1
|
Waller TJ, Collins CA, Dus M. Pyruvate kinase deficiency links metabolic perturbations to neurodegeneration and axonal protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647282. [PMID: 40235982 PMCID: PMC11996495 DOI: 10.1101/2025.04.04.647282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neurons rely on tightly regulated metabolic networks to sustain their high-energy demands, particularly through the coupling of glycolysis and oxidative phosphorylation. Here, we investigate the role of pyruvate kinase (PyK), a key glycolytic enzyme, in maintaining axonal and synaptic integrity in the Drosophila melanogaster neuromuscular system. Using genetic deficiencies in PyK, we show that disrupting glycolysis induces progressive synaptic and axonal degeneration and severe locomotor deficits. These effects require the conserved dual leucine zipper kinase (DLK), Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) Fos transcription factor axonal damage signaling pathway and the SARM1 NADase enzyme, a key driver of axonal degeneration. As both DLK and SARM1 regulate degeneration of injured axons (Wallerian degeneration), we probed the effect of PyK loss on this process. Consistent with the idea that metabolic shifts may influence neuronal resilience in context-dependent ways, we find that pyk knockdown delays Wallerian degeneration following nerve injury, suggesting that reducing glycolytic flux can promote axon survival under stress conditions. This protective effect is partially blocked by DLK knockdown and fully abolished by SARM1 overexpression. Together, our findings help bridge metabolism and neurodegenerative signaling by demonstrating that glycolytic perturbations causally activate stress response pathways that dictate the balance between protection and degeneration depending on the system's state. These results provide a mechanistic framework for understanding metabolic contributions to neurodegeneration and highlight the potential of metabolism as a target for therapeutic strategies. Abstract Figure
Collapse
|
2
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Chen L, Wang C, Qin L, Zhang H. Parkinson's disease and glucose metabolism impairment. Transl Neurodegener 2025; 14:10. [PMID: 39962629 PMCID: PMC11831814 DOI: 10.1186/s40035-025-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. PD patients exhibit varying degrees of abnormal glucose metabolism throughout disease stages. Abnormal glucose metabolism is closely linked to the PD pathogenesis and progression. Key glucose metabolism processes involved in PD include glucose transport, glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, the pentose phosphate pathway, and gluconeogenesis. Recent studies suggest that glucose metabolism is a potential therapeutic target for PD. In this review, we explore the connection between PD and abnormal glucose metabolism, focusing on the underlying pathophysiological mechanisms. We also summarize potential therapeutic drugs related to glucose metabolism based on results from current cellular and animal model studies.
Collapse
Affiliation(s)
- Liangjing Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunyu Wang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lixia Qin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Hainan Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
4
|
Dai Y, Wang J, Yang Y, Jin H, Liu F, Liu H, Ho PC, Lin HS. Exploration of Nutraceutical Potentials of Isorhapontigenin, Oxyresveratrol and Pterostilbene: A Metabolomic Approach. Int J Mol Sci 2024; 25:11027. [PMID: 39456808 PMCID: PMC11507072 DOI: 10.3390/ijms252011027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Resveratrol (trans-3,5,4'-trihydroxystilbene, RES) is one of the most well-known natural products with numerous health benefits. To explore the nutraceutical potentials of some dietary RES derivatives including isorhapontigenin (trans-3,5,4'-trihydroxy-3'-methoxystilbene, ISO), oxyresveratrol (trans-3,5,2',4'-tetrahydroxystilbene, OXY) and pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene, PTS), their impacts on metabolism and health were assessed in Sprague Dawley rats after a two-week daily oral administration at the dose of 100 µmol/kg/day. Non-targeted metabolomic analyses were carried out with the liver, heart, brain and plasma samples using gas chromatography-tandem mass spectrometry (GC-MS/MS). Notable in vivo health benefits were observed, as the rats received ISO, PTS or RES showed less body weight gain; the rats received OXY or RES displayed healthier fasting blood glucose levels; while all of the tested stilbenes exhibited cholesterol-lowering effects. Additionally, many important metabolic pathways such as glycolysis, pentose phosphate pathway, tricarboxylic acid cycle and fatty acid oxidation were found to be modulated by the tested stilbenes. Besides the reaffirmation of the well-known beneficial effects of RES in diabetes, obesity, cardiovascular disease and Alzheimer's disease, the metabolomic analyses also suggest the anti-diabetic, cardio-, hepato- and neuro-protective activities of ISO; the anti-diabetic, cardio-, hepato- and neuro-protective effects of OXY; and the anti-aging, anti-inflammatory, cardio-, hepato- and neuro-protective potential of PTS. Interestingly, although these stilbenes share a similar structure, their biological activities appear to be distinct. In conclusion, similarly to RES, ISO, OXY and PTS have emerged as promising candidates for further nutraceutical development.
Collapse
Affiliation(s)
- Yu Dai
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yuhui Yang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Hongrui Jin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Feng Liu
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Hui Liu
- Quality and Standards Academy, Shenzhen Technology University, Shenzhen 518118, China
| | - Paul C. Ho
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Hai-Shu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
5
|
Siddique AHH, Kale PP. Importance of glucose and its metabolism in neurodegenerative disorder, as well as the combination of multiple therapeutic strategies targeting α-synuclein and neuroprotection in the treatment of Parkinson's disease. Rev Neurol (Paris) 2024; 180:736-753. [PMID: 38040547 DOI: 10.1016/j.neurol.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2023] [Accepted: 08/18/2023] [Indexed: 12/03/2023]
Abstract
According to recent findings, Phosphoglycerate Kinase 1 (pgk-1) enzyme is linked to Parkinson's disease (PD). Mutations in the PGK-1 gene lead to decreases in the pgk-1 enzyme which causes an imbalance in the levels of energy demand and supply. An increase in glycolytic adenosine triphosphate (ATP) production would help alleviate energy deficiency and sustain the acute energetic need of neurons. Neurodegeneration is caused by an imbalance or reduction in ATP levels. Recent data suggest that medications that increase glycolysis and neuroprotection can be used to treat PD. The current study focuses on treatment options for disorders associated with the pgk-1 enzyme, GLP-1, and A2A receptor which can be utilized to treat PD. A combination of metformin and terazosin, exenatide and meclizine, istradefylline and salbutamol treatments may benefit parkinsonism. The review also looked at potential target-specific new techniques that might assist in satisfying unfulfilled requirements in the treatment of PD.
Collapse
Affiliation(s)
- A H H Siddique
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. L. Mehta Road, Vile Parle west, 400056 Mumbai, India.
| | - P P Kale
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. L. Mehta Road, Vile Parle west, 400056 Mumbai, India.
| |
Collapse
|
6
|
Mao C, Liu X, Guo SW. Meclizine improves endometrial repair and reduces simulated menstrual bleeding in mice with induced adenomyosis. Am J Obstet Gynecol 2024; 231:113.e1-113.e13. [PMID: 38367751 DOI: 10.1016/j.ajog.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Adenomyosis is one of the structural causes of abnormal uterine bleeding, which often presents as heavy menstrual bleeding. Mostly because of the poor understanding of its pathophysiology, medical management of adenomyosis-induced heavy menstrual bleeding is still a challenge. We have previously reported that glycolysis is crucial to endometrial repair following menstruation and that suppressed glycolysis can cause heavy menstrual bleeding. OBJECTIVE This study aimed to test the hypothesis that meclizine, a drug with an excellent safety profile, alleviates heavy menstrual bleeding in mice with induced adenomyosis using a simulated menstruation model. STUDY DESIGN Adenomyosis was induced in 36 female C57BL/6 mice using endometrial-myometrial interface disruption. Three months after induction, the mice were randomly divided into the following 3 groups: low-dose meclizine, high-dose meclizine, and controls. Treatment with meclizine or vehicle started shortly before the simulated menstruation procedure and ended before progesterone withdrawal. The amount of blood loss was quantified and uterine tissue was harvested for histologic evaluation of the grade of endometrial repair. We performed immunohistochemistry analysis of 4 proteins critically involved in glycolysis: Glut1 (glucose transporter 1), Hk2 (hexokinase 2), Pfkfb3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3), and Pkm2 (pyruvate kinase M2). The extent of tissue fibrosis in both ectopic and eutopic endometria was evaluated using Masson trichrome staining. RESULTS In mice with induced adenomyosis, meclizine accelerated endometrial repair in a dose-dependent manner and reduced the amount of menstrual bleeding. Meclizine administration raised endometrial immunoexpression of Hk2 and Pfkfb3 but not of Glut1 or Pkm2. The extent of endometrial fibrosis was reduced following the meclizine administration. Remarkably, these favorable changes were accompanied by the suppression of lesional progression, as evidenced by the dose-dependent reduction in the extent of fibrosis (a surrogate for lesional progression). CONCLUSION These encouraging results, taken together, suggest that glycolysis may be a promising therapeutic target and that meclizine may hold therapeutic potential as a nonhormonal treatment for adenomyosis-induced heavy menstrual bleeding without exacerbating the disease.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of General Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Xishi Liu
- Department of General Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China; Research Institute, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Lee JH, Gohil VM, Heidari P, Seidel JL, Zulkifli M, Wei Y, Ji Y, Daneshmand A, Mahmood U, Clish CB, Mootha VK, Ayata C. Mechanism of Action and Translational Potential of ( S)-Meclizine in Preemptive Prophylaxis Against Stroke. Stroke 2024; 55:1370-1380. [PMID: 38572656 PMCID: PMC11039361 DOI: 10.1161/strokeaha.123.044397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Mild chemical inhibition of mitochondrial respiration can confer resilience against a subsequent stroke or myocardial infarction, also known as preconditioning. However, the lack of chemicals that can safely inhibit mitochondrial respiration has impeded the clinical translation of the preconditioning concept. We previously showed that meclizine, an over-the-counter antivertigo drug, can toggle metabolism from mitochondrial respiration toward glycolysis and protect against ischemia-reperfusion injury in the brain, heart, and kidney. Here, we examine the mechanism of action of meclizine and report the efficacy and improved safety of the (S) enantiomer. METHODS We determined the anoxic depolarization latency, tissue and neurological outcomes, and glucose uptake using micro-positron emission tomography after transient middle cerebral artery occlusion in mice pretreated (-17 and -3 hours) with either vehicle or meclizine. To exclude a direct effect on tissue excitability, we also examined spreading depression susceptibility. Furthermore, we accomplished the chiral synthesis of (R)- and (S)-meclizine and compared their effects on oxygen consumption and histamine H1 receptor binding along with their brain concentrations. RESULTS Micro-positron emission tomography showed meclizine increases glucose uptake in the ischemic penumbra, providing the first in vivo evidence that the neuroprotective effect of meclizine indeed stems from its ability to toggle metabolism toward glycolysis. Consistent with reduced reliance on oxidative phosphorylation to sustain the metabolism, meclizine delayed anoxic depolarization onset after middle cerebral artery occlusion. Moreover, the (S) enantiomer showed reduced H1 receptor binding, a dose-limiting side effect for the racemate, but retained its effect on mitochondrial respiration. (S)-meclizine was at least as efficacious as the racemate in delaying anoxic depolarization onset and decreasing infarct volumes after middle cerebral artery occlusion. CONCLUSIONS Our data identify (S)-meclizine as a promising new drug candidate with high translational potential as a chemical preconditioning agent for preemptive prophylaxis in patients with high imminent stroke or myocardial infarction risk.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, South Korea
| | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Pedram Heidari
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jessica L. Seidel
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ying Wei
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yuhua Ji
- Grace Science, LLC, Menlo Park, CA, USA
| | - Ali Daneshmand
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Umar Mahmood
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | - Vamsi K. Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
8
|
Stojiljkovic MR, Schmeer C, Witte OW. Senescence and aging differentially alter key metabolic pathways in murine brain microglia. Neurosci Lett 2024; 828:137751. [PMID: 38548220 DOI: 10.1016/j.neulet.2024.137751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Microglia, the resident immune cells of the central nervous system, are critically involved in maintaining brain homeostasis. With age, microglia display morphological and functional alterations that have been associated with cognitive decline and neurodegeneration. Although microglia seem to participate in an increasing number of biological processes which require a high energy demand, little is known about their metabolic regulation under physiological and pathophysiological conditions and during aging/senescence. Here, we determined mRNA expression levels of critical rate limiting enzymes in several key metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis in association with oxidative phosphorylation in microglia, both under aging and senescent conditions. We found strong evidence for different metabolic changes occuring in senescent vs. aged microglia cells. While senescent microglia display a hypermetabolic state as indicated by increased expression of key enzymes involved in glycolysis and pentose phosphate pathway, aging microglia are rather in a state of hypometabolism. Our findings indicate that studies involving aging and senescent microglia require a clear differentiation between these microglial states due to profound metabolic differences observed here. Understanding metabolic changes in senescent and aged microglia may lead to novel strategies to decrease over-activation of these cells due to aging, which is associated to the process of inflamm-aging and neurodegeneration.
Collapse
Affiliation(s)
- Milan R Stojiljkovic
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Christian Schmeer
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
9
|
Harrison DE, Strong R, Reifsnyder P, Rosenthal N, Korstanje R, Fernandez E, Flurkey K, Ginsburg BC, Murrell MD, Javors MA, Lopez-Cruzan M, Nelson JF, Willcox BJ, Allsopp R, Watumull DM, Watumull DG, Cortopassi G, Kirkland JL, Tchkonia T, Choi YG, Yousefzadeh MJ, Robbins PD, Mitchell JR, Acar M, Sarnoski EA, Bene MR, Salmon A, Kumar N, Miller RA. Astaxanthin and meclizine extend lifespan in UM-HET3 male mice; fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate do not significantly affect lifespan in either sex at the doses and schedules used. GeroScience 2024; 46:795-816. [PMID: 38041783 PMCID: PMC10828146 DOI: 10.1007/s11357-023-01011-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023] Open
Abstract
In genetically heterogeneous (UM-HET3) mice produced by the CByB6F1 × C3D2F1 cross, the Nrf2 activator astaxanthin (Asta) extended the median male lifespan by 12% (p = 0.003, log-rank test), while meclizine (Mec), an mTORC1 inhibitor, extended the male lifespan by 8% (p = 0.03). Asta was fed at 1840 ± 520 (9) ppm and Mec at 544 ± 48 (9) ppm, stated as mean ± SE (n) of independent diet preparations. Both were started at 12 months of age. The 90th percentile lifespan for both treatments was extended in absolute value by 6% in males, but neither was significant by the Wang-Allison test. Five other new agents were also tested as follows: fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate. None of these increased lifespan significantly at the dose and method of administration tested in either sex. Amounts of dimethyl fumarate in the diet averaged 35% of the target dose, which may explain the absence of lifespan effects. Body weight was not significantly affected in males by any of the test agents. Late life weights were lower in females fed Asta and Mec, but lifespan was not significantly affected in these females. The male-specific lifespan benefits from Asta and Mec may provide insights into sex-specific aspects of aging.
Collapse
Affiliation(s)
- David E Harrison
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Peter Reifsnyder
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Ron Korstanje
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Kevin Flurkey
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Brett C Ginsburg
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Meredith D Murrell
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Martin A Javors
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - James F Nelson
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Department of Physiology, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Bradley J Willcox
- John A. Burns School of Medicine, University of Hawai'I at Mānoa, Honolulu, HI, USA
| | - Richard Allsopp
- John A. Burns School of Medicine, University of Hawai'I at Mānoa, Honolulu, HI, USA
| | | | | | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | | | | | | | | | | | | | - Murat Acar
- Department of Basic Medical Sciences, School of Medicine, Koç University, 34450, Istanbul, Turkey
| | - Ethan A Sarnoski
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Michael R Bene
- Department of Molecular Medicine, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Adam Salmon
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX, USA
- Education, and Clinical Center, Geriatric Research, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Molecular Medicine, The University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Navasuja Kumar
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Li H, Zeng F, Huang C, Pu Q, Thomas ER, Chen Y, Li X. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14411. [PMID: 37577934 PMCID: PMC10848100 DOI: 10.1111/cns.14411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is a common neurodegenerative disease, which can cause progressive deterioration of motor function causing muscle stiffness, tremor, and bradykinesia. In this review, we hope to describe approaches that can improve the life of PD patients through modifications of energy metabolism. RECENT FINDINGS The main pathological features of PD are the progressive loss of nigrostriatal dopaminergic neurons and the production of Lewy bodies. Abnormal aggregation of α-synuclein (α-Syn) leading to the formation of Lewy bodies is closely associated with neuronal dysfunction and degeneration. The main causes of PD are said to be mitochondrial damage, oxidative stress, inflammation, and abnormal protein aggregation. Presence of abnormal energy metabolism is another cause of PD. Many studies have found significant differences between neurodegenerative diseases and metabolic decompensation, which has become a biological hallmark of neurodegenerative diseases. SUMMARY In this review, we highlight the relationship between abnormal energy metabolism (Glucose metabolism, lipid metabolism, and amino acid metabolism) and PD. Improvement of key molecules in glucose metabolism, fat metabolism, and amino acid metabolism (e.g., glucose-6-phosphate dehydrogenase, triglycerides, and levodopa) might be potentially beneficial in PD. Some of these metabolic indicators may serve well during the diagnosis of PD. In addition, modulation of these metabolic pathways may be a potential target for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Hangzhen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Cancan Huang
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiqi Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | | | - Yan Chen
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
11
|
Mostafa RE, Asaad GF. Meclizine moderates lipopolysaccharide-induced neuroinflammation in mice through the regulation of AKT/ NF-κβ/ERK/JNK signaling pathway. Metab Brain Dis 2023; 38:2797-2806. [PMID: 37733253 PMCID: PMC10663243 DOI: 10.1007/s11011-023-01295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Neuroinflammation is identified as significant inflammatory reactions occurring in the central nervous system. Lipopolysaccharide (LPS) stimulates innate immune reactions and is used as an in vivo animal model for the investigation of inflammation. Meclizine (MCLZ) is a histamine antagonist with potential neuroprotective qualities. Forty adult male Swiss albino mice were divided into four groups (n = 10). Group 1 served as a control negative group. Groups 2-4 were injected with LPS (5 mg/kg; i.p). Group 2 served as LPS-control. Groups 3 & 4 were given MCLZ (12.5 & 25 mg/kg; p.o) respectively for 14 days. LPS administration resulted in significant neuroinflammation in mice as was revealed by significant inflammatory histopathological changes and positive immunohistochemical staining of glial fibrillary acidic proteins (GFAP) accompanied by significant elevations of brain tissue contents of interleukin-1-beta (IL-1β), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-beta (NF-κβ), protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and C-Jun N-Terminal Kinases (JNK). MCLZ treatment significantly down-regulated all the aforementioned parameters in mice brains. Moreover, MCLZ treatment ameliorated the inflammatory histopathological changes and GFAP immunostaining in brain tissues. The current study identifies for the first time the protective anti-neuroinflammatory effects of MCLZ against LPS-induced neuroinflammation in mice. MCLZ protected against neuroinflammation via the amelioration of inflammatory histopathological changes as well as neuronal GFAP immunostaining and down-regulated the AKT/NF-κβ/ERK/JNK signaling pathway. MCLZ is anticipated as a potential protective candidate for the addition to the treatment protocol of neuroinflammation.
Collapse
Affiliation(s)
- Rasha E Mostafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 ELBohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt.
| | - Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 ELBohouth St. (former EL Tahrir St.), P.O. 12622, Dokki, Cairo, Egypt
| |
Collapse
|
12
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
13
|
McDonald TS, Lerskiatiphanich T, Woodruff TM, McCombe PA, Lee JD. Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 2023; 43:26-43. [PMID: 36281012 PMCID: PMC9875350 DOI: 10.1177/0271678x221135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/28/2023]
Abstract
Neurodegeneration refers to the selective and progressive loss-of-function and atrophy of neurons, and is present in disorders such as Alzheimer's, Huntington's, and Parkinson's disease. Although each disease presents with a unique pattern of neurodegeneration, and subsequent disease phenotype, increasing evidence implicates alterations in energy usage as a shared and core feature in the onset and progression of these disorders. Indeed, disturbances in energy metabolism may contribute to the vulnerability of neurons to apoptosis. In this review we will outline these disturbances in glucose metabolism, and how fatty acids are able to compensate for this impairment in energy production in neurodegenerative disorders. We will also highlight underlying mechanisms that could contribute to these alterations in energy metabolism. A greater understanding of these metabolism-neurodegeneration processes could lead to improved treatment options for neurodegenerative disease patients.
Collapse
Affiliation(s)
- Tanya S McDonald
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Queensland Brain Institute, The University of Queensland, St.
Lucia, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital,
Herston, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The
University of Queensland, St. Lucia, Australia
| |
Collapse
|
14
|
Wang Q, Lu M, Zhu X, Gu X, Zhang T, Xia C, Yang L, Xu Y, Zhou M. The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomed Pharmacother 2022; 153:113412. [DOI: 10.1016/j.biopha.2022.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
|
15
|
Shannonhouse J, Bernabucci M, Gomez R, Son H, Zhang Y, Ai CH, Ishida H, Kim YS. Meclizine and Metabotropic Glutamate Receptor Agonists Attenuate Severe Pain and Ca 2+ Activity of Primary Sensory Neurons in Chemotherapy-Induced Peripheral Neuropathy. J Neurosci 2022; 42:6020-6037. [PMID: 35772967 PMCID: PMC9351649 DOI: 10.1523/jneurosci.1064-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects ∼68% of patients undergoing chemotherapy, causing debilitating neuropathic pain and reducing quality of life. Cisplatin is a commonly used platinum-based chemotherapeutic drug known to cause CIPN, possibly by causing oxidative stress damage to primary sensory neurons. Metabotropic glutamate receptors (mGluRs) are widely hypothesized to be involved in pain processing and pain mitigation. Meclizine is an H1 histamine receptor antagonist known to have neuroprotective effects, including an anti-oxidative effect. Here, we used a mouse model of cisplatin-induced CIPN using male and female mice to test agonists of mGluR8 and Group II mGluR as well as meclizine as interventions to reduce cisplatin-induced pain. We performed behavioral pain tests, and we imaged Ca2+ activity of the large population of dorsal root ganglia (DRG) neurons in vivo For the latter, we used a genetically-encoded Ca2+ indicator, Pirt-GCaMP3, which enabled us to monitor different drug interventions at the level of the intact DRG neuronal ensemble. We found that CIPN increased spontaneous Ca2+ activity in DRG neurons, increased number of Ca2+ transients, and increased hyper-responses to mechanical, thermal, and chemical stimuli. We found that mechanical and thermal pain caused by CIPN was significantly attenuated by the mGluR8 agonist, (S)-3,4-DCPG, the Group II mGluR agonist, LY379268, and the H1 histamine receptor antagonist, meclizine. DRG neuronal Ca2+ activity elevated by CIPN was attenuated by LY379268 and meclizine, but not by (S)-3,4-DCPG. Furthermore, meclizine and LY379268 attenuated cisplatin-induced weight loss. These results suggest that Group II mGluR agonist, mGluR8 agonist, and meclizine are promising candidates as new treatment options for CIPN, and studies of their mechanisms are warranted.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a painful condition that affects most chemotherapy patients and persists several months or longer after treatment ends. Research on CIPN mechanism is extensive but has produced only few clinically useful treatments. Using in vivo GCaMP Ca2+ imaging in live animals over 1800 neurons/dorsal root ganglia (DRG) at once, we have characterized the effects of the chemotherapeutic drug, cisplatin and three treatments that decrease CIPN pain. Cisplatin increases sensory neuronal Ca2+ activity and develops various sensitization. Metabotropic glutamate receptor (mGluR) agonist, LY379268 or the H1 histamine receptor antagonist, meclizine decreases cisplatin's effects on neuronal Ca2+ activity and reduces pain hypersensitivity. Our results and experiments provide insights into cellular effects of cisplatin and drugs preventing CIPN pain.
Collapse
Affiliation(s)
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Chih-Hsuan Ai
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Hirotake Ishida
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry
- Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
16
|
Kawamura Y, Hida T, Ohkawara B, Matsushita M, Kobayashi T, Ishizuka S, Hiraiwa H, Tanaka S, Tsushima M, Nakashima H, Ito K, Imagama S, Ito M, Masuda A, Ishiguro N, Ohno K. Meclozine ameliorates skeletal muscle pathology and increases muscle forces in mdx mice. Biochem Biophys Res Commun 2022; 592:87-92. [PMID: 35033871 DOI: 10.1016/j.bbrc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
We screened pre-approved drugs for the survival of the Hu5/KD3 human myogenic progenitors. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, promoted the proliferation and survival of Hu5/KD3 cells. Meclozine increased expression of MyoD, but reduced expression of myosin heavy chain and suppressed myotube formation. Withdrawal of meclozine, however, resumed the ability of Hu5/KD3 cells to differentiate into myotubes. We examined the effects of meclozine on mdx mouse carrying a nonsense mutation in the dystrophin gene and modeling for Duchenne muscular dystrophy. Intragastric administration of meclozine in mdx mouse increased the body weight, the muscle mass in the lower limbs, the cross-sectional area of the paravertebral muscle, and improved exercise performances. Previous reports show that inhibition of phosphorylation of ERK1/2 improves muscle functions in mouse models for Emery-Dreifuss muscular dystrophy and cancer cachexia, as well as in mdx mice. We and others previously showed that meclozine blocks the phosphorylation of ERK1/2 in cultured cells. We currently showed that meclozine decreased phosphorylation of ERK1/2 in muscles in mdx mice but not in wild-type mice. This was likely to be one of the underlying mechanisms of the effects of meclozine on mdx mice.
Collapse
Affiliation(s)
- Yusuke Kawamura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuro Hida
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masaki Matsushita
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Kobayashi
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Ishizuka
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Hiraiwa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tanaka
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Tsushima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenyu Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Solana-Manrique C, Sanz FJ, Torregrosa I, Palomino-Schätzlein M, Hernández-Oliver C, Pineda-Lucena A, Paricio N. Metabolic Alterations in a Drosophila Model of Parkinson's Disease Based on DJ-1 Deficiency. Cells 2022; 11:cells11030331. [PMID: 35159141 PMCID: PMC8834223 DOI: 10.3390/cells11030331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, whose physiopathology is still unclear. Moreover, there is an urgent need to discover new biomarkers and therapeutic targets to facilitate its diagnosis and treatment. Previous studies performed in PD models and samples from PD patients already demonstrated that metabolic alterations are associated with this disease. In this context, the aim of this study is to provide a better understanding of metabolic disturbances underlying PD pathogenesis. To achieve this goal, we used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1). Metabolomic analyses were performed in 1-day-old and 15-day-old DJ-1β mutants and control flies using 1H nuclear magnetic resonance spectroscopy, combined with expression and enzymatic activity assays of proteins implicated in altered pathways. Our results showed that the PD model flies exhibited protein metabolism alterations, a shift fromthe tricarboxylic acid cycle to glycolytic pathway to obtain ATP, together with an increase in the expression of some urea cycle enzymes. Thus, these metabolic changes could contribute to PD pathogenesis and might constitute possible therapeutic targets and/or biomarkers for this disease.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Isabel Torregrosa
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | | | - Carolina Hernández-Oliver
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
| | - Antonio Pineda-Lucena
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
- Programa de Terapias Moleculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
- Correspondence: ; Tel.: +34-96-354-3005; Fax: +34-96-354-3029
| |
Collapse
|
18
|
Wang C, Deng H, Wang D, Wang J, Huang H, Qiu J, Li Y, Zou T, Guo L. Changes in metabolomics and lipidomics in brain tissue and their correlations with the gut microbiome after chronic food-derived arsenic exposure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112935. [PMID: 34801923 DOI: 10.1016/j.ecoenv.2021.112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Arsenic can cause neurodegenerative diseases of the brain, but the definite mechanism is still unknown. In this study, to discuss the disturbances on brain metabolome and lipidome under subchronic arsenic exposure, we treated mice with the arsenic-containing feed (concentration of total arsenic = 30 mg/kg) prepared in accordance with the proportion of rice arsenicals for 16 weeks and performed metabolomics and lipidomics studies respectively using UHPLC-Triple-TOF-MS/MS and UHPLC-Q Exactive Focus MS/MS on mice brain. In addition, the distributions of arsenical metabolites along the feed-gut-blood-brain chain were analyzed by ICP-MS and HPLC-ICP-MS, and fecal microbial variations were investigated by 16 s sequencing. The data showed that although only a tiny amount of arsenic (DMA=0.101 mg/kg, uAs=0.071 mg/kg) enters the brain through the blood-brain barrier, there were significant changes in brain metabolism, including 118 metabolites and 17 lipids. These different metabolites were involved in 30 distinct pathways, including glycometabolism, and metabolisms of lipid, nucleic acid, and amino acid were previously reported to be correlated with neurodegenerative diseases. Additionally, these different metabolites were significantly correlated with 12 gut bacterial OTUs, among which Lachnospiraceae, Muribaculaceae, Ruminococcaceae, and Erysipelotrichaceae were also previously reported to be related to the distortion of metabolism, indicating that the disturbance of metabolism in the brain may be associated with the disturbance of gut microbes induced by arsenic. Thus, the current study demonstrated that the brain metabolome and lipidome were significantly disturbed under subchronic arsenic exposure, and the disturbances also significantly correlated with some gut microbiome and may be associated with neurodegenerative diseases. Although preliminary, the results shed some light on the pathophysiology of arsenic-caused neurodegenerative diseases.
Collapse
Affiliation(s)
- Chenfei Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518000, China.
| | - Hongyu Deng
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518110, China.
| | - Dongbin Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jiating Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510070, China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 528478, China.
| | - Hairong Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jiayi Qiu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yinfei Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Tangbin Zou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
19
|
The Neuroprotective Role of Polydatin: Neuropharmacological Mechanisms, Molecular Targets, Therapeutic Potentials, and Clinical Perspective. Molecules 2021; 26:molecules26195985. [PMID: 34641529 PMCID: PMC8513080 DOI: 10.3390/molecules26195985] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are one of the leading causes of death and disability in humans. From a mechanistic perspective, the complexity of pathophysiological mechanisms contributes to NDDs. Therefore, there is an urgency to provide novel multi-target agents towards the simultaneous modulation of dysregulated pathways against NDDs. Besides, their lack of effectiveness and associated side effects have contributed to the lack of conventional therapies as suitable therapeutic agents. Prevailing reports have introduced plant secondary metabolites as promising multi-target agents in combating NDDs. Polydatin is a natural phenolic compound, employing potential mechanisms in fighting NDDs. It is considered an auspicious phytochemical in modulating neuroinflammatory/apoptotic/autophagy/oxidative stress signaling mediators such as nuclear factor-κB (NF-κB), NF-E2–related factor 2 (Nrf2)/antioxidant response elements (ARE), matrix metalloproteinase (MMPs), interleukins (ILs), phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), and the extracellular regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Accordingly, polydatin potentially counteracts Alzheimer’s disease, cognition/memory dysfunction, Parkinson’s disease, brain/spinal cord injuries, ischemic stroke, and miscellaneous neuronal dysfunctionalities. The present study provides all of the neuroprotective mechanisms of polydatin in various NDDs. Additionally, the novel delivery systems of polydatin are provided regarding increasing its safety, solubility, bioavailability, and efficacy, as well as developing a long-lasting therapeutic concentration of polydatin in the central nervous system, possessing fewer side effects.
Collapse
|
20
|
Gao L, Wang C, Qin B, Li T, Xu W, Lenahan C, Ying G, Li J, Zhao T, Zhu Y, Chen G. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase Suppresses Neuronal Apoptosis by Increasing Glycolysis and "cyclin-dependent kinase 1-Mediated Phosphorylation of p27 After Traumatic Spinal Cord Injury in Rats. Cell Transplant 2021; 29:963689720950226. [PMID: 32841050 PMCID: PMC7563815 DOI: 10.1177/0963689720950226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is a vital pathological factor that accounts for the poor prognosis of
traumatic spinal cord injury (t-SCI). The
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is a critical
regulator for energy metabolism and proven to have antiapoptotic effects. This
study aimed to investigate the neuroprotective role of PFKFB3 in t-SCI. A
compressive clip was introduced to establish the t-SCI model. Herein, we
identified that PFKFB3 was extensively distributed in neurons, and PFKFB3 levels
significantly increased and peaked 24 h after t-SCI. Additionally, knockdown of
PFKFB3 inhibited glycolysis, accompanied by aggravated neuronal apoptosis and
white matter injury, while pharmacological activation of PFKFB3 with meclizine
significantly enhanced glycolysis, attenuated t-SCI-induced spinal cord injury,
and alleviated neurological impairment. The PFKFB3 agonist, meclizine, activated
cyclin-dependent kinase 1 (CDK1) and promoted the phosphorylation of p27,
ultimately suppressing neuronal apoptosis. However, the neuroprotective effects
of meclizine against t-SCI were abolished by the CDK1 antagonist, RO3306. In
summary, our data demonstrated that PFKFB3 contributes robust neuroprotection
against t-SCI by enhancing glycolysis and modulating CDK1-related antiapoptotic
signals. Moreover, targeting PFKFB3 may be a novel and promising therapeutic
strategy for t-SCI.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Qin
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weilin Xu
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- 448838Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Guangyu Ying
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianru Li
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tengfei Zhao
- Department of Orthopedics, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongjian Zhu
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, 89681Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Mitochondrial Metabolism as Target of the Neuroprotective Role of Erythropoietin in Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10010121. [PMID: 33467745 PMCID: PMC7830512 DOI: 10.3390/antiox10010121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Existing therapies for Parkinson's disease (PD) are only symptomatic. As erythropoietin (EPO) is emerging for its benefits in neurodegenerative diseases, here, we test the protective effect driven by EPO in in vitro (SH-SY5Y cells challenged by MPP+) and in vivo (C57BL/6J mice administered with MPTP) PD models. EPO restores cell viability in both protective and restorative layouts, enhancing the dopaminergic recovery. Specifically, EPO rescues the PD-induced damage to mitochondria, as shown by transmission electron microscopy, Mitotracker assay and PINK1 expression. Moreover, EPO promotes a rescue of mitochondrial respiration while markedly enhancing the glycolytic rate, as shown by the augmented extracellular acidification rate, contributing to elevated ATP levels in MPP+-challenged cells. In PD mice, EPO intrastriatal infusion markedly improves the outcome of behavioral tests. This is associated with the rescue of dopaminergic markers and decreased neuroinflammation. This study demonstrates cellular and functional recovery following EPO treatment, likely mediated by the 37 Kda isoform of the EPO-receptor. We report for the first time, that EPO-neuroprotection is exerted through restoring ATP levels by accelerating the glycolytic rate. In conclusion, the redox imbalance and neuroinflammation associated with PD may be successfully treated by EPO.
Collapse
|
22
|
Bell SM, Burgess T, Lee J, Blackburn DJ, Allen SP, Mortiboys H. Peripheral Glycolysis in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E8924. [PMID: 33255513 PMCID: PMC7727792 DOI: 10.3390/ijms21238924] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a group of nervous system conditions characterised pathologically by the abnormal deposition of protein throughout the brain and spinal cord. One common pathophysiological change seen in all neurodegenerative disease is a change to the metabolic function of nervous system and peripheral cells. Glycolysis is the conversion of glucose to pyruvate or lactate which results in the generation of ATP and has been shown to be abnormal in peripheral cells in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Changes to the glycolytic pathway are seen early in neurodegenerative disease and highlight how in multiple neurodegenerative conditions pathology is not always confined to the nervous system. In this paper, we review the abnormalities described in glycolysis in the three most common neurodegenerative diseases. We show that in all three diseases glycolytic changes are seen in fibroblasts, and red blood cells, and that liver, kidney, muscle and white blood cells have abnormal glycolysis in certain diseases. We highlight there is potential for peripheral glycolysis to be developed into multiple types of disease biomarker, but large-scale bio sampling and deciphering how glycolysis is inherently altered in neurodegenerative disease in multiple patients' needs to be accomplished first to meet this aim.
Collapse
Affiliation(s)
- Simon M. Bell
- Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield S10 2HQ, UK; (T.B.); (J.L.); (D.J.B.); (S.P.A.); (H.M.)
| | | | | | | | | | | |
Collapse
|
23
|
Solana-Manrique C, Sanz FJ, Ripollés E, Bañó MC, Torres J, Muñoz-Soriano V, Paricio N. Enhanced activity of glycolytic enzymes in Drosophila and human cell models of Parkinson's disease based on DJ-1 deficiency. Free Radic Biol Med 2020; 158:137-148. [PMID: 32726690 DOI: 10.1016/j.freeradbiomed.2020.06.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative debilitating disorder characterized by progressive disturbances in motor, autonomic and psychiatric functions. One of the genes involved in familial forms of the disease is DJ-1, whose mutations cause early-onset PD. Besides, it has been shown that an over-oxidized and inactive form of the DJ-1 protein is found in brains of sporadic PD patients. Interestingly, the DJ-1 protein plays an important role in cellular defense against oxidative stress and also participates in mitochondrial homeostasis. Valuable insights into potential PD pathogenic mechanisms involving DJ-1 have been obtained from studies in cell and animal PD models based on DJ-1 deficiency such as Drosophila. Flies mutant for the DJ-1β gene, the Drosophila ortholog of human DJ-1, exhibited disease-related phenotypes such as motor defects, increased reactive oxygen species production and high levels of protein carbonylation. In the present study, we demonstrate that DJ-1β mutants also show a significant increase in the activity of several regulatory glycolytic enzymes. Similar results were obtained in DJ-1-deficient SH-SY5Y neuroblastoma cells, thus suggesting that loss of DJ-1 function leads to an increase in the glycolytic rate. In such a scenario, an enhancement of the glycolytic pathway could be a protective mechanism to decrease ROS production by restoring ATP levels, which are decreased due to mitochondrial dysfunction. Our results also show that meclizine and dimethyl fumarate, two FDA-approved compounds with different clinical applications, are able to attenuate PD-related phenotypes in both models. Moreover, we found that they may exert their beneficial effect by increasing glycolysis through the activation of key glycolytic enzymes. Taken together, these results are consistent with the idea that increasing glycolysis could be a potential disease-modifying strategy for PD, as recently suggested. Besides, they also support further evaluation and potential repurposing of meclizine and dimethyl fumarate as modulators of energy metabolism for neuroprotection in PD.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Edna Ripollés
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - M Carmen Bañó
- Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain; Departamento de Bioquímica y Biología Molecular, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
| | - Josema Torres
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
24
|
Yang C, Qiu Y, Qing Y, Xu J, Dai W, Hu X, Wu X. Synergistic effect of electric stimulation and mesenchymal stem cells against Parkinson's disease. Aging (Albany NY) 2020; 12:16062-16071. [PMID: 32836217 PMCID: PMC7485716 DOI: 10.18632/aging.103477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/01/2020] [Indexed: 11/25/2022]
Abstract
Electroconvulsive therapy (ECT) has known beneficial effects on the core motor symptoms of Parkinson's disease (PD), likely through induction of dopamine release and sensitivity of dopamine receptors. Mesenchymal stem cells (MSCs) can salvage loss of dopamine in PD through their differentiation into dopaminergic neurons. However, it is not known if combined ECT and MSC transplantation may have a synergistic effect against PD. Here, we showed that ECT significantly increased the differentiation of the transplanted MSCs into dopaminergic neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. On the other hand, transplantation of MSCs significantly increased dopamine levels after ECT. Co-application of ECT and MSC transplantation generated a synergistic effect through increases in dopamine and decreases in pro-inflammatory cytokines, resulting in significantly attenuated defect in stepping test and rotational behavior in MPTP-mice. Together, our data suggest that combined ECT and MSC transplantation can be a valuable treatment of PD.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 2000433, China
| | - Yiqing Qiu
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 2000433, China
| | - Yuan Qing
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 2000433, China
| | - Jinyu Xu
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 2000433, China
| | - Wei Dai
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 2000433, China
| | - Xiaowu Hu
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 2000433, China
| | - Xi Wu
- Department of Neurosurgery, Changhai Hospital, The Second Military Medical University, Shanghai 2000433, China
| |
Collapse
|
25
|
Mencke P, Hanss Z, Boussaad I, Sugier PE, Elbaz A, Krüger R. Bidirectional Relation Between Parkinson's Disease and Glioblastoma Multiforme. Front Neurol 2020; 11:898. [PMID: 32973662 PMCID: PMC7468383 DOI: 10.3389/fneur.2020.00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer and Parkinson's disease (PD) define two disease entities that include opposite concepts. Indeed, the involved mechanisms are at different ends of a spectrum related to cell survival - one due to enhanced cellular proliferation and the other due to premature cell death. There is increasing evidence indicating that patients with neurodegenerative diseases like PD have a reduced incidence for most cancers. In support, epidemiological studies demonstrate an inverse association between PD and cancer. Both conditions apparently can involve the same set of genes, however, in affected tissues the expression was inversely regulated: genes that are down-regulated in PD were found to be up-regulated in cancer and vice versa, for example p53 or PARK7. When comparing glioblastoma multiforme (GBM), a malignant brain tumor with poor overall survival, with PD, astrocytes are dysregulated in both diseases in opposite ways. In addition, common genes, that are involved in both diseases and share common key pathways of cell proliferation and metabolism, were shown to be oppositely deregulated in PD and GBM. Here, we provide an overview of the involvement of PD- and GBM-associated genes in common pathways that are dysregulated in both conditions. Moreover, we illustrate why the simultaneous study of PD and GBM regarding the role of common pathways may lead to a deeper understanding of these still incurable conditions. Eventually, considering the inverse regulation of certain genes in PD and GBM will help to understand their mechanistic basis, and thus to define novel target-based strategies for causative treatments.
Collapse
Affiliation(s)
- Pauline Mencke
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Zoé Hanss
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | | | - Alexis Elbaz
- Institut de Statistique de l'Université de Paris, Paris, France
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| |
Collapse
|
26
|
Zhu J, Li P, Zhou YG, Ye J. Altered Energy Metabolism During Early Optic Nerve Crush Injury: Implications of Warburg-Like Aerobic Glycolysis in Facilitating Retinal Ganglion Cell Survival. Neurosci Bull 2020; 36:761-777. [PMID: 32277382 PMCID: PMC7340706 DOI: 10.1007/s12264-020-00490-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Neurons, especially axons, are metabolically demanding and energetically vulnerable during injury. However, the exact energy budget alterations that occur early after axon injury and the effects of these changes on neuronal survival remain unknown. Using a classic mouse model of optic nerve-crush injury, we found that traumatized optic nerves and retinas harbor the potential to mobilize two primary energetic machineries, glycolysis and oxidative phosphorylation, to satisfy the robustly increased adenosine triphosphate (ATP) demand. Further exploration of metabolic activation showed that mitochondrial oxidative phosphorylation was amplified over other pathways, which may lead to decreased retinal ganglion cell (RGC) survival despite its supplement to ATP production. Gene set enrichment analysis of a microarray (GSE32309) identified significant activation of oxidative phosphorylation in injured retinas from wild-type mice compared to those from mice with deletion of phosphatase and tensin homolog (PTEN), while PTEN-/- mice had more robust RGC survival. Therefore, we speculated that the oxidation-favoring metabolic pattern after optic nerve-crush injury could be adverse for RGC survival. After redirecting metabolic flux toward glycolysis (magnifying the Warburg effect) using the drug meclizine, we successfully increased RGC survival. Thus, we provide novel insights into a potential bioenergetics-based strategy for neuroprotection.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Ophthalmology, Army Medical Center of the People's Liberation Army (PLA), Army Medical University, Chongqing, 400042, China
| | - Ping Li
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Army Medical Center of the PLA, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery, Army Medical Center of the PLA, Army Medical University, Chongqing, 400042, China.
| | - Jian Ye
- Department of Ophthalmology, Army Medical Center of the People's Liberation Army (PLA), Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
27
|
Salama AH, Elmotasem H, Salama AAA. Nanotechnology based blended chitosan-pectin hybrid for safe and efficient consolidative antiemetic and neuro-protective effect of meclizine hydrochloride in chemotherapy induced emesis. Int J Pharm 2020; 584:119411. [PMID: 32423876 DOI: 10.1016/j.ijpharm.2020.119411] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to formulate an easily-administered, safe and effective dosage form loaded with meclizine for treatment of chemotherapy-induced nausea and vomiting (CINV) through the buccal route. CINV comprises bothersome side effects accompanying cytotoxic drugs administration in cancer patients. Meclizine was loaded in chitosan-pectin nanoparticles which were further incorporated within a buccal film. Different formulations were prepared based on a 21.31 full factorial study using Design Expert®8. The optimum formulation possessed favorable characters regarding its particle size (129 nm), entrapment efficiency (90%) and release profile. Moreover, its permeation efficiency through sheep buccal mucosa was assessed via Franz cell diffusion and confocal laser microscopy methods. Enhanced permeation was achieved compared with the free drug form. In-vivo performance was assessed using cyclophosphamide induced emesis. The proposed formulation exerted significant relief of the measured responses (reduced body weight and motor coordination, elevated emesis, anorexia, proinflammatory mediators and neurotransmitters that were also associated with scattered degenerated neurons and glial cells). The developed formulation ameliorated all behavioral, biochemical and histopathological changes induced by cyclophosphamide. The obtained data were promising suggesting that our bioadhesive formulation can offer an auspicious medication for treating distressing symptoms associated with chemotherapy for cancer patients.
Collapse
Affiliation(s)
- Alaa H Salama
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abeer A A Salama
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
28
|
Tang BL. Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol 2020; 235:7653-7662. [PMID: 32239718 DOI: 10.1002/jcp.29682] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Prolonged survival of a typical postmitotic neuron hinges on a balance between multiple processes, among these are a sustenance of ATP production and protection against reactive oxygen species. In neuropathological conditions, mitochondrial defects often lead to both a drop in ATP levels, as well as increase reactive oxygen species production from inefficient electron transport processes and NADPH-oxidases activities. The former often resulted in the phenomenon of compensatory aerobic glycolysis. The latter stretches the capacity of the cell's redox buffering capacity, and may lead to damages of key enzymes involved in energy metabolism. Several recent reports have indicated that enhancing glucose availability and uptake, as well as increasing glycolytic flux via pharmacological or genetic manipulation of glycolytic enzymes, could be protective in animal models of several major neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Activation of canonical Wnt signaling, which improves disease symptoms in mouse models of Alzheimer's disease also appears to work via an elevation of glycolytic enzymes and enhance glucose metabolism. Here, I discuss these findings and the possible underlying mechanisms of how an increase in glucose uptake and glycolysis could be neuroprotective. Increased glycolytic production of ATP would help alleviate energy deficiency, and ATP's hydrotropic effect may enhance solubility and clearance of toxic aggregates prevalent in many neurodegenerative diseases. Furthermore, channeling of glucose into the Pentose Phosphate Pathway would increase the redox buffering capacity of the cell.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
29
|
Yang SQ, Tian Q, Li D, He SQ, Hu M, Liu SY, Zou W, Chen YJ, Zhang P, Tang XQ. Leptin mediates protection of hydrogen sulfide against 6-hydroxydopamine-induced Parkinson's disease: Involving enhancement in Warburg effect. Neurochem Int 2020; 135:104692. [PMID: 32032636 DOI: 10.1016/j.neuint.2020.104692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S) has therapeutic effects on Parkinson's disease (PD). Warburg effect, namely aerobic glycolysis, is benefit to PD. Leptin, a hormone secreted in adipose, plays an important role in the treatment of PD. OBJECTIVE To determine whether the mechanism underlying protection of H2S against PD is involved in promoting Warburg effect via upregulation of leptin. METHODS We set a PD model via unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA) in Sprague Dawley rat. PD-like behavior was analyzed by apomorphine-induced rotations, open field activity test, stepping test and cylinder test. Dopaminergic neurons were detected by immunohistochemistry. The expressions of Hexokinase-2, pyruvate kinase M-2, lactate dehydrogenase, pyruvate dehydrogenase kinase, pyruvate dehydrogenase, and leptin were measured by Western blot. Lactate dehydrogenase (LDHA) activity was monitored by ELISA. The lactate content was measured by lactate assay kit. RESULTS We showed that NaHS (a donor of H2S) prevented 6-OHDA-induced PD-like behaviors as well as the loss of dopaminergic neurons. We also found that NaHS enhanced the Warburg effect and upregulated leptin expression in the substantia nigra of 6-OHDA-exposed rats. While, inhibited leptin signaling by OBR13-A reversed the protections of H2S against 6-OHDA-exerted PD-like behaviors and the loss of dopaminergic neurons in the substantia nigra, and abolished H2S-enhanced in the Warburg effect in the substantia nigra. CONCLUSION These data indicated that leptin mediates the protection of H2S against PD, which involves enhancing the Warburg effect of the substantia nigra.
Collapse
Affiliation(s)
- San-Qiao Yang
- Institute of Neurology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Qing Tian
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Dan Li
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, 518110, Guangdong, PR China
| | - Shi-Qing He
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Min Hu
- Department of Neurology, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Shu-Yun Liu
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, 518110, Guangdong, PR China.
| | - Wei Zou
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Neurology, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Yong-Jun Chen
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Neurology, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Ping Zhang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Department of Neurology, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China
| | - Xiao-Qing Tang
- Institute of Neurology, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, PR China.
| |
Collapse
|
30
|
Patel-Murray NL, Adam M, Huynh N, Wassie BT, Milani P, Fraenkel E. A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules. Sci Rep 2020; 10:954. [PMID: 31969612 PMCID: PMC6976599 DOI: 10.1038/s41598-020-57691-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed an approach for uncovering MoAs through an interpretable machine learning model of transcriptomics, epigenomics, metabolomics, and proteomics. Examining compounds with beneficial effects in models of Huntington's Disease, we found common MoAs for compounds with unrelated structures, connectivity scores, and binding targets. The approach also predicted highly divergent MoAs for two FDA-approved antihistamines. We experimentally validated these effects, demonstrating that one antihistamine activates autophagy, while the other targets bioenergetics. The use of multiple omics was essential, as some MoAs were virtually undetectable in specific assays. Our approach does not require reference compounds or large databases of experimental data in related systems and thus can be applied to the study of agents with uncharacterized MoAs and to rare or understudied diseases.
Collapse
Affiliation(s)
- Natasha L Patel-Murray
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Miriam Adam
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Nhan Huynh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Brook T Wassie
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Pamela Milani
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Broad Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
31
|
Singh H, Sodhi RK, Chahal SK, Madan J. Meclizine ameliorates memory deficits in streptozotocin-induced experimental dementia in mice: role of nuclear pregnane X receptors. Can J Physiol Pharmacol 2020; 98:383-390. [PMID: 31935134 DOI: 10.1139/cjpp-2019-0421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregnane X receptors (PXRs) regulate the expression of ATP-binding cassette proteins transporters and organic anion transporting polypeptides responsible for influx/efflux of xenobiotics across the brain. Ligand activation of PXR augments the expression of P-gp and promotes amyloid-β clearance across the blood-brain barrier. Dementia was induced in mice by intacerebroventricular administration of streptozotocin (STZ) followed by treatment with meclizine, a PXR agonist, and subsequently exposed to the Morris water maze test and biochemical and histopathological analysis to evaluate the effect on cognition. STZ-treated mice exhibited significant enhancement in brain thiobarbituric acid reactive species, interleukin-1β, tumour necrosis factor-α, myeloperoxidase, and acetylcholinestrase activity in addition to diminution in glutathione levels and superoxide dismutase activity in comparison to untreated mice. Administration of meclizine to STZ mice recuperated cognition and biochemical alterations. Concomitant administration of ketoconazole, a PXR antagonist, with meclizine prevented the protective effects. The upshots of our study proclaim that meclizine protects cognitive deficits by virtue of its antioxidant, anticholinesterase, and antiinflammatory properties. Results also signify the potential of PXR in neuroprotective actions of meclizine in dementia.
Collapse
Affiliation(s)
- Harmandeep Singh
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali (Punjab), India.,Department of Pharmacology, Chandigarh College of Pharmacy, Mohali (Punjab), India
| | - Rupinder Kaur Sodhi
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali (Punjab), India.,Department of Pharmacology, Chandigarh College of Pharmacy, Mohali (Punjab), India
| | - Simerjeet Kaur Chahal
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali (Punjab), India.,Department of Pharmacology, Chandigarh College of Pharmacy, Mohali (Punjab), India
| | - Jitender Madan
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali (Punjab), India.,Department of Pharmacology, Chandigarh College of Pharmacy, Mohali (Punjab), India
| |
Collapse
|
32
|
Stoker ML, Newport E, Hulit JC, West AP, Morten KJ. Impact of pharmacological agents on mitochondrial function: a growing opportunity? Biochem Soc Trans 2019; 47:1757-1772. [PMID: 31696924 PMCID: PMC6925523 DOI: 10.1042/bst20190280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022]
Abstract
Present-day drug therapies provide clear beneficial effects as many diseases can be driven into remission and the symptoms of others can be efficiently managed; however, the success of many drugs is limited due to both patient non-compliance and adverse off-target or toxicity-induced effects. There is emerging evidence that many of these side effects are caused by drug-induced impairment of mitochondrial function and eventual mitochondrial dysfunction. It is imperative to understand how and why drug-induced side effects occur and how mitochondrial function is affected. In an aging population, age-associated drug toxicity is another key area of focus as the majority of patients on medication are older. Therefore, with an aging population possessing subtle or even more dramatic individual differences in mitochondrial function, there is a growing necessity to identify and understand early on potentially significant drug-associated off-target effects and toxicity issues. This will not only reduce the number of unwanted side effects linked to mitochondrial toxicity but also identify useful mitochondrial-modulating agents. Mechanistically, many successful drug classes including diabetic treatments, antibiotics, chemotherapies and antiviral agents have been linked to mitochondrial targeted effects. This is a growing area, with research to repurpose current medications affecting mitochondrial function being assessed in cancer, the immune system and neurodegenerative disorders including Parkinson's disease. Here, we review the effects that pharmacological agents have on mitochondrial function and explore the opportunities from these effects as potential disease treatments. Our focus will be on cancer treatment and immune modulation.
Collapse
Affiliation(s)
- Megan L. Stoker
- NDWRH, The Women's Centre, University of Oxford, Oxford, U.K
| | - Emma Newport
- NDWRH, The Women's Centre, University of Oxford, Oxford, U.K
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, U.K
| | | | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Byran, TX, U.S.A
| | - Karl J. Morten
- NDWRH, The Women's Centre, University of Oxford, Oxford, U.K
| |
Collapse
|
33
|
Chumarina M, Russ K, Azevedo C, Heuer A, Pihl M, Collin A, Frostner EÅ, Elmer E, Hyttel P, Cappelletti G, Zini M, Goldwurm S, Roybon L. Cellular alterations identified in pluripotent stem cell-derived midbrain spheroids generated from a female patient with progressive external ophthalmoplegia and parkinsonism who carries a novel variation (p.Q811R) in the POLG1 gene. Acta Neuropathol Commun 2019; 7:208. [PMID: 31843010 PMCID: PMC6916051 DOI: 10.1186/s40478-019-0863-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Variations in the POLG1 gene encoding the catalytic subunit of the mitochondrial DNA polymerase gamma, have recently been associated with Parkinson's disease (PD), especially in patients diagnosed with progressive external ophthalmoplegia (PEO). However, the majority of the studies reporting this association mainly focused on the genetic identification of the variation in POLG1 in PD patient primary cells, and determination of mitochondrial DNA copy number, providing little information about the cellular alterations existing in patient brain cells, in particular dopaminergic neurons. Therefore, through the use of induced pluripotent stem cells (iPSCs), we assessed cellular alterations in novel p.Q811R POLG1 (POLG1Q811R) variant midbrain dopaminergic neuron-containing spheroids (MDNS) from a female patient who developed early-onset PD, and compared them to cultures derived from a healthy control of the same gender. Both POLG1 variant and control MDNS contained functional midbrain regionalized TH/FOXA2-positive dopaminergic neurons, capable of releasing dopamine. Western blot analysis identified the presence of high molecular weight oligomeric alpha-synuclein in POLG1Q811R MDNS compared to control cultures. In order to assess POLG1Q811R-related cellular alterations within the MDNS, we applied mass-spectrometry based quantitative proteomic analysis. In total, 6749 proteins were identified, with 61 significantly differentially expressed between POLG1Q811R and control samples. Pro- and anti-inflammatory signaling and pathways involved in energy metabolism were altered. Notably, increased glycolysis in POLG1Q811R MDNS was suggested by the increase in PFKM and LDHA levels and confirmed using functional analysis of glycolytic rate and oxygen consumption levels. Our results validate the use of iPSCs to assess cellular alterations in relation to PD pathogenesis, in a unique PD patient carrying a novel p.Q811R variation in POLG1, and identify several altered pathways that may be relevant to PD pathogenesis.
Collapse
|
34
|
Tetramethylpyrazine Analogue T-006 Exerts Neuroprotective Effects against 6-Hydroxydopamine-Induced Parkinson's Disease In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8169125. [PMID: 31827703 PMCID: PMC6885178 DOI: 10.1155/2019/8169125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/17/2019] [Accepted: 07/18/2019] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and there is no cure for it at present. We have previously reported that the tetramethylpyrazine (TMP) derivative T-006 exhibited beneficial effects in Alzheimer's disease (AD) models. However, its effect on PD remains unclear. In the present study, we investigated the neuroprotective effects and underlying mechanisms of T-006 against 6-hydroxydopamine- (6-OHDA-) induced lesions in in vivo and in vitro PD models. Our results demonstrated that T-006 alleviated mitochondrial membrane potential loss and restored the energy metabolism and mitochondrial biogenesis that were induced by 6-OHDA in PC12 cells. In addition, animal experiments showed that administration of T-006 significantly attenuated the 6-OHDA-induced loss of tyrosine hydroxylase- (TH-) positive neurons in the SNpc, as well as dopaminergic nerve fibers in the striatum, and also increased the concentration of dopamine and its metabolites (DOPAC, HVA) in the striatum. Functional deficits were restored following T-006 treatment in 6-OHDA-lesioned mice, as demonstrated by improved motor coordination and rotational behavior. In addition, we found that the neuroprotective effects of T-006 were mediated, at least in part, by the activation of both the PKA/Akt/GSK-3β and CREB/PGC-1α/NRF-1/TFAM pathways. In summary, our findings demonstrate that T-006 could be developed as a novel neuroprotective agent for PD, and the two pathways might be promising therapeutic targets for PD.
Collapse
|
35
|
Enogieru AB, Haylett WL, Miller HC, van der Westhuizen FH, Hiss DC, Ekpo OE. Attenuation of Endoplasmic Reticulum Stress, Impaired Calcium Homeostasis, and Altered Bioenergetic Functions in MPP+-Exposed SH-SY5Y Cells Pretreated with Rutin. Neurotox Res 2019; 36:764-776. [DOI: 10.1007/s12640-019-00048-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
|
36
|
Guo J, Li W, Wu Y, Jing X, Huang J, Zhang J, Xiang W, Ren R, Lv Z, Xiao J, Guo F. Meclizine Prevents Ovariectomy-Induced Bone Loss and Inhibits Osteoclastogenesis Partially by Upregulating PXR. Front Pharmacol 2017; 8:693. [PMID: 29046637 PMCID: PMC5632684 DOI: 10.3389/fphar.2017.00693] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Pregnane X receptor (PXR) which belongs to the nuclear hormone receptor superfamily plays vital roles in several biological functions, especially in the inflammatory procedure. Besides that, PXR is revealed by recent studies to have essential effects on bone tissue. As an agonist of PXR, meclizine is a piperazine-derived histamine H1 antagonist, and has been frequently used for prevention and treatment of vomiting and nausea. Because osteoclastogenesis is characterized by the activation of inflammation-related signaling pathways, we speculated that meclizine may affect formation and function of osteoclast. In the present study, we explored the effect of meclizine on RANKL-induced osteoclastogenesis both in vivo and in vitro. In primary bone marrow-derived macrophages (BMMs), meclizine reduced osteoclast formation and bone resorption in a dose-dependent manner, while knockdown of PXR with siRNA partially abrogated the osteoclastogenesis inhibition of meclizine. On the one hand, at the molecular level, meclizine attenuated RANKL-induced activation of c-Fos, NFATc1, nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs), including ERK and p38, but not JNK. Meanwhile, meclizine reduced the expression of osteoclast-specific genes, including TRAP, MMP9, Cathepsin K and NFATc1. On the other hand, meclizine decreased OVX-induced bone loss by repressing osteoclast activity. In conclusion, our results indicated that meclizine inhibits osteoclastogenesis via regulation of several RANKL signaling pathways and PXR was involved in the processes. Therefore, meclizine may be considered as a novel therapeutic candidate for osteoclast-related diseases.
Collapse
Affiliation(s)
- Jiachao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijin Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxing Wu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengtao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Kang X, Qiu J, Li Q, Bell KA, Du Y, Jung DW, Lee JY, Hao J, Jiang J. Cyclooxygenase-2 contributes to oxidopamine-mediated neuronal inflammation and injury via the prostaglandin E2 receptor EP2 subtype. Sci Rep 2017; 7:9459. [PMID: 28842681 PMCID: PMC5573328 DOI: 10.1038/s41598-017-09528-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) triggers pro-inflammatory processes that can aggravate neuronal degeneration and functional impairments in many neurological conditions, mainly via producing prostaglandin E2 (PGE2) that activates four membrane receptors, EP1-EP4. However, which EP receptor is the culprit of COX-2/PGE2-mediated neuronal inflammation and degeneration remains largely unclear and presumably depends on the insult types and responding components. Herein, we demonstrated that COX-2 was induced and showed nuclear translocation in two neuronal cell lines – mouse Neuro-2a and human SH-SY5Y – after treatment with neurotoxin 6-hydroxydopamine (6-OHDA), leading to the biosynthesis of PGE2 and upregulation of pro-inflammatory cytokine interleukin-1β. Inhibiting COX-2 or microsomal prostaglandin E synthase-1 suppressed the 6-OHDA-triggered PGE2 production in these cells. Treatment with PGE2 or EP2 selective agonist butaprost, but not EP4 agonist CAY10598, increased cAMP response in both cell lines. PGE2-initiated cAMP production in these cells was blocked by our recently developed novel selective EP2 antagonists – TG4-155 and TG6-10-1, but not by EP4 selective antagonist GW627368X. The 6-OHDA-promoted cytotoxicity was largely blocked by TG4-155, TG6-10-1 or COX-2 selective inhibitor celecoxib, but not by GW627368X. Our results suggest that PGE2 receptor EP2 is a key mediator of COX-2 activity-initiated cAMP signaling in Neuro-2a and SH-SY5Y cells following 6-OHDA treatment, and contributes to oxidopamine-mediated neurotoxicity.
Collapse
Affiliation(s)
- Xu Kang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Jiange Qiu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA.,Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qianqian Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Katherine A Bell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Da Woon Jung
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jiukuan Hao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA.
| |
Collapse
|
38
|
Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R. Metabolic Dysfunction in Parkinson's Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Res Bull 2017; 133:12-30. [PMID: 28341600 PMCID: PMC5555796 DOI: 10.1016/j.brainresbull.2017.03.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism.
Collapse
Affiliation(s)
- Annadurai Anandhan
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Maria S Jacome
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Pablo Hernandez-Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | | | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68503, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68503, United States.
| |
Collapse
|
39
|
Cisplatin Toxicity in Dorsal Root Ganglion Neurons Is Relieved by Meclizine via Diminution of Mitochondrial Compromise and Improved Clearance of DNA Damage. Mol Neurobiol 2016; 54:7883-7895. [PMID: 27858292 DOI: 10.1007/s12035-016-0273-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/30/2016] [Indexed: 01/09/2023]
Abstract
Chemotherapy-induced neurotoxicity of peripheral nervous system (PNS) hinders efficacy of cancer treatments. Mechanisms initiating PNS injury by anticancer drugs are incompletely understood delaying development of effective management strategies. To understand events triggered in PNS by cancer drugs, we exposed dorsal root ganglion (DRG) neurons to cisplatin, a drug from platinum-based class of chemotherapeutics frequently implicated in peripheral neuropathies. While cisplatin enters cancer cells and forms cisplatin/DNA crosslinks that block cell proliferation, circulating cisplatin can also reach the PNS and produce crosslinks that impede critical DNA transactions in postmitotic neurons. Cisplatin forms crosslinks with both, nuclear and mitochondrial DNA (mtDNA). Crosslinks are repairable primarily via the nucleotide excision repair (NER) pathway, which is present in nuclei but absent from mitochondrial compartment. Hence, high mitochondrial content and limited shielding by blood nerve barrier make DRG neurons particularly vulnerable to mitochondrial injury by cisplatin. We report that in DRG neurons, cisplatin elevates reactive oxygen species, depletes mtDNA, and impairs mitochondrial respiration, whereas concomitant meclizine supplementation preserves redox balance, attenuates mitochondrial compromise, and augments DNA repair. Meclizine is an antihistamine drug recently implicated in neuroprotection via modulation of energy metabolism. Our data demonstrate that in the mitochondria-rich DRG neurons, meclizine mitigates cisplatin-induced mitochondrial compromise via enhancement of pentose phosphate pathway and repletion of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione stores. The findings suggest that meclizine-mediated preservation of redox balance sustains mitochondrial respiration and supports execution of cellular processes, including timely removal of cisplatin crosslinks from nuclear DNA, thereby attenuating cisplatin toxicity in DRG neurons. Collectively, the findings reveal potential for pharmacologic modulation of dorsal root ganglion neurons metabolism for protection against toxicity of chemotherapeutic drugs.
Collapse
|
40
|
Oxaloacetate and adipose stromal cells-conditional medium synergistically protected potassium/serum deprivation-induced neuronal apoptosis. Brain Res Bull 2016; 128:7-12. [PMID: 27816553 DOI: 10.1016/j.brainresbull.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 11/21/2022]
Abstract
Adipose stromal cells conditioned media (ASC-CM) protect neurons in a variety of neuronal death models including potassium/serum deprivation-induced neuronal apoptosis. In this study, we found that ASC-CM contained glutamate oxaloacetate transaminase and its substrate, oxaloacetate (OAA) directly protected cerebellar granule neurons (CGN) from apoptosis induced by serum and potassium deprivation. Additionally, OAA inhibited serum and potassium deprivation-induced caspase 3 activation. ASC-CM and OAA in combination had a synergistic neuroprotective effect. Clearly, different from ASC-CM-induced neuroprotection, OAA-induced neuroprotection was Akt- independent but JNK-dependent. These data establish a mechanistic basis supporting that the application of ASC-CM for neuroprotective treatments could be significantly enhanced by addition of OAA.
Collapse
|
41
|
Zhuo M, Gorgun MF, Englander EW. Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise. Free Radic Biol Med 2016; 99:20-31. [PMID: 27458119 PMCID: PMC5538108 DOI: 10.1016/j.freeradbiomed.2016.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/12/2023]
Abstract
To meet energy demands, dorsal root ganglion (DRG) neurons harbor high mitochondrial content, which renders them acutely vulnerable to disruptions of energy homeostasis. While neurons typically rely on mitochondrial energy production and have not been associated with metabolic plasticity, new studies reveal that meclizine, a drug, recently linked to modulations of energy metabolism, protects neurons from insults that disrupt energy homeostasis. We show that meclizine rapidly enhances glycolysis in DRG neurons and that glycolytic metabolism is indispensable for meclizine-exerted protection of DRG neurons from hypoxic stress. We report that supplementation of meclizine during hypoxic exposure prevents ATP depletion, preserves NADPH and glutathione stores, curbs reactive oxygen species (ROS) and attenuates mitochondrial clustering in DRG neurites. Using extracellular flux analyzer, we show that in cultured DRG neurons meclizine mitigates hypoxia-induced loss of mitochondrial respiratory capacity. Respiratory capacity is a measure of mitochondrial fitness and cell ability to meet fluctuating energy demands and therefore, a key determinant of cellular fate. While meclizine is an 'old' drug with long record of clinical use, its ability to modulate energy metabolism has been uncovered only recently. Our findings documenting neuroprotection by meclizine in a setting of hypoxic stress reveal previously unappreciated metabolic plasticity of DRG neurons as well as potential for pharmacological harnessing of the newly discovered metabolic plasticity for protection of peripheral nervous system under mitochondria compromising conditions.
Collapse
Affiliation(s)
- Ming Zhuo
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Murat F Gorgun
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Ella W Englander
- Department of Surgery, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|