1
|
Wang QS, Fan KJ, Teng H, Liu J, Yang YL, Chen D, Wang TY. MiR-204/-211 double knockout exacerbates rheumatoid arthritis progression by promoting splenic inflammation. Int Immunopharmacol 2024; 140:112850. [PMID: 39116488 DOI: 10.1016/j.intimp.2024.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Collagen-induced arthritis (CIA) model was induced in C57BL/6 wild-type (wt) and C57BL/6 miR-204/-211 double-knockout (dKO) mice to investigate the role of miR-204/-211 in suppressing splenic inflammation in rheumatoid arthritis (RA). METHODS Differences of miR-204/-211 and structure-specific recognition protein 1 (SSRP1) in the spleen of DBA/1J wt and CIA mice were detected via PCR and immunohistochemistry. CIA was induced in both C57BL/6 wt and C57BL/6 miR-204/-211 dKO mice, and the onset of CIA and disease severity were statistically analyzed. Immunohistochemistry staining of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and SSRP1 in spleen or knee joints was performed and analyzed. In CIA miR-204/-211 dKO mice, AAV-shSSRP1 was intra-articularly injected, with both the AAV-shRNA Ctrl and AAV-shRNA Ctrl CIA groups receiving the same dose of AAV-shRNA. Spleen sections were stained with hematoxylin and eosin (H&E). RESULTS Compared to wt mouse spleens, aberrant expression of miR-204/-211 and SSRP1 was observed in the spleens of CIA mice. Immunized dKO mice exhibited a higher incidence of CIA onset and a more exacerbated RA disease phenotype, characterized by increased spleen inflammation score and elevated levels of IL-1β, TNF-α, and SSRP1 expression. AAV-shSSRP1 injection in CIA dKO mice significantly reduced spleen inflammation scores, IL-1β and TNF-α expression levels, and down-regulated Ki-67 expression compared to CIA dKO mice. CONCLUSION Knockout of miR-204/-211 exacerbated the onset of CIA in C57BL/6 mice, while miR-204/-211 played a protective role against the progression of splenic inflammatory and proliferative progression in RA by targeting SSRP1.
Collapse
Affiliation(s)
- Qi-Shan Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Kai-Jian Fan
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Pharmacy, Mental Health Center, Chongming District, Shanghai 202150, China
| | - Hui Teng
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Liu
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yi-Lei Yang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ting-Yu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
2
|
Bermúdez M, Martínez-Barajas MG, Bueno-Urquiza LJ, López-Gutiérrez JA, Villegas-Mercado CE, López-Camarillo C. Role of MicroRNA-204 in Regulating the Hallmarks of Breast Cancer: An Update. Cancers (Basel) 2024; 16:2814. [PMID: 39199587 PMCID: PMC11352763 DOI: 10.3390/cancers16162814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
microRNA-204-5p (miR-204) is a small noncoding RNA with diverse regulatory roles in breast cancer (BC) development and progression. miR-204 is implicated in the instauration of fundamental traits acquired during the multistep development of BC, known as the hallmarks of cancer. It may act as a potent tumor suppressor by inhibiting key cellular processes like angiogenesis, vasculogenic mimicry, invasion, migration, and metastasis. It achieves this by targeting multiple master genes involved in these processes, including HIF-1α, β-catenin, VEGFA, TGFBR2, FAK, FOXA1, among others. Additionally, miR-204 modulates signaling pathways like PI3K/AKT and interacts with HOTAIR and DSCAM-AS1 lncRNAs, further influencing tumor progression. Beyond its direct effects on tumor cells, miR-204 shapes the tumor microenvironment by regulating immune cell infiltration, suppressing pro-tumorigenic cytokine production, and potentially influencing immunotherapy response. Moreover, miR-204 plays a crucial role in metabolic reprogramming by directly suppressing metabolic genes within tumor cells, indirectly affecting metabolism through exosome signaling, and remodeling metabolic flux within the tumor microenvironment. This review aims to present an update on the current knowledge regarding the role of miR-204 in the hallmarks of BC. In conclusion, miR-204 is a potential therapeutic target and prognostic marker in BC, emphasizing the need for further research to fully elucidate its complex roles in orchestrating aggressive BC behavior.
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico;
| | | | - Lesly Jazmín Bueno-Urquiza
- University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico; (M.G.M.-B.); (L.J.B.-U.)
| | - Jorge Armando López-Gutiérrez
- Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Mexico;
| | | | - César López-Camarillo
- Genomic Sciences Program, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico
| |
Collapse
|
3
|
Tanaka LY, Kumar S, Gutierre LF, Magnun C, Kajihara D, Kang DW, Laurindo FRM, Jo H. Disturbed flow regulates protein disulfide isomerase A1 expression via microRNA-204. Front Physiol 2024; 15:1327794. [PMID: 38638277 PMCID: PMC11024637 DOI: 10.3389/fphys.2024.1327794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Redox processes can modulate vascular pathophysiology. The endoplasmic reticulum redox chaperone protein disulfide isomerase A1 (PDIA1) is overexpressed during vascular proliferative diseases, regulating thrombus formation, endoplasmic reticulum stress adaptation, and structural remodeling. However, both protective and deleterious vascular effects have been reported for PDIA1, depending on the cell type and underlying vascular condition. Further understanding of this question is hampered by the poorly studied mechanisms underlying PDIA1 expression regulation. Here, we showed that PDIA1 mRNA and protein levels were upregulated (average 5-fold) in the intima and media/adventitia following partial carotid ligation (PCL). Our search identified that miR-204-5p and miR-211-5p (miR-204/211), two broadly conserved miRNAs, share PDIA1 as a potential target. MiR-204/211 was downregulated in vascular layers following PCL. In isolated endothelial cells, gain-of-function experiments of miR-204 with miR mimic decreased PDIA1 mRNA while having negligible effects on markers of endothelial activation/stress response. Similar effects were observed in vascular smooth muscle cells (VSMCs). Furthermore, PDIA1 downregulation by miR-204 decreased levels of the VSMC contractile differentiation markers. In addition, PDIA1 overexpression prevented VSMC dedifferentiation by miR-204. Collectively, we report a new mechanism for PDIA1 regulation through miR-204 and identify its relevance in a model of vascular disease playing a role in VSMC differentiation. This mechanism may be regulated in distinct stages of atherosclerosis and provide a potential therapeutic target.
Collapse
Affiliation(s)
- Leonardo Y. Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Lucas F. Gutierre
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Celso Magnun
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Daniela Kajihara
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
4
|
Deng J, Pan T, Liu Z, McCarthy C, Vicencio JM, Cao L, Alfano G, Suwaidan AA, Yin M, Beatson R, Ng T. The role of TXNIP in cancer: a fine balance between redox, metabolic, and immunological tumor control. Br J Cancer 2023; 129:1877-1892. [PMID: 37794178 PMCID: PMC10703902 DOI: 10.1038/s41416-023-02442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is commonly considered a master regulator of cellular oxidation, regulating the expression and function of Thioredoxin (Trx). Recent work has identified that TXNIP has a far wider range of additional roles: from regulating glucose and lipid metabolism, to cell cycle arrest and inflammation. Its expression is increased by stressors commonly found in neoplastic cells and the wider tumor microenvironment (TME), and, as such, TXNIP has been extensively studied in cancers. In this review, we evaluate the current literature regarding the regulation and the function of TXNIP, highlighting its emerging role in modulating signaling between different cell types within the TME. We then assess current and future translational opportunities and the associated challenges in this area. An improved understanding of the functions and mechanisms of TXNIP in cancers may enhance its suitability as a therapeutic target.
Collapse
Affiliation(s)
- Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caitlin McCarthy
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Giovanna Alfano
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Ali Abdulnabi Suwaidan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Mingzhu Yin
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Richard Beatson
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London, WC1E 6JF, UK.
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
- Cancer Research UK City of London Centre, London, UK.
| |
Collapse
|
5
|
Wu JH, Cheng TC, Zhu B, Gao HY, Zheng L, Chen WX. Identification of cuproptosis-related gene SLC31A1 and upstream LncRNA-miRNA regulatory axis in breast cancer. Sci Rep 2023; 13:18390. [PMID: 37884650 PMCID: PMC10603161 DOI: 10.1038/s41598-023-45761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Mounting evidence indicate that cuproptosis, a novel form of programmed cell death, contributes to cancer development and progression. However, a comprehensive analysis regarding the expressions, functions, and regulatory network of cuproptosis-related genes is still lacking. In the present work, cuproptosis-related genes, upstream miRNAs and lncRNAs, and clinical data of breast cancer from TCGA database were analyzed by R language including Cox regression analysis, correlation calculation, ROC curve construction, and survival evaluation, and were further verified by public-available databases. Chemosensitivity and immune infiltration were also evaluated by online tools. SLC31A1 was significantly increased in breast cancer samples than those in normal tissues. SLC31A1 was negatively related to a favorable outcome in breast cancer, and the AUC value increased with the prolongation of follow-up time. LINC01614 and miR-204-5p were potential upstream regulators of SLC31A1. Moreover, SLC31A1 was significantly positively correlated with different immune cells infiltration, immune cell biomarkers, and immune checkpoints in breast cancer. SLC31A1 was a potential cuproptosis-related gene in breast cancer, which was significantly upregulated and was able to predict diagnosis, prognosis, chemosensitivity, and immune infiltration. LINC01640/miR-204-5p/SLC31A1 might be a significant and promising axis during cuproptosis in breast cancer.
Collapse
Affiliation(s)
- Jia-Hao Wu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Tian-Cheng Cheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
- Graduate School, Bengbu Medical College, Bengbu, 233000, Anhui Province, China
| | - Bei Zhu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Hai-Yan Gao
- Department of Breast Surgery, The Affiliated Changzhou Tumor Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, China
| | - Lin Zheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China
| | - Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, 29 Xinglongxiang, Changzhou, 213000, Jiangsu Province, China.
- Post-doctoral Working Station, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China.
| |
Collapse
|
6
|
Gundagatti S, Srivastava S. Development of Electrochemical Biosensor for miR204-Based Cancer Diagnosis. Interdiscip Sci 2022; 14:596-606. [PMID: 35471629 DOI: 10.1007/s12539-022-00508-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
With increase in cancer burden worldwide and poor survival rates due to delayed diagnosis, it is pertinent to develop a device for early diagnosis. We report an electrochemical biosensor for quantification of miRNA-204 (miR-204) biomarker that is dysregulated in most of the cancers. The proposed methodology uses the gold nanoparticles-modified carbon screen-printed electrode for immobilization of single-stranded DNA probe against miR-204. Colloidal gold nanoparticles were synthesized using L-glutamic acid as reducing agent. Nanoparticles were characterized by UV-visible spectroscopy and transmission electron microscopy. Spherical gold nanoparticles were of 7-28 nm in size. Biosensor fabricated using these nanoparticles was characterized by cyclic voltammetry after spiking 0.1 fg/mL-0.1 µg/mL of miR-204 in fetal bovine serum. Response characteristics of the miR-204 biosensor displayed high sensitivity of 8.86 µA/µg/µL/cm2 with wide detection range of 15.5 aM to 15.5 nM. The low detection limit makes it suitable for early diagnosis and screening of cancer.
Collapse
Affiliation(s)
- Shilpa Gundagatti
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P., India
| | - Sudha Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P., India.
| |
Collapse
|
7
|
Abstract
Significance: Thioredoxin-interacting protein (Txnip) is an α-arrestin protein that acts as a cancer suppressor. Txnip is simultaneously a critical regulator of energy metabolism. Other alpha-arrestin proteins also play key roles in cell biology and cancer. Recent Advances: Txnip expression is regulated by multilayered mechanisms, including transcriptional regulation, microRNA, messenger RNA (mRNA) stabilization, and protein degradation. The Txnip-based connection between cancer and metabolism has been widely recognized. Meanwhile, new aspects are proposed for the mechanism of action of Txnip, including the regulation of RNA expression and autophagy. Arrestin domain containing 3 (ARRDC3), another α-arrestin protein, regulates endocytosis and signaling, whereas ARRDC1 and ARRDC4 regulate extracellular vesicle formation. Critical Issues: The mechanism of action of Txnip is yet to be elucidated. The regulation of intracellular protein trafficking by arrestin family proteins has opened an emerging field of biology and medical research, which needs to be examined further. Future Directions: A fundamental understanding of the mechanism of action of Txnip and other arrestin family members needs to be explored in the future to combat diseases such as cancer and diabetes. Antioxid. Redox Signal. 36, 1001-1022.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Department of Clinical Laboratory Sciences, Tenri Health Care University, Tenri, Japan.,Department of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Abdollahzadeh R, Azarnezhad A, Paknahad S, Mansoori Y, Pirhoushiaran M, Kanaani K, Bafandeh N, Jafari D, Tavakkoly-Bazzaz J. A Proposed TUSC7/miR-211/Nurr1 ceRNET Might Potentially be Disturbed by a cer-SNP rs2615499 in Breast Cancer. Biochem Genet 2022; 60:2200-2225. [PMID: 35296964 DOI: 10.1007/s10528-022-10216-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/24/2022] [Indexed: 12/09/2022]
Abstract
Evidence and in silico analyses showed that TUSC7, miR-211, and Nurr1 may be involved in BC pathogenesis by ceRNET signaling axis. This study aimed to investigate the potential role of TUSC7/miR-211/Nurr1 ceRNET and rs2615499 variant as a novel cer-SNP in BC subjects. The expression assays were conducted by qPCR on tumor tissues (n = 50), tumor-adjacent normal tissues (TANTs) (n = 50), and clinically healthy control tissues (n = 50). The expression of TUSC7 and Nurr1 significantly decreased, but the level of miR-211 significantly increased in tumor tissues compared to TANTs and healthy normal tissues. Altered expression of TUSC7 and miR-211 was associated with poor prognosis of patients. The Nurr1 exhibited a double-edged sword-like activity in BC. In addition, TUSC7, Nurr1, and miR-211 expressions were significantly related to a novel BC-associated rs2615499 (A > C) located in the miR-211 binding site on Nurr1 3'-UTR. In the second part of the study, a case-control study was performed on BC patients (n = 100) and matched healthy controls (n = 100). The genomic DNA was isolated and genotyping was performed using Tetra-Primer ARMS PCR. The CC and AC genotypes were associated with higher expression levels of Nurr1 and worse outcomes of the disease. Our findings revealed that TUSC7 functions as a tumor suppressor in BC potentially via miR-211/Nurr1, which might be disturbed by the cer-SNP rs2615499. However, functional studies are needed to validate these results.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sahereh Paknahad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khaled Kanaani
- Faculty of Nursing and Midwifery, Kowsar Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Bafandeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Wang QS, Fan KJ, Teng H, Chen S, Xu BX, Chen D, Wang TY. Mir204 and Mir211 suppress synovial inflammation and proliferation in rheumatoid arthritis by targeting Ssrp1. eLife 2022; 11:78085. [PMID: 36511897 PMCID: PMC9747153 DOI: 10.7554/elife.78085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterized by synovial hyperplasia. Mir204 and Mir211 are homologous miRNAs with the same gene targeting spectrum. It is known that Mir204/211 play an important role in protecting osteoarthritis development; however, the roles of Mir204/211 in RA disease have not been determined. In the present study, we investigated the effects and molecular mechanisms of Mir204/211 on synovial inflammation and hyperproliferation in RA. The effects of Mir204/211 on the inflammation and abnormal proliferation in primary fibroblast-like synoviocytes (FLSs) were examined by Mir204/211 gain-of-function and loss-of-function approaches in vitro and in vivo. We identified the structure-specific recognition protein 1 (Ssrp1) as a downstream target gene of Mir204/211 based on the bioinformatics analysis. We overexpressed Ssrp1and Mir204/211 in FLS to determine the relationship between Ssrp1 and Mir204/211 and their effects on synovial hyperplasia. We created a collagen-induced arthritis (CIA) model in wild-type as well as Mir204/211 double knockout (dKO) mice to induce RA phenotype and administered adeno-associated virus (AAV)-mediated Ssrp1-shRNA (AAV-shSsrp1) by intra-articular injection into Mir204/211 dKO mice. We found that Mir204/211 attenuated excessive cell proliferation and synovial inflammation in RA. Ssrp1 was the downstream target gene of Mir204/211. Mir204/211 affected synovial proliferation and decelerated RA progression by targeting Ssrp1. CIA mice with Mir204/211 deficiency displayed enhanced synovial hyperplasia and inflammation. RA phenotypes observed in Mir204/211 deficient mice were significantly ameliorated by intra-articular delivery of AAV-shSsrp1, confirming the involvement of Mir204/211-Ssrp1signaling during RA development. In this study, we demonstrated that Mir204/211 antagonize synovial hyperplasia and inflammation in RA by regulation of Ssrp1. Mir204/211 may serve as novel agents to treat RA disease.
Collapse
Affiliation(s)
- Qi-Shan Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kai-Jian Fan
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Teng
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sijia Chen
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bing-Xin Xu
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Ting-Yu Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Song N, Luo J, Huang L, Tian H, Chen Y, He Q. miR-204-5p and miR-211 Synergistically Downregulate the α S1-Casein Content and Contribute to the Lower Allergy of Goat Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5353-5362. [PMID: 33939400 DOI: 10.1021/acs.jafc.1c01147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
αS1-Casein (encoded by the CSN1S1 gene) is associated with higher rates of allergy than other milk protein components for humans. microRNAs (miRNAs) as small noncoding RNA molecules regulate gene expression and influence diverse biological processes. However, little is known about the regulation of milk protein synthesis by miRNAs in ruminants. In this study, we aim to investigate the regulatory roles of miR-204 family members (miR-204-5p and miR-211) on αS1-casein in goat mammary epithelial cells (GMEC). Here, we observed that the CSN1S1 mRNA level is upregulated, while miR-204-5p and miR-211 (miR-204-5p/-211) abundance is downregulated during peak lactation compared with middle lactation of dairy goats. We found that miR-204-5p/-211 synergistically inhibit αS1-casein expression via directly binding to the 3'-untranslated region (3'UTR) of CSN1S1 in GMEC. miR-204-5p/-211 increase β-casein mRNA (CSN2) and protein abundance, as well as the signal transducer and activator of transcription 5a (STAT5a) activity. Further, miR-204-5p/-211 enhance β-casein expression via the CSN1S1-STAT5a signaling axis and promote β-casein transcription by activating the STAT5 response element located in the CSN2 promoter. In conclusion, miR-204-5p/-211 regulate αS1-casein and β-casein synthesis via targeting CSN1S1 in GMEC, which provide the strategy for manipulating miR-204 family members to reduce milk allergy potential and improve ruminant milk quality for human consumption.
Collapse
Affiliation(s)
- Ning Song
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| | - Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| | - Yating Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| | - Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| |
Collapse
|
11
|
Ray A, Kunhiraman H, Perera RJ. The Paradoxical Behavior of microRNA-211 in Melanomas and Other Human Cancers. Front Oncol 2021; 10:628367. [PMID: 33628737 PMCID: PMC7897698 DOI: 10.3389/fonc.2020.628367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
Cancer initiation, progression, and metastasis leverage many regulatory agents, such as signaling molecules, transcription factors, and regulatory RNA molecules. Among these, regulatory non-coding RNAs have emerged as molecules that control multiple cancer types and their pathologic properties. The human microRNA-211 (MIR211) is one such molecule, which affects several cancer types, including melanoma, glioblastoma, lung adenocarcinomas, breast, ovarian, prostate, and colorectal carcinoma. Previous studies suggested that in certain tumors MIR211 acts as a tumor suppressor while in others it behaves as an oncogenic regulator. Here we summarize the known molecular genetic mechanisms that regulate MIR211 gene expression and molecular pathways that are in turn controlled by MIR211 itself. We discuss how cellular and epigenetic contexts modulate the biological effects of MIR211, which exhibit pleiotropic effects. For example, up-regulation of MIR211 expression down-regulates Warburg effect in melanoma tumor cells associated with an inhibition of the growth of human melanoma cells in vitro, and yet these conditions robustly increase tumor growth in xenografted mice. Signaling through the DUSP6-ERK5 pathway is modulated by MIR211 in BRAFV600E driven melanoma tumors, and this function is involved in the resistance of tumor cells to the BRAF inhibitor, Vemurafenib. We discuss several alternate but testable models, involving stochastic cell-to-cell expression heterogeneity due to multiple equilibria involving feedback circuits, intracellular communication, and genetic variation at miRNA target sties, to reconcile the paradoxical effects of MIR211 on tumorigenesis. Understanding the precise role of this miRNA is crucial to understanding the genetic basis of melanoma as well as the other cancer types where this regulatory molecule has important influences. We hope this review will inspire novel directions in this field.
Collapse
Affiliation(s)
- Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Haritha Kunhiraman
- Cancer & Blood Disorder Institute, Johns Hopkins All Children’s Hospital, South, St. Petersburg, FL, United States
| | - Ranjan J. Perera
- Cancer & Blood Disorder Institute, Johns Hopkins All Children’s Hospital, South, St. Petersburg, FL, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Zhang C, Miyagishima KJ, Dong L, Rising A, Nimmagadda M, Liang G, Sharma R, Dejene R, Wang Y, Abu-Asab M, Qian H, Li Y, Kopera M, Maminishkis A, Martinez J, Miller S. Regulation of phagolysosomal activity by miR-204 critically influences structure and function of retinal pigment epithelium/retina. Hum Mol Genet 2020; 28:3355-3368. [PMID: 31332443 DOI: 10.1093/hmg/ddz171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNA-204 (miR-204) is expressed in pulmonary, renal, mammary and eye tissue, and its reduction can result in multiple diseases including cancer. We first generated miR-204-/- mice to study the impact of miR-204 loss on retinal and retinal pigment epithelium (RPE) structure and function. The RPE is fundamentally important for maintaining the health and integrity of the retinal photoreceptors. miR-204-/- eyes evidenced areas of hyper-autofluorescence and defective photoreceptor digestion, along with increased microglia migration to the RPE. Migratory Iba1+ microglial cells were localized to the RPE apical surface where they participated in the phagocytosis of photoreceptor outer segments (POSs) and contributed to a persistent build-up of rhodopsin. These structural, molecular and cellular outcomes were accompanied by decreased light-evoked electrical responses from the retina and RPE. In parallel experiments, we suppressed miR-204 expression in primary cultures of human RPE using anti-miR-204. In vitro suppression of miR-204 in human RPE similarly showed abnormal POS clearance and altered expression of autophagy-related proteins and Rab22a, a regulator of endosome maturation. Together, these in vitro and in vivo experiments suggest that the normally high levels of miR-204 in RPE can mitigate disease onset by preventing generation of oxidative stress and inflammation originating from intracellular accumulation of undigested photoreactive POS lipids. More generally, these results implicate RPE miR-204-mediated regulation of autophagy and endolysosomal interaction as a critical determinant of normal RPE/retina structure and function.
Collapse
Affiliation(s)
- Congxiao Zhang
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Kiyoharu J Miyagishima
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aaron Rising
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malika Nimmagadda
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genqing Liang
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roba Dejene
- Ophthalmic Genetics and Visual Function Branch, Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuan Wang
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Megan Kopera
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arvydas Maminishkis
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Jennifer Martinez
- Inflammation and Autoimmunity, National Institute of Environmental Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Sheldon Miller
- Ophthalmic Genetics and Visual Function Branch, Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
13
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
14
|
Chen C, Tian A, Zhou H, Zhang X, Liu Z, Ma X. Upregulation of miR-211 Promotes Chondrosarcoma Development via Targeting Tumor Suppressor VHL. Onco Targets Ther 2020; 13:2935-2943. [PMID: 32308426 PMCID: PMC7147617 DOI: 10.2147/ott.s239887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction miR-211 has been demonstrated to be aberrantly expressed and plays a pivotal role in human cancers. However, its expression profiles and potential roles in chondrosarcoma development remain still elusive. This study aims to determine the clinical values and underlying roles of miR-211 in chondrosarcoma. Methods miR-211 expression was analyzed by qRT-PCR in chondrosarcoma specimens and the matched adjacent non-tumor tissues. The relationships among miR-211 expression, clinicopathological factors and overall survival were also evaluated. Cell viability, colony formation, migration and invasion were further investigated in chondrosarcoma cells. Potential target of miR-211 was predicted using bioinformatics to delineate the molecular mechanisms. Results miR-211 was remarkably increased in chondrosarcoma compared with the matched adjacent non-tumor tissues. High miR-211 level was identified as 66.7% in chondrosarcoma specimens, which were significantly associated with histological grade and MSTS stage. miR-211 had significant influences on the prognosis of chondrosarcoma patients. Multivariate analysis demonstrated that miR-211 was an independent prognostic factor for overall survival of chondrosarcoma patients. We also found that overexpression or inhibitor of miR-211 promotes or suppresses chondrosarcoma cell proliferation, migration and invasion, respectively. Mechanistically, miR-211 binds to the 3ʹ-UTR of Von Hippel-Lindau (VHL) and suppresses its expression, while restoration of VHL suppressed the potentiated function of miR-211 on proliferation and invasion of chondrosarcoma cells. Conclusion miR-211 is identified as a potent oncogenic function in chondrosarcoma development, which can serve as a novel biomarker to predict the survival of chondrosarcoma patients. miR-211 potentiates chondrosarcoma growth via targeting VHL, highlighting a novel attractive target for chondrosarcoma treatment.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Aixian Tian
- Department of Orthopedics Institute, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Hua Zhou
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Xiaolin Zhang
- Department of Spinal Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Zhongjun Liu
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Xinlong Ma
- Department of Spinal Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China
| |
Collapse
|
15
|
Jeong D, Ham J, Park S, Kim HW, Kim H, Ji HW, Kim SJ. Ginsenoside Rh2 Suppresses Breast Cancer Cell Proliferation by Epigenetically Regulating the Long Noncoding RNA C3orf67-AS1. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1643-1658. [PMID: 31645124 DOI: 10.1142/s0192415x19500848] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ginsenoside Rh2, a major bioactive ingredient abundant in red ginseng, has an antiproliferative effect on various cancer cells. In this study, we report a novel long noncoding RNA, C3orf67-AS1, which was identified as being hypermethylated at a CpG site of the promoter by Rh2 in MCF-7 cancer cells. Rh2-induced hypermethylation was responsible for the lower gene expression; the expression was recovered following treatment with a methyltransferase inhibitor, 5-aza-2'-deoxycytidine. When C3orf67-AS1 was downregulated by a siRNA, the cell growth rate was decreased, demonstrating the RNA's oncogenic activity. Accordingly, breast cancer patients showed a lower methylation and higher expression level of C3orf67-AS1. Within 800 kb flanking C3orf67-AS1 on the chromosome, eight genes were found, and four genes including C3orf67 (the sense strand gene of C3orf67-AS1) were downregulated by Rh2. In particular, C3orf67 was downregulated when C3orf67-AS1 was suppressed by a siRNA; however, the expression of C3orf67-AS1 was not affected by C3orf67. Taken together, this study identifies a novel noncoding RNA, C3orf67-AS1, of which the expression could be suppressed by Rh2 via promoter methylation, thereby mediating the anti-proliferative effect of the ginsenoside.
Collapse
Affiliation(s)
- Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Heejoo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hwee Won Ji
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
16
|
Cai J, Yu Y, Xu Y, Liu H, Shou J, You L, Jiang H, Han X, Xie B, Han W. Exploring the role of Mir204/211 in HNSCC by the combination of bioinformatic analysis of ceRNA and transcription factor regulation. Oral Oncol 2019; 96:153-160. [PMID: 31422208 DOI: 10.1016/j.oraloncology.2019.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to reveal the regulatory roles of microRNAs in head and neck squamous cell carcinoma (HNSCC) through comprehensive ceRNA, miRNA-transcription factor (TF)-hub gene network and survival analysis. MATERIALS AND METHODS Expression analysis was performed using the 'edgeR' package based on The Cancer Genome Atlas database. The ceRNA network was screened by intersecting prediction results from miRcode, miRTarBase, miRDB and TargetScan. GSE30784, GSE59102 and GSE107591 from the Gene Expression Omnibus repository were chosen for cross-validation. Hub genes were identified using a protein-protein interaction network constructed by Search Tool for the Retrieval of Interacting Genes. The Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TTRUST) was utilized to map the miRNA-TF-Hub gene network. Patient overall survival was analyzed using the 'survival' package in R. Structural and functional analysis of miR-204/211 was based on miRbase and RNAstructure. RESULTS A ceRNA network of 178 lncRNAs, 19 miRNAs and 55 mRNAs was generated, and a TF regulatory network with 11 miRNAs, 11 TFs and 18 hub genes was constructed from the 52 hub genes identified through the protein-protein interaction (PPI) network. Survival analysis demonstrated that the dysregulated expression of 11 lncRNAs and 14 mRNAs was highly related to overall survival. Furthermore, miR-204 and miR-211 were significantly involved in the network with identical mature structures, indicating them as key miRNAs in HNSCC. CONCLUSION This study reveals the comprehensive molecular regulatory networks centralized by miRNAs in HNSCC and uncovers the crucial role of miR-204 and miR-211, which may become potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Jingyi Cai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Stomatology, Zhejiang University, School of Medicine, Yuhangtang Rd, No.866, Hangzhou 310058, Zhejiang Province, China
| | - Yeke Yu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Stomatology, Zhejiang University, School of Medicine, Yuhangtang Rd, No.866, Hangzhou 310058, Zhejiang Province, China
| | - Yuzi Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Stomatology, Zhejiang University, School of Medicine, Yuhangtang Rd, No.866, Hangzhou 310058, Zhejiang Province, China
| | - Hao Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiawei Shou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanliang Jiang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - XuFeng Han
- Department of Internal Medicine, Yuyao Traditional Chinese Medicine Hospital, Yuyao, Zhejiang, China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Chen X, Mangala LS, Mooberry L, Bayraktar E, Dasari SK, Ma S, Ivan C, Court KA, Rodriguez-Aguayo C, Bayraktar R, Raut S, Sabnis N, Kong X, Yang X, Lopez-Berestein G, Lacko AG, Sood AK. Identifying and targeting angiogenesis-related microRNAs in ovarian cancer. Oncogene 2019; 38:6095-6108. [PMID: 31289363 DOI: 10.1038/s41388-019-0862-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/01/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Current anti-angiogenic therapy for cancer is based mainly on inhibition of the vascular endothelial growth factor pathway. However, due to the transient and only modest benefit from such therapy, additional approaches are needed. Deregulation of microRNAs (miRNAs) has been demonstrated to be involved in tumor angiogenesis and offers opportunities for a new therapeutic approach. However, effective miRNA-delivery systems are needed for such approaches to be successful. In this study, miRNA profiling of patient data sets, along with in vitro and in vivo experiments, revealed that miR-204-5p could promote angiogenesis in ovarian tumors through THBS1. By binding with scavenger receptor class B type 1 (SCARB1), reconstituted high-density lipoprotein-nanoparticles (rHDL-NPs) were effective in delivering miR-204-5p inhibitor (miR-204-5p-inh) to tumor sites to suppress tumor growth. These results offer a new understanding of miR-204-5p in regulating tumor angiogenesis.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Linda Mooberry
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karem A Court
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangram Raut
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nirupama Sabnis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andras G Lacko
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Pediatrics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
18
|
Pei Y, Yao Q, Li Y, Zhang X, Xie B. microRNA-211 regulates cell proliferation, apoptosis and migration/invasion in human osteosarcoma via targeting EZRIN. Cell Mol Biol Lett 2019; 24:48. [PMID: 31333725 PMCID: PMC6617937 DOI: 10.1186/s11658-019-0173-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, microRNA-211 (miR211) has been considered as a tumor suppressor in multiple malignancies. However, the function of miR211 in human osteosarcoma has not been explored intensively so far. In this study, the relationship between miR211 and EZRIN was analyzed in human osteosarcoma. Methods The expression levels of miR211 and EZRIN were measured in both human osteosarcoma cells and tissues. The direct regulatory relationship between miR211 and EZRIN was evaluated using dual-luciferase assay. The effect of miR211 and EZRIN overexpression on cell proliferation, migration/invasion, and apoptosis was detected. Results The expression of miR211 was obviously lower in osteosarcoma tissues than paracancerous tissues. EZRIN was identified as the direct target of miR211, and up-regulation of miR211 increased the percentage of cell apoptosis, and suppressed cell proliferation as well as cell migration/invasion via directly regulating EZRIN. Conclusions Our study indicated that miR211 has an important role in the development and progress of osteosarcoma, and it might become a novel target in the diagnosis and treatment of human osteosarcoma. Electronic supplementary material The online version of this article (10.1186/s11658-019-0173-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yihua Pei
- 1Central laboratory, ZhongShan Hospital XiaMen University, Xiamen, 361004 China.,2Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, 361004 China
| | - Qin Yao
- 1Central laboratory, ZhongShan Hospital XiaMen University, Xiamen, 361004 China.,2Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated ZhongShan Hospital), Xiamen, 361004 China
| | - Yingchao Li
- 3Department of Spine Surgery, ZhongShan Hospital XiaMen University, No. 201 Hubin South Road, Xiamen, 361004 China
| | - Xin Zhang
- 4Department of Rehabilitation, ZhongShan Hospital XiaMen University, Xiamen, 361004 China
| | - Bozhen Xie
- 3Department of Spine Surgery, ZhongShan Hospital XiaMen University, No. 201 Hubin South Road, Xiamen, 361004 China
| |
Collapse
|
19
|
Wang X, Wan J, Xu Z, Jiang S, Ji L, Liu Y, Zhai S, Cui R. Identification of competitive endogenous RNAs network in breast cancer. Cancer Med 2019; 8:2392-2403. [PMID: 30932362 PMCID: PMC6536941 DOI: 10.1002/cam4.2099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/08/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND MiRNAs can regulate gene expression directly or indirectly, and long noncoding RNAs as competing endogenous RNA (ceRNAs) can bind to miRNAs competitively and affect mRNA expression. The ceRNA network is still unclear in breast cancer. In this study, a ceRNA network was constructed, and new treatment and prognosis targets and biomarkers for breast cancer were explored. METHODS A total of 1 096 cancer tissues and 112 adjacent normal tissues to cancer from the TCGA database were used to screen out significant differentially expressed mRNAs (DEMs), lncRNAs (DELs), and miRNAs (DEMis) to construct a ceRNA network. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to predict potential functions. Survival analysis was performed to predict which functions were significant for prognosis. RESULTS From the analysis, 2 139 DEMs, 1 059 DELs, and 84 DEMis were obtained. Targeting predictions for DEMis-DELs and DEMis-DEMs can yield 26 DEMs, 90 DELs, and 18 DEMis. We performed GO enrichment analysis, and the results showed that the upregulated DEMs were involved in nucleosomes, extracellular regions, and nucleosome assembly, while the downregulated DEMs were mainly involved in Z disk, muscle contraction, and structural constituents of muscle. KEGG pathway analysis was performed on all DEMs, and the pathways were enriched in retinol metabolism, steroid hormone biosynthesis, and tyrosine metabolism. Through survival analysis of the ceRNA network, we identified four DEMs, two DELs, and two DEMis that were significant for poor prognosis. CONCLUSIONS This study suggested that constructing a ceRNA network and performing survival analysis on the network could screen out new significant treatment and prognosis targets and biomarkers.
Collapse
Affiliation(s)
- Xiaojin Wang
- Department of Biochemistry and Molecular BiologyMudanjiang Medical UniversityMudanjiangChina
| | - Jiahui Wan
- Department of Biochemistry and Molecular BiologyMudanjiang Medical UniversityMudanjiangChina
| | - Zhanxiang Xu
- Department of Cardiovascular MedicineHongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiangChina
| | - Shijun Jiang
- Department of Biochemistry and Molecular BiologyMudanjiang Medical UniversityMudanjiangChina
| | - Lin Ji
- Department of Biochemistry and Molecular BiologyMudanjiang Medical UniversityMudanjiangChina
| | - Yutian Liu
- Department of Biochemistry and Molecular BiologyMudanjiang Medical UniversityMudanjiangChina
| | - Shuwen Zhai
- Department of Biochemistry and Molecular BiologyMudanjiang Medical UniversityMudanjiangChina
| | - Rongjun Cui
- Department of Biochemistry and Molecular BiologyMudanjiang Medical UniversityMudanjiangChina
| |
Collapse
|
20
|
Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon H, Kim KH, Jin MS, Kwon NH, Kim S, Kim D, Chung DH, Jeong K, Kim K, Kim KY, Lee HB, Han W, Yun J, Kim JI, Noh DY, Moon HG. Tumor Suppressor miRNA-204-5p Regulates Growth, Metastasis, and Immune Microenvironment Remodeling in Breast Cancer. Cancer Res 2019; 79:1520-1534. [PMID: 30737233 DOI: 10.1158/0008-5472.can-18-0891] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/29/2018] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
Abstract
Various miRNAs play critical roles in the development and progression of solid tumors. In this study, we describe the role of miR-204-5p in limiting growth and progression of breast cancer. In breast cancer tissues, miR-204-5p was significantly downregulated compared with normal breast tissues, and its expression levels were associated with increased survival outcome in patients with breast cancer. Overexpression of miR-204-5p inhibited viability, proliferation, and migration capacity in human and murine breast cancer cells. In addition, miR-204-5p overexpression resulted in a significant alteration in metabolic properties of cancer cells and suppression of tumor growth and metastasis in mouse breast cancer models. The association between miR-204-5p expression and clinical outcomes of patients with breast cancer showed a nonlinear pattern that was reproduced in experimental assays of cancer cell behavior and metastatic capacities. Transcriptome and proteomic analysis revealed that various cancer-related pathways including PI3K/Akt and tumor-immune interactions were significantly associated with miR-204-5p expression. PIK3CB, a major regulator of PI3K/Akt pathway, was a direct target for miR-204-5p, and the association between PIK3CB-related PI3K/Akt signaling and miR-204-5p was most evident in the basal subtype. The sensitivity of breast cancer cells to various anticancer drugs including PIK3CB inhibitors was significantly affected by miR-204-5p expression. In addition, miR-204-5p regulated expression of key cytokines in tumor cells and reprogrammed the immune microenvironment by shifting myeloid and lymphocyte populations. These data demonstrate both cell-autonomous and non-cell-autonomous impacts of tumor suppressor miR-204-5p in breast cancer progression and metastasis. SIGNIFICANCE: This study demonstrates that regulation of PI3K/Akt signaling by miR-204-5p suppresses tumor metastasis and immune cell reprogramming in breast cancer.
Collapse
Affiliation(s)
- Bok Sil Hong
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, South Korea
| | - Namshin Kim
- Personalized Genomic Medicine Research Center, Division of Strategic Research Groups, Korea Research Institute of Bioscience and Biotechnology, Daejeon
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Jisun Kim
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Department of Pathology, Seoul National University School of Medicine, Seoul, South Korea
| | - Eunshin Lee
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Department of Pathology, Seoul National University School of Medicine, Seoul, South Korea
| | - Hyunhye Moon
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kyoung Hyoun Kim
- Personalized Genomic Medicine Research Center, Division of Strategic Research Groups, Korea Research Institute of Bioscience and Biotechnology, Daejeon
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Min-Sun Jin
- Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, South Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea
| | - Donghyun Kim
- Department of Pathology, Seoul National University School of Medicine, Seoul, South Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University School of Medicine, Seoul, South Korea
| | - Kyeonghun Jeong
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Ki Yoon Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jihui Yun
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Hyeong-Gon Moon
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
21
|
Jin Y, Wang J, Zhang M, Zhang S, Lei C, Chen H, Guo W, Lan X. Role of bta‐miR‐204 in the regulation of adipocyte proliferation, differentiation, and apoptosis. J Cell Physiol 2019; 234:11037-11046. [DOI: 10.1002/jcp.27928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yunyun Jin
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Jian Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Meng Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Sihuan Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Wei Guo
- Department of Animal Science College of Agriculture and Natural Resources University of Wyoming Laramie Wyoming
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| |
Collapse
|
22
|
Cai KT, Liu AG, Wang ZF, Jiang HW, Zeng JJ, He RQ, Ma J, Chen G, Zhong JC. Expression and potential molecular mechanisms of miR‑204‑5p in breast cancer, based on bioinformatics and a meta‑analysis of 2,306 cases. Mol Med Rep 2018; 19:1168-1184. [PMID: 30569120 PMCID: PMC6323248 DOI: 10.3892/mmr.2018.9764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. However, there is insufficient research that focuses on the expression and molecular mechanisms of microRNA (miR)‑204‑5p in BC. In the current study, data were downloaded from the Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO) and the University of California Santa Cruz (UCSC) Xena databases. They were then used to undertake a meta‑analysis that leveraged the standard mean difference (SMD) and summarized receiver operating characteristic (sROC) to evaluate the expression of the precursor miR‑204 and mature miR‑204‑5p in BC. Additionally, an intersection of predicted genes, differentially expressed genes (DEGs) from the TCGA database and the GEO database were plotted to acquire desirable putative genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein‑protein interaction (PPI) network analyses were performed to assess the potential pathways and hub genes of miR‑204‑5p in BC. A decreased trend in precursor miR‑204 expression was detected in 1,077 BC tissue samples in comparison to 104 para‑carcinoma tissue samples in the TCGA database. Further, the expression of mature miR‑204‑5p was markedly downregulated in 756 BC tissue samples in comparison to 76 para‑carcinoma tissue samples in the UCSC Xena database. The outcome of the SMD from meta‑analysis also indicated that the expression of miR‑204‑5p was markedly reduced in 2,306 BC tissue samples in comparison to 367 para‑carcinoma tissue samples. Additionally, the ROC and sROC values indicated that miR‑204‑5p had a great discriminatory capacity for BC. In GO analysis, 'cell development', 'cell surface activity', and 'receptor agonist activity' were the most enriched terms; in KEGG analysis, 'endocytosis' was significantly enriched. Rac GTPase activating protein 1 (RACGAP1) was considered the hub gene in the PPI network. In conclusion, miR‑204‑5p may serve a suppressor role in the oncogenesis and advancement of BC, and miR‑204‑5p may have crucial functions in BC by targeting RACGAP1.
Collapse
Affiliation(s)
- Kai-Teng Cai
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - An-Gui Liu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ze-Feng Wang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hang-Wei Jiang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
23
|
Palkina N, Komina A, Aksenenko M, Moshev A, Savchenko A, Ruksha T. miR-204-5p and miR-3065-5p exert antitumor effects on melanoma cells. Oncol Lett 2018; 15:8269-8280. [PMID: 29844810 PMCID: PMC5958817 DOI: 10.3892/ol.2018.8443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miR)-204-5p was previously identified to be downregulated in melanoma compared with melanocytic nevi. This observation prompted a functional study on miR-204-5p and the newly-identified miR-3065-5p, two miRNAs suggested to be tumor-suppressive oncomiRs. Application of miR-204-5p mimics or inhibitors resulted in a decrease or increase, respectively, in melanoma cell proliferation and colony formation. miR-204-5p mimics hindered invasion, whereas miR-204-5p inhibitors stimulated cancer cell migration. Modulation of miR-3065-5p led to a decrease in melanoma cell proliferation, altered cell cycle distribution and increased expression levels of its target genes HIPK1 and ITGA1, possibly due to functional modifications identified in these cells. miR-204-5p and miR-3065-5p demonstrated antitumor capacities that may need to be taken into account in the development of melanoma treatment approaches.
Collapse
Affiliation(s)
- Nadezhda Palkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anna Komina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Maria Aksenenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anton Moshev
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Andrei Savchenko
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk 660022, Russia
| | - Tatiana Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| |
Collapse
|
24
|
Abstract
Dysregulation of microRNAs (miRNAs/miRs) is frequently associated with cancer progression. Altered expression of miR-211 has been observed in various types of human cancer; however, its expression and role in prostate cancer (PCa) remains unknown. In the present study, the expression of miR-211 in PCa cell lines and tissues was measured by reverse transcription-quantitative PCR (qPCR), revealing that miR-211 was downregulated in PCa cell lines and tissues. Further analysis revealed that low miR-211 was associated with the tumor stage and Gleason score. With the assistance of miR-211 mimics and inhibitor, it was also revealed that the overexpression of miR-211 could inhibit PCa cell proliferation in vitro. Conversely, downregulated miR-211 expression promotes PCa cell proliferation. In addition, the secreted protein acidic and rich in cysteine (SPARC) was identified as a target of miR-211 in the PCa cell lines, and SPARC expression was inversely associated with miR-211. In conclusion, it was demonstrated that the miR-211 expression was downregulated in PCa cell lines and tissues. Additionally, miR-211 could inhibit PCa cell proliferation partially by downregulating SPARC. Therefore, miR-211 may be a potential therapeutic target for PCa treatment in the future.
Collapse
Affiliation(s)
- Peng Hao
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Bo Kang
- Central Sterile Supply Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guoqing Yao
- Department of Surgery 1, The 224th Hospital of Chinese People's Liberation Army, Jiamusi, Heilongjiang 154002, P.R. China
| | - Wenqi Hao
- Department of Clinical Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Feihong Ma
- Department of Interventional Radiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
25
|
Chu Y, Jiang M, Du F, Chen D, Ye T, Xu B, Li X, Wang W, Qiu Z, Liu H, Nie Y, Liang J, Fan D. miR-204-5p suppresses hepatocellular cancer proliferation by regulating homeoprotein SIX1 expression. FEBS Open Bio 2018; 8:189-200. [PMID: 29435409 PMCID: PMC5794460 DOI: 10.1002/2211-5463.12363] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 01/16/2023] Open
Abstract
Fewer than 30% of patients with hepatocellular carcinoma (HCC) are eligible to receive curative therapies, and so a better understanding of the molecular mechanisms of HCC is needed to identify potential therapeutic targets. The role of microRNA (miRNA) in modulating tumour progression has been demonstrated, and therapies targeting miRNA appear promising. miR‐204‐5p has been shown to function in numerous types of cancer, but its role in HCC remains unclear. In this study, we found that miR‐204‐5p expression was downregulated in cancerous HCC tissues compared to nontumour tissues. Kaplan–Meier survival curve analysis also showed that low expression of miR‐204‐5p predicted worse outcomes of HCC patients. In addition, miR‐204‐5p expression was significantly lower in HCC cell lines. The function of miR‐204‐5p was also assessed both in vitro and in vivo. We demonstrated that ectopic expression of miR‐204‐5p in HCC cell lines inhibited HCC cell proliferation and clonogenicity using CCK8, BrdU and colony‐forming assays, while the inhibition of miR‐204‐5p enhanced proliferation and clonogenicity. Further in vivo studies in mice further confirmed the proliferation capacity of miR‐204‐5p. We also identified sine oculis homeobox homologue 1 (SIX1) as a direct target of miR‐204‐5p and showed that it was inversely correlated with miR‐204‐5p in both human and mouse HCC tissues. Transfection of miR‐204‐5p mimics in BEL‐7404 cells blocked the cell cycle by inhibiting the expression of cyclin‐D1 and cyclin‐A1, cell cycle‐related factors regulated by SIX1. More importantly, overexpression of the 3′UTR mutant SIX1 but not the wild‐type SIX1 abolished the suppressive effect of miR‐204‐5p, and downregulated SIX1 in BEL‐7402 cells that transfected with miR‐204 inhibitors could partly block the inhibitory effect of miR‐204‐5p on proliferation. Thus, we have demonstrated that miR‐204‐5p suppresses HCC proliferation by directly regulating SIX1 and its downstream factors.
Collapse
Affiliation(s)
- Yi Chu
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Feng Du
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Di Chen
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Tao Ye
- State Key Laboratory of Military Stomatology National Clinical Research Center for Oral Diseases Shannxi key Laboratory of Oral Diseases School of Stomatology The Fourth Military Medical University Xi'an China
| | - Bing Xu
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Xiaowei Li
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Weijie Wang
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Zhaoyan Qiu
- Department of General Surgery the General Hospital of the people's Liberation Army Beijing China
| | - Haiming Liu
- College of Computer Science and Technology Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Changchun China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Jie Liang
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases Xijing Hospital The Fourth Military Medical University Xi'an China
| |
Collapse
|
26
|
Díaz-Martínez M, Benito-Jardón L, Alonso L, Koetz-Ploch L, Hernando E, Teixidó J. miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Res 2017; 78:1017-1030. [PMID: 29229605 DOI: 10.1158/0008-5472.can-17-1318] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/03/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Abstract
Melanoma treatment with the BRAF V600E inhibitor vemurafenib provides therapeutic benefits but the common emergence of drug resistance remains a challenge. We generated A375 melanoma cells resistant to vemurafenib with the goal of investigating changes in miRNA expression patterns that might contribute to resistance. Increased expression of miR-204-5p and miR-211-5p occurring in vemurafenib-resistant cells was determined to impact vemurafenib response. Their expression was rapidly affected by vemurafenib treatment through RNA stabilization. Similar effects were elicited by MEK and ERK inhibitors but not AKT or Rac inhibitors. Ectopic expression of both miRNA in drug-naïve human melanoma cells was sufficient to confer vemurafenib resistance and more robust tumor growth in vivo Conversely, silencing their expression in resistant cells inhibited cell growth. Joint overexpression of miR-204-5p and miR-211-5p durably stimulated Ras and MAPK upregulation after vemurafenib exposure. Overall, our findings show how upregulation of miR-204-5p and miR-211-5p following vemurafenib treatment enables the emergence of resistance, with potential implications for mechanism-based strategies to improve vemurafenib responses.Significance: Identification of miRNAs that enable resistance to BRAF inhibitors in melanoma suggests a mechanism-based strategy to limit resistance and improve clinical outcomes. Cancer Res; 78(4); 1017-30. ©2017 AACR.
Collapse
Affiliation(s)
- Marta Díaz-Martínez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lucía Benito-Jardón
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lola Alonso
- Bioinformatics and Biostatistics Unit, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lisa Koetz-Ploch
- Department of Pathology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - Joaquin Teixidó
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
27
|
Kang M, Shi J, Peng N, He S. MicroRNA-211 promotes non-small-cell lung cancer proliferation and invasion by targeting MxA. Onco Targets Ther 2017; 10:5667-5675. [PMID: 29238200 PMCID: PMC5713696 DOI: 10.2147/ott.s143084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that microRNAs play a pivotal role in the pathogenesis of cancer. In our current study, the expression levels of microRNA-211 (miR-211) were measured in human non-small-cell lung cancer (NSCLC) tissues and cell lines. We found that miR-211 expression levels were increased in NSCLC tissues and cell lines and that the overexpression of miR-211 promotes cell proliferation and invasion. Using bioinformatics, we demonstrated that miR-211 binds to the 3'-untranslated region of MxA and overexpression of miR-211 suppresses the expression of MxA at both the transcriptional and translational levels in NSCLC cell lines. Furthermore, knockdown of MxA increased the proliferation and invasion of NSCLC cell lines in vitro. High levels of miR-211 expression were associated with a shorter survival time in patients with NSCLC. Taken together, these results suggest that miR-211 promotes tumor proliferation and invasion by regulating MxA expression in NSCLC. This study provides insights into molecular mechanisms of miR-211-mediated tumorigenesis and oncogenesis.
Collapse
Affiliation(s)
- Mafei Kang
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| | - Jieqiong Shi
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| | - Na Peng
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| | - Shaozhong He
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical College, Guilin, People's Republic of China
| |
Collapse
|
28
|
Ye ZH, Wen DY, Cai XY, Liang L, Wu PR, Qin H, Yang H, He Y, Chen G. The protective value of miR-204-5p for prognosis and its potential gene network in various malignancies: a comprehensive exploration based on RNA-seq high-throughput data and bioinformatics. Oncotarget 2017; 8:104960-104980. [PMID: 29285225 PMCID: PMC5739612 DOI: 10.18632/oncotarget.21950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/23/2017] [Indexed: 01/26/2023] Open
Abstract
Purpose The prognostic role of miR-204-5p (previous ID: miR-204) is varied and inconclusive in diverse types of malignant neoplasm. Therefore, the purposes of the study comprehensively explore the overall prognostic role of miR-204-5p based on high-throughput microRNA sequencing data, and to investigate the potential role of miR-204-5p via bioinformatics approaches. Materials and Methods The data of microRNA sequencing and survival were downloaded from The Cancer Genome Atlas (TCGA), and the prognostic value of miR-204-5p was analyzed by using Kaplan-Meier and univariate cox regressions. Then a meta-analysis was conducted with all TCGA data and relevant studies collected from literature. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. The prospective molecular mechanism of miR-204-5p was also assessed at a functional level with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-to-protein interactions (PPI) network. Results From TCGA data, the prognostic value of miR-204-5p obviously varied among 20 types of cancers. The pooled HR was 0.928 (95% CI: 0.774-1.113, P = 0.386, 6203 cases of malignancies). For the meta-analysis based on 15 studies from literature, the pooled HR was 0.420 (95% CI: 0.306-0.576, P < 0.001, 1783 cases of malignancies) for overall survival (OS). Furthermore, the combined HR from both TCGA and literature was 0.708 (95% CI: 0.600-0.834, P < 0.001, 7986 cases of malignancies). Subgroup analyses revealed that miR-204-5p could act as a prognostic marker in cancers of respiratory system and digestive system. Functional analysis was conducted on genes predicted as targets (n = 2057) after the overlay genes from six out of twelve software were extracted. Two significant KEGG pathways were enriched (hsa04360: Axon guidance and hsa04722: Neurotrophin signaling pathway). PPI network revealed some hub genes/proteins (CDC42, SOS1, PIK3R1, MAPK1, PLCG1, ESR1, MAPK11, and AR). Conclusions The current study demonstrates that over-expression of miR-204-5p could be a protective factor for a certain group of cancers. Clinically, the low miR-204-5p level could gain a predictive value for a poor survival in cancers of respiratory system and digestive system. The detailed molecular mechanisms of miR-204-5p remain to be verified.
Collapse
Affiliation(s)
- Zhi-Hua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Pei-Rong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
29
|
Cross-Kingdom Regulation of Putative miRNAs Derived from Happy Tree in Cancer Pathway: A Systems Biology Approach. Int J Mol Sci 2017; 18:ijms18061191. [PMID: 28587194 PMCID: PMC5486014 DOI: 10.3390/ijms18061191] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/17/2017] [Accepted: 05/27/2017] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known key regulators of gene expression primarily at the post-transcriptional level. Plant-derived miRNAs may pass through the gastrointestinal tract, entering into the body fluid and regulate the expression of endogenous mRNAs. Camptotheca acuminata, a highly important medicinal plant known for its anti-cancer potential was selected to investigate cross-kingdom regulatory mechanism and involvement of miRNAs derived from this plant in cancer-associated pathways through in silico systems biology approach. In this study, total 33 highly stable putative novel miRNAs were predicted from the publically available 53,294 ESTs of C. acuminata, out of which 14 miRNAs were found to be regulating 152 target genes in human. Functional enrichment, gene-disease associations and network analysis of these target genes were carried out and the results revealed their association with prominent types of cancers like breast cancer, leukemia and lung cancer. Pathways like focal adhesion, regulation of lipolysis in adipocytes and mTOR signaling pathways were found significantly associated with the target genes. The regulatory network analysis showed the association of some important hub proteins like GSK3B, NUMB, PEG3, ITGA2 and DLG2 with cancer-associated pathways. Based on the analysis results, it can be suggested that the ingestion of the C. acuminata miRNAs may have a functional impact on tumorigenesis in a cross-kingdom way and may affect the physiological condition at genetic level. Thus, the predicted miRNAs seem to hold potentially significant role in cancer pathway regulation and therefore, may be further validated using in vivo experiments for a better insight into their mechanism of epigenetic action of miRNA.
Collapse
|
30
|
Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2017; 42:455-462. [PMID: 30337805 PMCID: PMC6187096 DOI: 10.1016/j.jgr.2017.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
Background Ginsenoside Rh2 has been known to enhance the activity of immune cells, as well as to inhibit the growth of tumor cells. Although the repertoire of genes regulated by Rh2 is well-known in many cancer cells, the epigenetic regulation has yet to be determined, especially for comprehensive approaches to detect methylation changes. Methods The effect of Rh2 on genome-wide DNA methylation changes in breast cancer cells was examined by treating cultured MCF-7 with Rh2. Pyrosequencing analysis was carried out to measure the methylation level of a global methylation marker, LINE1. Genome-wide methylation analysis was carried out to identify epigenetically regulated genes and to elucidate the most prominent signaling pathway affected by Rh2. Apoptosis and proliferation were monitored to examine the cellular effect of Rh2. Results LINE1 showed induction of hypomethylation at specific CpGs by 1.6–9.1% (p < 0.05). Genome-wide methylation analysis identified the “cell-mediated immune response”-related pathway as the top network. Cell proliferation of MCF-7 was retarded by Rh2 in a dose-dependent manner. Hypermethylated genes such as CASP1, INSL5, and OR52A1 showed downregulation in the Rh2-treated MCF-7, while hypomethylated genes such as CLINT1, ST3GAL4, and C1orf198 showed upregulation. Notably, a higher survival rate was associated with lower expression of INSL5 and OR52A1 in breast cancer patients, while with higher expression of CLINT1. Conclusion The results indicate that Rh2 induces epigenetic methylation changes in genes involved in immune response and tumorigenesis, thereby contributing to enhanced immunogenicity and inhibiting the growth of cancer cells.
Collapse
Affiliation(s)
- Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
31
|
Shimizu D, Inokawa Y, Sonohara F, Inaoka K, Nomoto S. Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors. Oncol Rep 2017; 37:2527-2542. [DOI: 10.3892/or.2017.5541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
32
|
Koduru SV, Tiwari AK, Leberfinger A, Hazard SW, Kawasawa YI, Mahajan M, Ravnic DJ. A Comprehensive NGS Data Analysis of Differentially Regulated miRNAs, piRNAs, lncRNAs and sn/snoRNAs in Triple Negative Breast Cancer. J Cancer 2017; 8:578-596. [PMID: 28367238 PMCID: PMC5370502 DOI: 10.7150/jca.17633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/06/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death in the United States and is a major public health concern worldwide. Basic, clinical and epidemiological research is leading to improved cancer detection, prevention, and outcomes. Recent technological advances have allowed unbiased and comprehensive screening of genome-wide gene expression. Small non-coding RNAs (sncRNAs) have been shown to play an important role in biological processes and could serve as a diagnostic, prognostic and therapeutic biomarker for specific diseases. Recent findings have begun to reveal and enhance our understanding of the complex architecture of sncRNA expression including miRNAs, piRNAs, lncRNAs, sn/snoRNAs and their relationships with biological systems. We used publicly available small RNA sequencing data that was derived from 24 triple negative breast cancers (TNBC) and 14 adjacent normal tissue samples to remap various types of sncRNAs. We found a total of 55 miRNAs were aberrantly expressed (p<0.005) in TNBC samples (8 miRNAs upregulated; 47 downregulated) compared to adjacent normal tissues whereas the original study reported only 25 novel miRs. In this study, we used pathway analysis of differentially expressed miRNAs which revealed TGF-beta signaling pathways to be profoundly affected in the TNBC samples. Furthermore, our comprehensive re-mapping strategy allowed us to discover a number of other differentially expressed sncRNAs including piRNAs, lncRNAs, sn/snoRNAs, rRNAs, miscRNAs and nonsense-mediated decay RNAs. We believe that our sncRNA analysis workflow is extremely comprehensive and suitable for discovery of novel sncRNAs changes, which may lead to the development of innovative diagnostic and therapeutic tools for TNBC.
Collapse
Affiliation(s)
- Srinivas V Koduru
- Division of Plastic Surgery, Department of Surgery, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| | - Amit K Tiwari
- Department of Pharmacology & Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo - Health Sciences Campus, 300 Arlington Ave, Toledo, OH 43614
| | - Ashley Leberfinger
- Division of Plastic Surgery, Department of Surgery, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| | - Sprague W Hazard
- Department of Anesthesia, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA17033
| | - Milind Mahajan
- Genomics Facility, Department of Genetics and Genomics Sciences, Icahn School of Medicine, Mount Sinai, 1425 Madison Ave, New York, NY 10029
| | - Dino J Ravnic
- Division of Plastic Surgery, Department of Surgery, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, PA 17033
| |
Collapse
|
33
|
Wang K, Jin W, Jin P, Fei X, Wang X, Chen X. miR-211-5p Suppresses Metastatic Behavior by Targeting SNAI1 in Renal Cancer. Mol Cancer Res 2017; 15:448-456. [PMID: 28057716 DOI: 10.1158/1541-7786.mcr-16-0288] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
The Snail family transcriptional repressor 1 (SNAI1) is known to promote metastatic phenotypes in renal cell carcinoma (RCC). However, the mechanism by which SNAI1 promotes RCC metastasis remains largely unexplored. Here, bioinformatics and quantitative validation revealed that miR-211-5p was downregulated in metastatic RCC clinical specimens compared with nonmetastatic RCC tissues. Overexpression of miR-211-5p suppressed RCC cell migration and invasion via downregulation of SNAI1 expression. Luciferase reporter assays demonstrated that miR-211-5p directly targeted 3'-UTR of SNAI1. Furthermore, miR-211-5p decreased xenograft tumor weight and reduced in vivo tumor metastasis in mice. These findings indicate that miR-211-5p-mediated inhibition of SNAIL1 expression contributes to the suppression of RCC progression.Implications: Targeting the miR-211-5p/SNAI1 signaling pathway may be a novel therapeutic approach for the treatment of RCC metastasis. Mol Cancer Res; 15(4); 448-56. ©2017 AACR.
Collapse
Affiliation(s)
- Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|