seidel
- Department of Nephrology, Medical School, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ute I Scholl
- Department of Nephrology, Medical School, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Tan GC, Negro G, Pinggera A, Tizen Laim NMS, Mohamed Rose I, Ceral J, Ryska A, Chin LK, Kamaruddin NA, Mohd Mokhtar N, A. Jamal AR, Sukor N, Solar M, Striessnig J, Brown MJ, Azizan EA. Aldosterone-Producing Adenomas. Hypertension 2017; 70:129-136. [DOI: 10.1161/hypertensionaha.117.09057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/23/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
Abstract
Mutations in
KCNJ5
,
ATP1A1
,
ATP2B3
,
CACNA1D
, and
CTNNB1
are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of
KCNJ5
mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata–like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a
KCNJ5
mutation (35.7%), 7 adenomas had an
ATP1A1
mutation (25%), and 4 adenomas had a
CACNA1D
mutation (14.3%). One novel mutation in exon 28 of
CACNA1D
(V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel’s inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used.
KCNJ5
mutant adenomas showed a strong expression of CYP17A1, whereas
ATP1A1
/
CACNA1D
mutant adenomas had a predominantly negative expression (
P
value =1.20×10
−4
).
ATP1A1
/
CACNA1D
mutant adenomas had twice the nuclei with intense staining of Ki67 than
KCNJ5
mutant adenomas (0.7% [0.5%–1.9%] versus 0.4% [0.3%–0.7%];
P
value =0.04). Further, 3 adenomas with either an
ATP1A1
mutation or a
CACNA1D
mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to
KCNJ5
mutant APAs,
ATP1A1
and
CACNA1D
mutant adenomas have a seemingly specific histopathologic phenotype.
Collapse
Affiliation(s)
- Geok Chin Tan
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Giulia Negro
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Alexandra Pinggera
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Nur Maya Sabrina Tizen Laim
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Isa Mohamed Rose
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Jiri Ceral
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Ales Ryska
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Long Kha Chin
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Nor Azmi Kamaruddin
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Norfilza Mohd Mokhtar
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - A. Rahman A. Jamal
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Norlela Sukor
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Miroslav Solar
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Joerg Striessnig
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Morris Jonathan Brown
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| | - Elena Aisha Azizan
- From the Department of Pathology (G.C.T., N.M.S.T.L., I.M.R.), Department of Medicine (L.K.C., N.A.K., N.S., E.A.A.), and UKM Medical Molecular Biology Institute (UMBI) (N.M.M., A.R.A.J.), The National University of Malaysia Medical Centre; Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Austria (G.N., A.P., J.S.); 1st Department of Internal Medicine–Cardioangiology (J.C., M.S.) and Department of Pathology (A.R.), Charles University
| |
Collapse
|
28
|
Bandulik S. Of channels and pumps: different ways to boost the aldosterone? Acta Physiol (Oxf) 2017; 220:332-360. [PMID: 27862984 DOI: 10.1111/apha.12832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 11/11/2016] [Indexed: 01/19/2023]
Abstract
The mineralocorticoid aldosterone is a major factor controlling the salt and water balance and thereby also the arterial blood pressure. Accordingly, primary aldosteronism (PA) characterized by an inappropriately high aldosterone secretion is the most common form of secondary hypertension. The physiological stimulation of aldosterone synthesis in adrenocortical glomerulosa cells by angiotensin II and an increased plasma K+ concentration depends on a membrane depolarization and an increase in the cytosolic Ca2+ activity. Recurrent gain-of-function mutations of ion channels and transporters have been identified in a majority of cases of aldosterone-producing adenomas and in familial forms of PA. In this review, the physiological role of these genes in the regulation of aldosterone synthesis and the altered function of the mutant proteins as well are described. The specific changes of the membrane potential and the cellular ion homoeostasis in adrenal cells expressing the different mutants are compared, and their impact on autonomous aldosterone production and proliferation is discussed.
Collapse
Affiliation(s)
- S. Bandulik
- Medical Cell Biology; University of Regensburg; Regensburg Germany
| |
Collapse
|
29
|
Scholl UI, Abriola L, Zhang C, Reimer EN, Plummer M, Kazmierczak BI, Zhang J, Hoyer D, Merkel JS, Wang W, Lifton RP. Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma. J Clin Invest 2017; 127:2739-2750. [PMID: 28604387 PMCID: PMC5490757 DOI: 10.1172/jci91733] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/20/2017] [Indexed: 11/17/2022] Open
Abstract
Aldosterone-producing adenomas (APAs) are benign tumors of the adrenal gland that constitutively produce the salt-retaining steroid hormone aldosterone and cause millions of cases of severe hypertension worldwide. Either of 2 somatic mutations in the potassium channel KCNJ5 (G151R and L168R, hereafter referred to as KCNJ5MUT) in adrenocortical cells account for half of APAs worldwide. These mutations alter channel selectivity to allow abnormal Na+ conductance, resulting in membrane depolarization, calcium influx, aldosterone production, and cell proliferation. Because APA diagnosis requires a difficult invasive procedure, patients often remain undiagnosed and inadequately treated. Inhibitors of KCNJ5MUT could allow noninvasive diagnosis and therapy of APAs carrying KCNJ5 mutations. Here, we developed a high-throughput screen for rescue of KCNJ5MUT-induced lethality and identified a series of macrolide antibiotics, including roxithromycin, that potently inhibit KCNJ5MUT, but not KCNJ5WT. Electrophysiology demonstrated direct KCNJ5MUT inhibition. In human aldosterone-producing adrenocortical cancer cell lines, roxithromycin inhibited KCNJ5MUT-induced induction of CYP11B2 (encoding aldosterone synthase) expression and aldosterone production. Further exploration of macrolides showed that KCNJ5MUT was similarly selectively inhibited by idremcinal, a macrolide motilin receptor agonist, and by synthesized macrolide derivatives lacking antibiotic or motilide activity. Macrolide-derived selective KCNJ5MUT inhibitors thus have the potential to advance the diagnosis and treatment of APAs harboring KCNJ5MUT.
Collapse
Affiliation(s)
- Ute I Scholl
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Nephrology, Medical School, Heinrich Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, USA
| | - Chengbiao Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Esther N Reimer
- Department of Nephrology, Medical School, Heinrich Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Mark Plummer
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, USA
| | - Barbara I Kazmierczak
- Department of Medicine (Infectious Diseases), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Junhui Zhang
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Denton Hoyer
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, USA
| | - Jane S Merkel
- Yale Center for Molecular Discovery, Yale University, West Haven, Connecticut, USA
| | - Wenhui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Richard P Lifton
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
30
|
Seidel E, Scholl UI. Intracellular Molecular Differences in Aldosterone- Compared to Cortisol-Secreting Adrenal Cortical Adenomas. Front Endocrinol (Lausanne) 2016; 7:75. [PMID: 27445978 PMCID: PMC4921773 DOI: 10.3389/fendo.2016.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022] Open
Abstract
The adrenal cortex is a major site of steroid hormone production. Two hormones are of particular importance: aldosterone, which is produced in the zona glomerulosa in response to volume depletion and hyperkalemia, and cortisol, which is produced in the zona fasciculata in response to stress. In both cases, acute stimulation leads to increased hormone production, and chronic stimulation causes hyperplasia of the respective zone. Aldosterone- and cortisol-producing adenomas (APAs and CPAs) are benign tumors of the adrenal cortex that cause excess hormone production, leading to primary aldosteronism and Cushing's syndrome, respectively. About 40% of the APAs carry somatic heterozygous gain-of-function mutations in the K(+) channel KCNJ5. These mutations lead to sodium permeability, depolarization, activation of voltage-gated Ca(2+) channels, and Ca(2+) influx. Mutations in the Na(+)/K(+)-ATPase subunit ATP1A1 and the plasma membrane Ca(2+)-ATPase ATP2B3 similarly cause Na(+) or H(+) permeability and depolarization, whereas mutations in the Ca(2+) channel CACNA1D directly lead to increased calcium influx. One in three CPAs carries a recurrent gain-of-function mutation (L206R) in the PRKACA gene, encoding the catalytic subunit of PKA. This mutation causes constitutive PKA activity by abolishing the binding of the inhibitory regulatory subunit to the catalytic subunit. These mutations activate pathways that are relatively specific to the respective cell type (glomerulosa versus fasciculata), and there is little overlap in mutation spectrum between APAs and CPAs, but co-secretion of both hormones can occur. Mutations in CTNNB1 (beta-catenin) and GNAS (Gsα) are exceptions, as they can cause both APAs and CPAs through pathways that are incompletely understood.
Collapse
Affiliation(s)
- Eric Seidel
- Department of Nephrology, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Ute I. Scholl
- Department of Nephrology, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- *Correspondence: Ute I. Scholl,
| |
Collapse
|