1
|
Alexander NR, Brown RS, Duwadi S, Womble SG, Ludwig DW, Moe KC, Murdock JN, Phillips JL, Veach AM, Walker DM. Leveraging Fine-Scale Variation and Heterogeneity of the Wetland Soil Microbiome to Predict Nutrient Flux on the Landscape. MICROBIAL ECOLOGY 2025; 88:22. [PMID: 40175811 PMCID: PMC11965208 DOI: 10.1007/s00248-025-02516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/13/2025] [Indexed: 04/04/2025]
Abstract
Shifts in agricultural land use over the past 200 years have led to a loss of nearly 50% of existing wetlands in the USA, and agricultural activities contribute up to 65% of the nutrients that reach the Mississippi River Basin, directly contributing to biological disasters such as the hypoxic Gulf of Mexico "Dead" Zone. Federal efforts to construct and restore wetland habitats have been employed to mitigate the detrimental effects of eutrophication, with an emphasis on the restoration of ecosystem services such as nutrient cycling and retention. Soil microbial assemblages drive biogeochemical cycles and offer a unique and sensitive framework for the accurate evaluation, restoration, and management of ecosystem services. The purpose of this study was to elucidate patterns of soil bacteria within and among wetlands by developing diversity profiles from high-throughput sequencing data, link functional gene copy number of nitrogen cycling genes to measured nutrient flux rates collected from flow-through incubation cores, and predict nutrient flux using microbial assemblage composition. Soil microbial assemblages showed fine-scale turnover in soil cores collected across the topsoil horizon (0-5 cm; top vs bottom partitions) and were structured by restoration practices on the easements (tree planting, shallow water, remnant forest). Connections between soil assemblage composition, functional gene copy number, and nutrient flux rates show the potential for soil bacterial assemblages to be used as bioindicators for nutrient cycling on the landscape. In addition, the predictive accuracy of flux rates was improved when implementing deep learning models that paired connected samples across time.
Collapse
Affiliation(s)
- N Reed Alexander
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Robert S Brown
- Department of Biology, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Shrijana Duwadi
- Department of Biology, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Spencer G Womble
- Department of Biology, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - David W Ludwig
- Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Kylie C Moe
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Justin N Murdock
- Department of Biology, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Joshua L Phillips
- Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Allison M Veach
- Department of Biology, Health, and the Environment, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Donald M Walker
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
2
|
Cirillo V, Romano I, Woo SL, Di Stasio E, Lombardi N, Comite E, Pepe O, Ventorino V, Maggio A. Inoculation with a microbial consortium increases soil microbial diversity and improves agronomic traits of tomato under water and nitrogen deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1304627. [PMID: 38126011 PMCID: PMC10731302 DOI: 10.3389/fpls.2023.1304627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Microbial-based biostimulants, functioning as biotic and abiotic stress protectants and growth enhancers, are becoming increasingly important in agriculture also in the context of climate change. The search for new products that can help reduce chemical inputs under a variety of field conditions is the new challenge. In this study, we tested whether the combination of two microbial growth enhancers with complementary modes of action, Azotobacter chroococcum 76A and Trichoderma afroharzianum T22, could facilitate tomato adaptation to a 30% reduction of optimal water and nitrogen requirements. The microbial inoculum increased tomato yield (+48.5%) under optimal water and nutrient conditions. In addition, the microbial application improved leaf water potential under stress conditions (+9.5%), decreased the overall leaf temperature (-4.6%), and increased shoot fresh weight (+15%), indicating that this consortium could act as a positive regulator of plant water relations under limited water and nitrogen availability. A significant increase in microbial populations in the rhizosphere with applications of A. chroococcum 76A and T. afroharzianum T22 under stress conditions, suggested that these inoculants could enhance soil microbial abundance, including the abundance of native beneficial microorganisms. Sampling time, limited water and nitrogen regimes and microbial inoculations all affected bacterial and fungal populations in the rhizospheric soil. Overall, these results indicated that the selected microbial consortium could function as plant growth enhancer and stress protectant, possibly by triggering adaptation mechanisms via functional changes in the soil microbial diversity and relative abundance.
Collapse
Affiliation(s)
- Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
3
|
Kumar M, Ansari WA, Zeyad MT, Singh A, Chakdar H, Kumar A, Farooqi MS, Sharma A, Srivastava S, Srivastava AK. Core microbiota of wheat rhizosphere under Upper Indo-Gangetic plains and their response to soil physicochemical properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1186162. [PMID: 37255554 PMCID: PMC10226189 DOI: 10.3389/fpls.2023.1186162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely cultivated in the Indo-Gangetic plains of India and forms the major staple food in the region. Understanding microbial community structure in wheat rhizosphere along the Indo-Gangetic plain and their association with soil properties can be an important base for developing strategies for microbial formulations. In the present study, an attempt was made to identify the core microbiota of wheat rhizosphere through a culture-independent approach. Rhizospheric soil samples were collected from 20 different sites along the upper Indo-Gangetic plains and their bacterial community composition was analyzed based on sequencing of the V3-V4 region of the 16S rRNA gene. Diversity analysis has shown significant variation in bacterial diversity among the sites. The taxonomic profile identified Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Planctomycetes, Verrucomicrobia, Firmicutes, and Cyanobacteria as the most dominant phyla in the wheat rhizosphere in the region. Core microbiota analysis revealed 188 taxa as core microbiota of wheat rhizosphere with eight genera recording more than 0.5% relative abundance. The order of most abundant genera in the core microbiota is Roseiflexus> Flavobacterium> Gemmatimonas> Haliangium> Iamia> Flavisolibacter> Ohtaekwangia> Herpetosiphon. Flavobacterium, Thermomonas, Massilia, Unclassified Rhizobiaceae, and Unclassified Crenarchaeota were identified as keystone taxa of the wheat rhizosphere. Correlation studies revealed, pH, organic carbon content, and contents of available nitrogen, phosphorus, and iron as the major factors driving bacterial diversity in the wheat rhizosphere. Redundancy analysis has shown the impact of different soil properties on the relative abundance of different genera of the core microbiota. The results of the present study can be used as a prelude to be developing microbial formulations based on core microbiota.
Collapse
Affiliation(s)
- Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Waquar Akhter Ansari
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Mohammad Tarique Zeyad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Arjun Singh
- ICAR-Central Soil Salinity Research Institute, Regional Research Station (RRS), Lucknow, Uttar Pradesh, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | - Adarsh Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| | | | - Anu Sharma
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Alok Kumar Srivastava
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, Uttar Pradesh, India
| |
Collapse
|
4
|
Fan D, He W, Jiang R, Song D, Zou G, Chen Y, Cao B, Wang J, Wang X. Enhanced-Efficiency Fertilizers Impact on Nitrogen Use Efficiency and Nitrous Oxide Emissions from an Open-Field Vegetable System in North China. PLANTS (BASEL, SWITZERLAND) 2022; 12:81. [PMID: 36616210 PMCID: PMC9823836 DOI: 10.3390/plants12010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 05/25/2023]
Abstract
Open vegetable fields in China are a major anthropogenic source of nitrous oxide (N2O) emissions due to excessive nitrogen (N) fertilization. A 4 yr lettuce experiment was conducted to determine the impacts of controlled-release fertilizers (CRFs) and nitrification inhibitors (NIs) on lettuce yield, N2O emissions and net economic benefits. Five treatments included (i) no N fertilizer (CK), (ii) conventional urea at 255 kg N ha-1 based on farmers' practice (FP), (iii) conventional urea at 204 kg N ha-1 (OPT), (iv) CRF at 204 kg N ha-1 (CU) and (v) CRF (204 kg N ha-1) added with NI (CUNI). No significant differences were found in the lettuce yields among different N fertilization treatments. Compared with FP, the cumulative N2O emissions were significantly decreased by 8.1%, 38.0% and 42.6% under OPT, CU and CUNI, respectively. Meanwhile, the net benefits of OPT, CU and CUNI were improved by USD 281, USD 871 and USD 1024 ha-1 compared to CN, respectively. This study recommends the combined application of CRF and NI at a reduced N rate as the optimal N fertilizer management for the sustainable production of vegetables in China with the lowest environmental risks and the greatest economic benefits.
Collapse
Affiliation(s)
| | - Wentian He
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | | | | | | | | | | | | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
5
|
Zahid MS, Hussain M, Song Y, Li J, Guo D, Li X, Song S, Wang L, Xu W, Wang S. Root-Zone Restriction Regulates Soil Factors and Bacterial Community Assembly of Grapevine. Int J Mol Sci 2022; 23:ijms232415628. [PMID: 36555269 PMCID: PMC9778885 DOI: 10.3390/ijms232415628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Root-zone restriction induces physiological stress on roots, thus limiting the vegetative and enhancing reproductive development, which promotes fruit quality and growth. Numerous bacterial-related growth-promoting, stress-mitigating, and disease-prevention activities have been described, but none in root-restricted cultivation. The study aimed to understand the activities of grapevine bacterial communities and plant-bacterial relationships to improve fruit quality. We used High-throughput sequencing, edaphic soil factors, and network analysis to explore the impact of restricted cultivation on the diversity, composition and network structure of bacterial communities of rhizosphere soil, roots, leaves, flowers and berries. The bacterial richness, diversity, and networking were indeed regulated by root-zone restriction at all phenological stages, with a peak at the veraison stage, yielding superior fruit quality compared to control plants. Moreover, it also handled the nutrient availability in treated plants, such as available nitrogen (AN) was 3.5, 5.7 and 0.9 folds scarcer at full bloom, veraison and maturity stages, respectively, compared to control plants. Biochemical indicators of the berry have proved that high-quality berry is yielded in association with the bacteria. Cyanobacteria were most abundant in the phyllosphere, Proteobacteria in the rhizosphere, and Firmicutes and Bacteroidetes in the endosphere. These bacterial phyla were most correlated and influenced by different soil factors in control and treated plants. Our findings are a comprehensive approach to the implications of root-zone restriction on the bacterial microbiota, which will assist in directing a more focused procedure to uncover the precise mechanism, which is still undiscovered.
Collapse
Affiliation(s)
- Muhammad Salman Zahid
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muzammil Hussain
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100045, China
| | - Yue Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dinghan Guo
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
De Novo Metagenomic Analysis of Microbial Community Contributing in Lignocellulose Degradation in Humus Samples Harvested from Cuc Phuong Tropical Forest in Vietnam. DIVERSITY 2022. [DOI: 10.3390/d14030220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We aimed to investigate the microbial diversity, mine lignocellulose-degrading enzymes/proteins, and analyze the domain structures of the mined enzymes/proteins in humus samples collected from the Cuc Phuong National Park, Vietnam. Using a high-throughput Illumina sequencer, 52 Gbs of microbial DNA were assembled in 2,611,883 contigs, from which 4,104,872 open reading frames (ORFs) were identified. Among the total microbiome analyzed, bacteria occupied 99.69%; the five ubiquitous bacterial phyla included Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Acidobacteria, which accounted for 92.59%. Proteobacteria (75.68%), the most dominant, was 5.77 folds higher than the second abundant phylum Bacteroidetes (13.11%). Considering the enzymes/proteins involved in lignocellulose degradation, 22,226 ORFs were obtained from the annotation analysis using a KEGG database. The estimated ratio of Proteobacteria/Bacteroidetes was approximately 1:1 for pretreatment and hemicellulases groups and 2.4:1 for cellulases. Furthermore, analysis of domain structures revealed their diversity in lignocellulose-degrading enzymes. CE and PL were two main families in pretreatment; GH1 and GH3-FN3 were the highest domains in the cellulase group, whereas GH2 and GH43 represented the hemicellulase group. These results validate that natural tropical forest soil could be considered as an important source to explore bacteria and novel enzymes/proteins for the degradation of lignocellulose.
Collapse
|
7
|
Yang J, Lee J, Choi J, Ma L, Heaton EA, Howe A. Response of Total (DNA) and Metabolically Active (RNA) Microbial Communities in Miscanthus × Giganteus Cultivated Soil to Different Nitrogen Fertilization Rates. Microbiol Spectr 2022; 10:e0211621. [PMID: 35170997 PMCID: PMC8849084 DOI: 10.1128/spectrum.02116-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
Miscanthus × giganteus is a promising high-yielding perennial plant to meet growing bioenergy demands; however, the degree to which the soil microbiome affects its nitrogen cycling and subsequently, biomass yield remains unclear. In this study, we hypothesize that contributions of metabolically active soil microbial membership may be underestimated with DNA-based approaches. We assessed the response of the soil microbiome to nitrogen availability in terms of both DNA and RNA soil microbial communities from the Long-term Assessment of Miscanthus Productivity and Sustainability (LAMPS) field trial. DNA and RNA were extracted from 271 samples, and 16S small subunit (SSU) rRNA amplicon sequencing was performed to characterize microbial community structure. Significant differences were observed in the resulting soil microbiomes and were best explained by the sequencing library of origin, either DNA or RNA. Similar numbers of membership were detected in DNA and RNA microbial communities, with more than 90% of membership shared. However, the profile of dominant membership within DNA and RNA differed, with varying proportions of Actinobacteria and Proteobacteria and Firmicutes and Proteobacteria. Only RNA microbial communities showed seasonal responses to nitrogen fertilization, and these differences were associated with nitrogen-cycling bacteria. The relative abundance of bacteria associated with nitrogen cycling was 7-fold higher in RNA than in DNA, and genes associated with denitrifying bacteria were significantly enriched in RNA, suggesting that these bacteria may be underestimated with DNA-only approaches. Our findings indicate that RNA-based SSU characterization can be a significant and complementing resource for understanding the role of soil microbiomes in bioenergy crop production. IMPORTANCEMiscanthus × giganteus is a promising candidate for bioeconomy cropping systems; however, it remains unclear how the soil microbiome supplies nitrogen to this low-input crop. DNA-based techniques are used to provide community characterization, but may miss important metabolically active taxa. By analyzing both DNA- and actively transcribed RNA-based microbial communities, we found that nitrogen cycling taxa in the soil microbiome may be underestimated using only DNA-based approaches. Accurately understanding the role of microbes and how they cycle nutrients is important for the development of sustainable bioenergy crops, and RNA-based approaches are recommended as a complement to DNA approaches to better understand the microbial, plant, and management interactions.
Collapse
Affiliation(s)
- Jihoon Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| | - Jaejin Lee
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| | - Jinlyung Choi
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| | - Lanying Ma
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| | - Emily A. Heaton
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, Illinois, USA
| |
Collapse
|
8
|
Zhang H, Wei TP, Mao YT, Ma MX, Ma K, Shen Y, Zheng MJ, Jia WY, Luo MY, Zeng Y, Jiang YL, Tao GC. Ascodesmisrosicola sp. nov. and Talaromycesrosarhiza sp. nov., two endophytes from Rosaroxburghii in China. Biodivers Data J 2022; 9:e70088. [PMID: 34984041 PMCID: PMC8718520 DOI: 10.3897/bdj.9.e70088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
Background Rosaroxburghii Tratt., a deciduous shrub of the family Rosaceae, is usually used as food and medicinal materials and also cultivated as an ornamental. Plant endophytic fungi are a large class of microbial resources not fully researched, with great potential applications. Two strains of Ascodesmis and Talaromyces were isolated during a survey of biodiversity on endophytic fungi of R.roxburghii in China. Multigene phylogenetic analyses showed that each of the two fungi formed a distinct lineage and separated from known congeneric species and they are proposed as two novel taxa. New information Ascodesmisrosicola sp. nov. usually has one or two conspicuous simple or branched ridges extending to the majority of the ascospore surface and remarkably small asci, distinguishing it from the previously-described species in the genus Ascodesmis. Talaromycesrosarhiza sp. nov., of the section Talaromyces, is closely related to T.francoae. It differs from the latter by having both monoverticillate and biverticillate conidiophores, while those of T.francoae are biverticillate. Both novel endophytes are illustrated and described.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China.,Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Tian-Peng Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Yu-Tao Mao
- Grain and Oil Quality Testing Center of Guiyang, Guiyang, China Grain and Oil Quality Testing Center of Guiyang Guiyang China
| | - Ming-Xia Ma
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Kai Ma
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Ying Shen
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Mei-Juan Zheng
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| | - Wei-Yu Jia
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Ming-Yan Luo
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Yan Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Yu-Lan Jiang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China Department of Plant Pathology, College of Agriculture, Guizhou University Guiyang China
| | - Guang-Can Tao
- Guizhou Academy of Testing and Analysis, Guiyang, China Guizhou Academy of Testing and Analysis Guiyang China
| |
Collapse
|
9
|
Zhao S, He W, He P, Li K. Comparison of planktonic bacterial communities indoor and outdoor of aquaculture greenhouses. J Appl Microbiol 2021; 132:2605-2612. [PMID: 34919750 DOI: 10.1111/jam.15414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023]
Abstract
AIMS Greenhouses are widely used in agriculture systems to shield crops from unfavourable weather to achieve a year-round food supply. In recent years, aquaculture ponds have been placed in greenhouses in many regions. The impacts of the greenhouses on planktonic bacterial communities should be uncovered. METHODS AND RESULTS In this study, two polyolefin film greenhouses accommodating aquaculture ponds were established and planktonic bacterial communities were compared from samples taken in aquaculture ponds inside and outside the greenhouses, using Illumina 16S rRNA sequencing. CONCLUSIONS The results showed there were significant variations in bacterial community structure between indoor and outdoor samples. Obvious differences were also found between two greenhouses, whereas the differences in indoor samples were weaker than outdoor samples. Significantly higher temperature (in summer), pH and permanganate index were found in the outdoor pond samples. Results of redundancy analysis showed that Proteobacteria and Bacteroidota were positively related to the dissolved oxygen, total nitrogen and total phosphorus, and Actinobacteriota were positively related to pH, temperature and permanganate index, whereas Cyanobacteria were positively related to the salinity, conductivity, total dissolved solids and ammonia nitrogen. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study revealed that greenhouses significantly influenced planktonic bacterial communities in aquaculture ponds. This study is expected to provide a scientific basis for aquaculture in greenhouses.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Wenhui He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Gu Y, Wang J, Cai W, Li G, Mei Y, Yang S. Different Amounts of Nitrogen Fertilizer Applications Alter the Bacterial Diversity and Community Structure in the Rhizosphere Soil of Sugarcane. Front Microbiol 2021; 12:721441. [PMID: 34616383 PMCID: PMC8489880 DOI: 10.3389/fmicb.2021.721441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Sugarcane cropping systems receive elevated application of nitrogen (N) fertilizer for higher production, which may affect production costs and cause environmental pollution. Therefore, it is critical to elucidate the response of soil microbial to N fertilizer inputs in sugarcane soil. A field experiment was carried out to investigate the effects of optimum (N375, 375 kg N/ha) and excessive (N563, 563 kg N/ha) amounts of N fertilizer on soil bacterial diversity and community structure in a sugarcane cropping system by MiSeq high-throughput sequencing; 50,007 operational taxonomic units (OTUs) were obtained by sequencing the 16S rRNA gene amplicons. Results showed that the most abundant phyla in the sugarcane rhizosphere soil were Proteobacteria, Actinobacteria, Acidobacteria, and Planctomycetes, whose ensemble mean accounted for 74.29%. Different amounts of N application indeed change the bacterial diversity and community structures. Excessive application of N fertilizers significantly decreased the pH and increased the available N in soils and unexpectedly obtained a lower yield. Excessive N resulted in a relatively lower bacterial species richness and significantly increased the relative abundance of phyla Proteobacteria, Acidobacteria, and Bacteroidetes and the genera Sphingomonas and Gemmatimonas, while optimum N treatment significantly increased the phylum Actinobacteria and the genera Bacillus and Nitrospira (P < 0.05). N application shifted the N cycle in nitrification, mainly on the Nitrospira, but showed no significant effect on the genera related to nitrogen fixation, methane oxidation, sulfate reduction, and sulfur oxidation (P > 0.05). Overall, the optimum amount of N application might be conducive to beneficial microorganisms, such as Actinobacteria, Nitrospira, and Bacillus and, thus, result in a healthier ecosystem and higher sustainable crop production.
Collapse
Affiliation(s)
- Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weijun Cai
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang, China
| | - Guoliang Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaohai Yang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
11
|
Yao R, Yang J, Wang X, Xie W, Zheng F, Li H, Tang C, Zhu H. Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt‐affected agroecosystem. LAND DEGRADATION & DEVELOPMENT 2021; 32:338-353. [PMID: 0 DOI: 10.1002/ldr.3705] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/26/2020] [Indexed: 05/22/2023]
Affiliation(s)
- Rongjiang Yao
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
| | - Jinsong Yang
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
| | - Xiangping Wang
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
| | - Wenping Xie
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
| | - Fule Zheng
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Hongqiang Li
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Cong Tang
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Hai Zhu
- State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science, Chinese Academy of Sciences (CAS) Nanjing 210008 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
12
|
Yao Y, Yao X, An L, Bai Y, Xie D, Wu K. Rhizosphere Bacterial Community Response to Continuous Cropping of Tibetan Barley. Front Microbiol 2020; 11:551444. [PMID: 33329420 PMCID: PMC7734106 DOI: 10.3389/fmicb.2020.551444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023] Open
Abstract
Long-term continuous cropping influences the nutrient of soil and microbiome of the rhizosphere, resulting in the yield decrease of crops. Tibetan barley is a dominant cereal crop cultivated at high altitudes in Tibet. Its growth and yield are negatively affected by continuous cropping; however, the response of the rhizosphere microbial community to continuous cropping remains poorly understood. To address this question, we investigated the bacterial community structure and conducted predictive functional profiling on rhizosphere soil from Tibetan barley monocropped for 2–6 years. The results revealed that long-term continuous cropping markedly decreased total nitrogen and available nitrogen in rhizosphere soil. Illumina high-throughput sequencing of 16S rRNA genes indicated that the bacterial community was altered by continuous cropping; operational taxonomic units (OTUs), Shannon index, and Faith Phylogenetic Diversity decreased with increasing monocropping duration. Relative abundances of family Pseudomonadaceae, Cytophagaceae, and Nocardioidaceae were significantly increased, while those of Chitinophagaceae and Sphingomonadaceae were significantly decreased (all p < 0.05). Besides, continuous cropping significantly increased the abundance of bacteria associated with chemoheterotrophy, aromatic compound degradation, and nitrate reduction (p < 0.05). Generalized boosted regression model analysis indicated that total nitrogen was the most important contributor to the bacterial community diversity, indicating their roles in shaping the rhizosphere bacterial community during continuous cropping. Overall, continuous cropping had a significant impact on the structure of bacterial communities in rhizosphere soil of Tibetan barley, and these results will improve our understanding of soil bacterial community regulation and soil health maintenance in Tibetan barley farm systems.
Collapse
Affiliation(s)
- Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Deqing Xie
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, China
| |
Collapse
|
13
|
Influence of Acacia mangium on Soil Fertility and Bacterial Community in Eucalyptus Plantations in the Congolese Coastal Plains. SUSTAINABILITY 2020. [DOI: 10.3390/su12218763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Productivity and sustainability of tropical forest plantations greatly rely on regulation of ecosystem functioning and nutrient cycling, i.e., the link between plant growth, nutrient availability, and the microbial community structure. So far, these interactions have never been evaluated in the Acacia and Eucalyptus forest planted on infertile soils in the Congolese coastal plains. In the present work, the soil bacterial community has been investigated by metabarcoding of the 16S rRNA bacterial gene in different stands of monoculture and mixed-species plantation to evaluate the potential of nitrogen-fixing trees on nutrient and bacterial structure. At the phylum level, the soil bacterial community was dominated by Actinobacteria, followed by Proteobacteria, Firmicutes, and Acidobacteria. A principal coordinate analysis revealed that bacterial communities from pure Eucalyptus, compared to those from plantations containing Acacia in pure and mixed-species stands, showed different community composition (beta-diversity). Regardless of the large variability of the studied soils, the prevalence of Firmicutes phylum, and lower bacterial richness and phylogenic diversity were reported in stands containing Acacia relative to the pure Eucalyptus. Distance-based redundancy analysis revealed a positive correlation of available phosphorus (P) and carbon/nitrogen (C/N) ratio with bacterial community structure. However, the Spearman correlation test revealed a broad correlation between the relative abundance of bacterial taxa and soil attributes, in particular with sulfur (S) and carbon (C), suggesting the important role of soil bacterial community in nutrient cycling in this type of forest management. Concerning mixed plantations, a shift in bacterial community structure was observed, probably linked to other changes, i.e., improvement in soil fertility (enhanced P and C dynamics in forest floor and soil, and increase in soil N status), and C sequestration in both soil and stand wood biomass with the great potential impact to mitigate climate change. Overall, our findings highlight the role of soil attributes, especially C, S, available P, and C/N ratio at a lesser extent, in driving the soil bacterial community in mixed-species plantations and its potential to improve soil fertility and to sustain Eucalyptus plantations established on the infertile and sandy soils of the Congolese coastal plains.
Collapse
|
14
|
Wang H, Gu C, Liu X, Yang C, Li W, Wang S. Impact of Soybean Nodulation Phenotypes and Nitrogen Fertilizer Levels on the Rhizosphere Bacterial Community. Front Microbiol 2020; 11:750. [PMID: 32528420 PMCID: PMC7247815 DOI: 10.3389/fmicb.2020.00750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/30/2020] [Indexed: 11/23/2022] Open
Abstract
The effects of nodulation properties of legumes on the rhizosphere bacterial community are still not clear. To determine the effects of nodulation phenotypes on bacterial communities in the rhizosphere of soybean plants, we performed high-throughput sequencing of the 16S rRNA gene to estimate the rhizosphere bacterial community of three soybean lines with different nodulation phenotypes grown in soil supplied with different levels of N fertilizer. The results revealed that both the soybean nodulation phenotypes and the N levels affected the rhizosphere bacteria community, but the nodulation phenotypes contributed more than the N-supply. The diversity of bacteria was decreased in the rhizosphere of super-nodulating phenotype. The response of rhizosphere bacterial communities to the soil available nitrogen (AN) concentrations was different than the response with the three nodulation phenotypes of soybean which was more stable in the wild-type (Nod+) soybean samples than that in the mutant samples (Nod– and Nod++). Bradyrhizobium in the rhizosphere was positively correlated with nodule number and negatively correlated to AN in the soil, while Burkholderia and Dyella were positively correlated with nodule biomass and nitrogenase activity. These results demonstrated that the nodulation phenotype of soybean affects the rhizosphere microbiome.
Collapse
Affiliation(s)
- Hao Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chuntao Gu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xiaofeng Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chunwei Yang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Shaodong Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Emmett BD, Buckley DH, Drinkwater LE. Plant growth rate and nitrogen uptake shape rhizosphere bacterial community composition and activity in an agricultural field. THE NEW PHYTOLOGIST 2020; 225:960-973. [PMID: 31487394 DOI: 10.1111/nph.16171] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Plant-microbial interactions in the rhizosphere are an essential link in soil nitrogen (N) cycling and plant N supply. Plant phenotype and genotype interact with the soil environment to determine rhizosphere community structure and activity. However, the relative contributions of plant identity, phenology and soil resource availability in shaping rhizosphere effects are not well understood. Four summer annuals and a collection of maize hybrids were grown in a common garden experiment conducted at two levels of organic nutrient availability. Plant biomass, N accumulation, rhizosphere bacterial community composition, and rhizosphere potential extracellular enzyme activity were assessed at vegetative, flowering and grain-filling stages of maize. Plant N uptake was strongly coupled with protease activity in the rhizosphere. Temporal trends in rhizosphere community composition varied between plant species. Changes in rhizosphere community composition could be explained by variation in plant growth dynamics. These findings indicate that species-level variation in plant growth dynamics and resource acquisition drive variation in rhizosphere bacterial community composition and activity linked to plant N uptake.
Collapse
Affiliation(s)
- Bryan D Emmett
- Horticulture Section, School of Integrative Plant Science, Cornell University, 134A Plant Science Building, Ithaca, NY, 14853, USA
| | - Daniel H Buckley
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, 232 Emerson Hall, Ithaca, NY, 14853, USA
| | - Laurie E Drinkwater
- Horticulture Section, School of Integrative Plant Science, Cornell University, 134A Plant Science Building, Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
Isobe K, Allison SD, Khalili B, Martiny AC, Martiny JBH. Phylogenetic conservation of bacterial responses to soil nitrogen addition across continents. Nat Commun 2019; 10:2499. [PMID: 31175309 PMCID: PMC6555827 DOI: 10.1038/s41467-019-10390-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/03/2019] [Indexed: 11/24/2022] Open
Abstract
Soil microbial communities are intricately linked to ecosystem functioning such as nutrient cycling; therefore, a predictive understanding of how these communities respond to environmental changes is of great interest. Here, we test whether phylogenetic information can predict the response of bacterial taxa to nitrogen (N) addition. We analyze the composition of soil bacterial communities in 13 field experiments across 5 continents and find that the N response of bacteria is phylogenetically conserved at each location. Remarkably, the phylogenetic pattern of N responses is similar when merging data across locations. Thus, we can identify bacterial clades - the size of which are highly variable across the bacterial tree - that respond consistently to N addition across locations. Our findings suggest that a phylogenetic approach may be useful in predicting shifts in microbial community composition in the face of other environmental changes.
Collapse
Affiliation(s)
- Kazuo Isobe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| | - Banafshe Khalili
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
17
|
O’Brien FJM, Dumont MG, Webb JS, Poppy GM. Rhizosphere Bacterial Communities Differ According to Fertilizer Regimes and Cabbage ( Brassica oleracea var. capitata L.) Harvest Time, but Not Aphid Herbivory. Front Microbiol 2018; 9:1620. [PMID: 30083141 PMCID: PMC6064718 DOI: 10.3389/fmicb.2018.01620] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Abstract
Rhizosphere microbial communities are known to be highly diverse and strongly dependent on various attributes of the host plant, such as species, nutritional status, and growth stage. High-throughput 16S rRNA gene amplicon sequencing has been used to characterize the rhizosphere bacterial community of many important crop species, but this is the first study to date to characterize the bacterial and archaeal community of Brassica oleracea var. capitata. The study also tested the response of the bacterial community to fertilizer type (organic or synthetic) and N dosage (high or low), in addition to plant age (9 or 12 weeks) and aphid (Myzus persicae) herbivory (present/absent). The impact of aboveground herbivory on belowground microbial communities has received little attention in the literature, and since the type (organic or mineral) and amount of fertilizer applications are known to affect M. percicae populations, these treatments were applied at agricultural rates to test for synergistic effects on the soil bacterial community. Fertilizer type and plant growth were found to result in significantly different rhizosphere bacterial communities, while there was no effect of aphid herbivory. Several operational taxonomic units were identified as varying significantly in abundance between the treatment groups and age cohorts. These included members of the S-oxidizing genus Thiobacillus, which was significantly more abundant in organically fertilized 12-week-old cabbages, and the N-fixing cyanobacteria Phormidium, which appeared to decline in synthetically fertilized soils relative to controls. These responses may be an effect of accumulating root-derived glucosinolates in the B. oleracea rhizosphere and increased N-availability, respectively.
Collapse
Affiliation(s)
- Flora J. M. O’Brien
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- NIAB EMR, East Malling, United Kingdom
| | - Marc G. Dumont
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeremy S. Webb
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Guy M. Poppy
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
18
|
Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, Romano I, Lombardi N, Napolitano M, Colla G, Rouphael Y. Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables. FRONTIERS IN PLANT SCIENCE 2018; 9:743. [PMID: 29922317 PMCID: PMC5996573 DOI: 10.3389/fpls.2018.00743] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/15/2018] [Indexed: 05/19/2023]
Abstract
Microbial inoculants such as Trichoderma-based products are receiving great interest among researchers and agricultural producers for their potential to improve crop productivity, nutritional quality as well as resistance to plant pathogens/pests and numerous environmental stresses. Two greenhouse experiments were conducted to assess the effects of Trichoderma-based biostimulants under suboptimal, optimal and supraoptimal levels of nitrogen (N) fertilization in two leafy vegetables: Iceberg lettuce (Lactuca sativa L.) and rocket (Eruca sativa Mill.). The yield, nutritional characteristics, N uptake and mineral composition were analyzed for each vegetable crop after inoculation with Trichoderma strains T. virens (GV41) or T. harzianum (T22), and results were compared to non-inoculated plants. In addition, the effect of the Trichoderma-based biostimulants on microbes associated with the rhizosphere in terms of prokaryotic and eukaryotic composition and concentration using DGGE was also evaluated. Trichoderma-based biostimulants, in particular GV41, positively increased lettuce and rocket yield in the unfertilized plots. The highest marketable lettuce fresh yield was recorded with either of the biostimulant inoculations when plants were supplied with optimal levels of N. The inoculation of rocket with GV41, and to a lesser degree with T22, elicited an increase in total ascorbic acid under both optimal and high N conditions. T. virens GV41 increased N-use efficiency of lettuce, and favored the uptake of native N present in the soil of both lettuce and rocket. The positive effect of biostimulants on nutrient uptake and crop growth was species-dependent, being more marked with lettuce. The best biostimulation effects from the Trichoderma treatments were observed in both crops when grown under low N availability. The Trichoderma inoculation strongly influenced the composition of eukaryotic populations in the rhizosphere, in particularly exerting different effects with low N levels in comparison to the N fertilized plots. Overall, inoculations with Trichoderma may be considered as a viable strategy to manage the nutrient content of leafy horticulture crops cultivated in low fertility soils, and assist vegetable growers in reducing the use of synthetic fertilizers, developing sustainable management practices to optimize N use efficiency.
Collapse
Affiliation(s)
- Nunzio Fiorentino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- CIRAM-Interdepartmental Center for Environmental Research, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Sheridan L. Woo
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Armando De Rosa
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Laura Gioia
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nadia Lombardi
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
| | - Mauro Napolitano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
19
|
Yuan Z, Yi H, Wang T, Zhang Y, Zhu X, Yao J. Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21877-21884. [PMID: 28779341 DOI: 10.1007/s11356-017-9832-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
In the present study, heavy metal (HM)-tolerant phosphate solubilizing bacteria (PSB) were isolated and their performance during the remediation of Pb and Cd in contaminated soil was studied. A total of 16 bacterial strains and one consortium were isolated, and the consortium had the highest phosphate solubilizing ability and HM tolerance. Great variations between the Fourier transform infrared (FTIR) spectra of consortium cells before and after adsorption of Pb2+ and Cd2+ revealed that amide I/amide II bonds and carboxyl on the cell surface were involved in binding of metal ions. High-throughput sequencing technique revealed that the consortium was composed of Enterobacter spp., Bacillus spp., and Lactococcus spp. The consortium was added into contaminated soil, and its potential ability in dissolution of phosphate from Ca3(PO4)2 and subsequent immobilization of HMs was tested. Results showed that when Ca3(PO4)2 was applied at 10.60 mg/g soil, PSB addition significantly increased soil available phosphate content from 12.28 to 17.30 mg/kg, thereby enhancing the immobilization rate of Pb and Cd from 69.95 to 80.76% and from 28.38 to 30.81%, respectively. Microcalorimetric analysis revealed that PSB addition significantly improved soil microbial activity, which was possibly related with the decreased HMs availability and the nutrient effect of the solubilized phosphate. The present study can provide a cost-effective and environmental-friendly strategy to remediate multiple HM-contaminated soils.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Energy & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Honghong Yi
- School of Energy & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Tianqi Wang
- School of Energy & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Yiyue Zhang
- School of Energy & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiaozhe Zhu
- School of Energy & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jun Yao
- School of Energy & Environmental Engineering, and National International Cooperation Base on Environment and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
- School of Water Resource and Environmental Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|