1
|
Wagner M, Nishikawa H, Koyasu S. Reinventing type 2 immunity in cancer. Nature 2025; 637:296-303. [PMID: 39780006 DOI: 10.1038/s41586-024-08194-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025]
Abstract
Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis. Emerging evidence challenges this perspective, painting a more nuanced picture in which type 2 immunity might protect against or even actively suppress tumour growth and progression. In this Review, we explore discoveries that highlight the potential of type 2 immunity in reshaping the landscape of cancer immunotherapies.
Collapse
Affiliation(s)
- Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network-PORT Polish Center for Technology Development, Wrocław, Poland.
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| |
Collapse
|
2
|
Singh N, Rai MK, Agarwal V, Agarwal V. In Silico Prediction of NOS2, NOS3 and Arginase 1 Genes Targeting by Micro RNAs Upregulated in Systemic Sclerosis. INDIAN JOURNAL OF RHEUMATOLOGY 2024; 19:100-109. [DOI: 10.1177/09733698241229803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
Introduction: Systemic sclerosis (SSc) is a chronic disorder, characterised by endothelial dysfunction and fibrosis of skin and internal organs. Endothelium dysfunction leads to a decrease in nitric oxide levels, consequent to reduced Nitric Oxide synthase 3 (NOS3) activity due to decreased NOS3 gene function. Besides endothelium, macrophages too play an important role in the pathogenesis of SSc; classically activated M1 macrophages (express NOS2) and alternatively activated M2 macrophages (express Arginase1) are differentially altered in favour of M2 macrophages. Micro-RNAs (miRNAs) regulate expression of various genes and may favour disease phenotype. Aim: Our aim was to identify differentially expressed micro-RNAs in SSc, which target NOS2, NOS3 and Arginase1 genes by in-silico approach. Methods: Data on miRNAs upregulation reported in various studies was collected and their sequence ID from miRBase was identified in FASTA format from NCBI. Binding strength of these miRNAs against NOS2, NOS3 and Arginase1 genes was evaluated by RNA22. Results: After scanning 39 publications reporting miRNA expression in SSc, a total of 13 miRNAs were found to be up-regulated for NOS2 (Gibbs free energy ≤18.0Kj/mol) and 15 miRNAs up-regulated for NOS3 (Gibbs free energy ≤18.0Kj/mol) whereas for Arginase1 only 2 miRNAs were up-regulated. Conclusion: There is differential upregulation of miRNAs in SSc. Micro RNAs targeting NOS2 and NOS3 genes are highly up-regulated in comparison to Arginase 1. Role of epigenetic regulation of genes by miRNAs may play a key role in pathogenesis of SSc.
Collapse
Affiliation(s)
- Neha Singh
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Mohit Kumar Rai
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Vishwesh Agarwal
- Mahatma Gandhi Missions Medical College, Navi Mumbai, Maharashtra, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Saad EE, Michel R, Borahay MA. Immunosuppressive tumor microenvironment and uterine fibroids: Role in collagen synthesis. Cytokine Growth Factor Rev 2024; 75:93-100. [PMID: 37839993 PMCID: PMC10922281 DOI: 10.1016/j.cytogfr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Uterine fibroids (UF), also called uterine leiomyoma, is one of the most prevalent uterine tumors. UF represents a serious women's health global problem with a significant physical, emotional, and socioeconomic impact. Risk factors for UF include racial disparities, age, race, hormonal factors, obesity, and lifestyle (diet, physical activity, and stress. There are several biological contributors to UF pathogenesis such as cellular proliferation, angiogenesis, and extracellular matrix (ECM) accumulation. This review addresses tumor immune microenvironment as a novel mediator of ECM deposition. Polarization of immune microenvironment towards the immunosuppressive phenotype has been associated with ECM deposition. Immunosuppressive cells include M2 macrophage, myeloid-derived suppressor cells (MDSCs), and Th17 cells, and their secretomes include interleukin 4 (IL-4), IL-10, IL-13, IL-17, IL-22, arginase 1, and transforming growth factor-beta (TGF-β1). The change in the immune microenvironment not only increase tumor growth but also aids in collagen synthesis and ECM disposition, which is one of the main hallmarks of UF pathogenesis. This review invites further investigations on the change in the UF immune microenvironment as well as a novel targeting approach instead of the traditional UF hormonal and supportive treatment.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Zhao DJ, Huang LM, Xiao J, Chen L, Li X, Lin HX. Efficacy and safety of tralokinumab in the treatment of atopic dermatitis: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2023; 102:e34516. [PMID: 37543792 PMCID: PMC10402962 DOI: 10.1097/md.0000000000034516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND To assess the efficacy and safety of Tralokinumab in the treatment of moderate-to-severe atopic dermatitis (AD). METHODS PubMed, Embase, Clinical Trials Website, and Cochrane Library were systematically searched for eligible randomized controlled trials which assessed the effects of Tralokinumab on AD. Primary outcomes included Scoring Atopic Dermatitis score, EASI-75%, and Investigator's Global Assessment score of 0 or 1 in 12 to 16 weeks. Secondary outcomes included the Eczema area and severity index score, the Numeric Rating Scales score, the dermatology life quality index score, and the overall incidence of adverse events. The quality of included studies was evaluated using the Cochrane System and the modified Jadad scale. Analysis was performed using Stata 16 software. RESULTS Eight randomized controlled trials involving 2878 patients were included in this meta-analysis. Compared to placebo, Tralokinumab treatment exhibited a significantly higher Scoring Atopic Dermatitis score [SMD = -0.53, 95% confidence intervals [CI]: -0.62 to -0.44, P < .00001], an increased number of patients with EASI-75% [odds ratio (OR) = 2.44, 95% CI: 2.00-2.97, P < .00001] and Investigator's Global Assessment score of 0 or 1 in 12 to 16 weeks [OR = 2.12, 95% CI: 1.71-2.63, P < .00001]. No significant difference was observed in the incidence of overall adverse events [OR = 1.00, 95% CI: 0.85-1.18, P = 1.00] between the 2 groups. CONCLUSION Tralokinumab is effective and safe in treatment of moderate-to-severe AD.
Collapse
Affiliation(s)
- Dan-Jie Zhao
- Department of Pharmacology, The First People’s Hospital of Shuangliu District, West China (Airport) Hospital of Sichuan University, Chengdu, China
| | - Ling-Mei Huang
- Department of Pharmacology, The First People’s Hospital of Shuangliu District, West China (Airport) Hospital of Sichuan University, Chengdu, China
| | - Jie Xiao
- Department of Pharmacology, The First People’s Hospital of Shuangliu District, West China (Airport) Hospital of Sichuan University, Chengdu, China
| | - Long Chen
- Department of Pharmacology, The First People’s Hospital of Shuangliu District, West China (Airport) Hospital of Sichuan University, Chengdu, China
| | - Xia Li
- Department of Pharmacology, The First People’s Hospital of Shuangliu District, West China (Airport) Hospital of Sichuan University, Chengdu, China
| | - Hai-Xia Lin
- Department of Pharmacology, The First People’s Hospital of Shuangliu District, West China (Airport) Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Hong H, Yoon SB, Park JE, Lee JI, Kim HY, Nam HJ, Cho H. MeCP2 dysfunction prevents proper BMP signaling and neural progenitor expansion in brain organoid. Ann Clin Transl Neurol 2023. [PMID: 37302988 DOI: 10.1002/acn3.51799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
OBJECTIVES Sporadic mutations in MeCP2 are a hallmark of Rett syndrome (RTT). Many RTT brain organoid models have exhibited pathogenic phenotypes such as decreased spine density and small size of soma with altered electrophysiological signals. However, previous models are mainly focused on the phenotypes observed in the late phase and rarely provide clues for the defect of neural progenitors which generate different types of neurons and glial cells. METHODS We newly established the RTT brain organoid model derived from MeCP2-truncated iPS cells which were genetically engineered by CRISPR/Cas9 technology. By immunofluorescence imaging, we studied the development of NPC pool and its fate specification into glutamatergic neurons or astrocytes in RTT organoids. By total RNA sequencing, we investigated which signaling pathways were altered during the early brain development in RTT organoids. RESULTS Dysfunction of MeCP2 caused the defect of neural rosette formation in the early phase of cortical development. In total transcriptome analysis, BMP pathway-related genes are highly associated with MeCP2 depletion. Moreover, levels of pSMAD1/5 and BMP target genes are excessively increased, and treatment of BMP inhibitors partially rescues the cell cycle progression of neural progenitors. Subsequently, MeCP2 dysfunction reduced the glutamatergic neurogenesis and induced overproduction of astrocytes. Nevertheless, early inhibition of BMP pathway rescued VGLUT1 expression and suppressed astrocyte maturation. INTERPRETATION Our results demonstrate that MeCP2 is required for the expansion of neural progenitor cells by modulating BMP pathway at early stages of development, and this influence persists during neurogenesis and gliogenesis at later stages of brain organoid development.
Collapse
Affiliation(s)
- Hyowon Hong
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sae-Bom Yoon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung Eun Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung In Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hye Jin Nam
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Heeyeong Cho
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Abstract
Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.
Collapse
Affiliation(s)
- Judith E Allen
- Lydia Becker Institute for Immunology and Inflammation and Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
7
|
Ibáñez-Cabellos JS, Pallardó FV, García-Giménez JL, Seco-Cervera M. Oxidative Stress and Epigenetics: miRNA Involvement in Rare Autoimmune Diseases. Antioxidants (Basel) 2023; 12:antiox12040800. [PMID: 37107175 PMCID: PMC10135388 DOI: 10.3390/antiox12040800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autoimmune diseases (ADs) such as Sjögren’s syndrome, Kawasaki disease, and systemic sclerosis are characterized by chronic inflammation, oxidative stress, and autoantibodies, which cause joint tissue damage, vascular injury, fibrosis, and debilitation. Epigenetics participate in immune cell proliferation and differentiation, which regulates the development and function of the immune system, and ultimately interacts with other tissues. Indeed, overlapping of certain clinical features between ADs indicate that numerous immunologic-related mechanisms may directly participate in the onset and progression of these diseases. Despite the increasing number of studies that have attempted to elucidate the relationship between miRNAs and oxidative stress, autoimmune disorders and oxidative stress, and inflammation and miRNAs, an overall picture of the complex regulation of these three actors in the pathogenesis of ADs has yet to be formed. This review aims to shed light from a critical perspective on the key AD-related mechanisms by explaining the intricate regulatory ROS/miRNA/inflammation axis and the phenotypic features of these rare autoimmune diseases. The inflamma-miRs miR-155 and miR-146, and the redox-sensitive miR miR-223 have relevant roles in the inflammatory response and antioxidant system regulation of these diseases. ADs are characterized by clinical heterogeneity, which impedes early diagnosis and effective personalized treatment. Redox-sensitive miRNAs and inflamma-miRs can help improve personalized medicine in these complex and heterogeneous diseases.
Collapse
Affiliation(s)
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - Marta Seco-Cervera
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| |
Collapse
|
8
|
Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: A mutually dependent relationship. Science 2023; 379:eabp8964. [PMID: 36795835 DOI: 10.1126/science.abp8964] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/22/2022] [Indexed: 02/18/2023]
Abstract
For decades, immunologists have studied the role of circulating immune cells in host protection, with a more recent appreciation of immune cells resident within the tissue microenvironment and the intercommunication between nonhematopoietic cells and immune cells. However, the extracellular matrix (ECM), which comprises at least a third of tissue structures, remains relatively underexplored in immunology. Similarly, matrix biologists often overlook regulation of complex structural matrices by the immune system. We are only beginning to understand the scale at which ECM structures determine immune cell localization and function. Additionally, we need to better understand how immune cells dictate ECM complexity. This review aims to highlight the potential for biological discovery at the interface of immunology and matrix biology.
Collapse
Affiliation(s)
- Tara E Sutherland
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- School of Medicine, Medical Sciences and Dentistry, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Douglas P Dyer
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Salford M6 8HD, UK
| | - Judith E Allen
- Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
9
|
Huang J, Puente H, Wareing NE, Wu M, Mayes MD, Karmouty-Quintana H, Assassi S, Mills TW. STAT6 suppression prevents bleomycin-induced dermal fibrosis. FASEB J 2023; 37:e22761. [PMID: 36629780 PMCID: PMC10226134 DOI: 10.1096/fj.202200994r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Fibrosis of the skin and internal organs is a hallmark of systemic sclerosis (SSc). Although the pathogenesis of SSc is poorly understood, increasing evidence suggests that interleukins (IL)-4 and - 13 contribute to the pathogenesis of skin fibrosis by promoting collagen production and myofibroblast differentiation. Signal transducers and activators of transcription 6 (STAT6) is one of the most important downstream transcription factors activated by both IL-4 and IL-13. However, it is not completely understood whether STAT6 plays a role during the pathogenesis of skin fibrosis in SSc. In this study, we observed increased STAT6 phosphorylation in fibrotic skin samples collected from SSc patients as well as bleomycin-injected murine mice. Knockout of Stat6 in mice significantly (1) suppressed the expression of fibrotic cytokines including Il13, Il17, Il22, Ccl2, and the alternatively activated macrophage marker Cd206; (2) reduced the production of collagen and fibronectin, and (3) attenuated late-stage skin fibrosis and inflammation induced by bleomycin. Consistently, mice treated with STAT6 inhibitor AS1517499 also attenuated skin fibrosis on day 28. In addition, a co-culture experiment demonstrated that skin epithelial cells with STAT6 knockdown had reduced cytokine expression in response to IL-4/IL-13, and subsequently attenuated fibrotic protein expression in skin fibroblasts. On the other side, STAT6 depletion in skin fibroblasts attenuated IL-4/IL-13-induced cytokine and fibrotic marker expression, and reduced CXCL2 expression in co-cultured keratinocytes. In summary, our study highlighted an important yet not fully understood role of STAT6 in skin fibrosis by driving innate inflammation and differentiation of alternatively activated macrophages in response to injury.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Geriatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hydia Puente
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nancy E. Wareing
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Minghua Wu
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maureen D. Mayes
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Mikhailova EV, Romanova IV, Bagrov AY, Agalakova NI. Fli1 and Tissue Fibrosis in Various Diseases. Int J Mol Sci 2023; 24:ijms24031881. [PMID: 36768203 PMCID: PMC9915382 DOI: 10.3390/ijms24031881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Being initially described as a factor of virally-induced leukemias, Fli1 (Friend leukemia integration 1) has attracted considerable interest lately due to its role in both healthy physiology and a variety of pathological conditions. Over the past few years, Fli1 has been found to be one of the crucial regulators of normal hematopoiesis, vasculogenesis, and immune response. However, abnormal expression of Fli1 due to genetic predisposition, epigenetic reprogramming (modifications), or environmental factors is associated with a few diseases of different etiology. Fli1 hyperexpression leads to malignant transformation of cells and progression of cancers such as Ewing's sarcoma. Deficiency in Fli1 is implicated in the development of systemic sclerosis and hypertensive disorders, which are often accompanied by pronounced fibrosis in different organs. This review summarizes the initial findings and the most recent advances in defining the role of Fli1 in diseases of different origin with emphasis on its pro-fibrotic potential.
Collapse
Affiliation(s)
- Elena V. Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| | | | - Natalia I. Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, 194223 Saint-Petersburg, Russia
| |
Collapse
|
11
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
12
|
Ginkgo Biloba Leaf Extract Improves an Innate Immune Response of Peripheral Blood Leukocytes of Alzheimer's Disease Patients. Nutrients 2022; 14:nu14102022. [PMID: 35631163 PMCID: PMC9147830 DOI: 10.3390/nu14102022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND One of the main features of Alzheimer's disease (AD) pathology is failure in innate immune response and chronic inflammation. Lack of effective AD treatment means that more attention is paid to alternative therapy and drugs of natural origin, such as extract of Ginkgo biloba (EGb). The purpose of this study was to investigate the effect of EGb on the mechanisms of innate immune response of peripheral blood leukocytes (PBLs) in AD patients. METHODS In AD patients and healthy-age matched controls, the effect of EGb on two of innate immune reactions, i.e., PBLs resistance to viral infection ex vivo and production of cytokines, namely TNF-α, IFN-γ, IL-1β, IL-10, IL-15, and IFN-α, were investigated. The influence of EGb on inflammatory-associated genes expression that regulate innate immune response to viral infection and cytokine production, namely IRF-3, IRF-7, tetherin, SOCS1, SOCS3, NFKB1, p65, and MxA was also examined. RESULTS A beneficial effect of EGb especially in AD women was observed. EGb decreased production of TNF-α, IFN-γ, and IL-10 and increased IL-15 and IL-1β. The effect was more pronouncement in AD group. EGb also downregulated expression of investigated genes. CONCLUSIONS EGb may have an advantageous properties for health management in elderly and AD sufferers but especially in women with AD. Improving peripheral innate immune cells' activity by adding EGb as accompanying treatment in AD may be, in the long term, a good course to modify the disease progression.
Collapse
|
13
|
The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proc Natl Acad Sci U S A 2022; 119:e2112225119. [PMID: 35452310 PMCID: PMC9169915 DOI: 10.1073/pnas.2112225119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypocretin (Hcrt, also known as orexin) neuropeptides regulate sleep and wake stability, and disturbances of Hcrt can lead to sleep disorders. MicroRNAs (miRNAs) are short noncoding RNAs that fine-tune protein expression levels, and miRNA-based therapeutics are emerging. We report a functional interaction between miRNA (miR-137) and Hcrt. We demonstrate that intracellular miR-137 levels in Hcrt neurons regulate Hcrt expression with downstream effects on wakefulness. Specifically, lowering of miR-137 levels increased wakefulness in mice. We further show that the miR-137:Hcrt interaction is conserved across mice and humans, that miR-137 also regulates sleep–wake balance in zebrafish, and that the MIR137 locus is genetically associated with sleep duration in humans. Together, our findings reveal an evolutionarily conserved sleep–wake regulatory role of miR-137. Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep–wake regulation.
Collapse
|
14
|
Kolesnikoff N, Chen CH, Samuel M. Interrelationships between the extracellular matrix and the immune microenvironment that govern epithelial tumour progression. Clin Sci (Lond) 2022; 136:361-377. [PMID: 35260891 PMCID: PMC8907655 DOI: 10.1042/cs20210679] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Solid tumours are composed of cancer cells characterised by genetic mutations that underpin the disease, but also contain a suite of genetically normal cells and the extracellular matrix (ECM). These two latter components are constituents of the tumour microenvironment (TME), and are key determinants of tumour biology and thereby the outcomes for patients. The tumour ECM has been the subject of intense research over the past two decades, revealing key biochemical and mechanobiological principles that underpin its role in tumour cell proliferation and survival. However, the ECM also strongly influences the genetically normal immune cells within the microenvironment, regulating not only their proliferation and survival, but also their differentiation and access to tumour cells. Here we review recent advances in our knowledge of how the ECM regulates the tumour immune microenvironment and vice versa, comparing normal skin wound healing to the pathological condition of tumour progression.
Collapse
Affiliation(s)
- Natasha Kolesnikoff
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Chun-Hsien Chen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Michael Susithiran Samuel
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
15
|
Guilleminault L, Conde E, Reber LL. Pharmacological approaches to target type 2 cytokines in asthma. Pharmacol Ther 2022; 237:108167. [PMID: 35283171 DOI: 10.1016/j.pharmthera.2022.108167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023]
Abstract
Asthma is the most common chronic lung disease, affecting more than 250 million people worldwide. The heterogeneity of asthma phenotypes represents a challenge for adequate assessment and treatment of the disease. However, approximately 50% of asthma patients present with chronic type 2 inflammation initiated by alarmins, such as IL-33 and thymic stromal lymphopoietin (TSLP), and driven by the TH2 interleukins IL-4, IL-5 and IL-13. These cytokines have therefore become important therapeutic targets in asthma. Here, we discuss current knowledge on the structure and functions of these cytokines in asthma. We review preclinical and clinical data obtained with monoclonal antibodies (mAbs) targeting these cytokines or their receptors, as well as novel strategies under development, including bispecific mAbs, designed ankyrin repeat proteins (DARPins), small molecule inhibitors and vaccines targeting type 2 cytokines.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France; Department of Respiratory Medicine, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
| | - Eva Conde
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, F-75015 Paris, France; Sorbonne University, ED394, F-75005 Paris, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, 31024 Toulouse, France.
| |
Collapse
|
16
|
Santiprabhob J, Charoentawornpanich P, Khemaprasit K, Manpayak T, Kiattisakthavee P, Pipatsathian A, Wannasilp N, Tangjittipokin W. Effect of gender, diabetes duration, inflammatory cytokines, and vitamin D level on bone mineral density among Thai children and adolescents with type 1 diabetes. Bone 2021; 153:116112. [PMID: 34252600 DOI: 10.1016/j.bone.2021.116112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is considered a risk factor for osteoporosis in adults; however, studies in bone mineral density (BMD) in children with T1DM reported conflicting results. The aim of this study was to compare BMD between T1DM youth and healthy controls, and to identify factors that affect BMD in T1DM youth. METHODS One hundred T1DM youths and 100 healthy controls (both groups aged 5-20 years) were recruited. BMD of total body, lumbar (L2-4), femoral neck, and total hip were assessed using dual energy X-ray absorptiometry. Blood investigations, including hemoglobin A1c (HbA1c), 25-hydroxyvitamin D, and inflammatory cytokines, were performed. RESULTS Forty-four boys and 56 girls with T1DM were enrolled [mean age 14.5 ± 2.7 years, median (IQR) duration of T1DM 5.80 (2.97-9.07) years, and mean HbA1c entire duration 9.2 ± 1.4%]. T1DM girls had a lower height Z-score than control girls (p < 0.05), and 25-hydroxyvitamin D level was higher in T1DM youth than in controls (p < 0.001). After adjusting for pubertal status, height Z-score, and 25-hydroxyvitamin D, T1DM youth had a significantly lower lumbar BMD Z-score and femoral neck BMD than controls (p = 0.027 and p = 0.025, respectively). We also found that T1DM boys had a significantly lower lumbar BMD Z-score (p = 0.028), femoral neck BMD (p = 0.004), and total hip BMD (p = 0.016) than control boys. In contrast, these significant differences were not found in T1DM girls. Factors affecting BMD were different between T1DM boys and girls, and among different BMD sites. IL-13 was positively correlated with BMD in the total cohort and among girls. In boys - IL-2 and 25-hydroxyvitamin D were positively associated with BMD, and duration of diabetes was found to negatively affect BMD. CONCLUSION Deleterious effect of T1DM on BMD is gender specific. The longer the duration of T1DM, the greater the deficit in BMD found among boys with T1DM.
Collapse
Affiliation(s)
- Jeerunda Santiprabhob
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Diabetes Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Parichat Charoentawornpanich
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Khwanhatai Khemaprasit
- Siriraj Diabetes Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Teerarat Manpayak
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pornpimol Kiattisakthavee
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Amornrat Pipatsathian
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Nilrat Wannasilp
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
17
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
18
|
Fibroblast Memory in Development, Homeostasis and Disease. Cells 2021; 10:cells10112840. [PMID: 34831065 PMCID: PMC8616330 DOI: 10.3390/cells10112840] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are the major cell population in the connective tissue of most organs, where they are essential for their structural integrity. They are best known for their role in remodelling the extracellular matrix, however more recently they have been recognised as a functionally highly diverse cell population that constantly responds and adapts to their environment. Biological memory is the process of a sustained altered cellular state and functions in response to a transient or persistent environmental stimulus. While it is well established that fibroblasts retain a memory of their anatomical location, how other environmental stimuli influence fibroblast behaviour and function is less clear. The ability of fibroblasts to respond and memorise different environmental stimuli is essential for tissue development and homeostasis and may become dysregulated in chronic disease conditions such as fibrosis and cancer. Here we summarise the four emerging key areas of fibroblast adaptation: positional, mechanical, inflammatory, and metabolic memory and highlight the underlying mechanisms and their implications in tissue homeostasis and disease.
Collapse
|
19
|
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021; 9:biomedicines9101471. [PMID: 34680587 PMCID: PMC8533248 DOI: 10.3390/biomedicines9101471] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction, and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA sequence. Epigenetic marks may be reversible and their differential response to external stimuli could explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were identified in SSc skin specimens and blood samples containing a wide variety of dysregulated miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence also confirm their participation in impaired angiogenesis and aberrant immune responses. Research approaches focusing on earlier stages of the disease and on differential miRNA expression in various tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Laura Muntean
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence:
| | - Tania Crisan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Voicu Rednic
- Department of Gastroenterology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Gastroenterology II, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Claudia Sirbe
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Arvind V, Huang AH. Reparative and Maladaptive Inflammation in Tendon Healing. Front Bioeng Biotechnol 2021; 9:719047. [PMID: 34350166 PMCID: PMC8327090 DOI: 10.3389/fbioe.2021.719047] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Tendon injuries are common and debilitating, with non-regenerative healing often resulting in chronic disease. While there has been considerable progress in identifying the cellular and molecular regulators of tendon healing, the role of inflammation in tendon healing is less well understood. While inflammation underlies chronic tendinopathy, it also aids debris clearance and signals tissue repair. Here, we highlight recent findings in this area, focusing on the cells and cytokines involved in reparative inflammation. We also discuss findings from other model systems when research in tendon is minimal, and explore recent studies in the treatment of human tendinopathy to glean further insights into the immunobiology of tendon healing.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alice H. Huang
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
21
|
Duffy L, Henderson J, Brown M, Pryzborski S, Fullard N, Summa L, Distler JHW, Stratton R, O'Reilly S. Bone Morphogenetic Protein Antagonist Gremlin-1 Increases Myofibroblast Transition in Dermal Fibroblasts: Implications for Systemic Sclerosis. Front Cell Dev Biol 2021; 9:681061. [PMID: 34150776 PMCID: PMC8213337 DOI: 10.3389/fcell.2021.681061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Systemic Sclerosis is an autoimmune connective tissue disease which results in fibrosis of the skin and lungs. The disease is characterized by activation of myofibroblasts but what governs this is unknown. Gremlin-1 is a BMP antagonist that is developmentally regulated and we sought to investigate its role in Systemic Sclerosis. Methods Dermal fibroblasts were transfected with Grem1pcDNA3.1 expression vectors or empty vectors. Various markers of myofibroblasts were measured at the mRNA and protein levels. Scratch wound assays were also performed. Media Transfer experiments were performed to evaluate cytokine like effects. Various inhibitors of TGF-β signaling and MAPK signaling were used post-transfection. siRNA to Gremlin-1 in SSc dermal fibroblasts were performed to evaluate the role of Gremlin-1. Different cytokines were incubated with fibroblasts and Gremlin-1 measured. Bleomycin was used as model of fibrosis and immunohistochemistry performed. Results Overexpression of Gremlin-1 was achieved in primary dermal fibroblasts and lead to activation of quiescent cells to myofibroblasts indicated by collagen and α-Smooth muscle actin. Overexpression also led to functional effects. This was associated with increased TGF-β1 levels and SBE luciferase activity but not increased Thrombospondin-1 expression. Inhibition of Gremlin-1 overexpression cells with antibodies to TGF-β1 but not isotype controls led to reduced collagen and various TGF-β pathway chemical inhibitors also led to reduced collagen levels. In SSc cells siRNA mediated reduction of Gremlin-1 reduced collagen expression and CTGF gene and protein levels in these cells. IL-13 did not lead to elevated Gremlin-1 expression nor did IL-11. Gremlin-1 was elevated in an animal model of fibrosis compared to NaCl-treated mice. Conclusion Gremlin-1 is a key regulator of myofibroblast transition leading to enhanced ECM deposition. Strategies that block Gremlin-1 maybe a possible therapeutic target in fibrotic diseases such as SSc.
Collapse
Affiliation(s)
- Laura Duffy
- Faculty of Health and Life Science, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - John Henderson
- Faculty of Health and Life Science, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Max Brown
- Biosciences Department, Durham University, Durham, United Kingdom
| | | | - Nicola Fullard
- Biosciences Department, Durham University, Durham, United Kingdom
| | - Lena Summa
- Department of Internal Medicine 3 Friedrich-Alexander-University, Erlangen-Nurnberg, Germany
| | - Jorg H W Distler
- Department of Internal Medicine 3 Friedrich-Alexander-University, Erlangen-Nurnberg, Germany
| | - Richard Stratton
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Steven O'Reilly
- Biosciences Department, Durham University, Durham, United Kingdom
| |
Collapse
|
22
|
Ciechomska M, Wojtas B, Bonek K, Roszkowski L, Gluszko P, Benes V, Maslinski W. Comprehensive microRNA and transcriptomic profiling of rheumatoid arthritis monocytes: role of microRNA-146b in proinflammatory progression. Rheumatology (Oxford) 2021; 60:5424-5435. [PMID: 34009317 DOI: 10.1093/rheumatology/keab407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To explore global miRNA and transcriptomic profiling of monocytes from rheumatoid arthritis (RA) patients compared with healthy controls (HC) to predict which aberrantly expressed microRNA (miRNA) can negatively modulate inflammatory molecules. METHODS Using next generation sequencing (NGS), we have performed simultaneous global analysis of miRNA (miRNA-seq) and transcriptome (RNA-seq) of monocytes from RA patients, HC. Global analysis of miRNA of systemic sclerosis (SSc) monocytes was also performed. Following differential analysis and negative correlation, miRNA-RNA pairs were selected. RESULTS We found that 20 specific miRNA candidates are predicted to silence inflammatory mediators, out of 191 significantly changed miRNAs in RA monocytes. Based on the highest scoring in terms of negative correlation (r=-0.97, p= 1.75e-07, FDR = 0.04) and the number of seeds in miRNA responsible for negative regulation, we selected miRNA-146b and its target gene anti-inflammatory retinoic acid receptor alpha (RARA). Similarly, to NGS, qPCR analysis also confirmed negative correlation between miRNA-146b and RARA expression (r= -0.45, p= 0.04,). Additionally, miRNA-146b expression in RA monocytes significantly correlated with clinical parameters including disease activity score-28 for RA with c-reactive protein (DAS28-CRP) and erythrocyte sedimentation rate (DAS28-ESR). Whereas overexpression of miRNA-146b was able to functionally reduce RARA expression in THP-1 monocytic cell line. Finally, circulating miRNA-146b expression in sera and synovial fluids was significantly elevated in RA patients. CONCLUSIONS Overall, in this study we have identified a new miRNA-146b candidate which is predicted to negatively regulate anti-inflammatory RARA transcript, whereas circulating miRNA-146b level can be used as a biomarker predicting proinflammatory RA progression and disease activity.
Collapse
Affiliation(s)
- Marzena Ciechomska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Krzysztof Bonek
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Leszek Roszkowski
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Gluszko
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
23
|
Mechanosensitive Regulation of Fibrosis. Cells 2021; 10:cells10050994. [PMID: 33922651 PMCID: PMC8145148 DOI: 10.3390/cells10050994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in the human body experience and integrate a wide variety of environmental cues. A growing interest in tissue mechanics in the past four decades has shown that the mechanical properties of tissue drive key biological processes and facilitate disease development. However, tissue stiffness is not only a potent behavioral cue, but also a product of cellular signaling activity. This review explores both roles of tissue stiffness in the context of inflammation and fibrosis, and the important molecular players driving such processes. During inflammation, proinflammatory cytokines upregulate tissue stiffness by increasing hydrostatic pressure, ECM deposition, and ECM remodeling. As the ECM stiffens, cells involved in the immune response employ intricate molecular sensors to probe and alter their mechanical environment, thereby facilitating immune cell recruitment and potentiating the fibrotic phenotype. This powerful feedforward loop raises numerous possibilities for drug development and warrants further investigation into the mechanisms specific to different fibrotic diseases.
Collapse
|
24
|
IL-13 Augments Histone Demethylase JMJD2B/KDM4B Expression Levels, Activity, and Nuclear Translocation in Airway Fibroblasts in Asthma. J Immunol Res 2021; 2021:6629844. [PMID: 33688506 PMCID: PMC7920726 DOI: 10.1155/2021/6629844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Asthma is one of the most common obstructive pulmonary diseases worldwide. Epigenetic alterations, including DNA methylation and histone modifications, have been reported to contribute to asthma pathogenesis. Since the inflammation mediator and remodeling trigger, IL-13, is known to play a central role in the pathophysiology of asthma, this study was aimed to identify novel IL-13-regulated epigenetic modifiers in asthma that may contribute to subepithelial fibrosis. Methods Publicly available transcriptomic datasets from Gene Expression Omnibus (GEO) were used to identify differentially expressed genes on an epigenetic level upon IL-13 exposure in lung fibroblasts. Bronchial fibroblasts isolated from healthy and asthmatic individuals were assessed for the gene and protein expression levels of the identified gene at baseline and upon IL-13 treatment using qRT-PCR and western blotting, respectively. Its subcellular localization and tissue distribution were examined in bronchial fibroblasts as well as bronchial biopsies by immunofluorescence and immunohistochemical analysis, respectively. Results Bioinformatic analysis revealed the differential expression of the histone demethylase JMJD2B/KDM4B, a well-known epigenetic modulator that leads to the demethylation of different lysine residues on histones, in IL-13-treated lung fibroblasts. The baseline expression levels of JMJD2B were higher in asthmatic fibroblasts and in bronchial biopsies in comparison to healthy ones. There was also an increase in JMJD2B activity as evidenced by the demethylation of its downstream target, H3K36me3. Furthermore, IL-13 stimulation induced JMJD2B expression and further demethylation of H3K36me3 in asthmatic fibroblasts. This was accompanied by increased translocation of JMJD2B into the nucleus. Conclusion This study highlights the novel pathological involvement of the histone demethylase JMJD2B/KDM4B in asthmatic airway fibroblasts that are regulated by IL-13. Clinical implications. Given that there is no single therapeutic medicine to effectively treat the various subtypes of asthma, this study provides promising insights into JMJD2B as a new therapeutic target that could potentially improve the treatment and management of asthma.
Collapse
|
25
|
Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021; 30:121-131. [PMID: 32931037 DOI: 10.1111/exd.14193] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
The activation of fibroblasts is required for physiological tissue remodelling such as wound healing. However, when the regulatory mechanisms are disrupted and fibroblasts remain persistently activated, the progressive deposition of extracellular matrix proteins leads to tissue fibrosis, which results in dysfunction or even loss of function of the affected organ. Although fibrosis has been recognized as a major cause of morbidity and mortality in modern societies, there are only few treatment options available that directly disrupt the release of extracellular matrix from fibroblasts. Intensive research in recent years, however, identified several pathways as core fibrotic mechanisms that are shared across different fibrotic diseases and organs. We discuss herein selection of those core pathways, especially downstream of the profibrotic TGF-β pathway, which are druggable and which may be transferable from bench to bedside.
Collapse
Affiliation(s)
- Clara Dees
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Debomita Chakraborty
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Worrell JC, Walsh SM, Fabre A, Kane R, Hinz B, Keane MP. CXCR3A promotes the secretion of the antifibrotic decoy receptor sIL-13Rα2 by pulmonary fibroblasts. Am J Physiol Cell Physiol 2020; 319:C1059-C1069. [PMID: 33026833 DOI: 10.1152/ajpcell.00076.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CXC chemokine receptor 3 (CXCR3) A and its IFN-inducible ligands CXCL9 and CXCL10 regulate vascular remodeling and fibroblast motility. IL-13 is a profibrotic cytokine implicated in the pathogenesis of inflammatory and fibroproliferative conditions. Previous work from our laboratory has shown that CXCR3A is negatively regulated by IL-13 and is necessary for the basal regulation of the IL-13 receptor subunit IL-13Rα2. This study investigates the regulation of fibroblast phenotype, function, and downstream IL-13 signaling by CXCR3A in vitro. CXCR3A was overexpressed via transient transfection. CXCR3A-/- lung fibroblasts were isolated for functional analysis. Additionally, the contribution of CXCR3A to tissue remodeling following acute lung injury was assessed in vivo with wild-type (WT) and CXCR3-/- mice challenged with IL-13. CXCR3 and IL-13Rα2 displayed a reciprocal relationship after stimulation with either IL-13 or CXCR3 ligands. CXCR3A reduced expression of fibroblast activation makers, soluble collagen production, and proliferation. CXCR3A enhanced the basal expression of pERK1/2 while inducing IL-13-mediated downregulation of NF-κB-p65. CXCR3A-/- pulmonary fibroblasts were increasingly proliferative and displayed reduced contractility and α-smooth muscle actin expression. IL-13 challenge regulated expression of the CXCR3 ligands and soluble IL-13Rα2 levels in lungs and bronchoalveolar lavage fluid (BALF) of WT mice; this response was absent in CXCR3-/- mice. Alveolar macrophage accumulation and expression of genes involved in lung remodeling was increased in CXCR3-/- mice. We conclude that CXCR3A is a central antifibrotic factor in pulmonary fibroblasts, limiting fibroblast activation and reducing extracellular matrix (ECM) production. Therefore, targeting of CXCR3A may be a novel approach to regulating fibroblast activity in lung fibrosis and remodeling.
Collapse
Affiliation(s)
- Julie C Worrell
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Sinead M Walsh
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurélie Fabre
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD Conway Research Pathology Core Technology, University College Dublin, Dublin, Ireland
| | - Rosemary Kane
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael P Keane
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Ramahi A, Altorok N, Kahaleh B. Epigenetics and systemic sclerosis: An answer to disease onset and evolution? Eur J Rheumatol 2020; 7:S147-S156. [PMID: 32697935 PMCID: PMC7647676 DOI: 10.5152/eurjrheum.2020.19112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that implicates epigenetic modification in the pathogenesis of systemic sclerosis (SSc). The complexity of epigenetic regulation and its dynamic nature complicate the investigation of its role in the disease. We will review the current literature for factors that link epigenetics to SSc by discussing DNA methylation, histone acetylation and methylation, and non-coding RNAs (ncRNAs), particularly microRNA changes in endothelial cells, fibroblasts (FBs), and lymphocytes. These three cell types are significantly involved in the early stages and throughout the course of the disease and are particularly vulnerable to epigenetic regulation. The pathogenesis of SSc is likely related to modifications of the epigenome by environmental signals in individuals with a specific genetic makeup. The epigenome is an attractive therapeutic target; however, successful epigenetics-based treatments require a better understanding of the molecular mechanisms controlling the epigenome and its alteration in the disease.
Collapse
Affiliation(s)
- Ahmad Ramahi
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Nezam Altorok
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Bashar Kahaleh
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| |
Collapse
|
28
|
An Integrative miRNA-mRNA Expression Analysis Reveals Striking Transcriptomic Similarities between Severe Equine Asthma and Specific Asthma Endotypes in Humans. Genes (Basel) 2020; 11:genes11101143. [PMID: 32998415 PMCID: PMC7600650 DOI: 10.3390/genes11101143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Severe equine asthma is an incurable obstructive respiratory condition affecting 10–15% of horses in temperate climates. Upon exposure to airborne antigens from hay feeding, affected horses show neutrophilic airway inflammation and bronchoconstriction, leading to increased respiratory effort. The resulting implications range from welfare concerns to economic impacts on equestrian sports and horse breeding. Immunological and pathophysiological characteristics of severe equine asthma show important parallels with allergic and severe neutrophilic human asthma. Our study aimed at investigating regulatory networks underlying the pathophysiology of the disease by profiling miRNA and mRNA expression in lung tissue samples from asthmatic horses compared with healthy controls. We sequenced small RNAs and mRNAs from lungs of seven asthmatic horses in exacerbation, five affected horses in remission, and eight healthy control horses. Our comprehensive differential expression analyses, combined with the miRNA–mRNA negative correlation approach, revealed a strong similarity on the transcriptomic level between severe equine asthma and severe neutrophilic asthma in humans, potentially through affecting Th17 cell differentiation. This study also showed that several dysregulated miRNAs and mRNAs are involved in airway remodeling. These results present a starting point for a better transcriptomic understanding of severe equine asthma and its similarities to asthma in humans.
Collapse
|
29
|
Hanh NTL, Lee YL, Lin CL, Chou CM, Cheng PC, Quang HH, Fan CK. Evidence for Asthma in the Lungs of Mice Inoculated with Different Doses of Toxocara canis. Am J Trop Med Hyg 2020; 103:2305-2314. [PMID: 32975177 DOI: 10.4269/ajtmh.20-0484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Toxocara canis, a common roundworm that mainly causes toxocariasis, is a zoonotic parasite found worldwide. Humans, an accidental host, can acquire T. canis infection through accidental ingestion of T. canis-embryonated egg-contaminated food, water, and soil, and by encapsulated larvae in a paratenic host's viscera or meat. Long-term residence of T. canis larvae in a paratenic host's lungs may induce pulmonary inflammation that contributes to lung injury, airway inflammatory hyperresponsiveness, and collagen deposition in mice and clinical patients. This study intended to investigate the relationship between T. canis infection and allergic asthma in BALB/c mice inoculated with high, moderate, and low doses of T. canis eggs for a 13-week investigation. The airway hyperresponsiveness (AHR) to methacholine, collagen deposition, cytokine levels, and pathological changes in lung tissues was assessed in infected mice at weeks 1, 5, and 13 postinfection. The cell composition in bronchoalveolar lavage fluid of infected mice was assessed at weeks 5 and 13 postinfection. Compared with uninfected control mice, all groups of T. canis-infected mice exhibited significant AHR, a dose-dependent increase in eosinophilic infiltration leading to multifocal interstitial and alveolar inflammation with abundant mucus secretion, and collagen deposition in which the lesion size increased with the infective dose. Infected mice groups also showed significant expressions of eotaxin and type 2 T-helper-dominant cytokines such as interleukin (IL)-4, IL-5, and IL-13. Overall, these results suggest that T. canis larval invasion of the lungs may potentially cause pulmonary inflammatory injury and could subsequently contribute to the development of allergic manifestations such as asthma.
Collapse
Affiliation(s)
- Nguyen Thi Lien Hanh
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Institute of Malariology, Parasitology and Entomology, Quy Nhon, Ministry of Health, Vietnam.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chu-Lun Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Mei Chou
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Ministry of Health, Vietnam
| | - Chia-Kwung Fan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
30
|
Vaubourg C, Gicquel E, Richard I, Lostal W, Bellec J. Minimal Consequences of CMAH and DBA/2 Backgrounds on a FKRP Deficient Model. J Neuromuscul Dis 2020; 8:785-793. [PMID: 32925084 DOI: 10.3233/jnd-200487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Muscular dystrophies (MD) are a large group of genetic diseases characterized by a progressive loss of muscle. The Latent TGFβ Binding Protein 4 (LTBP4) in the DBA/2 background and the Cytidine Monophosphate-sialic Acid Hydroxylase (CMAH) proteins were previously identified as genetic modifiers in severe MD. OBJECTIVE We investigated whether these modifiers could also influence a mild phenotype such as the one observed in a mouse model of Limb-Girdle MD2I (LGMD2I). METHODS The FKRPL276I mouse model was backcrossed onto the DBA/2 background, and in separate experiments the Cmah gene was inactivated in FKRPL276I mice by crossing with a Cmah-/- mouse and selecting the double-mutants. The mdx mouse was used as control for these two genome modifications. Consequences at the histological level as well as quantification of expression level by RT-qPCR of genes relevant for muscular dystrophy were then performed. RESULTS We observed minimal to no effect of the DBA/2 background on the mild FKRPL276I mouse phenotype, while this same background was previously shown to increase inflammation and fibrosis in the mdx mouse. Similarly, the Cmah-/- deletion had no observable effect on the FKRPL276I mouse phenotype whereas it was seen to increase features of regeneration in mdx mice. CONCLUSIONS These modifiers were not observed to impact the severity of the presentation of the mild FKRPL276I model. An interesting association of the CMAH modifier with the regeneration process in the mdx model was seen and sheds new light on the influence of this protein on the dystrophic phenotype.
Collapse
Affiliation(s)
- Camille Vaubourg
- Généthon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Evelyne Gicquel
- Généthon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Généthon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000, Evry, France
| | - William Lostal
- Généthon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Jessica Bellec
- Généthon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000, Evry, France
| |
Collapse
|
31
|
Huang E, Peng N, Xiao F, Hu D, Wang X, Lu L. The Roles of Immune Cells in the Pathogenesis of Fibrosis. Int J Mol Sci 2020; 21:E5203. [PMID: 32708044 PMCID: PMC7432671 DOI: 10.3390/ijms21155203] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue injury and inflammatory response trigger the development of fibrosis in various diseases. It has been recognized that both innate and adaptive immune cells are important players with multifaceted functions in fibrogenesis. The activated immune cells produce various cytokines, modulate the differentiation and functions of myofibroblasts via diverse molecular mechanisms, and regulate fibrotic development. The immune cells exhibit differential functions during different stages of fibrotic diseases. In this review, we summarized recent advances in understanding the roles of immune cells in regulating fibrotic development and immune-based therapies in different disorders and discuss the underlying molecular mechanisms with a focus on mTOR and JAK-STAT signaling pathways.
Collapse
Affiliation(s)
- Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China; (E.H.); (F.X.)
| | - Na Peng
- Department of Rheumatology and Immunology, the Second People’s Hospital of Three Gorges University, Yichang 443000, China; (N.P.); (D.H.)
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China; (E.H.); (F.X.)
| | - Dajun Hu
- Department of Rheumatology and Immunology, the Second People’s Hospital of Three Gorges University, Yichang 443000, China; (N.P.); (D.H.)
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China; (E.H.); (F.X.)
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China; (E.H.); (F.X.)
| |
Collapse
|
32
|
Luo Y, Xiao R. The Epigenetic Regulation of Scleroderma and Its Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:375-403. [PMID: 32445102 DOI: 10.1007/978-981-15-3449-2_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Scleroderma (systemic sclerosis; SSc) is a complex and highly heterogeneous multisystem rheumatic disease characterized by vascular abnormality, immunologic derangement, and excessive deposition of extracellular matrix (ECM) proteins. To date, the etiology of this life-threatening disorder remains not fully clear. More and more studies show epigenetic modifications play a vital role. The aberrant epigenetic status of certain molecules such as Fli-1, BMPRII, NRP1, CD70, CD40L, CD11A, FOXP3, KLF5, DKK1, SFRP1, and so on contributes to the pathogenesis of progressive vasculopathy, autoimmune dysfunction, and tissue fibrosis in SSc. Meanwhile, numerous miRNAs including miR-21, miR-29a, miR-196a, miR-202-3p, miR-150, miR-let-7a, and others are involved in the process. In addition, the abnormal epigenetic biomarker levels of CD11a, Foxp3, HDAC2, miR-30b, miR-142-3p, miR-150, miR-5196 in SSc are closely correlated with disease severity. In this chapter, we not only review new advancements on the epigenetic mechanisms involved in the pathogenesis of SSc and potential epigenetic biomarkers, but also discuss the therapeutic potential of epigenetic targeting therapeutics such as DNA methylation inhibitors, histone acetylase inhibitors, and miRNA replacement.
Collapse
Affiliation(s)
- Yangyang Luo
- Department of Dermatology, Hunan Children's Hospital, Changsha, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
33
|
The multifaceted functional role of DNA methylation in immune-mediated rheumatic diseases. Clin Rheumatol 2020; 40:459-476. [PMID: 32613397 DOI: 10.1007/s10067-020-05255-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Genomic predisposition cannot explain the onset of complex diseases, as well illustrated by the largely incomplete concordance among monozygotic twins. Epigenetic mechanisms, including DNA methylation, chromatin remodelling and non-coding RNA, are considered to be the link between environmental stimuli and disease onset on a permissive genetic background in autoimmune and chronic inflammatory diseases. The paradigmatic cases of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), Sjogren's syndrome (SjS) and type-1 diabetes (T1D) share the loss of immunological tolerance to self-antigen influenced by several factors, with a largely incomplete role of individual genomic susceptibility. The most widely investigated epigenetic mechanism is DNA methylation which is associated with gene silencing and is due to the binding of methyl-CpG binding domain (MBD)-containing proteins, such as MECP2, to 5-methylcytosine (5mC). Indeed, a causal relationship occurs between DNA methylation and transcription factors occupancy and recruitment at specific genomic locus. In most cases, the results obtained in different studies are controversial in terms of DNA methylation comparison while fascinating evidence comes from the comparison of the epigenome in clinically discordant monozygotic twins. In this manuscript, we will review the mechanisms of epigenetics and DNA methylation changes in specific immune-mediated rheumatic diseases to highlight remaining unmet needs and to identify possible shared mechanisms beyond different tissue involvements with common therapeutic opportunities. Key Points • DNA methylation has a crucial role in regulating and tuning the immune system. • Evidences suggest that dysregulation of DNA methylation is pivotal in the context of immune-mediated rheumatic diseases. • DNA methylation dysregulation in FOXP3 and interferons-related genes is shared within several autoimmune diseases. • DNA methylation is an attractive marker for diagnosis and therapy.
Collapse
|
34
|
Fioretto BS, Rosa I, Romano E, Wang Y, Guiducci S, Zhang G, Manetti M, Matucci-Cerinic M. The contribution of epigenetics to the pathogenesis and gender dimorphism of systemic sclerosis: a comprehensive overview. Ther Adv Musculoskelet Dis 2020; 12:1759720X20918456. [PMID: 32523636 PMCID: PMC7236401 DOI: 10.1177/1759720x20918456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/15/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic sclerosis (SSc) is a life-threatening connective tissue disorder of unknown etiology characterized by widespread vascular injury and dysfunction, impaired angiogenesis, immune dysregulation and progressive fibrosis of the skin and internal organs. Over the past few years, a new trend of investigations is increasingly reporting aberrant epigenetic modifications in genes related to the pathogenesis of SSc, suggesting that, besides genetics, epigenetics may play a pivotal role in disease development and clinical manifestations. Like many other autoimmune diseases, SSc presents a striking female predominance, and even if the reason for this gender imbalance has yet to be completely understood, it appears that the X chromosome, which contains many gender and immune-related genes, could play a role in such gender-biased prevalence. Besides a short summary of the genetic background of SSc, in this review we provide a comprehensive overview of the most recent insights into the epigenetic modifications which underlie the pathophysiology of SSc. A particular focus is given to genetic variations in genes located on the X chromosome as well as to the main X-linked epigenetic modifications that can influence SSc susceptibility and clinical phenotype. On the basis of the most recent advances, there is realistic hope that integrating epigenetic data with genomic, transcriptomic, proteomic and metabolomic analyses may provide in the future a better picture of their functional implications in SSc, paving the right way for a better understanding of disease pathogenesis and the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence, Viale Pieraccini
6, Florence, 50139, Italy
| | - Irene Rosa
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence and Scleroderma
Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC),Florence, Italy
Department of Experimental and Clinical Medicine, Section of Anatomy and
Histology, University of Florence, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence and Scleroderma
Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence,
Italy
| | - Yukai Wang
- Department of Rheumatology and Immunology,
Shantou Central Hospital, Shantou, China
| | - Serena Guiducci
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence and Scleroderma
Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence,
Italy
| | - Guohong Zhang
- Department of Pathology, Shantou University
Medical College, Shantou, China
| | - Mirko Manetti
- Department of Experimental and Clinical
Medicine, Section of Anatomy and Histology, University of Florence,
Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical
Medicine, Division of Rheumatology, University of Florence and Scleroderma
Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence,
Italy
| |
Collapse
|
35
|
Tsai CY, Hsieh SC, Wu TH, Li KJ, Shen CY, Liao HT, Wu CH, Kuo YM, Lu CS, Yu CL. Pathogenic Roles of Autoantibodies and Aberrant Epigenetic Regulation of Immune and Connective Tissue Cells in the Tissue Fibrosis of Patients with Systemic Sclerosis. Int J Mol Sci 2020; 21:ijms21093069. [PMID: 32349208 PMCID: PMC7246753 DOI: 10.3390/ijms21093069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a multi-system autoimmune disease with tissue fibrosis prominent in the skin and lung. In this review, we briefly describe the autoimmune features (mainly autoantibody production and cytokine profiles) and the potential pathogenic contributors including genetic/epigenetic predisposition, and environmental factors. We look in detail at the cellular and molecular bases underlying tissue-fibrosis which include trans-differentiation of fibroblasts (FBs) to myofibroblasts (MFBs). We also state comprehensively the pro-inflammatory and pro-fibrotic cytokines relevant to MFB trans-differentiation, vasculopathy-associated autoantibodies, and fibrosis-regulating microRNAs in SSc. It is conceivable that tissue fibrosis is mainly mediated by an excessive production of TGF-β, the master regulator, from the skewed Th2 cells, macrophages, fibroblasts, myofibroblasts, and keratinocytes. After binding with TGF-β receptors on MFB, the downstream Wnt/β-catenin triggers canonical Smad 2/3 and non-canonical Smad 4 signaling pathways to transcribe collagen genes. Subsequently, excessive collagen fiber synthesis and accumulation as well as tissue fibrosis ensue. In the later part of this review, we discuss limited data relevant to the role of long non-coding RNAs (lncRNAs) in tissue-fibrosis in SSc. It is expected that these lncRNAs may become the useful biomarkers and therapeutic targets for SSc in the future. The prospective investigations in the development of novel epigenetic modifiers are also suggested.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
- Correspondence: (C.-Y.T.); (C.-L.Y.); Fax: +886-2-28717483 (C.-Y.T.); +886-2-23957801 (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
| | - Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Cheng-Shiun Lu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Fax: +886-2-28717483 (C.-Y.T.); +886-2-23957801 (C.-L.Y.)
| |
Collapse
|
36
|
Ciechomska M, Wojtas B, Swacha M, Olesinska M, Benes V, Maslinski W. Global miRNA and mRNA expression profiles identify miRNA-26a-2-3p-dependent repression of IFN signature in systemic sclerosis human monocytes. Eur J Immunol 2020; 50:1057-1066. [PMID: 32087087 DOI: 10.1002/eji.201948428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Dysregulation in type I IFN and IFN-stimulated genes (ISGs) induced by monocytes is one of the key features of systemic sclerosis (SSc) pathogenesis. Abnormalities in microRNA (miRNA) expression are related to excessive IFN production, however the role of miRNA remains largely elusive in SSc monocytes. This study explores global miRNA-mRNA profiling of SSc monocytes and functional attenuation of IFN and ISGs by specific miRNAs. Global sequencing of mRNA (mRNA-seq) and miRNA (miRNA-seq) samples were performed simultaneously on healthy controls and SSc monocytes. Following computational analysis, selected miRNAs-mRNA candidates were validated, correlated with clinical parameters, and tested by functional assays. Transcriptomics data and qPCR analysis confirmed IFN signature in SSc but not in rheumatoid arthritis monocytes. Based on miRNA-seq analysis, five miRNAs were selected for further validation. Only the expression patterns of miRNA-26a-2-3p and miRNA-485-3p were confirmed and negatively correlated with clinical parameters. Exogenous delivery of miRNA-26a-2-3p to TLR-stimulated monocytic THP-1 cells specifically inhibited ISGs but not inflammasome activity in functional assays. In conclusion, our miRNA-mRNA co-sequencing and functional analysis identify miRNA-26a-2-3p as a new candidate, which is predicated to negatively regulate ISGs. This implies that reduced expression of miRNA-26a-2-3 may be involved in pathogenic IFN signature in SSc monocytes.
Collapse
Affiliation(s)
- Marzena Ciechomska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Swacha
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesinska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
37
|
Farhadihosseinabadi B, Gholipourmalekabadi M, Salimi M, Abdollahifar MA, Bagheri M, Samadikuchaksaraei A, Ghanbarian H, Mozafari M, Kazemi B, Niknejad H. The in vivo effect of Lacto-N-neotetraose (LNnT) on the expression of type 2 immune response involved genes in the wound healing process. Sci Rep 2020; 10:997. [PMID: 31969618 PMCID: PMC6976585 DOI: 10.1038/s41598-020-57860-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/03/2020] [Indexed: 01/08/2023] Open
Abstract
Lacto-n-neotatraose (LNnT) oligosaccharide shows properties such as anti-inflammatory, type 2 immune response induction, induced angiogenesis, and anti-bacterial effects. Here, we hypothesized that the application of LnNT in the skin full-thickness wound can accelerate the healing process through its anti-inflammatory effect as well as induction of type 2 immune responses. In this study, we evaluated the cell viability of fibroblasts in the presence of LNnT. The full-thickness wound model was created by punch biopsy. The mice were treated intradermaly with LNnT at the concentrations of 100 and 200 µg or PBS as a control group. The wounds samples were compared based on the macroscopic and histological evaluations. The amount of collagen deposition and expression of genes involved in type 2 immunity were measured by the hydroxyproline assay and real time PCR method, respectively. Our results showed that LNnT had no negative effect on the cell viability of fibroblasts. LNnT increased the wound closure rate on day 7 post-wounding. H&E stain analysis revealed that mice treated with 200 µg LNnT exhibited better healing score, follicle formation, and lower epidermal thickness index. The mice treated with LNnT exhibited a lower collagen deposition on day 21 and higher collagen content on days 7 and 14 post-treatment. The LNnT groups also exhibited a lower number of neutrophils and a higher number of basal cells and fibroblasts. The expression rate of IL-10, IL-4, and IL-13 was higher in the LNnT groups. These results showed the high potential of LNnT for use in treatment of full-thickness wounds.
Collapse
Affiliation(s)
- Behrouz Farhadihosseinabadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran Universityof Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti. University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti. University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagheri
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Centre, Iran Universityof Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Henderson J, Brown M, Horsburgh S, Duffy L, Wilkinson S, Worrell J, Stratton R, O'Reilly S. Methyl cap binding protein 2: a key epigenetic protein in systemic sclerosis. Rheumatology (Oxford) 2020; 58:527-535. [PMID: 30462328 DOI: 10.1093/rheumatology/key327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE SSc is an autoimmune connective tissue disease that results in skin fibrosis and currently has no effective treatment. Epigenetic modifications have been described and these may be key in initiating and driving fibroblast activation. Among these epigenetic modifications methylation may be of central importance. The aim of this study was to examine the role of methyl cap binding protein-2 (MeCP2) in SSc fibrosis. METHODS We used healthy and SSc dermal fibroblasts to examine the role of MeCP2, using both small interfering RNA silencing and lentiviral overexpression to determine its effects. We also examined the expression of MeCP2 in SSc fibroblasts by immunoblotting. miRNA132 was quantified by Taqman real time PCR. RESULTS We demonstrated that TGF-β1 induced the expression of MeCP2 in normal cells, and showed that SSc fibroblasts expressed high levels of MeCP2 under basal conditions. MeCP2 positively regulated the expression of extracellular matrix through epigenetic repression of the Wnt antagonist sFRP-1, leading to enhanced Wnt signalling. This mediated fibrosis through glycolysis, as the glycolysis inhibitor 2-deoxyglucose diminished the Wnt-mediated collagen expression. MiR132 expression was reduced in SSc fibroblasts. CONCLUSION The results suggest that an epigenetic loop exists mediating fibrosis. Targeting of MeCP2, as a key epigenetic regulator, may be a promising therapeutic approach, as would targeting the metabolic reprogramming that occurs through aerobic glycolysis.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Max Brown
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Steven Horsburgh
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Laura Duffy
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Sarah Wilkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Julie Worrell
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, Division of Medicine, University College London, London, UK
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
39
|
Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2020; 75:54-62. [PMID: 31230370 DOI: 10.1111/all.13954] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin condition that has traditionally been considered a paradigmatic type 2 immunity (T2)-driven disease. Interleukin (IL)-4 and IL-13 are both pivotal cytokines involved in the generation of allergic diseases. Currently, besides dupilumab, which blocks the binding of both cytokines to their receptors, a number of new pharmacologic entities have been designed to target both T2 cytokines and/or their receptors and/or receptor-associated signal transduction machinery such as Janus kinases. Recently, IL-13 has been suggested to be the key T2 cytokine driving inflammation in the periphery, while IL-4 may merely have a central effect. There is increasing evidence that this concept holds true for the inflammatory reaction underlying AD, where IL-13 is overexpressed locally and has a significant impact on skin biology, including the recruitment of inflammatory cells, the alteration of the skin microbiome, and the decrease in the epidermal barrier function. This review provides an update on the role of IL-13 in AD and discusses the different strategies aimed at interfering with its biologic activity as well as their potential in a precision medicine approach in the management of AD.
Collapse
Affiliation(s)
- Thomas Bieber
- Department of Dermatology and Allergy, Christine Kühne—Center for Allergy Research and Education (CK‐CARE) University Medical Center Bonn Germany
| |
Collapse
|
40
|
Asano Y, Varga J. Rationally-based therapeutic disease modification in systemic sclerosis: Novel strategies. Semin Cell Dev Biol 2019; 101:146-160. [PMID: 31859147 DOI: 10.1016/j.semcdb.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a highly challenging chronic condition that is dominated by the pathogenetic triad of vascular damage, immune dysregulation/autoimmunity and fibrosis in multiple organs. A hallmark of SSc is the remarkable degree of molecular and phenotypic disease heterogeneity, which surpasses that of other complex rheumatic diseases. Disease trajectories in SSc are unpredictable and variable from patient to patient. Disease-modifying therapies for SSc are lacking, long-term morbidity is considerable and mortality remains unacceptably high. Currently-used empirical approaches to disease modification have modest and variable clinical efficacy and impact on survival, are expensive and frequently associated with unfavorable side effects, and none can be considered curative. However, research during the past several years is yielding significant advances with therapeutic potential. In particular, the application of unbiased omics-based discovery technologies to large and well-characterized SSc patient cohorts, coupled with hypothesis-testing experimental research using a variety of model systems is revealing new insights into SSc that allow formulation of a more nuanced appreciation of disease heterogeneity, and a deepening understanding of pathogenesis. Indeed, we are now presented with numerous novel and rationally-based strategies for targeted SSc therapy, several of which are currently, or expected to be shortly, undergoing clinical evaluation. In this review, we discuss promising novel therapeutic targets and rationally-based approaches to disease modification that have the potential to improve long-term outcomes in SSc.
Collapse
Affiliation(s)
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, United States.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Epigenetics has been implicated in the pathogenesis of systemic sclerosis (SSc). In this review, the involvement of the three epigenetic mechanisms in SSc development and progression-DNA methylation, histone modifications, and non-coding RNAs-will be discussed. RECENT FINDINGS Alteration in epigenetics was observed in immune cells, dermal fibroblasts, and endothelial cells derived from SSc patients. Genes that are affected include those involved in immune cell function and differentiation, TGFβ and Wnt pathways, extracellular matrix accumulation, transcription factors, and angiogenesis. All the studies remain in the pre-clinical stage. Extensive research provides evidence that epigenetic alterations are critical for SSc pathogenesis. Future epigenomic studies will undoubtedly continue to broaden our understanding of disease pathogenesis and clinical heterogeneity. They will also provide the scientific basis for repurposing epigenetic-modifying agents for SSc patients.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Pl., 4025 BSRB, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
42
|
O'Reilly S. Epigenetic modulation as a therapy in systemic sclerosis. Rheumatology (Oxford) 2019; 58:191-196. [PMID: 29579252 DOI: 10.1093/rheumatology/key071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 01/07/2023] Open
Abstract
SSc is an autoimmune idiopathic disease in which there is an inflammatory component driving fibrosis. The chief cell involved is the myofibroblast, which when activated secretes copious amounts of extracellular matrix that forms deposits, leading to stiffness and fibrosis. The fibrosis is most prevalent in the skin and lungs. In recent years epigenetic modifications have been uncovered that positively and negatively regulate the genesis of the myofibroblasts and that can be activated and regulated by a variety of cytokines and hormones. The epigenetic contribution to these cells and to SSc is only now really coming to light, and this opens up a new therapeutic target for the disease for which many epigenetic drugs, such as miRNA replacements, are beginning to be developed. This review will examine the epigenetic regulators in the disease and possible targeting of these.
Collapse
Affiliation(s)
- Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon-Tyne, UK
| |
Collapse
|
43
|
Ramos PS. Epigenetics of scleroderma: Integrating genetic, ethnic, age, and environmental effects. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2019; 4:238-250. [PMID: 35382507 PMCID: PMC8922566 DOI: 10.1177/2397198319855872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/15/2019] [Indexed: 08/02/2023]
Abstract
Scleroderma or systemic sclerosis is thought to result from the interplay between environmental or non-genetic factors in a genetically susceptible individual. Epigenetic modifications are influenced by genetic variation and environmental exposures, and change with chronological age and between populations. Despite progress in identifying genetic, epigenetic, and environmental risk factors, the underlying mechanism of systemic sclerosis remains unclear. Since epigenetics provides the regulatory mechanism linking genetic and non-genetic factors to gene expression, understanding the role of epigenetic regulation in systemic sclerosis will elucidate how these factors interact to cause systemic sclerosis. Among the cell types under tight epigenetic control and susceptible to epigenetic dysregulation, immune cells are critically involved in early pathogenic events in the progression of fibrosis and systemic sclerosis. This review starts by summarizing the changes in DNA methylation, histone modification, and non-coding RNAs associated with systemic sclerosis. It then discusses the role of genetic, ethnic, age, and environmental effects on epigenetic regulation, with a focus on immune system dysregulation. Given the potential of epigenome editing technologies for cell reprogramming and as a therapeutic approach for durable gene regulation, this review concludes with a prospect on epigenetic editing. Although epigenomics in systemic sclerosis is in its infancy, future studies will help elucidate the regulatory mechanisms underpinning systemic sclerosis and inform the design of targeted epigenetic therapies to control its dysregulation.
Collapse
Affiliation(s)
- Paula S Ramos
- Paula S. Ramos, Division of Rheumatology and Immunology, Department of Medicine and Department of Public Health Sciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816, MSC 637, Charleston, SC 29425, USA.
| |
Collapse
|
44
|
Ciechomska M, Roszkowski L, Maslinski W. DNA Methylation as a Future Therapeutic and Diagnostic Target in Rheumatoid Arthritis. Cells 2019; 8:E953. [PMID: 31443448 PMCID: PMC6770174 DOI: 10.3390/cells8090953] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a long-term autoimmune disease of unknown etiology that leads to progressive joint destruction and ultimately to disability. RA affects as much as 1% of the population worldwide. To date, RA is not a curable disease, and the mechanisms responsible for RA development have not yet been well understood. The development of more effective treatments and improvements in the early diagnosis of RA is direly needed to increase patients' functional capacity and their quality of life. As opposed to genetic mutation, epigenetic changes, such as DNA methylation, are reversible, making them good therapeutic candidates, modulating the immune response or aggressive synovial fibroblasts (FLS-fibroblast-like synoviocytes) activity when it is necessary. It has been suggested that DNA methylation might contribute to RA development, however, with insufficient and conflicting results. Besides, recent studies have shown that circulating cell-free methylated DNA (ccfDNA) in blood offers a very convenient, non-invasive, and repeatable "liquid biopsy", thus providing a reliable template for assessing molecular markers of various diseases, including RA. Thus, epigenetic therapies controlling autoimmunity and systemic inflammation may find wider implications for the diagnosis and management of RA. In this review, we highlight current challenges associated with the treatment of RA and other autoimmune diseases and discuss how targeting DNA methylation may improve diagnostic, prognostic, and therapeutic approaches.
Collapse
Affiliation(s)
- Marzena Ciechomska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland.
| | - Leszek Roszkowski
- Department of Rheumatology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland
| | - Wlodzimierz Maslinski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics Rheumatology and Rehabilitation, 02-635 Warsaw, Poland
| |
Collapse
|
45
|
Vianello E, Marrocco-Trischitta Massimiliano M, Dozio E, Bandera F, Tacchini L, Canciani E, Dellavia C, Schmitz G, Lorenzo M, Corsi Romanelli Massimiliano M. Correlational study on altered epicardial adipose tissue as a stratification risk factor for valve disease progression through IL-13 signaling. J Mol Cell Cardiol 2019; 132:210-218. [PMID: 31102584 DOI: 10.1016/j.yjmcc.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
AIMS Genetic and environmental factors all interact in the risk of progression of valvular dysfunctions. Previous studies reported a relation between valve diseases and epicardial adipose tissue (EAT) thickness. The aim of this study was to verify the possible relationship between the molecular pattern of EAT related to IL-13 fibrogenic cytokine expression and valve dysfunction. METHODS AND RESULTS A valvular heart disease (VHD) population was stratified according to their median EAT thickness (7 mm). The molecular expression of IL-13 in EAT is directly related to the molecular expression of genes associated with extracellular matrix (ECM) turnover, macrophage infiltration and promotion of the formation of ectopic calcific nodules involved in aorta coarctation and calcification. CONCLUSION IL-13 gene expression in altered EAT is directly related to the expression of genes involved in ECM turnover and the formation of ectopic calcific nodules, suggesting measurements of EAT as a stratification risk factor for valve instability in the VHD patients.
Collapse
Affiliation(s)
- Elena Vianello
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | | | - Elena Dozio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Francesco Bandera
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Cardiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Lorenza Tacchini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Elena Canciani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Claudia Dellavia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Menicanti Lorenzo
- Department of Cardio-Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Marco Corsi Romanelli Massimiliano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; U.O.C. SMEL-1 of Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
46
|
Henderson J, Distler J, O'Reilly S. The Role of Epigenetic Modifications in Systemic Sclerosis: A Druggable Target. Trends Mol Med 2019; 25:395-411. [PMID: 30858032 DOI: 10.1016/j.molmed.2019.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disorder characterised by skin fibrosis that often also affects internal organs, eventually resulting in mortality. Although management of the symptoms has extended lifespan, patients still suffer from poor quality of life, hence the need for improved therapies. Development of efficacious treatments has been stymied by the unknown aetiology, although recent advancements suggest a potentially key role for epigenetics - the regulation of gene expression by noncoding RNAs and chemical modifications to DNA or DNA-associated proteins. Herein, the evidence implicating epigenetics in the pathogenesis of SSc is discussed with an emphasis on the therapeutic potential this introduces to the field - particularly the repurposing of epigenetic targeting cancer therapeutics and newly emerging miRNA-based strategies.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Tyne and Wear, Newcastle upon Tyne NE2 8ST, UK
| | - Joerg Distler
- Department of Internal Medicine 3, Erlangen University, Erlangen, Germany
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Tyne and Wear, Newcastle upon Tyne NE2 8ST, UK.
| |
Collapse
|
47
|
Mao YM, Zhao CN, Leng J, Leng RX, Ye DQ, Zheng SG, Pan HF. Interleukin-13: A promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev 2018; 45:9-23. [PMID: 30581068 DOI: 10.1016/j.cytogfr.2018.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Interleukin-13 (IL-13) was previously thought to be a redundant presence of IL-4, but in recent years its role in immunity, inflammation, fibrosis, and allergic diseases has become increasingly prominent. IL-13 can regulate several subtypes of T helper (Th) cells and affect their transformation, including Th1, Th2, T17, etc., thus it may play an important role in immune system. Previous studies have revealed that IL-13 is implicated in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), ulcerative colitis (UC), type 1 diabetes (T1D), sjogren's syndrome (SS), etc. In this review, we will briefly discuss the biological features of IL-13 and summarize recent advances in the role of IL-13 in the development and pathogenesis of autoimmune diseases. This information may provide new perspectives and suggestions for the selection of therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jing Leng
- Anhui Academy of Medical Sciences, 15 Yonghong Road, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
48
|
Brown M, O'Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol 2018; 195:310-321. [PMID: 30430560 DOI: 10.1111/cei.13238] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is an idiopathic systemic autoimmune disease. It is characterized by a triad of hallmarks: immune dysfunction, fibrosis and vasculopathy. Immune dysfunction in SSc is characterized by the activation and recruitment of immune cells and the production of autoantibodies and cytokines. How immune abnormalities link the fibrosis and vasculopathy in SSc is poorly understood. A plethora of immune cell types are implicated in the immunopathogenesis of SSc, including T cells, B cells, dendritic cells, mast cells and macrophages. How these different cell types interact to contribute to SSc is complicated, and can involve cell-to-cell interactions and communication via cytokines, including transforming growth factor (TGF)-β, interleukin (IL)-6 and IL-4. We will attempt to review significant and recent research demonstrating the importance of immune cell regulation in the immunopathogenesis of SSc with a particular focus on fibrosis.
Collapse
Affiliation(s)
- M Brown
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - S O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Balaji S, Dong X, Li H, Zhang Y, Steen E, Lingappan K. Sex-specific differences in primary neonatal murine lung fibroblasts exposed to hyperoxia in vitro: implications for bronchopulmonary dysplasia. Physiol Genomics 2018; 50:940-946. [PMID: 30169132 PMCID: PMC6293119 DOI: 10.1152/physiolgenomics.00075.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of the neonate characterized by impaired alveolarization and vascular growth. BPD is more common in premature male infants, but the reasons underlying sexually dimorphic outcomes are not known. It is thought that alterations in fibroblast phenotype in response to environmental stress such as hyperoxia contribute to BPD. Notch signaling creates a profibrotic environment in the lung. However, the role of hyperoxia on differential Notch pathway activation in male vs. female neonatal lung fibroblasts is not known. Primary murine lung fibroblasts from 10-day-old male and female mice were exposed to room air (21% O2, 5% CO2) or hyperoxia (95% O2, 5% CO2), and changes in cell proliferation, viability and expression of fibrosis-related genes and Notch pathway mediators were measured. Upon exposure to hyperoxia, cell proliferation was arrested in male and female fibroblasts, but cell viability was preserved. Increased Notch pathway activation was noted in male fibroblasts along with differential sex-specific modulation of key Notch pathway mediators in response to hyperoxia. α-Smooth muscle actin expression was increased in both male and female fibroblasts upon exposure to hyperoxia. Male and female fibroblasts further demonstrated distinct changes in expression of key fibrosis-related genes upon exposure to hyperoxia. Differential Notch pathway activation and distinct differences in the expression of key fibrosis-related genes might contribute to the sex-specific differences seen in hyperoxia-induced fibrosis and inhibition of lung development in BPD, with more severe implications in male neonates.
Collapse
Affiliation(s)
- Swathi Balaji
- Department of Pediatric Surgery, Baylor College of Medicine , Houston, Texas
| | - Xiaoyu Dong
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine , Houston, Texas
| | - Hui Li
- Department of Pediatric Surgery, Baylor College of Medicine , Houston, Texas
| | - Yuhao Zhang
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine , Houston, Texas
| | - Emily Steen
- Department of Pediatric Surgery, Baylor College of Medicine , Houston, Texas
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
50
|
Filidou E, Valatas V, Drygiannakis I, Arvanitidis K, Vradelis S, Kouklakis G, Kolios G, Bamias G. Cytokine Receptor Profiling in Human Colonic Subepithelial Myofibroblasts: A Differential Effect of Th Polarization-Associated Cytokines in Intestinal Fibrosis. Inflamm Bowel Dis 2018; 24:2224-2241. [PMID: 29860326 DOI: 10.1093/ibd/izy204] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Colonic subepithelial myofibroblasts (cSEMFs) are mesenchymal cells with a pivotal role in the pathophysiology of Crohn's disease (CD) fibrosis. Here, we demonstrate for the first time a complete expression mapping of cytokine receptors, implicated in inflammatory bowel diseases, in primary human cSEMFs and how pro-inflammatory cytokines regulate this expression. Furthermore, we show the effect of Th1-, Th2-, Th17- and Treg-related cytokines on a fibrosis-related phenotype of cSEMFs. METHODS Colonic subepithelial myofibroblasts were isolated from healthy individuals' colonic biopsies. Interleukin (IL)-1α- and/or tumor necrosis factor (TNF)-α-induced mRNA and protein expression of cytokine receptors was assayed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunofluorescence, respectively. Th-related cytokine effects on mRNA and protein profibrotic factor expression were analyzed by qRT-PCR and/or colorimetric assays and on the wound-healing capacity of cSEMFs by scratch test. RESULTS In cSEMFs, we observed basal cytokine receptor expression, which was modified by IL-1α and TNF-α. Th1-related cytokines upregulated tissue factor (TF), collagen, fibronectin and matrix metalloproteinase (MMP)-1 and downregulated α-smooth muscle actin (α-SMA), MMP-9, and wound healing rate. Th2-related cytokines upregulated collagen, TF, α-SMA, MMP-1, and wound healing rate and downregulated fibronectin and MMP-9. IL-17 and IL-23 upregulated fibronectin, and IL-22 downregulated TF. IL-17 and IL-22 decreased wound healing rate. Similar to TGF-β, IL-23 upregulated MMP-1, tissue inhibitor of metalloproteinases-1, collagen expression, and wound healing rates. CONCLUSIONS Our results suggest that cSEMFs have a central role in inflammation and fibrosis, as they express a great variety of Th-related cytokine receptors, making them responsive to pro-inflammatory cytokines, abundant in the inflamed mucosa of CD patients.
Collapse
Affiliation(s)
- Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Alexandroupolis, Greece
| | - Vasilis Valatas
- Laboratory of Gastroenterology, University of Crete, Heraklion, Greece
| | | | | | - Stergios Vradelis
- 2nd Department of Internal Medicine of University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Georgios Kouklakis
- 1st Department of Internal Medicine of University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Alexandroupolis, Greece
| | - Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| |
Collapse
|